1
|
Powers SK. Ventilator-induced diaphragm dysfunction: phenomenology and mechanism(s) of pathogenesis. J Physiol 2024; 602:4729-4752. [PMID: 39216087 DOI: 10.1113/jp283860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mechanical ventilation (MV) is used to support ventilation and pulmonary gas exchange in patients during critical illness and surgery. Although MV is a life-saving intervention for patients in respiratory failure, an unintended side-effect of MV is the rapid development of diaphragmatic atrophy and contractile dysfunction. This MV-induced diaphragmatic weakness is labelled as 'ventilator-induced diaphragm dysfunction' (VIDD). VIDD is an important clinical problem because diaphragmatic weakness is a risk factor for the failure to wean patients from MV. Indeed, the inability to remove patients from ventilator support results in prolonged hospitalization and increased morbidity and mortality. The pathogenesis of VIDD has been extensively investigated, revealing that increased mitochondrial production of reactive oxygen species within diaphragm muscle fibres promotes a cascade of redox-regulated signalling events leading to both accelerated proteolysis and depressed protein synthesis. Together, these events promote the rapid development of diaphragmatic atrophy and contractile dysfunction. This review highlights the MV-induced changes in the structure/function of diaphragm muscle and discusses the cell-signalling mechanisms responsible for the pathogenesis of VIDD. This report concludes with a discussion of potential therapeutic opportunities to prevent VIDD and suggestions for future research in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Dang K, Cao M, Wang H, Yang H, Kong Y, Gao Y, Qian A. O-GlcNAcylation of SERCA protects skeletal muscle in hibernating Spermophilus dauricus from disuse atrophy. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111009. [PMID: 39151664 DOI: 10.1016/j.cbpb.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Long-term inactivity of skeletal muscle results in muscular disuse atrophy; however, hibernating animals do not experience muscular disuse atrophy during the hibernation period. The molecular mechanism underlining the anti-atrophy effect in these animals is unclear. O-linked N acetyl-β-D-glucosaminylation (O-GlcNAcylation) and its effect on cell signaling pathways are important mechanisms underlying muscular disuse atrophy; thus, in this study, we investigated O-GlcNAcylation changes during hibernation in Spermophilus dauricus to explore the role of O-GlcNAcylation in the muscle disuse atrophy resistance of hibernating animals. The results showed that during hibernation, the muscle fiber cross-sectional area and ratio of muscle fiber did not change, and the morphological structure of the muscle remained intact, with normal contractile function. The level of O-GlcNAcylation decreased during hibernation, but quickly returned to normal in the periodic arousal stage. The O-GlcNAcylation level of sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) decreased, whereas its activity increased. The decrease in O-GlcNAcylation of SERCA could result in the decreased binding of phospholamban to SERCA1, thus decreasing its inhibition to SERCA1 activity. This in turn can inhibit muscle cell calcium overload, maintain muscle cell calcium homeostasis, and stabilize the calpain proteolytic pathway, ultimately inhibiting skeletal muscle atrophy. Our results demonstrate that periodic arousal along with returning O-GlcNAcylation level to normal are important mechanisms in preventing disuse atrophy of skeletal muscle during hibernation.
Collapse
Affiliation(s)
- Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Mengru Cao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Huajian Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yong Kong
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yuan Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
3
|
Popov A, Lyakhovetskii V, Gorskii O, Kalinina D, Pavlova N, Musienko P. Effect of Hindlimb Unloading on Hamstring Muscle Activity in Rats. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:86-95. [PMID: 38412843 DOI: 10.1159/000537776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION The changes in knee axial rotation play an important role in traumatic and non-traumatic knee disorders. It is known that support afferentation can affect the axial rotator muscles. The condition of innervation of the semitendinosus (ST) and biceps femoris posterior (BFp) has changed in non-terrestrial and terrestrial vertebrates in evolution; thus, we hypothesized this situation might be replayed by hindlimb unloading (HU). METHODS In the present study, the EMG activity of two hamstring muscles, m. ST and m. BFp, which are antagonists in axial rotation of the tibia, was examined before and after 7 days of HU. RESULTS During locomotion and swimming, the ST flexor burst activity increased in the stance-to-swing transition and in the retraction-protraction transition, respectively, while that of BFp remained unchanged. Both ST and BFp non-burst extensor activity increased during stepping and decreased during swimming. CONCLUSIONS Our results show that (1) the flexor burst activity of ST and BFp depends differently on the load-dependent sensory input in the step cycle; (2) shift of the activity gradient towards ST in the stance-to-swing transition could produce excessive internal tibia torque, which can be used as an experimental model of non-traumatic musculoskeletal disorders; and (3) the mechanisms of activity of ST and BFp may be based on reciprocal activity of homologous muscles in primary tetrapodomorph and depend on the increased role of supraspinal control.
Collapse
Affiliation(s)
- Alexander Popov
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russian Federation,
| | | | - Oleg Gorskii
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russian Federation
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
| | - Daria Kalinina
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
- Sirius National Technical University, Neuroscience Program, Sochi, Russian Federation
| | - Natalia Pavlova
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russian Federation
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
| | - Pavel Musienko
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russian Federation
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
- Life Improvement by Future Technologies Center "LIFT", Moscow, Russian Federation
| |
Collapse
|
4
|
NISHIKAWA A, NISHIKAWA A, KAMAJIRI N, OKADA K, IMAGITA H. The Effects of Branched-Chain Amino Acids on the Akt/mTOR Pathway and Nebulin Protein in Joint Fixation-Induced Muscle Atrophy. J Nutr Sci Vitaminol (Tokyo) 2022; 68:112-119. [DOI: 10.3177/jnsv.68.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Gene Expression Profiling of Skeletal Muscles. Genes (Basel) 2021; 12:genes12111718. [PMID: 34828324 PMCID: PMC8621074 DOI: 10.3390/genes12111718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify gene expression patterns between soleus and tibialis anterior, two well-characterized skeletal muscles, and analyze their gene expression profiling. RNA read counts were analyzed for differential gene expression using the R package edgeR. Differentially expressed genes were filtered using a false discovery rate of less than 0.05 c, a fold-change value of more than twenty, and an association with overrepresented pathways based on the Reactome pathway over-representation analysis tool. Most of the differentially expressed genes associated with soleus are coded for components of lipid metabolism and unique contractile elements. Differentially expressed genes associated with tibialis anterior encoded mostly for glucose and glycogen metabolic pathway regulatory enzymes and calcium-sensitive contractile components. These gene expression distinctions partly explain the genetic basis for skeletal muscle specialization, and they may help to explain skeletal muscle susceptibility to disease and drugs and further refine tissue engineering approaches.
Collapse
|
6
|
Ohira T, Ino Y, Kimura Y, Nakai Y, Kimura A, Kurata Y, Kagawa H, Kimura M, Egashira K, Matsuda C, Ohira Y, Furukawa S, Hirano H. Effects of microgravity exposure and fructo-oligosaccharide ingestion on the proteome of soleus and extensor digitorum longus muscles in developing mice. NPJ Microgravity 2021; 7:34. [PMID: 34535681 PMCID: PMC8448765 DOI: 10.1038/s41526-021-00164-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Short-chain fatty acids produced by the gut bacterial fermentation of non-digestible carbohydrates, e.g., fructo-oligosaccharide (FOS), contribute to the maintenance of skeletal muscle mass and oxidative metabolic capacity. We evaluated the effect of FOS ingestion on protein expression of soleus (Sol) and extensor digitorum longus muscles in mice exposed to microgravity (μ-g). Twelve 9-week-old male C57BL/6J mice were raised individually on the International Space Station under μ-g or artificial 1-g and fed a diet with or without FOS (n = 3/group). Regardless of FOS ingestion, the absolute wet weights of both muscles tended to decrease, and the fiber phenotype in Sol muscles shifted toward fast-twitch type following μ-g exposure. However, FOS ingestion tended to mitigate the μ-g-exposure-related decrease in oxidative metabolism and enhance glutathione redox detoxification in Sol muscles. These results indicate that FOS ingestion mildly suppresses metabolic changes and oxidative stress in antigravity Sol muscles during spaceflight.
Collapse
Affiliation(s)
- Takashi Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan. .,Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi Osaka-Sayama, Osaka, Japan. .,Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan. .,Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan.
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yusuke Nakai
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Ayuko Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yoichi Kurata
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Hiroyuki Kagawa
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Mitsuo Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Kenji Egashira
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Chie Matsuda
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Yoshinobu Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
7
|
Fukano M, Tsukahara Y, Takei S, Nose-Ogura S, Fujii T, Torii S. Recovery of Abdominal Muscle Thickness and Contractile Function in Women after Childbirth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042130. [PMID: 33671663 PMCID: PMC7926552 DOI: 10.3390/ijerph18042130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/26/2022]
Abstract
Abdominal muscles may be both morphologically and functionally affected by pregnancy. Dysfunction of the muscles can lead to persistent postpartum low back pain. The recovery process of the abdominal muscles following childbirth is not well understood. This study aimed to demonstrate the changes in the thickness and contractile function of abdominal muscles during the first six months postpartum. Nine perinatal and 15 nulliparous females participated. The thicknesses and contraction/relaxation thickness ratios of the rectus abdominis (RA), external abdominal oblique (EO), internal abdominal oblique (IO), and transverse abdominis (TrA) were measured using ultrasound images from 36–39 weeks’ gestation until six months postpartum. The RA, IO, and TrA muscles were thinner in perinatal females than controls at 36–39 weeks of gestation (4.8 vs. 9.47 mm (RA), 5.45 vs. 7.73 mm (IO), 2.56 vs. 3.38 mm (TrA), respectively). The thinner IO muscle persisted for six months after delivery. The decreased TrA thickness ratio persisted until four months post-delivery. Abdominal muscle thickness and contractile function decreased in the postpartum period. Therefore, abdominal muscle exercises might help prevent postpartum symptoms; however, because deterioration of muscle function is significant in the first four months, careful attention should be paid to exercise intensity. The study limitation was a relatively small sample size, thus future studies should involve more participants.
Collapse
Affiliation(s)
- Mako Fukano
- College of Engineering, Shibaura Institute of Technology, Saitama 135-8548, Japan
- Faculty of Sport Sciences, Waseda University, Saitama 169-8050, Japan;
- Correspondence: ; Tel.: +81-48-720-6442
| | - Yuka Tsukahara
- Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo 108-8345, Japan;
- Waseda Institute for Sport Sciences, Waseda University, Saitama 169-8050, Japan
| | - Seira Takei
- Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 158-8557, Japan;
- Waseda Institute of Human Growth and Development, Waseda University, Saitama 169-8050, Japan
| | - Sayaka Nose-Ogura
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 158-8557, Japan; (S.N.-O.); (T.F.)
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 158-8557, Japan; (S.N.-O.); (T.F.)
| | - Suguru Torii
- Faculty of Sport Sciences, Waseda University, Saitama 169-8050, Japan;
| |
Collapse
|
8
|
Deval C, Calonne J, Coudy-Gandilhon C, Vazeille E, Bechet D, Polge C, Taillandier D, Attaix D, Combaret L. Mitophagy and Mitochondria Biogenesis Are Differentially Induced in Rat Skeletal Muscles during Immobilization and/or Remobilization. Int J Mol Sci 2020; 21:ijms21103691. [PMID: 32456262 PMCID: PMC7279154 DOI: 10.3390/ijms21103691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
Mitochondria alterations are a classical feature of muscle immobilization, and autophagy is required for the elimination of deficient mitochondria (mitophagy) and the maintenance of muscle mass. We focused on the regulation of mitochondrial quality control during immobilization and remobilization in rat gastrocnemius (GA) and tibialis anterior (TA) muscles, which have very different atrophy and recovery kinetics. We studied mitochondrial biogenesis, dynamic, movement along microtubules, and addressing to autophagy. Our data indicated that mitochondria quality control adapted differently to immobilization and remobilization in GA and TA muscles. Data showed i) a disruption of mitochondria dynamic that occurred earlier in the immobilized TA, ii) an overriding role of mitophagy that involved Parkin-dependent and/or independent processes during immobilization in the GA and during remobilization in the TA, and iii) increased mitochondria biogenesis during remobilization in both muscles. This strongly emphasized the need to consider several muscle groups to study the mechanisms involved in muscle atrophy and their ability to recover, in order to provide broad and/or specific clues for the development of strategies to maintain muscle mass and improve the health and quality of life of patients.
Collapse
Affiliation(s)
- Christiane Deval
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Julie Calonne
- Department of Medicine, Université de Fribourg, CH-1700 Fribourg, Switzerland;
| | - Cécile Coudy-Gandilhon
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Emilie Vazeille
- Centre Hospitalier Universitaire, 63000 Clermont-Ferrand, France;
| | - Daniel Bechet
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Cécile Polge
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Daniel Taillandier
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Didier Attaix
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Lydie Combaret
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
- Correspondence: ; Tel.: +33-4-73-62-48-24; Fax: +33-4-73-62-47-55
| |
Collapse
|
9
|
Fujita N, Goto N, Nakamura T, Nino W, Ono T, Nishijo H, Urakawa S. Hyperbaric Normoxia Improved Glucose Metabolism and Decreased Inflammation in Obese Diabetic Rat. J Diabetes Res 2019; 2019:2694215. [PMID: 31828157 PMCID: PMC6885850 DOI: 10.1155/2019/2694215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/09/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022] Open
Abstract
Hyperbaric treatment improves hyperglycemia and hyperinsulinemia in type 2 diabetes associated with obesity. However, its mode of action is unknown. The purpose of the present study was to investigate the influences of regular hyperbaric treatment with normal air at 1.3 atmospheres absolute (ATA) on glucose tolerance in type 2 diabetes with obesity. The focus was directed on inflammatory cytokines in the adipose tissue and skeletal muscle. Otsuka Long-Evans Tokushima Fatty (OLETF) rats were used as models of type 2 diabetes with obesity and Long-Evans Tokushima Otsuka (LETO) rats served as healthy controls. The rats were randomly assigned to untreated or hyperbaric treatment groups exposed to 1.3 ATA for 8 h d-1 and 5 d wk-1 for 16 wks. Glucose levels were significantly higher in the diabetic than in the healthy control rats. Nevertheless, glucose levels at 30 and 60 min after glucose administration were significantly lower in the diabetic rats treated with 1.3 ATA than in the untreated diabetic rats. Insulin levels at fasting and 120 min after glucose administration were significantly lower in the diabetic rats treated with 1.3 ATA than in the untreated diabetic rats. Hyperbaric treatment also increased interleukin-10 (IL-10) expression in the skeletal muscle and decreased tumor necrosis factor α (TNFα) expression in adipose tissue. These results suggested that TNFα downregulation and IL-10 upregulation in diabetic rats subjected to hyperbaric treatment participate in the crosstalk between the adipose and skeletal muscle tissues and improve glucose intolerance.
Collapse
Affiliation(s)
- Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Natsuki Goto
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tomoya Nakamura
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Wataru Nino
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
10
|
Mukai R, Horikawa H, Lin PY, Tsukumo N, Nikawa T, Kawamura T, Nemoto H, Terao J. 8-Prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1022-R1031. [PMID: 27629889 DOI: 10.1152/ajpregu.00521.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 08/09/2016] [Accepted: 08/30/2016] [Indexed: 01/06/2023]
Abstract
8-Prenylnaringenin (8-PN) is a prenylflavonoid that originates from hop extracts and is thought to help prevent disuse muscle atrophy. We hypothesized that 8-PN affects muscle plasticity by promoting muscle recovery under disuse muscle atrophy. To test the promoting effect of 8-PN on muscle recovery, we administered an 8-PN mixed diet to mice that had been immobilized with a cast to one leg for 14 days. Intake of the 8-PN mixed diet accelerated recovery from muscle atrophy, and prevented reductions in Akt phosphorylation. Studies on cell cultures of mouse myotubes in vitro demonstrated that 8-PN activated the PI3K/Akt/P70S6K1 pathway at physiological concentrations. A cell-culture study using an inhibitor of estrogen receptors and an in vivo experiment with ovariectomized mice suggested that the estrogenic activity of 8-PN contributed to recovery from disuse muscle atrophy through activation of an Akt phosphorylation pathway. These data strongly suggest that 8-PN is a naturally occurring compound that could be used as a nutritional supplement to aid recovery from disuse muscle atrophy.
Collapse
Affiliation(s)
- Rie Mukai
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan;
| | - Hitomi Horikawa
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Pei-Yi Lin
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Nao Tsukumo
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; and
| | - Tomoyuki Kawamura
- Department of Pharmaceutical Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hisao Nemoto
- Department of Pharmaceutical Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Junji Terao
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
11
|
Sassoon CSH, Zhu E, Fang L, Sieck GC, Powers SK. Positive end-expiratory airway pressure does not aggravate ventilator-induced diaphragmatic dysfunction in rabbits. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:494. [PMID: 25212227 PMCID: PMC4210557 DOI: 10.1186/s13054-014-0494-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/05/2014] [Indexed: 02/02/2023]
Abstract
Introduction Immobilization of hindlimb muscles in a shortened position results in an accelerated rate of inactivity-induced muscle atrophy and contractile dysfunction. Similarly, prolonged controlled mechanical ventilation (CMV) results in diaphragm inactivity and induces diaphragm muscle atrophy and contractile dysfunction. Further, the application of positive end-expiratory airway pressure (PEEP) during mechanical ventilation would result in shortened diaphragm muscle fibers throughout the respiratory cycle. Therefore, we tested the hypothesis that, compared to CMV without PEEP, the combination of PEEP and CMV would accelerate CMV-induced diaphragm muscle atrophy and contractile dysfunction. To test this hypothesis, we combined PEEP with CMV or with assist-control mechanical ventilation (AMV) and determined the effects on diaphragm muscle atrophy and contractile properties. Methods The PEEP level (8 cmH2O) that did not induce lung overdistension or compromise circulation was determined. In vivo segmental length changes of diaphragm muscle fiber were then measured using sonomicrometry. Sedated rabbits were randomized into seven groups: surgical controls and those receiving CMV, AMV or continuous positive airway pressure (CPAP) with or without PEEP for 2 days. We measured in vitro diaphragmatic force, diaphragm muscle morphometry, myosin heavy-chain (MyHC) protein isoforms, caspase 3, insulin-like growth factor 1 (IGF-1), muscle atrophy F-box (MAFbx) and muscle ring finger protein 1 (MuRF1) mRNA. Results PEEP shortened end-expiratory diaphragm muscle length by 15%, 14% and 12% with CMV, AMV and CPAP, respectively. Combined PEEP and CMV reduced tidal excursion of segmental diaphragm muscle length; consequently, tidal volume (VT) decreased. VT was maintained with combined PEEP and AMV. CMV alone decreased maximum tetanic force (Po) production by 35% versus control (P < 0.01). Combined PEEP and CMV did not decrease Po further. Po was preserved with AMV, with or without PEEP. Diaphragm muscle atrophy did not occur in any fiber types. Diaphragm MyHC shifted to the fast isoform in the combined PEEP and CMV group. In both the CMV and combined PEEP and CMV groups compared to controls, IGF-1 mRNAs were suppressed, whereas Caspase-3, MAFbx and MuRF1 mRNA expression were elevated. Conclusions Two days of diaphragm muscle fiber shortening with PEEP did not exacerbate CMV-induced diaphragm muscle dysfunction.
Collapse
|
12
|
Hanson AM, Harrison BC, Young MH, Stodieck LS, Ferguson VL. Longitudinal characterization of functional, morphologic, and biochemical adaptations in mouse skeletal muscle with hindlimb suspension. Muscle Nerve 2013; 48:393-402. [DOI: 10.1002/mus.23753] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Andrea M. Hanson
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Brooke C. Harrison
- Molecular, Cellular, and Developmental Biology; University of Colorado; Boulder Colorado USA
| | - Mary H. Young
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Louis S. Stodieck
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Virginia L. Ferguson
- Department of Mechanical Engineering; University of Colorado; UCB 427 Boulder Colorado 80309 USA
| |
Collapse
|
13
|
Liu J, Li K, Huang X, Xie J, Huang X. Electrical stimulation by semi-implantable electrodes decreases the levels of proteins associated with sciatic nerve injury-induced muscle atrophy. Mol Med Rep 2013; 8:245-9. [PMID: 23703220 DOI: 10.3892/mmr.2013.1487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/11/2013] [Indexed: 11/05/2022] Open
Abstract
Muscle atrophy is a disease that is usually caused by denervation. The aim of the present study was to determine whether electrical stimulation by semi-implantable electrodes is capable of decreasing the levels of specific proteins associated with sciatic nerve injury-induced muscle atrophy. Male Sprague Dawley (SD) rats with damaged sciatic nerves were maintained on a 12‑h light/dark cycle. Thirty-two SD rats were randomly allocated into 4 groups (each group, n=8). The rats in group C received no electrical stimulation; the rats in groups D, N and DN received electrical stimulation by semi-implantable electrodes during the daytime alone, nighttime alone and both the daytime and nighttime, respectively. Immunoblot assays were performed to detect the expression of cellular proteins associated with muscle atrophy. The number of muscle satellite cells was determined using a microscope, indicating that electrical stimulation increased the number of muscle satellite cells. Immunoblot assay results showed that electrical stimulation reduced the expression levels of cathepsin L, calpain 1 and the ubiquitinated muscle ring finger‑1 (MuRF-1) protein. In conclusion, electrical stimulation by semi-implantable electrodes constitutes a potential method for the treatment of sciatic nerve injury-induced muscle atrophy. The decreased expression levels of the cellular proteins cathepsin L and calpain 1, as well as the ubiquitinated protein MuRF-1, are associated with the attenuation of sciatic nerve injury-induced muscle atrophy.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand Surgery, the Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, PR China.
| | | | | | | | | |
Collapse
|
14
|
Slimani L, Micol D, Amat J, Delcros G, Meunier B, Taillandier D, Polge C, Béchet D, Dardevet D, Picard B, Attaix D, Listrat A, Combaret L. The worsening of tibialis anterior muscle atrophy during recovery post-immobilization correlates with enhanced connective tissue area, proteolysis, and apoptosis. Am J Physiol Endocrinol Metab 2012; 303:E1335-47. [PMID: 23032683 DOI: 10.1152/ajpendo.00379.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sustained muscle wasting due to immobilization leads to weakening and severe metabolic consequences. The mechanisms responsible for muscle recovery after immobilization are poorly defined. Muscle atrophy induced by immobilization worsened in the lengthened tibialis anterior (TA) muscle but not in the shortened gastrocnemius muscle. Here, we investigated some mechanisms responsible for this differential response. Adult rats were subjected to unilateral hindlimb casting for 8 days (I8). Casts were removed at I8, and animals were allowed to recover for 10 days (R1 to R10). The worsening of TA atrophy following immobilization occurred immediately after cast removal at R1 and was sustained until R10. This atrophy correlated with a decrease in type IIb myosin heavy chain (MyHC) isoform and an increase in type IIx, IIa, and I isoforms, with muscle connective tissue thickening, and with increased collagen (Col) I mRNA levels. Increased Col XII, Col IV, and Col XVIII mRNA levels during TA immobilization normalized at R6. Sustained enhanced peptidase activities of the proteasome and apoptosome activity contributed to the catabolic response during the studied recovery period. Finally, increased nuclear apoptosis prevailed only in the connective tissue compartment of the TA. Altogether, the worsening of the TA atrophy pending immediate reloading reflects a major remodeling of its fiber type properties and alterations in the structure/composition of the extracellular compartment that may influence its elasticity/stiffness. The data suggest that sustained enhanced ubiquitin-proteasome-dependent proteolysis and apoptosis are important for these adaptations and provide some rationale for explaining the atrophy of reloaded muscles pending immobilization in a lengthened position.
Collapse
Affiliation(s)
- Lamia Slimani
- Institut National de Recherche Agronomique (INRA), Unite Mixte de Recherche (UMR), 1019 Unité de Nutrition Humaine 63122, Saint Genès Champanelle, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The combined effect of electrical stimulation and high-load isometric contraction on protein degradation pathways in muscle atrophy induced by hindlimb unloading. J Biomed Biotechnol 2011; 2011:401493. [PMID: 22007142 PMCID: PMC3190189 DOI: 10.1155/2011/401493] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 11/18/2022] Open
Abstract
High-load isometric exercise is considered an effective countermeasure against muscle atrophy, but therapeutic electrical stimulation for muscle atrophy is often performed without loading. In the present study, we investigated the combined effectiveness of electrical stimulation and high-load isometric contraction in preventing muscle atrophy induced by hindlimb unloading. Electrical stimulation without loading resulted in slight attenuation of muscle atrophy. Moreover, combining electrical stimulation with high-load isometric contraction enhanced this effect. In electrical stimulation without loading, inhibition of the overexpression of calpain 1, calpain 2, and MuRF-1 mRNA was confirmed. On the other hand, in electrical stimulation with high-load isometric contraction, inhibition of the overexpression of cathepsin L and atrogin-1 mRNA in addition to calpain 1, calpain 2, and MuRF-1 mRNA was confirmed. These findings suggest that the combination of electrical stimulation and high-load isometric contraction is effective as a countermeasure against muscle atrophy.
Collapse
|
16
|
Fujita N, Murakami S, Arakawa T, Miki A, Fujino H. The combined effect of electrical stimulation and resistance isometric contraction on muscle atrophy in rat tibialis anterior muscle. Bosn J Basic Med Sci 2011; 11:74-9. [PMID: 21619551 DOI: 10.17305/bjbms.2011.2584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Electrical stimulation has been used to prevent muscle atrophy, but this method is different in many previous studies, appropriate stimulation protocol is still not decided. Although resistance exercise has also been shown to be an effective countermeasure on muscle atrophy, almost previous studies carried out an electrical stimulation without resistance. It was hypothesized that electrical stimulation without resistance is insufficient to contract skeletal muscle forcefully, and the combination of electrical stimulation and forceful resistance contraction is more effective than electrical stimulation without resistance to attenuate muscle atrophy. This study investigated the combined effects of electrical stimulation and resistance isometric contraction on muscle atrophy in the rat tibialis anterior muscle. The animals were divided into control, hindlimb unloading (HU), hindlimb unloading plus electrical stimulation (ES), and hindlimb unloading plus the combination of electrical stimulation and resistance isometric contraction (ES+IC). Electrical stimulation was applied to the tibialis anterior muscle percutaneously for total 240 sec per day. In the ES+IC group, the ankle joint was fixed to produce resistance isometric contraction during electrical stimulation. After 7 days, the cross-sectional areas of each muscle fiber type in the HU group decreased. Those were prevented in the ES+IC group rather than the ES group. The expression of heat shock protein 72 was enhanced in the ES and ES+IC groups. These results indicated that although electrical stimulation is effective to prevent muscle atrophy, the combination of electrical stimulation and isometric contraction have further effect.
Collapse
Affiliation(s)
- Naoto Fujita
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka, Suma-ku, Japan.
| | | | | | | | | |
Collapse
|
17
|
Baroni BM, Galvão AQ, Ritzel CH, Diefenthaeler F, Vaz MA. Adaptações neuromusculares de flexores dorsais e plantares a duas semanas de imobilização após entorse de tornozelo. REV BRAS MED ESPORTE 2010. [DOI: 10.1590/s1517-86922010000500008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: A entorse de tornozelo é uma lesão de alta incidência comumente tratada com períodos de imobilização, levando a adaptações estruturais e funcionais dos músculos atuantes nesta articulação. OBJETIVO: Identificar as adaptações dos músculos flexores dorsais e flexores plantares após duas semanas de imobilização em sujeitos que sofreram entorse de tornozelo. MÉTODOS: Onze indivíduos (seis mulheres e cinco homens) acometidos por entorse de tornozelo grau II foram submetidos a 14 dias de imobilização por tala gessada. Após a retirada da imobilização, foram realizadas avaliações bilaterais de (1) perimetria da perna, (2) amplitude de movimento (ADM) do tornozelo, (3) torque isométrico máximo de flexores dorsais e flexores plantares em sete ângulos do tornozelo e (4) ativação eletromiográfica dos músculos tibial anterior (TA), sóleo (SO) e gastrocnêmio medial (GM). Os resultados obtidos no segmento imobilizado foram comparados com os do segmento saudável contralateral através de um teste t de Student pareado (p < 0,05). RESULTADOS: O segmento imobilizado apresentou redução (1) da circunferência nas regiões proximais da perna, (2) da ADM de flexão dorsal e plantar, (3) do torque isométrico máximo de flexores dorsais e plantares e (4) do sinal eletromiográfico do TA em todos os ângulos articulares e do SO nos maiores comprimentos musculares. Não houve diferença no sinal eletromiográfico do músculo GM. CONCLUSÃO: Um período relativamente curto de imobilização (duas semanas) prejudica a funcionalidade dos músculos flexores dorsais e flexores plantares do tornozelo.
Collapse
Affiliation(s)
| | | | | | - Fernando Diefenthaeler
- Universidade Federal do Rio Grande do Sul, Brasil; Universidade Federal de Santa Catarina, Brasil
| | | |
Collapse
|
18
|
Fujita N, Arakawa T, Matsubara T, Ando H, Miki A. Influence of fixed muscle length and contractile properties on atrophy and subsequent recovery in the rat soleus and plantaris muscles. ACTA ACUST UNITED AC 2010; 72:151-63. [PMID: 20513978 DOI: 10.1679/aohc.72.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study examined muscular atrophy and the recovery process induced by hindlimb unloading and joint immobilization in the rat soleus and plantaris muscles. Rats were divided into control, hindlimb unloading (HU), hindlimb unloading with ankle joint immobilization at the maximum dorsiflexion (HUD), and maximum plantarflexion (HUP) groups. The hindlimb was reloaded after fourteen days of unloading, and muscle atrophy and walking ability were assessed at 0, 3, and 7 days of reloading. A cross sectional area of muscle fibers in the soleus muscle on day 0 of reloading revealed sizes in order from the control, HUD, HUP down to the HU group, indicating that the HU group was the most atrophied among the four groups. These values in the plantaris muscle ranged in order from the control, HU, HUD, to HUP groups, the HUP group being the most atrophied among the four groups. These muscles recovered from atrophy in the same descending order, and the values in the HUD and HUP groups slowly recovered during the reloading periods. The HUD and HUP groups showed a central core lesion and reloading-induced lesions in some type I muscle fibers after the immobilization and reloading, one possible reason for the delayed recovery in these groups. The muscle atrophy in the HU, HUD, and HUP groups remained at day 7 although the walking ability appeared to be normal. Accordingly, further rehabilitation therapy might be necessary even if the functional ability appears to be normal.
Collapse
Affiliation(s)
- Naoto Fujita
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, Suma-ku, Kobe, Japan
| | | | | | | | | |
Collapse
|