1
|
Chihab S, Eng T, Kaiser JM, Khan NM, Doan TN, Drissi H. Early signs of osteoarthritis in differing rat osteochondral defects. J Orthop Res 2024; 42:2461-2472. [PMID: 38965674 DOI: 10.1002/jor.25930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Preclinical models of osteochondral defects (OCDs) are fundamental test beds to evaluate treatment modalities before clinical translation. To increase the rigor and reproducibility of translational science for a robust "go or no-go," we evaluated disease progression and pain phenotypes within the whole joint for two OCD rat models with same defect size (1.5 x 0.8 mm) placed either in the trochlea or medial condyle of femur. Remarkably, we only found subtle transitory changes to gaits of rats with trochlear defect without any discernible effect to allodynia. At 8-weeks post-surgery, anatomical evaluations of joint showed early signs of osteoarthritis with EPIC-microCT. For the trochlear defect, cartilage attenuation was increased in trochlear, medial, and lateral compartments of the femur. For condylar defect, increased cartilage attenuation was isolated to the medial condyle of the femur. Further, the medial ossicle showed signs of deterioration as indicated with decreased bone mineral density and increased bone surface area to volume ratio. Thus, OCD in a weight-bearing region of the femur gave rise to more advanced osteoarthritis phenotype within a unilateral joint compartment. Subchondral bone remodeling was evident in both models without any indication of closure of the articular cartilage surface. We conclude that rat OCD, placed in the trochlear or condylar region of the femur, leads to differing severity of osteoarthritis progression. As found herein, repair of the defect with fibrous tissue and subchondral bone is insufficient to alleviate onset of osteoarthritis. Future therapies using rat OCD model should address joint osteoarthritis in addition to repair itself.
Collapse
Affiliation(s)
- Samir Chihab
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Tracy Eng
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Jarred M Kaiser
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Nazir M Khan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Thanh N Doan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Hicham Drissi
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
McKinney JM, Pucha KA, Bernard FC, Brandon Dixon J, Doan TN, Willett NJ. Osteoarthritis early-, mid- and late-stage progression in the rat medial meniscus transection model. J Orthop Res 2024. [PMID: 39385586 DOI: 10.1002/jor.25969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 10/12/2024]
Abstract
Osteoarthritis is a degenerative disease of synovial joints affecting all tissues, including articular cartilage and subchondral bone. Osteoarthritis animal models can recapitulate aspects of human disease progression and are used to test efficacy of drugs, biomaterials, and cell therapies. The rat medial meniscus transection (MMT) model is a surgically induced posttraumatic osteoarthritis model commonly used for preclinical therapeutic screening. We describe herein, the qualitative and quantitative changes to articular cartilage, subchondral bone, and formation of osteophytes at early-, mid-, and late-stages of osteoarthritis progression. Tibia of MMT-operated animals showed proteoglycan loss and fibrillation along articular cartilage surfaces as early as 3-weeks post-surgery. With contrast-enhanced micro-CT technique, quantitative, 3-dimensional analysis of the tibia showed that the articular cartilage thickened at 3- and 6-weeks post-surgery and decreased at 12-weeks post-surgery. This decreased cartilage thickness corresponded with increased lesions in the articular cartilage that led to its full degradation and exposing the subchondral bone layer. Further, subchondral bone thickening was significant at 6-weeks post-surgery and followed cartilage damage. Osteophytes were found as early as 3-weeks post-surgery and coincided with articular cartilage degradation. Cartilaginous osteophytes preceded mineralization, suggesting endochondral ossification. The rat MMT model has predominantly been used out to 3-weeks, and most studies determined the effect of therapies to delay or prevent the onset of osteoarthritis. We provide evidence that an extension of the rat MMT model out to 6- and 12-weeks more resembled severe phenotypes of human osteoarthritis. Thus, evaluating novel therapeutics at late-stage will be important for eventual clinical translation.
Collapse
Affiliation(s)
- Jay M McKinney
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Krishna A Pucha
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Fabrice C Bernard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - J Brandon Dixon
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Thanh N Doan
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
| | - Nick J Willett
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia, USA
- Department of Orthopaedics, Emory University, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
3
|
Campbell TM, Trudel G. Protecting the regenerative environment: selecting the optimal delivery vehicle for cartilage repair-a narrative review. Front Bioeng Biotechnol 2024; 12:1283752. [PMID: 38333081 PMCID: PMC10850577 DOI: 10.3389/fbioe.2024.1283752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Focal cartilage defects are common in youth and older adults, cause significant morbidity and constitute a major risk factor for developing osteoarthritis (OA). OA is the most common musculoskeletal (MSK) disease worldwide, resulting in pain, stiffness, loss of function, and is currently irreversible. Research into the optimal regenerative approach and methods in the setting of either focal cartilage defects and/or OA holds to the ideal of resolving both diseases. The two fundamentals required for cartilage regenerative treatment are 1) the biological element contributing to the regeneration (e.g., direct application of stem cells, or of an exogenous secretome), and 2) the vehicle by which the biological element is suspended and delivered. The vehicle provides support to the regenerative process by providing a protective environment, a structure that allows cell adherence and migration, and a source of growth and regenerative factors that can activate and sustain regeneration. Models of cartilage diseases include osteochondral defect (OCD) (which usually involve one focal lesion), or OA (which involves a more diffuse articular cartilage loss). Given the differing nature of these models, the optimal regenerative strategy to treat different cartilage diseases may not be universal. This could potentially impact the translatability of a successful approach in one condition to that of the other. An analogy would be the repair of a pothole (OCD) versus repaving the entire road (OA). In this narrative review, we explore the existing literature evaluating cartilage regeneration approaches for OCD and OA in animal then in human studies and the vehicles used for each of these two conditions. We then highlight strengths and challenges faced by the different approaches presented and discuss what might constitute the optimal cartilage regenerative delivery vehicle for clinical cartilage regeneration.
Collapse
Affiliation(s)
- T. Mark Campbell
- Elisabeth Bruyère Hospital, Ottawa, ON, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital, Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa, ON, Canada
| |
Collapse
|
4
|
Lin ASP, Reece DS, Thote T, Sridaran S, Stevens HY, Willett NJ, Guldberg RE. Intra-articular delivery of micronized dehydrated human amnion/chorion membrane reduces degenerative changes after onset of post-traumatic osteoarthritis. Front Bioeng Biotechnol 2023; 11:1224141. [PMID: 37744252 PMCID: PMC10512062 DOI: 10.3389/fbioe.2023.1224141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Micronized dehydrated human amnion/chorion membrane (mdHACM) has reduced short term post-traumatic osteoarthritis (PTOA) progression in rats when delivered 24 h after medial meniscal transection (MMT) and is being investigated for clinical use as a disease modifying therapy. Much remains to be assessed, including its potential for longer-term therapeutic benefit and treatment effects after onset of joint degeneration. Objectives: Characterize longer-term effects of acute treatment with mdHACM and determine whether treatment administered to joints with established PTOA could slow or reverse degeneration. Hypotheses: Acute treatment effects will be sustained for 6 weeks, and delivery of mdHACM after onset of joint degeneration will attenuate structural osteoarthritic changes. Methods: Rats underwent MMT or sham surgery (left leg). mdHACM was delivered intra-articularly 24 h or 3 weeks post-surgery (n = 5-7 per group). Six weeks post-surgery, animals were euthanized and left tibiae scanned using equilibrium partitioning of an ionic contrast agent microcomputed tomography (EPIC-µCT) to structurally quantify joint degeneration. Histology was performed to examine tibial plateau cartilage. Results: Quantitative 3D µCT showed that cartilage structural metrics (thickness, X-ray attenuation, surface roughness, exposed bone area) for delayed mdHACM treatment limbs were significantly improved over saline treatment and not significantly different from shams. Subchondral bone mineral density and thickness for the delayed treatment group were significantly improved over acute treated, and subchondral bone thickness was not significantly different from sham. Marginal osteophyte degenerative changes were decreased with delayed mdHACM treatment compared to saline. Acute treatment (24 h post-surgery) did not reduce longer-term joint tissue degeneration compared to saline. Histology supported µCT findings and further revealed that while delayed treatment reduced cartilage damage, chondrocytes displayed qualitatively different morphologies and density compared to sham. Conclusion: This study provides insight into effects of intra-articular delivery timing relative to PTOA progression and the duration of therapeutic benefit of mdHACM. Results suggest that mdHACM injection into already osteoarthritic joints can improve joint health, but a single, acute mdHACM injection post-injury does not prevent long term osteoarthritis associated with meniscal instability. Further work is needed to fully characterize the durability of therapeutic benefit in stable osteoarthritic joints and the effects of repeated injections.
Collapse
Affiliation(s)
- Angela S. P. Lin
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States
| | - David S. Reece
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Tanushree Thote
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Sanjay Sridaran
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Hazel Y. Stevens
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Nick J. Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States
| | - Robert E. Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States
| |
Collapse
|
5
|
Almahasneh F, Abu-El-Rub E, Khasawneh RR. Mechanisms of analgesic effect of mesenchymal stem cells in osteoarthritis pain. World J Stem Cells 2023; 15:196-208. [PMID: 37181003 PMCID: PMC10173815 DOI: 10.4252/wjsc.v15.i4.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease, and it is a major cause of pain, disability and health burden. Pain is the most common and bothersome presentation of OA, but its treatment is still suboptimal, due to the short-term action of employed analgesics and their poor adverse effect profile. Due to their regenerative and anti-inflammatory properties, mesenchymal stem cells (MSCs) have been extensively investigated as a potential therapy for OA, and numerous preclinical and clinical studies found a significant improvement in joint pathology and function, pain scores and/or quality of life after administration of MSCs. Only a limited number of studies, however, addressed pain control as the primary end-point or investigated the potential mechanisms of analgesia induced by MSCs. In this paper, we review the evidence reported in literature that support the analgesic action of MSCs in OA, and we summarize the potential mechanisms of these antinociceptive effects.
Collapse
Affiliation(s)
- Fatimah Almahasneh
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan
| | - Ejlal Abu-El-Rub
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan
| | - Ramada R Khasawneh
- Basic Medical Sciences, Faculty of Medicine -Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
6
|
Michalaki E, Rudd JM, Liebman L, Wadhwani R, Wood LB, Willett NJ, Dixon JB. Lentiviral overexpression of VEGFC in transplanted MSCs leads to resolution of swelling in a mouse tail lymphedema model. Microcirculation 2023; 30:e12792. [PMID: 36369987 PMCID: PMC10680019 DOI: 10.1111/micc.12792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Despite the various physical therapy and surgical options available, most treatments are palliative and fail to address the underlying lymphatic vascular insufficiency driving lymphedema progression. Stem cell therapy provides a promising alternative in the treatment of various chronic diseases with a wide range of therapeutic effects that reduce inflammation, fibrosis, and oxidative stress, while promoting lymphatic vessel (LV) regeneration. Specifically, stem cell transplantation is suggested to promote LV restoration, rebuild lymphatic circulation, and thus potentially be utilized towards an effective lymphedema treatment. In addition to stem cells, studies have proposed the administration of vascular endothelial growth factor C (VEGFC) to promote lymphangiogenesis and decrease swelling in lymphedema. AIMS Here, we seek to combine the benefits of stem cell therapy, which provides a cellular therapeutic approach that can respond to the tissue environment, and VEGFC administration to restore lymphatic drainage. MATERIALS & METHODS Specifically, we engineered mesenchymal stem cells (MSCs) to overexpress VEGFC using a lentiviral vector (hVEGFC MSC) and investigated their therapeutic efficacy in improving LV function and tissue swelling using near infrared (NIR) imaging, and lymphatic regeneration in a single LV ligation mouse tail lymphedema model. RESULTS First, we showed that overexpression of VEGFC using lentiviral transduction led to an increase in VEGFC protein synthesis in vitro. Then, we demonstrated hVEGFC MSC administration post-injury significantly increased the lymphatic contraction frequency 14-, 21-, and 28-days post-surgery compared to the control animals (MSC administration) in vivo, while also reducing tail swelling 28-days post-surgery compared to controls. CONCLUSION Our results suggest a therapeutic potential of hVEGFC MSC in alleviating the lymphatic dysfunction observed during lymphedema progression after secondary injury and could provide a promising approach to enhancing autologous cell therapy for treating lymphedema.
Collapse
Affiliation(s)
- Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Josephine M Rudd
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lauren Liebman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Rahul Wadhwani
- Neuroscience Department, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nick J Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, USA
- The Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Nativel F, Smith A, Boulestreau J, Lépine C, Baron J, Marquis M, Vignes C, Le Guennec Y, Veziers J, Lesoeur J, Loll F, Halgand B, Renard D, Abadie J, Legoff B, Blanchard F, Gauthier O, Vinatier C, Rieux AD, Guicheux J, Le Visage C. Micromolding-based encapsulation of mesenchymal stromal cells in alginate for intraarticular injection in osteoarthritis. Mater Today Bio 2023; 19:100581. [PMID: 36896417 PMCID: PMC9988569 DOI: 10.1016/j.mtbio.2023.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Osteoarthritis (OA) is an inflammatory joint disease that affects cartilage, subchondral bone, and joint tissues. Undifferentiated Mesenchymal Stromal Cells are a promising therapeutic option for OA due to their ability to release anti-inflammatory, immuno-modulatory, and pro-regenerative factors. They can be embedded in hydrogels to prevent their tissue engraftment and subsequent differentiation. In this study, human adipose stromal cells are successfully encapsulated in alginate microgels via a micromolding method. Microencapsulated cells retain their in vitro metabolic activity and bioactivity and can sense and respond to inflammatory stimuli, including synovial fluids from OA patients. After intra-articular injection in a rabbit model of post-traumatic OA, a single dose of microencapsulated human cells exhibit properties matching those of non-encapsulated cells. At 6 and 12 weeks post-injection, we evidenced a tendency toward a decreased OA severity, an increased expression of aggrecan, and a reduced expression of aggrecanase-generated catabolic neoepitope. Thus, these findings establish the feasibility, safety, and efficacy of injecting cells encapsulated in microgels, opening the door to a long-term follow-up in canine OA patients.
Collapse
Affiliation(s)
- Fabien Nativel
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Audrey Smith
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jeremy Boulestreau
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Charles Lépine
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Julie Baron
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Melanie Marquis
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Caroline Vignes
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Yoan Le Guennec
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Joelle Veziers
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Julie Lesoeur
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - François Loll
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Boris Halgand
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Denis Renard
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Jerome Abadie
- LabONIRIS, ONIRIS (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), F-44300 Nantes, France
| | - Benoit Legoff
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Frederic Blanchard
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Olivier Gauthier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,ONIRIS Nantes-Atlantic College of Veterinary Medicine, Centre de Recherche et D'investigation Préclinique (CRIP), F-44300 Nantes, France
| | - Claire Vinatier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Anne des Rieux
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jerome Guicheux
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Catherine Le Visage
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
8
|
Boffa A, Perucca Orfei C, Sourugeon Y, Laver L, Magalon J, Sánchez M, Tischer T, de Girolamo L, Filardo G. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models. A systematic review by the ESSKA Orthobiologic Initiative. Part 2: bone marrow-derived cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2023:10.1007/s00167-023-07320-3. [PMID: 36823238 DOI: 10.1007/s00167-023-07320-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE Aim of this systematic review was to determine if bone marrow-derived cell-based injectable therapies induce disease-modifying effects in joints affected by osteoarthritis (OA) in animal models. METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science, Embase) according to PRISMA guidelines. A synthesis of the results was performed investigating disease-modifying effects in preclinical animal studies comparing injectable bone marrow-derived products with OA controls or other products, different formulations or injection intervals, and the combination with other products. The risk of bias was assessed according to the SYRCLE's tool. RESULTS Fifty-three studies were included (1819 animals) with an increasing publication trend over time. Expanded cells were used in 48 studies, point-of-care products in 3 studies, and both approaches were investigated in 2 studies. Among the 47 studies presenting results on the disease-modifying effects, 40 studies (85%) reported better results with bone marrow-derived products compared to OA controls, with positive findings evident in 14 out of 20 studies (70%) in macroscopic assessment, in 30 out of 41 studies (73%) in histological assessment, and in 10 out of 13 studies (77%) in immunohistochemical evaluations. Clinical evaluations showed positive results in 7 studies out of 9 (78%), positive imaging results in 11 studies out of 17 (65%), and positive biomarker results in 5 studies out of 10 (50%). While 36 out of 46 studies (78%) reported positive results at the cartilage level, only 3 out of 10 studies (30%) could detect positive changes at the synovial level. The risk of bias was low in 42% of items, unclear in 50%, and high in 8%. CONCLUSION This systematic review of preclinical studies demonstrated that intra-articular injections of bone marrow-derived products can induce disease-modifying effects in the treatment of OA, slowing down the progression of cartilage damage with benefits at macroscopic, histological, and immunohistochemical levels. Positive results have been also observed in terms of clinical and imaging findings, as well as in the modulation of inflammatory and cartilage biomarkers, while poor effects have been described on the synovial membrane. These findings are important to understand the potential of bone marrow-derived products and to guide further research to optimise their use in the clinical practice. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy.
| | | | - Lior Laver
- Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel
- Arthrosport Clinic, Tel‑Aviv, Israel
- Rappaport Faculty of Medicine, Technion University Hospital (Israel Institute of Technology), Haifa, Israel
| | - Jérémy Magalon
- Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France
- INSERM, NRA, C2VN, Aix Marseille Univ, Marseille, France
- SAS Remedex, Marseille, France
| | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
| | - Thomas Tischer
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
- Department of Orthopaedic and Trauma Surgery, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
9
|
Sok D, Raval S, McKinney J, Drissi H, Mason A, Mautner K, Kaiser JM, Willett NJ. NSAIDs Reduce Therapeutic Efficacy of Mesenchymal Stromal Cell Therapy in a Rodent Model of Posttraumatic Osteoarthritis. Am J Sports Med 2022; 50:1389-1398. [PMID: 35420503 DOI: 10.1177/03635465221083610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Intra-articular injections of human mesenchymal stromal cells (hMSCs) have shown promise in slowing cartilage degradation in posttraumatic osteoarthritis (PTOA). Clinical use of cell therapies for osteoarthritis has accelerated in recent years without sufficient scientific evidence defining best-use practices. Common recommendations advise patients to avoid nonsteroidal anti-inflammatory drug (NSAID) use before and after cell injection over concerns that NSAIDs may affect therapeutic efficacy. Recommendations to restrict NSAID use are challenging for patients, and it is unclear if patients are compliant. HYPOTHESIS NSAIDs will reduce the efficacy of hMSC therapy in treating a preclinical model of PTOA. STUDY DESIGN Controlled laboratory study. METHODS Lewis rats underwent medial meniscal transection (MMT) surgery to induce PTOA or a sham (sham group) surgery that did not progress to PTOA. Rats received naproxen solution orally daily before (Pre-NSAID group) or after (Post-NSAID group) hMSC treatment, throughout the course of the experiment (Full-NSAID group), or received hMSCs without NSAIDs (No NSAID). Cartilage morphology and composition were quantified using contrast-enhanced micro-computed tomography and histology. Pain (secondary allodynia) was measured using a von Frey filament. RESULTS Injection of hMSCs attenuated cartilage degeneration associated with MMT. hMSCs prevented proteoglycan loss, maintained smooth cartilage surfaces, reduced cartilage lesions, reduced mineralized osteophyte formation, and reduced pain by week 7. The Pre-NSAID group had decreased proteoglycan levels compared with the hMSC group, although there were no other significant differences. Thus, pretreatment with NSAIDs had minimal effects on the therapeutic benefits of hMSC injections. The Post-NSAID and Full-NSAID groups, however, exhibited significantly worse osteoarthritis than the hMSC-only group, with greater proteoglycan loss, surface roughness, osteophyte volume, and pain. CONCLUSION Use of NSAIDs before hMSC injection minimally reduced the therapeutic benefits for PTOA, which included preservation of cartilage surface integrity as well as a reduction in osteophytes. Use of NSAIDs after injections, however, substantially reduced the therapeutic efficacy of cellular treatment. CLINICAL RELEVANCE Our data support the clinical recommendation of avoiding NSAID use after hMSC injection but suggest that using NSAIDs before treatment may not substantially diminish the therapeutic efficacy of cell treatment.
Collapse
Affiliation(s)
- Daniel Sok
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarvgna Raval
- Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Hospital, Atlanta, Georgia, USA
| | - Jay McKinney
- Emory University School of Medicine, Atlanta, Georgia, USA.,Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hicham Drissi
- Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Hospital, Atlanta, Georgia, USA
| | - Amadeus Mason
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ken Mautner
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jarred M Kaiser
- Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Hospital, Atlanta, Georgia, USA
| | - Nick J Willett
- Emory University School of Medicine, Atlanta, Georgia, USA.,Georgia Institute of Technology, Atlanta, Georgia, USA.,Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| |
Collapse
|
10
|
Liu X, Liu Y, He H, Xiang W, He C. Human adipose and synovial mesenchymal stem cells improve osteoarthritis in rats by reducing chondrocyte reactive oxygen species and inhibiting inflammatory response. J Clin Lab Anal 2022; 36:e24353. [PMID: 35312120 PMCID: PMC9102617 DOI: 10.1002/jcla.24353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022] Open
Abstract
Background We explored the therapeutic effects of Adipose‐derived mesenchymal stem cells (ADMSCs) and Synovial‐derived mesenchymal stem cells (SDMSCs) on osteoarthritis (OA). Methods SDMSCs and ADMSCs were co‐cultured with chondrocytes and stimulated with interleukin (IL)‐1β. An OA model was established on rats by intra‐articular injection with ADMSCs and SDMSCs. After 8 weeks, the joint diameter difference was detected, and histological staining was used to observe the pathological changes in cartilage tissue. Enzyme‐linked immunosorbent assay (ELISA) was used to detect the expressions of IL‐6, tumor necrosis factor (TNF)‐α and IL‐1β in joint fluid. The expressions of COL2A1, Aggrecan, Matrix metalloproteinase (MMP)‐13, SOX9, IL‐6, TNF‐α and IL‐1β were detected by qRT‐PCR and Western blotting in cartilage tissue. Reactive oxygen species (ROS) content in cells and cartilage tissues was detected by ROS kit. Results SDMSCs and ADMSCs co‐cultured with chondrocytes could reduce MMP‐13 expression, increase the expressions of COL2A1, Aggrecan and SOX9, as well as reverse the effects of IL‐1β on promoting ROS content and inflammatory factors levels. After the OA model was established, the injection of ADMSCs and SDMSCs reduced the differences in joint diameter and tissue lesions in OA rats. The OA model led to increased levels of IL‐6, TNF‐α and IL‐1β in joint fluid and cartilage tissue, while the injection of ADMSCs and SDMSCs inhibited the inflammatory factor levels in OA rats, and increased the expressions of COL2A1, Aggrecan and SOX9 in OA rats. Conclusion ADMSCs and SDMSCs improve osteoarthritis in rats by reducing chondrocyte ROS and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Xunzhi Liu
- Orthopedics Department First Affiliated Hospital of Gannan Medical University Ganzhou City China
| | - Yaqing Liu
- Pediatric Department First Affiliated Hospital of Gannan Medical University Ganzhou City China
| | - Huabin He
- Orthopedics Department First Affiliated Hospital of Gannan Medical University Ganzhou City China
| | - Weiwei Xiang
- Orthopedics Department First Affiliated Hospital of Gannan Medical University Ganzhou City China
| | - Cheng He
- Orthopedics Department First Affiliated Hospital of Gannan Medical University Ganzhou City China
| |
Collapse
|
11
|
McKinney JM, Pucha KA, Doan TN, Wang L, Weinstock LD, Tignor BT, Fowle KL, Levit RD, Wood LB, Willett NJ. Sodium alginate microencapsulation of human mesenchymal stromal cells modulates paracrine signaling response and enhances efficacy for treatment of established osteoarthritis. Acta Biomater 2022; 141:315-332. [PMID: 34979327 DOI: 10.1016/j.actbio.2021.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise as osteoarthritis (OA) treatments; however, effective translation has been limited by high variability and heterogeneity of MSCs, suboptimal delivery strategies, and poor understanding of critical quality and potency attributes. Furthermore, most pre-clinical studies of MSC therapeutics for OA have focused on delaying OA development and not on treating established OA, which brings added clinical relevance. Thus, the objective of the current study was to assess the effects of sodium alginate microencapsulation on human MSC (hMSC) secretion of immunomodulatory cytokines in an OA microenvironment and therapeutic efficacy in treating established OA. A Medial Meniscal Transection (MMT) pre-clinical model of OA was implemented. Three weeks post-surgery, after OA was established, intra-articular injections of encapsulated hMSCs or nonencapsulated hMSCs were administered. Six weeks post-surgery, microstructural changes in the knee joint were quantified using microCT. Encapsulated hMSCs reduced articular cartilage degeneration and subchondral bone remodeling. A multiplexed immunoassay panel was used to profile the in vitro secretome of hMSCs in response to IL-1β. Nonencapsulated hMSCs showed an indiscriminate increase in all cytokines in response to IL-1β while encapsulated hMSCs showed a targeted secretory response with increased expression of pro-inflammatory (IL-1β, IL-6, IL-7, IL-8), anti-inflammatory (IL-1RA), and chemotactic (G-CSF, MDC, IP10) cytokines. These data show that sodium alginate microencapsulation can modulate hMSC paracrine signaling and enhance the therapeutic efficacy of the hMSCs in treating established OA. This cytokine profile provides a foundation for the identification of key factors affecting the overall potency of hMSC therapeutics for OA. STATEMENT OF SIGNIFICANCE: While there has been considerable interest in material based MSC encapsulation for treatment of OA, there are critical gaps in our translational understanding of these biomaterial-based technologies for OA. More specifically, previous studies have several important limitations: (1) they have been largely focused on preventing OA development, which limits their translational utility and (2) little prior work has been done to delineate potential routes/mechanisms by which material encapsulation alters MSC therapeutic action. In our manuscript, we aimed to fill these gaps in knowledge by testing the hypotheses that: (1) hMSC encapsulation can attenuate established disease progression, which is a more clinically relevant scenario and (2) hMSC encapsulation significantly changes the secreted paracrine factors from hMSCs.
Collapse
Affiliation(s)
- Jay M McKinney
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Krishna A Pucha
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Thanh N Doan
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA
| | - Lanfang Wang
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Laura D Weinstock
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Benjamin T Tignor
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Kelsey L Fowle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Rebecca D Levit
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA.
| | - Nick J Willett
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Phil and Penny Knight Campus for Accelerating Scientific Impact, 6231 University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
12
|
Wang G, Xing D, Liu W, Zhu Y, Liu H, Yan L, Fan K, Liu P, Yu B, Li JJ, Wang B. Preclinical studies and clinical trials on mesenchymal stem cell therapy for knee osteoarthritis: A systematic review on models and cell doses. Int J Rheum Dis 2022; 25:532-562. [PMID: 35244339 DOI: 10.1111/1756-185x.14306] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
AIM To provide a systematic analysis of the study design in knee osteoarthritis (OA) preclinical studies, focusing on the characteristics of animal models and cell doses, and to compare these to the characteristics of clinical trials using mesenchymal stem cells (MSCs) for the treatment of knee OA. METHOD A systematic and comprehensive search was conducted using the PubMed, Web of Science, Ovid, and Embase electronic databases for research papers published in 2009-2020 on testing MSC treatment in OA animal models. The PubMed database and ClinicalTrials.gov website were used to search for published studies reporting clinical trials of MSC therapy for knee OA. RESULTS In total, 9234 articles and two additional records were retrieved, of which 120 studies comprising preclinical and clinical studies were included for analysis. Among the preclinical studies, rats were the most commonly used species for modeling knee OA, and anterior cruciate ligament transection was the most commonly used method for inducing OA. There was a correlation between the cell dose and body weight of the animal. In clinical trials, there was large variation in the dose of MSCs used to treat knee OA, ranging from 1 × 106 to 200 × 106 cells with an average of 37.91 × 106 cells. CONCLUSION Mesenchymal stem cells have shown great potential in improving pain relief and tissue protection in both preclinical and clinical studies of knee OA. Further high-quality preclinical and clinical studies are needed to explore the dose effectiveness relationship of MSC therapy and to translate the findings from preclinical studies to humans.
Collapse
Affiliation(s)
- Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China.,Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Beijing, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, China
| | - Yuanyuan Zhu
- Department of Pharmacy, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Lei Yan
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Kenan Fan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Peidong Liu
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jiao Jiao Li
- Faculty of Engineering and IT, School of Biomedical Engineering, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Bin Wang
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China.,Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Zeng WN, Zhang Y, Wang D, Zeng YP, Yang H, Li J, Zhou CP, Liu JL, Yang QJ, Deng ZL, Zhou ZK. Intra-articular Injection of Kartogenin-Enhanced Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Knee Osteoarthritis in a Rat Model. Am J Sports Med 2021; 49:2795-2809. [PMID: 34213976 DOI: 10.1177/03635465211023183] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In this study, we investigated the in vitro and in vivo chondrogenic capacity of kartogenin (KGN)-enhanced bone marrow-derived mesenchymal stem cells (BMSCs) for cartilage regeneration. PURPOSE To determine (1) whether functionalized nanographene oxide (NGO) can effectively deliver KGN into BMSCs and (2) whether KGN would enhance BMSCs during chondrogenesis in vitro and in vivo in an animal model. STUDY DESIGN Controlled laboratory study. METHODS Functionalized NGO with line chain amine-terminated polyethylene glycol (PEG) and branched polyethylenimine (BPEI) were used to synthesize biocompatible NGO-PEG-BPEI (PPG) and for loading hydrophobic KGN molecules noncovalently via π-π stacking and hydrophobic interactions (PPG-KGN). Then, PPG-KGN was used for the intracellular delivery of hydrophobic KGN by simple mixing and co-incubation with BMSCs to acquire KGN-enhanced BMSCs. The chondrogenic efficacy of KGN-enhanced BMSCs was evaluated in vitro. In vivo, osteoarthritis (OA) was induced by anterior cruciate ligament transection in rats. A total of 5 groups were established: normal (OA treated with nothing), phosphate-buffered saline (PBS; intra-articular injection of PBS), PPG-KGN (intra-articular injection of PPG-KGN), BMSCs (intra-articular injection of BMSCs), and BMSCs + PPG-KGN (intra-articular injection of PPG-KGN-preconditioned BMSCs). At 6 and 9 weeks after the surgical induction of OA, the rats received intra-articular injections of PPG-KGN, BMSCs, or KGN-enhanced BMSCs. At 14 weeks after the surgical induction of OA, radiographic and behavioral evaluations as well as histological analysis of the knee joints were performed. RESULTS The in vitro study showed that PPG could be rapidly uptaken in the first 4 hours after incubation, reaching saturation at 12 hours and accumulating in the lysosome and cytoplasm of BMSCs. Thus, PPG-KGN could enhance the efficiency of the intracellular delivery of KGN, which showed a remarkably high chondrogenic differentiation capacity of BMSCs. When applied to an OA model of cartilage injuries in rats, PPG-KGN-preconditioned BMSCs contributed to protection from joint space narrowing, pathological mineralization, OA development, and OA-induced pain, as well as improved tissue regeneration, as evidenced by radiographic, weightbearing, and histological findings. CONCLUSION Our results demonstrate that KGN-enhanced BMSCs showed markedly improved capacities for chondrogenesis and articular cartilage repair. We believe that this work demonstrates that a multifunctional nanoparticle-based drug delivery system could be beneficial for stem cell therapy. Our results present an opportunity to reverse the symptoms and pathophysiology of OA. CLINICAL RELEVANCE The intracellular delivery of KGN to produce BMSCs with enhanced chondrogenic potential may offer a new approach for the treatment of OA.
Collapse
Affiliation(s)
- Wei-Nan Zeng
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.,Department of Orthopedics, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Duan Wang
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Ping Zeng
- Department of Orthopedics, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Hao Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Juan Li
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Cheng-Pei Zhou
- Department of Orthopedics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jun-Li Liu
- Department of Orthopedics, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qing-Jun Yang
- Department of Orthopedics, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhong-Liang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zong-Ke Zhou
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Latest advances to enhance the therapeutic potential of mesenchymal stromal cells for the treatment of immune-mediated diseases. Drug Deliv Transl Res 2021; 11:498-514. [PMID: 33634433 DOI: 10.1007/s13346-021-00934-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) present the capacity to secrete multiple immunomodulatory factors in response to their microenvironment. This property grants them a golden status among the novel alternatives to treat multiple diseases in which there is an unneeded or exaggerated immune response. However, important challenges still make difficult the clinical implementation of MSC-based therapies, being one of the most remarkable the lack of efficacy due to their transient immunomodulatory effects. To overcome this issue and boost the regulatory potential of MSCs, multiple strategies are currently being explored. Some of them consist of ex vivo pre-conditioning MSCs prior to their administration, including exposure to pro-inflammatory cytokines or to low oxygen concentrations. However, currently, alternative strategies that do not require such ex vivo manipulation are gaining special attention. Among them, the recreation of a three dimensional (3D) environment is remarkable. This approach has been reported to not only boost the immunomodulatory potential of MSCs but also increase their in vivo persistence and viability. The present work revises the therapeutic potential of MSCs, highlighting their immunomodulatory activity as a potential treatment for diseases caused by an exacerbated or unnecessary immune response. Moreover, it offers an updated vision of the most widely employed pre-conditioning strategies and 3D systems intended to enhance MSC-mediated immunomodulation, to conclude discussing the major challenges still to overcome in the field.
Collapse
|
15
|
Coronas V, Terrié E, Déliot N, Arnault P, Constantin B. Calcium Channels in Adult Brain Neural Stem Cells and in Glioblastoma Stem Cells. Front Cell Neurosci 2020; 14:600018. [PMID: 33281564 PMCID: PMC7691577 DOI: 10.3389/fncel.2020.600018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
The brain of adult mammals, including humans, contains neural stem cells (NSCs) located within specific niches of which the ventricular-subventricular zone (V-SVZ) is the largest one. Under physiological conditions, NSCs proliferate, self-renew and produce new neurons and glial cells. Several recent studies established that oncogenic mutations in adult NSCs of the V-SVZ are responsible for the emergence of malignant primary brain tumors called glioblastoma. These aggressive tumors contain a small subpopulation of cells, the glioblastoma stem cells (GSCs), that are endowed with proliferative and self-renewal abilities like NSCs from which they may arise. GSCs are thus considered as the cells that initiate and sustain tumor growth and, because of their resistance to current treatments, provoke tumor relapse. A growing body of studies supports that Ca2+ signaling controls a variety of processes in NSCs and GSCs. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are handled by channels, pumps, exchangers, and Ca2+ binding proteins. The concerted action of the Ca2+ toolkit components encodes specific Ca2+ signals with defined spatio-temporal characteristics that determine the cellular responses. In this review, after a general overview of the adult brain NSCs and GSCs, we focus on the multiple roles of the Ca2+ toolkit in NSCs and discuss how GSCs hijack these mechanisms to promote tumor growth. Extensive knowledge of the role of the Ca2+ toolkit in the management of essential functions in healthy and pathological stem cells of the adult brain should help to identify promising targets for clinical applications.
Collapse
Affiliation(s)
- Valérie Coronas
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Elodie Terrié
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Nadine Déliot
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Patricia Arnault
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Bruno Constantin
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| |
Collapse
|
16
|
Lacalle-Aurioles M, Cassel de Camps C, Zorca CE, Beitel LK, Durcan TM. Applying hiPSCs and Biomaterials Towards an Understanding and Treatment of Traumatic Brain Injury. Front Cell Neurosci 2020; 14:594304. [PMID: 33281561 PMCID: PMC7689345 DOI: 10.3389/fncel.2020.594304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and mortality in children and young adults and has a profound impact on the socio-economic wellbeing of patients and their families. Initially, brain damage is caused by mechanical stress-induced axonal injury and vascular dysfunction, which can include hemorrhage, blood-brain barrier disruption, and ischemia. Subsequent neuronal degeneration, chronic inflammation, demyelination, oxidative stress, and the spread of excitotoxicity can further aggravate disease pathology. Thus, TBI treatment requires prompt intervention to protect against neuronal and vascular degeneration. Rapid advances in the field of stem cells (SCs) have revolutionized the prospect of repairing brain function following TBI. However, more than that, SCs can contribute substantially to our knowledge of this multifaced pathology. Research, based on human induced pluripotent SCs (hiPSCs) can help decode the molecular pathways of degeneration and recovery of neuronal and glial function, which makes these cells valuable tools for drug screening. Additionally, experimental approaches that include hiPSC-derived engineered tissues (brain organoids and bio-printed constructs) and biomaterials represent a step forward for the field of regenerative medicine since they provide a more suitable microenvironment that enhances cell survival and grafting success. In this review, we highlight the important role of hiPSCs in better understanding the molecular pathways of TBI-related pathology and in developing novel therapeutic approaches, building on where we are at present. We summarize some of the most relevant findings for regenerative therapies using biomaterials and outline key challenges for TBI treatments that remain to be addressed.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Camille Cassel de Camps
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Cornelia E Zorca
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Lenore K Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Özdemir E, Emet A, Hashemihesar R, Yürüker ACS, Kılıç E, Uçkan Çetinkaya D, Turhan E. Articular Cartilage Regeneration Utilizing Decellularized Human Placental Scaffold, Mesenchymal Stem Cells and Platelet Rich Plasma. Tissue Eng Regen Med 2020; 17:901-908. [PMID: 33030679 DOI: 10.1007/s13770-020-00298-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Articular cartilage repair has been a challenge in orthopedic practice due to the limited self-regenerative capability. Optimal treatment method for cartilage defects has not been defined. We investigated the effect of decellularized human placental (DHP) scaffold, mesenchymal stem cells (MSC) and platelet-rich plasma (PRP) on hyaline cartilage regeneration in a rat model. METHODS An osteochondral defect was created in trochlea region of the femur in all groups, bilaterally. No additional procedure was performed in control group (n = 14). Only the DHP scaffold was applied to the P group (n = 14). The DHP scaffold and 1 × 106 MSCs were applied to the PS group (n = 14). The DHP scaffold and PRP were applied to the PP group (n = 14). The DHP scaffold, 1 × 106 MSCs and PRP were applied to the PSP group (n = 14). Outcome measures at 12 weeks included Pineda histology score and qualitative histology. RESULTS The mean Pineda scores of P, PS, PP, and PSP groups were significantly better than the control group (p = 0.031, p = 0.002, p < 0.001, p < 0001, respectively). There was no statistically difference in mean Pineda scores of P, PS, PP, and PSP groups (p > 0.05). CONCLUSION In conclusion, the DHP scaffold appears to be a promising scaffold on hyaline cartilage regeneration. The augmentation of DHP scaffold with MSCs and PRP combinations did not enhance its efficacy on articular cartilage regeneration.
Collapse
Affiliation(s)
- Erdi Özdemir
- Department of Orthopedics and Traumatology, Faculty of Medicine, Hacettepe University, 06230, Ankara, Turkey.
| | - Abdülsamet Emet
- Department of Orthopedics and Traumatology, Faculty of Medicine, Hacettepe University, 06230, Ankara, Turkey
| | - Ramin Hashemihesar
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Aydin University, 34295, Istanbul, Turkey
| | | | - Emine Kılıç
- Center for Stem Cell Research and Development, Hacettepe University, 06100, Ankara, Turkey
| | - Duygu Uçkan Çetinkaya
- Center for Stem Cell Research and Development, Hacettepe University, 06100, Ankara, Turkey
| | - Egemen Turhan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Hacettepe University, 06230, Ankara, Turkey
| |
Collapse
|
18
|
Gong J, Fairley J, Cicuttini FM, Hussain SM, Vashishtha R, Chou L, Wluka AE, Wang Y. Effect of Stem Cell Injections on Osteoarthritis-related Structural Outcomes: A Systematic Review. J Rheumatol 2020; 48:585-597. [PMID: 33004537 DOI: 10.3899/jrheum.200021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To systematically review the evidence for the efficacy of mesenchymal stem cell (MSC) injections in improving osteoarthritis (OA)-related structural outcomes. METHODS Ovid Medline and EMBASE were searched from their inceptions to April 2020 using MeSH terms and key words. Independent reviewers extracted data and assessed methodological quality. Qualitative evidence synthesis was performed due to the heterogeneity of interventions and outcome measures. RESULTS Thirteen randomized controlled trials (phase I or II) were identified: 10 in OA populations and 3 in populations at risk of OA, with low (n = 9), moderate (n = 3), or high (n = 1) risk of bias. Seven studies used allogeneic MSCs (4 bone marrow, 1 umbilical cord, 1 placenta, 1 adipose tissue), 6 studies used autologous MSCs (3 adipose tissue, 2 bone marrow, 1 peripheral blood). Among the 11 studies examining cartilage outcomes, 10 found a benefit of MSCs on cartilage volume, morphology, quality, regeneration, and repair, assessed by magnetic resonance imaging, arthroscopy, or histology. The evidence for subchondral bone was consistent in all 3 studies in populations at risk of OA, showing beneficial effects. Sixteen unpublished, eligible trials were identified by searching trial registries, including 8 with actual or estimated completion dates before 2016. CONCLUSION Our systematic review of early-phase clinical trials demonstrated consistent evidence of a beneficial effect of intraarticular MSC injections on articular cartilage and subchondral bone. Due to the heterogeneity of MSCs, modest sample sizes, methodological limitations, and potential for publication bias, further work is needed before this therapy is recommended in the management of OA.
Collapse
Affiliation(s)
- Jennifer Gong
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Jessica Fairley
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Flavia M Cicuttini
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Sultana Monira Hussain
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Rakhi Vashishtha
- R. Vashishtha, BDS, MPH, Center for Alcohol Policy Research, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Louisa Chou
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Anita E Wluka
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University
| | - Yuanyuan Wang
- J. Gong, BBiomedSc (Hons), J. Fairley, MBBS, F.M. Cicuttini, MBBS, FRACP, PhD, S.M. Hussain, MBBS, MPH, PhD, L. Chou, MBBS, FRACP, A.E. Wluka, MBBS, FRACP, PhD, Y. Wang, MBBS, MMed, PhD, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University;
| |
Collapse
|
19
|
The Efficacy of Stem Cells Secretome Application in Osteoarthritis: A Systematic Review of In Vivo Studies. Stem Cell Rev Rep 2020; 16:1222-1241. [DOI: 10.1007/s12015-020-09980-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Wang Z, Zhu H, Dai S, Liu K, Ge C. Alleviation of medial meniscal transection-induced osteoarthritis pain in rats by human adipose derived mesenchymal stem cells. Stem Cell Investig 2020; 7:10. [PMID: 32695803 DOI: 10.21037/sci-2020-003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Knee osteoarthritis (KOA) is a degenerative joint disorder manifested with deformity, pain, and functional disability due to damage of the articular cartilage. Cell therapy with mesenchymal stem cells (MSCs) holds great promise to alleviate or even cure the degenerative diseases including KOA. However, the evidence of efficacy of human adipose tissue-derived MSCs (hAdMSCs) on KOA therapy remains limited. Here, we evaluate the therapeutic efficacy of hAdMSCs for KOA, using a medial meniscal transection (MMT) rat model. Our study demonstrated that intra-articular injection of 1.25×106 hAdMSCs significantly attenuated MMT-induced joint pain in a KOA rats model. The results of this study provide strong evidence that hAdMSCs-based therapy can be regarded as a prominent treatment option for patients with KOA.
Collapse
Affiliation(s)
- Zhifeng Wang
- Sinoneural Cell Engineering Group Co., Ltd., Shanghai, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Co., Ltd., Shanghai, China
| | - Shuhang Dai
- Sinoneural Cell Engineering Group Co., Ltd., Shanghai, China
| | - Ke Liu
- Sinoneural Cell Engineering Group Co., Ltd., Shanghai, China
| | - Chenxi Ge
- Sinoneural Cell Engineering Group Co., Ltd., Shanghai, China
| |
Collapse
|
21
|
Schwieger J, Hamm A, Gepp MM, Schulz A, Hoffmann A, Lenarz T, Scheper V. Alginate-encapsulated brain-derived neurotrophic factor-overexpressing mesenchymal stem cells are a promising drug delivery system for protection of auditory neurons. J Tissue Eng 2020; 11:2041731420911313. [PMID: 32341778 PMCID: PMC7168777 DOI: 10.1177/2041731420911313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/08/2020] [Indexed: 12/23/2022] Open
Abstract
The cochlear implant outcome is possibly improved by brain-derived neurotrophic factor treatment protecting spiral ganglion neurons. Implantation of genetically modified mesenchymal stem cells may enable the required long-term brain-derived neurotrophic factor administration. Encapsulation of mesenchymal stem cells in ultra-high viscous alginate may protect the mesenchymal stem cells from the recipient’s immune system and prevent their uncontrolled migration. Alginate stability and survival of mesenchymal stem cells in alginate were evaluated. Brain-derived neurotrophic factor production was measured and its protective effect was analyzed in dissociated rat spiral ganglion neuron co-culture. Since the cochlear implant is an active electrode, alginate–mesenchymal stem cell samples were electrically stimulated and alginate stability and mesenchymal stem cell survival were investigated. Stability of ultra-high viscous-alginate and alginate–mesenchymal stem cells was proven. Brain-derived neurotrophic factor production was detectable and spiral ganglion neuron survival, bipolar morphology, and neurite outgrowth were increased. Moderate electrical stimulation did not affect the mesenchymal stem cell survival and their viability was good within the investigated time frame. Local drug delivery by ultra-high viscous-alginate-encapsulated brain-derived neurotrophic factor–overexpressing mesenchymal stem cells is a promising strategy to improve the cochlear implant outcome.
Collapse
Affiliation(s)
- Jana Schwieger
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Anika Hamm
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Michael M Gepp
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany.,Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - André Schulz
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Andrea Hoffmann
- NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Department of Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany
| |
Collapse
|