1
|
Dragacevic L, Tsibulskaya D, Kojic M, Rajic N, Niksic A, Popovic M. Identification and Characterization of New Hafnia Strains from Common Carp ( Cyprinus carpio), Potentially Possessing Probiotic Properties and Plastic Biodegradation Capabilities. Int J Mol Sci 2025; 26:1119. [PMID: 39940893 PMCID: PMC11817164 DOI: 10.3390/ijms26031119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Finding and characterizing new bacterial strains, including probiotic strains, is a crucial task in today's world to expand the genetic data pool and identify new genes. In this study, we investigated the gut microbiota of one industrial species, Cyprinus carpio, and identified representatives of various microbial genera, including Citrobacter, Serratia, Bacillus, Enterococcus, and Kocuria. Notably, we discovered two strains of Hafnia with potentially probiotic properties. We conducted next-generation sequencing (NGS) of these strains, described their antibiotic resistance and antibacterial activity, and compared them with other representatives of the Hafnia genus. These strains, characterized by rapid growth, the presence of the ClpB heat shock protein gene, and genes associated with microplastic degradation, provide a promising basis for further research, including studies on their potential application in plastic biodegradation.
Collapse
Affiliation(s)
- Luka Dragacevic
- Institute of Virology, Vaccines and Sera, Torlak, Vojvode Stepe 458, 11221 Belgrade, Serbia; (L.D.); (D.T.); (M.K.)
| | - Darya Tsibulskaya
- Institute of Virology, Vaccines and Sera, Torlak, Vojvode Stepe 458, 11221 Belgrade, Serbia; (L.D.); (D.T.); (M.K.)
| | - Milan Kojic
- Institute of Virology, Vaccines and Sera, Torlak, Vojvode Stepe 458, 11221 Belgrade, Serbia; (L.D.); (D.T.); (M.K.)
| | - Nevenka Rajic
- Faculty of Ecology and Environmental Protection, University Union-Nikola Tesla, Cara Dušana 62-64, 11158 Belgrade, Serbia;
| | - Aleksandar Niksic
- Faculty of Veterinary Medicine, Department of Microbiology, University of Belgrade, Bulevar oslobođenja 18, 11000 Belgrade, Serbia;
| | - Mina Popovic
- Faculty of Ecology and Environmental Protection, University Union-Nikola Tesla, Cara Dušana 62-64, 11158 Belgrade, Serbia;
| |
Collapse
|
2
|
Calcagnile M, Tredici SM, Alifano P. A comprehensive review on probiotics and their use in aquaculture: Biological control, efficacy, and safety through the genomics and wet methods. Heliyon 2024; 10:e40892. [PMID: 39735631 PMCID: PMC11681891 DOI: 10.1016/j.heliyon.2024.e40892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/19/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Probiotics, defined as viable microorganisms that enhance host health when consumed through the diet, exert their effects through mechanisms such as strengthening the immune system, enhancing resistance to infectious diseases, and improving tolerance to stressful conditions. Driven by a growing market, research on probiotics in aquaculture is a burgeoning field. However, the identification of new probiotics presents a complex challenge, necessitating careful consideration of both the safety and efficacy of the microorganisms employed. This review aims to delineate the most utilized and effective methods for identifying probiotics. The most effective approach currently combines in silico analysis of genomic sequences with in vitro and in vivo experiments. Two main categories of genetic traits are analyzed using bioinformatic tools: those that could harm the host or humans (e.g., toxin production, antibiotic resistance) and those that offer benefits (e.g., production of helpful compounds, and enzymes). Similarly, in vitro experiments allow us to examine the safety of a probiotic but also its effectiveness (e.g., ability to adhere to epithelia). Finally, in vivo experiments allow us to study the effect of probiotics on fish growth and health, including the ability of the probiotic to manipulate the host's microbiota and the ability to mitigate the infections. This review comprehensively analyzes these diverse aspects, with a particular focus on the potential of studying the interaction between bacterial pathogens and probiotics through these integrated methods.
Collapse
Affiliation(s)
- Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | | | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| |
Collapse
|
3
|
Huang J, Jordan HR, Older CE, Griffin MJ, Allen PJ, Wise DJ, Goodman PM, Reifers JG, Yamamoto FY. Lactococcus lactis MA5 is a potential autochthonous probiotic for nutrient digestibility enhancement and bacterial pathogen inhibition in hybrid catfish (Ictalurus punctatus × I. furcatus). JOURNAL OF FISH DISEASES 2024; 47:e13997. [PMID: 38973153 DOI: 10.1111/jfd.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
With the emergence of diseases, the U.S. catfish industry is under challenge. Current trends prefer autochthonous bacteria as potential probiotic candidates owing to their adaptability and capacity to effectively colonize the host's intestine, which can enhance production performance and bolster disease resistance. The objective of this study was to isolate an autochthonous bacterium as probiotic for hybrid catfish. Initially, an analysis of the intestinal microbiota of hybrid catfish reared in earthen ponds was conducted for subsequent probiotic development. Twenty lactic acid bacteria were isolated from the digesta of overperforming catfish, and most of the candidates demonstrated probiotic traits, including proteolytic and lipolytic abilities; antagonistic inhibition of catfish enteric bacterial pathogens, negative haemolytic activity and antibiotic susceptibility. Subsequent to this screening process, an isolate of Lactococcus lactis (MA5) was deemed the most promising probiotic candidate. In silico analyses were conducted, and several potential probiotic functions were predicted, including essential amino acids and vitamin synthesis. Moreover, genes for three bacteriocins, lactococcin A, enterolysin A and sactipeptide BmbF, were identified. Lastly, various protectant media for lyophilization of MA5 were assessed. These findings suggest that Lactococcus lactis MA5 can be an autochthonous probiotic from hybrid catfish, holding promise to be further tested in feeding trials.
Collapse
Affiliation(s)
- Jing Huang
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - Heather R Jordan
- Department of Biology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Caitlin E Older
- Warmwater Aquaculture Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, Mississippi, USA
| | - Matt J Griffin
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Peter J Allen
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - David J Wise
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - Penelope M Goodman
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - J Grant Reifers
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Fernando Y Yamamoto
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
4
|
Fatsi PSK, Kawai K, Asmah R, Oppong BB, Appiah EK, Hashem S, Addo A, Kusorgbor JK, Magna EK, Obeng AK, Quansah L, Saba CKS, Bawah J, Setufe SB, Adu-Nti F, Ameworwor MY, Quansah CR, Saito H, Johnson-Ashun M, Osei LK, Agbeko E, Anani FA, Agyakwah SK. Immunomodulation and Humoral Immune Response in Teleost Immunized with Aeromonas-Derived Antigenic Extracellular Bioactive Molecules. Indian J Microbiol 2024; 64:1110-1122. [PMID: 39282170 PMCID: PMC11399544 DOI: 10.1007/s12088-024-01254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/04/2024] [Indexed: 09/18/2024] Open
Abstract
The common use of antimicrobials in food-animal production can lead to drug residues in edible tissues for consumers. However, immunomodulators enhance immune responses and vaccine effectiveness. A new perspective explores bacterial extracellular bioactive molecules (EBMs) in food-animal production to modulate host immune responses, potentially transforming pathogen management and antimicrobial use. This study investigates the immunogenic potential of Aeromonas hydrophila-derived EBMs (Antigens) to enhance the immune system. Four Antigens were administered intraperitoneally to Oreochromis niloticus (Nile Tilapia). Antigens 2 and Antigens 3 boosted fish immune competence within 21 days. Remarkably, Antigens 3 induced robust immunity against A. hydrophila with a single dose, notably enhancing antibody-based immune responses. The increased antibody activity suggests Antigens 3 could be a vaccine candidate, promising further research and potential application in food-animal production to improve disease control. This study highlights immunomodulators' potential in reshaping disease management in the food-animal industry, emphasizing the benefits of focusing on bacterial EBMs to reduce reliance on antimicrobials and achieve sustainable disease prevention.
Collapse
Affiliation(s)
- Patrick Senam Kofi Fatsi
- Department of Bioresource Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima, 739-8528 Japan
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Koichiro Kawai
- Department of Bioresource Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima, 739-8528 Japan
| | - Ruby Asmah
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Betty Bandoh Oppong
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Ebenezer Koranteng Appiah
- Department of Bioresource Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima, 739-8528 Japan
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Shaharior Hashem
- Department of Bioresource Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima, 739-8528 Japan
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Acheampong Addo
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Joyce Kplorla Kusorgbor
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Emmanuel Kaboja Magna
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Abraham Kusi Obeng
- Department of Biotechnology, Faculty of Biosciences, University for Development Studies, Tamale, Northern Region Ghana
| | - Lydia Quansah
- Department of Biotechnology, Faculty of Biosciences, University for Development Studies, Tamale, Northern Region Ghana
| | - Courage Kosi Setsoafia Saba
- Department of Microbiology, Faculty of Biosciences, University for Development Studies, Tamale, Northern Region Ghana
| | - Juliana Bawah
- Department of Animal Science, Faculty of Agriculture Food and Consumer Science, University for Development Studies, Tamale, Northern Region Ghana
| | - Seyramsarah Blossom Setufe
- Department of Fisheries and Water Resources, School of Natural Resources, University of Energy and Natural Resources, P. O. Box 214, Sunyani, Ghana
| | - Frank Adu-Nti
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Miriam Yayra Ameworwor
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | | | - Hidetoshi Saito
- Department of Bioresource Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima, 739-8528 Japan
| | - Mercy Johnson-Ashun
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Lilly Konadu Osei
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Etornyo Agbeko
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Francis Assogba Anani
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Seth Koranteng Agyakwah
- Council for Scientific and Industrial Research - Water Research Institute, P. O. Box M 32, Accra, Ghana
| |
Collapse
|
5
|
Pan C, Zhu Y, Cao K, Li J, Wang S, Zhu J, Zeng X, Zhang H, Qin Z. Transcriptome, intestinal microbiome and histomorphology profiling of differences in the response of Chinese sea bass ( Lateolabrax maculatus) to Aeromonas hydrophila infection. Front Microbiol 2023; 14:1103412. [PMID: 36910190 PMCID: PMC9998533 DOI: 10.3389/fmicb.2023.1103412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
The Chinese sea bass (Lateolabrax maculatus) is an important aquaculture fish, but diseases caused by Aeromonas hydrophila have led to severe economic losses to the aquaculture industry in recent years. To date, only a few studies have focused on the relationship between the intestinal immune response and changes in intestinal microbes by A. hydrophila infection. Here, we report the transcriptome and intestinal changes in infected sea bass. Histopathological results showed that severe steatosis and vacuolation occurred in the liver and that the intestinal villi and mesentery were seriously affected after infection. By extracting total RNA from intestinal tissue and studying the transcriptome profile, 1,678 genes (1,013 upregulated and 665 downregulated) were identified as significantly differentially expressed genes (DEGs). These genes are involved in many immune-related signalling pathways, such as the NOD-like receptor, C-type lectin receptor, and Toll-like receptor signalling pathways. Moreover, the intestinal microbes of sea bass changed significantly after infection. Interestingly, at the genus level, there was an increase in Serratia, Candida arthromitus and Faecalibacterium as well as a decrease in Akkermansia and Parabacteroides after infection. The results also indicated that some of the DEGs involved in the immune response were related to the genus level of intestinal microbiota. Finally, there was a relationship between gene expression patterns and the bacterial structure in the host intestine. Our study provides a reference for the study of the immune response and particular functions of intestinal microbes of sea bass after pathogen infection.
Collapse
Affiliation(s)
- Chao Pan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Yanran Zhu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Kaixin Cao
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Juexian Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Siyu Wang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,Faculty of Art and Science, Beijing Normal University, Zhuhai, Guangdong, China
| | - Jiahua Zhu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,Faculty of Art and Science, Beijing Normal University, Zhuhai, Guangdong, China
| | - Xiaoman Zeng
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China.,Faculty of Art and Science, Beijing Normal University, Zhuhai, Guangdong, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| |
Collapse
|
6
|
Establishment of Epidemiological Cut-Off Values and the Distribution of Resistance Genes in Aeromonas hydrophila and Aeromonas veronii Isolated from Aquatic Animals. Antibiotics (Basel) 2022; 11:antibiotics11030343. [PMID: 35326806 PMCID: PMC8944483 DOI: 10.3390/antibiotics11030343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023] Open
Abstract
The emergence of antimicrobial-resistant bacteria is an enormous challenge to public health. Aeromonas hydrophila and Aeromonas veronii are opportunistic pathogens in fish. They exert tremendous adverse effects on aquaculture production, owing to their acquired antibiotic resistance. A few Clinical and Laboratory Standards Institute (CLSI) epidemiological cut-off values (ECVs) against Aeromonas spp. are available. We evaluated antimicrobial susceptibility by establishing 8 ECVs using two analytical methods, normalized resistance interpretation and ECOFFinder. We detected antimicrobial resistance genes in two motile Aeromonas spp. isolated from aquatic animals. Results showed that 89.2% of A. hydrophila and 75.8% of A. veronii isolates were non-wild types according to the oxytetracycline ECVCLSI and ECVNRI, respectively. The antimicrobial resistance genes included tetA, tetB, tetD, tetE, cat, floR, qnrA, qnrB, qnrS, strA-strB, and aac(6′)-1b. The most common tet gene in Aeromonas spp. isolates was tetE, followed by tetA. Some strains carried more than one tet gene, with tetA–tetD and tetA–tetE found in A. hydrophila; however, tetB was not detected in any of the strains. Furthermore, 18.6% of A. hydrophila and 24.2% of A. veronii isolates showed presumptive multidrug-resistant phenotypes. The emergence of multidrug resistance among aquatic aeromonads suggests the spread of drug resistance and difficult to treat bacterial infections.
Collapse
|
7
|
Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Antibiotics (Basel) 2022; 11:antibiotics11020163. [PMID: 35203766 PMCID: PMC8868336 DOI: 10.3390/antibiotics11020163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host’s immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish.
Collapse
|
8
|
Feher M, Fauszt P, Tolnai E, Fidler G, Pesti-Asboth G, Stagel A, Szucs I, Biro S, Remenyik J, Paholcsek M, Stundl L. Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio. PLoS One 2021; 16:e0248537. [PMID: 33886562 PMCID: PMC8062051 DOI: 10.1371/journal.pone.0248537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/27/2021] [Indexed: 01/04/2023] Open
Abstract
In the aquaculture sector, a strategy for the more efficient use of resources and proper disease control is needed to overcome the challenges of meat production worldwide. Modulation of the gastrointestinal tract microbiota is a promising approach for promoting animal health and preventing infection. This feeding experiment was conducted to discover the phytonutrient-induced changes in the gastrointestinal tract microbiota of common carp (Cyprinus carpio). Acclimatized animals aged 7 months (30 weeks) were divided randomly into five experimental groups to investigate the effects of the applied feed additives. The dietary supplements were manufactured from anthocyanin-containing processing wastes from the food industry, specifically the production of Hungarian sour cherry extract, synbiotics from fermented corn, and fermentable oligosaccharides from Hungarian sweet red pepper seeds and carotenoids from Hungarian sweet red pepper pulps, applied at a dose of 1%. The gut contents of the animals were collected at four time points throughout the 6-week study period. To track the compositional and diversity changes in the microbiota of the carp intestinal tract, V3-V4 16S rRNA gene-based metagenomic sequencing was performed. The growth performance of common carp juveniles was not significantly affected by supplementation of the basal diet with plant extracts. Phytonutrients improve the community diversity, increase the Clostridium and Lactobacillus abundances and decrease the abundances of potentially pathogenic and spoilage bacteria, such as Shewanella, Pseudomonas, Acinetobacter and Aeromonas. The phyla Proteobacteria, Tenericutes and Chlamydiae were positively correlated with the body weight, whereas Spirochaetes and Firmicutes exhibited negatively correlations with the body weight. We hypothesize that the application of phytonutrients in aquaculture settings might be a reasonable green approach for easing the usage of antibiotics.
Collapse
Affiliation(s)
- Milan Feher
- Institute of Animal Husbandry, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Peter Fauszt
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Tolnai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Fidler
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Georgina Pesti-Asboth
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Aniko Stagel
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Istvan Szucs
- Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, Debrecen, Hungary
| | - Sandor Biro
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail: (MP); (LS)
| | - Laszlo Stundl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- * E-mail: (MP); (LS)
| |
Collapse
|
9
|
Ringø E, Van Doan H, Lee SH, Soltani M, Hoseinifar SH, Harikrishnan R, Song SK. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. J Appl Microbiol 2020; 129:116-136. [PMID: 32141152 DOI: 10.1111/jam.14628] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Probiotics administration in aquafeed is known to increase feed consumption and absorption due to their capacity to release a wide range of digestive enzymes and nutrients which can participate in digestion process and feed utilization, along with the absorption of diet components led to an increase in host's health and well-being. Furthermore, probiotics improve gut maturation, prevention of intestinal disorders, predigestion of antinutrient factors found in the feed ingredients, gut microbiota, disease resistance against pathogens and metabolism. The beneficial immune effects of probiotics are well established in finfish. However, in comparison, similar studies are less abundant in the shellfish. In this review, the discussions will mainly focus on studies reported the last 2 years. In recent studies, native probiotic bacteria were isolated and fed back to their hosts. Although beneficial effects were demonstrated, some studies showed adverse effects when treated with a high concentration. This adverse effect may be due to the imbalance of the gut microbiota caused by the replenished commensal probiotics. Probiotics revealed greatest effect on the shrimp digestive system particularly in the larval and early post-larval stages, and stimulate the production of endogenous enzymes in shrimp and contribute with improved the enzyme activities in the gut, as well as disease resistance.
Collapse
Affiliation(s)
- E Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - H Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - S H Lee
- School of Life Science, Handong University, Pohang, Republic of Korea
| | - M Soltani
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia.,Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - S H Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - R Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Tamil Nadu, Kanchipuram, India
| | - S K Song
- School of Life Science, Handong University, Pohang, Republic of Korea
| |
Collapse
|
10
|
Zdanowicz M, Mudryk ZJ, Perliński P. Abundance and antibiotic resistance of Aeromonas isolated from the water of three carp ponds. Vet Res Commun 2020; 44:9-18. [PMID: 31965460 PMCID: PMC7040064 DOI: 10.1007/s11259-020-09768-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Abundance and antibiotic resistance of bacteria of the genus Aeromonas isolated from the water of three carp ponds were studied. The number of those bacteria differed between the studied ponds, sites and season. The results of the present study showed that planktonic Aeromonas inhabiting those ponds strongly differed in the resistance level to tested antibiotics. These microorganisms were the most resistant to amoxicillin, ampicillin, clindamycin and penicillin. However, all isolates Aeromonas were susceptible to gentamycin and streptomycin. Majority of bacterial strains were characterized by resistance to 4-6 of the 12 antibiotics tested. Bacterial resistance to antibiotics depended on their chemical structure. Aeromonas strains isolated from the studied ponds were the most resistant to β-lactam and lincosamides antibiotics, while the most susceptible to aminoglycosides, chloramphenicols and fluoroquinolones.
Collapse
Affiliation(s)
- Marta Zdanowicz
- Department of Experimental Biology, Institute of Biology and Earth Science, Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200, Słupsk, Poland
| | - Zbigniew Jan Mudryk
- Department of Experimental Biology, Institute of Biology and Earth Science, Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200, Słupsk, Poland
| | - Piotr Perliński
- Department of Experimental Biology, Institute of Biology and Earth Science, Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200, Słupsk, Poland.
| |
Collapse
|