1
|
Rios-Valencia DG, Estrada K, Calderón-Gallegos A, Tirado-Mendoza R, Bobes RJ, Laclette JP, Cabrera-Bravo M. Effect of Hydroxyurea on Morphology, Proliferation, and Protein Expression on Taenia crassiceps WFU Strain. Int J Mol Sci 2024; 25:6061. [PMID: 38892261 PMCID: PMC11172544 DOI: 10.3390/ijms25116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Flatworms are known for their remarkable regenerative ability, one which depends on totipotent cells known as germinative cells in cestodes. Depletion of germinative cells with hydroxyurea (HU) affects the regeneration of the parasite. Here, we studied the reduction and recovery of germinative cells in T. crassiceps cysticerci after HU treatment (25 mM and 40 mM of HU for 6 days) through in vitro assays. Viability and morphological changes were evaluated. The recovery of cysticerci's mobility and morphology was evaluated at 3 and 6 days, after 6 days of treatment. The number of proliferative cells was evaluated using EdU. Our results show morphological changes in the size, shape, and number of evaginated cysticerci at the 40 mM dose. The mobility of cysticerci was lower after 6 days of HU treatment at both concentrations. On days 3 and 6 of recovery after 25 mM of HU treatment, a partial recovery of the proliferative cells was observed. Proteomic and Gene Ontology analyses identified modifications in protein groups related to DNA binding, DNA damage, glycolytic enzymes, cytoskeleton, skeletal muscle, and RNA binding.
Collapse
Affiliation(s)
- Diana G. Rios-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| | - Karel Estrada
- Unit for Massive Sequencing and Bioinformatics, Biotechnology Institute, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico;
| | - Arturo Calderón-Gallegos
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| | - Raúl J. Bobes
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Juan P. Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Margarita Cabrera-Bravo
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| |
Collapse
|
2
|
Kowsari N, Moazeni M, Mohammadi A. Effects of Zataria multiflora essential oil on the germinative cells of Echinococcus granulosus. Parasit Vectors 2021; 14:257. [PMID: 34001217 PMCID: PMC8127251 DOI: 10.1186/s13071-021-04765-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Background Novel and more efficient compounds are urgently required for medical treatment of cystic echinococcosis (CE). Germinative cell culture of Echinococcus granulosus could be used for anti-echinococcosis agent tests and other biological studies on CE. This study was performed to establish an in vitro cell culture model for E. granulosus germinative cells and to evaluate the lethal effect of Zataria multiflora essential oil (ZMEO) on the cultured cells. Methods The inner surface of germinal layers of CE cysts was scraped, and the obtained materials were trypsinized to obtain a suspension of single germinative cells. Medium 199 was used as the basic culture medium and was supplemented with fetal bovine serum, 2-mercaptoethanol, l-cysteine, l-glutamine, glucose, sodium pyruvate, hydatid fluid, amphotericin B and antibiotics. The cells were cultured at a concentration of 104 cells/ml of culture medium and incubated at 37 °C. The culture medium was replaced every 7 days. Chemical composition of ZMEO was identified by GC-MS analysis. ZMEO was tested at concentrations of 0.5–8 mg/ml. Viability of the cells was assessed by trypan blue exclusion assay. Results A significant increase in the cell number was evident at 20, 30 and 45 days after cultivation. At 45 days of cultivation, the number of cells was approximately five-fold higher than on the first day. In GC-MC analysis, carvacrol, p-cymene, g-terpinene and thymol were found to be the main compounds of ZMEO. The lethal effect of ZMEO on the germinative cells at concentrations of 6, 7 and 8 mg/ml was 100% after 60, 25 and 7 min of exposure, respectively. Conclusions At 45 days of cultivation, the cell concentration was suitable for the desired in vitro experiments. A high lethal effect of ZMEO on the germinative cells of E. granulosus may be considered an opportunity for the introduction of a novel, more effective and safer therapeutic agent for treatment of CE using an herbal product. Graphic abstract ![]()
Collapse
Affiliation(s)
- Nasim Kowsari
- Division of Parasitology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | - Mohammad Moazeni
- Division of Parasitology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran.
| | - Ali Mohammadi
- Division of Virology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Identification and culture of proliferative cells in abnormal Taenia solium larvae: Role in the development of racemose neurocysticercosis. PLoS Negl Trop Dis 2021; 15:e0009303. [PMID: 33750965 PMCID: PMC8016263 DOI: 10.1371/journal.pntd.0009303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/01/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022] Open
Abstract
Racemose neurocysticercosis is an aggressive disease caused by the aberrant expansion of the cyst form of Taenia solium within the subarachnoid spaces of the human brain and spinal cord resulting in a mass effect and chronic inflammation. Although expansion is likely caused by the proliferation and growth of the parasite bladder wall, there is little direct evidence of the mechanisms that underlie these processes. Since the development and growth of cysts in related cestodes involves totipotential germinative cells, we hypothesized that the expansive growth of the racemose larvae is organized and maintained by germinative cells. Here, we identified proliferative cells expressing the serine/threonine-protein kinase plk1 by in situ hybridization. Proliferative cells were present within the bladder wall of racemose form and absent from the homologous tissue surrounding the vesicular form. Cyst proliferation in the related model species Taenia crassiceps (ORF strain) occurs normally by budding from the cyst bladder wall and proliferative cells were concentrated within the growth buds. Cells isolated from bladder wall of racemose larvae were established in primary cell culture and insulin stimulated their proliferation in a dose-dependent manner. These findings indicate that the growth of racemose larvae is likely due to abnormal cell proliferation. The different distribution of proliferative cells in the racemose larvae and their sensitivity to insulin may reflect significant changes at the cellular and molecular levels involved in their tumor-like growth. Parasite cell cultures offer a powerful tool to characterize the nature and formation of the racemose form, understand the developmental biology of T. solium, and to identify new effective drugs for treatment.
Collapse
|
4
|
Koziol U. Evolutionary developmental biology (evo-devo) of cestodes. Exp Parasitol 2016; 180:84-100. [PMID: 27939766 DOI: 10.1016/j.exppara.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
Cestodes (tapeworms) have complex adaptations to their obligatory parasitic life-style. Among these adaptations, they show many evolutionary innovations in their development, including complex life-cycles with multiple hosts and life-stages, several independent origins of asexual reproduction, and the evolution of segmentation as a mean to generate massive reproductive output. Therefore, cestodes offer many opportunities for the investigation of the evolutionary origins of developmental novelties (evo-devo). However, cestodes have not been exploited as major models for evo-devo research due to the considerable technical difficulties involved in their study. In this review, a panoramic view is given of classical aspects, methods and hypothesis of cestode development, together with recent advances in phylogenetics, genomics, culture methods, and comparative analysis of cestode gene expression. Together with the availability of powerful models for related free-living flatworms, these developments should encourage the incorporation of these fascinating parasites into the first-line of evo-devo research.
Collapse
Affiliation(s)
- Uriel Koziol
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Uruguay.
| |
Collapse
|
5
|
Moguel B, Moreno-Mendoza N, Bobes RJ, Carrero JC, Chimal-Monroy J, Díaz-Hernández ME, Herrera-Estrella L, Laclette JP. Transient transgenesis of the tapeworm Taenia crassiceps. SPRINGERPLUS 2015; 4:496. [PMID: 26389021 PMCID: PMC4571025 DOI: 10.1186/s40064-015-1278-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/26/2015] [Indexed: 11/10/2022]
Abstract
Human and porcine cysticercosis is caused by the larval stage of the flatworm Taenia solium (Cestoda). Infestation of the human brain, also known as neurocysticercosis, is the most common parasite disease of the central nervous system worldwide. Significant advances in the understanding of the disease have been achieved using the Taenia crassiceps murine model. We describe here a successful transfection protocol of T. crassiceps cysticerci as the first step to approach a number of currently inaccessible biological questions on cysticercosis. T. crassiceps cysticerci (ORF strain) were microinjected with the plasmid pcDNA3.1/NT-GFP-TOPO, encoding the green fluorescent protein (GFP) driven by a cytomegalovirus promoter (CMV). Twelve hours after the microinjection, GFP fluorescence gradually developed in patches associated to bud structures in the bladder wall of cysts. Fluorescence reached a peak at 24-48 h and lasted up to 72 h after the microinjection. Immunohistochemical studies on tissue sections of transfected cysts using an anti-GFP antibody, demonstrated co-localization of the antibody and the GFP fluorescence in the tegumentary cytoplasm and subtegumentary cytons. To validate at the mRNA level the expression of GFP, we carried out RT-PCR using two pairs of nested primers. Results showed expression of GFP-mRNA at 24 h post-transfection. Moreover, western blot assays of crude extracts of transfected cysts, carried out using the anti-GFP specific antibody, showed the expected protein band of 27 kDa, demonstrating that the GFP expression started at 24 after plasmid microinjection and was maintained up to 72 h. These findings will facilitate the development of functional genomics approaches applied to this model of cysticercosis.
Collapse
Affiliation(s)
- Bárbara Moguel
- Institute for Biomedical Research, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510 México DF, México
| | - Norma Moreno-Mendoza
- Institute for Biomedical Research, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510 México DF, México
| | - Raúl J Bobes
- Institute for Biomedical Research, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510 México DF, México
| | - Julio C Carrero
- Institute for Biomedical Research, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510 México DF, México
| | - Jesús Chimal-Monroy
- Institute for Biomedical Research, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510 México DF, México
| | - Martha E Díaz-Hernández
- Institute for Biomedical Research, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510 México DF, México
| | - Luis Herrera-Estrella
- National Laboratory of Genomics for Biodiversity-cinvestav, Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Gto México
| | - Juan P Laclette
- Institute for Biomedical Research, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510 México DF, México
| |
Collapse
|
6
|
Transfection of Platyhelminthes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:206161. [PMID: 26090388 PMCID: PMC4450235 DOI: 10.1155/2015/206161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/15/2014] [Indexed: 01/22/2023]
Abstract
Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.
Collapse
|
7
|
Petralia RS, Mattson MP, Yao PJ. Aging and longevity in the simplest animals and the quest for immortality. Ageing Res Rev 2014; 16:66-82. [PMID: 24910306 DOI: 10.1016/j.arr.2014.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/08/2014] [Accepted: 05/22/2014] [Indexed: 12/12/2022]
Abstract
Here we review the examples of great longevity and potential immortality in the earliest animal types and contrast and compare these to humans and other higher animals. We start by discussing aging in single-celled organisms such as yeast and ciliates, and the idea of the immortal cell clone. Then we describe how these cell clones could become organized into colonies of different cell types that lead to multicellular animal life. We survey aging and longevity in all of the basal metazoan groups including ctenophores (comb jellies), sponges, placozoans, cnidarians (hydras, jellyfish, corals and sea anemones) and myxozoans. Then we move to the simplest bilaterian animals (with a head, three body cell layers, and bilateral symmetry), the two phyla of flatworms. A key determinant of longevity and immortality in most of these simple animals is the large numbers of pluripotent stem cells that underlie the remarkable abilities of these animals to regenerate and rejuvenate themselves. Finally, we discuss briefly the evolution of the higher bilaterians and how longevity was reduced and immortality lost due to attainment of greater body complexity and cell cycle strategies that protect these complex organisms from developing tumors. We also briefly consider how the evolution of multiple aging-related mechanisms/pathways hinders our ability to understand and modify the aging process in higher organisms.
Collapse
|
8
|
Koziol U, Rauschendorfer T, Zanon Rodríguez L, Krohne G, Brehm K. The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis. EvoDevo 2014; 5:10. [PMID: 24602211 PMCID: PMC4015340 DOI: 10.1186/2041-9139-5-10] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/30/2014] [Indexed: 12/15/2022] Open
Abstract
Background It is believed that in tapeworms a separate population of undifferentiated cells, the germinative cells, is the only source of cell proliferation throughout the life cycle (similar to the neoblasts of free living flatworms). In Echinococcus multilocularis, the metacestode larval stage has a unique development, growing continuously like a mass of vesicles that infiltrate the tissues of the intermediate host, generating multiple protoscoleces by asexual budding. This unique proliferation potential indicates the existence of stem cells that are totipotent and have the ability for extensive self-renewal. Results We show that only the germinative cells proliferate in the larval vesicles and in primary cell cultures that undergo complete vesicle regeneration, by using a combination of morphological criteria and by developing molecular markers of differentiated cell types. The germinative cells are homogeneous in morphology but heterogeneous at the molecular level, since only sub-populations express homologs of the post-transcriptional regulators nanos and argonaute. Important differences are observed between the expression patterns of selected neoblast marker genes of other flatworms and the E. multilocularis germinative cells, including widespread expression in E. multilocularis of some genes that are neoblast-specific in planarians. Hydroxyurea treatment results in the depletion of germinative cells in larval vesicles, and after recovery following hydroxyurea treatment, surviving proliferating cells grow as patches that suggest extensive self-renewal potential for individual germinative cells. Conclusions In E. multilocularis metacestodes, the germinative cells are the only proliferating cells, presumably driving the continuous growth of the larval vesicles. However, the existence of sub-populations of the germinative cells is strongly supported by our data. Although the germinative cells are very similar to the neoblasts of other flatworms in function and in undifferentiated morphology, their unique gene expression pattern and the evolutionary loss of conserved stem cells regulators suggest that important differences in their physiology exist, which could be related to the unique biology of E. multilocularis larvae.
Collapse
Affiliation(s)
| | | | | | | | - Klaus Brehm
- Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany.
| |
Collapse
|
9
|
Gaspar EB, Sakai YI, Gaspari ED. A mouse air pouch model for evaluating the immune response to Taenia crassiceps infection. Exp Parasitol 2013; 137:66-73. [PMID: 24378477 DOI: 10.1016/j.exppara.2013.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 12/14/2013] [Accepted: 12/16/2013] [Indexed: 11/16/2022]
Abstract
The experimental system of Taenia crassiceps cysticerci infection in BALB/c mice is considered to be the most representative model of cysticercosis. In our work, mice were sacrificed 7 and 30days after infection, and pouch fluid was collected to determine the number of accumulated cells and the concentrations of IFNγ, IL-2, IL-4, IL-6, IL-10 and nitric oxide. The injection of 50 nonbudding cysticerci into normal mouse dorsal air pouches induced a high level of IFNγ and nitric oxide production relative to the parasite load. The air pouch provides a convenient cavity that allows studying the cellular immunological aspects of the T. crassiceps parasite. The nonbudding cysticerci recovered from the air pouches contained cells that can reconstitute complete cysts in the peritoneal cavity of mice. In conclusion, these results demonstrate that the air pouch model is an alternative tool for the evaluation of the immune characteristics of T. crassiceps infection.
Collapse
Affiliation(s)
| | - Yuriko I Sakai
- Department of Pathology, Adolfo Lutz Institute, São Paulo, SP, Brazil
| | | |
Collapse
|
10
|
Development of a cell line from Echinococcus granulosus germinal layer. Acta Trop 2013; 128:124-9. [PMID: 23860182 DOI: 10.1016/j.actatropica.2013.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 06/27/2013] [Accepted: 07/04/2013] [Indexed: 11/22/2022]
Abstract
In vitro culture of parasitic helminths provides an important tool to study cell regeneration and physiology, as well as for molecular biology and genetic engineering studies. In the present study, we established in vitro propagation of cells from Echinococcus granulosus germinal cyst layer. E. granulosus germinal cells grew beyond 100 passages and showed no signs of reduced proliferation capacity. Microscopic analysis revealed that cells grew both attached to the substrate and in suspension, forming three-dimensional structures like mammalian stem cell aggregates. Examination of the chromosome number of attached germinal cells showed a high degree of heteroploidy, suggesting the occurrence of transformation during culture. Monolayer cells survived cryopreservation and were able to proliferate after thawing. Based on the characteristics displayed by E. granulosus germinal cells, we establish a cell line from the E. granulosus germinal layer. Furthermore, we propose that this cell line could be useful for drug screening and for obtaining parasite material.
Collapse
|
11
|
Rinkevich B. Cell cultures from marine invertebrates: new insights for capturing endless stemness. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:345-354. [PMID: 21213116 DOI: 10.1007/s10126-010-9354-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 12/13/2010] [Indexed: 05/28/2023]
Abstract
Despite several decades of extensive research efforts, there is yet no single permanent cell line available from marine invertebrates as these cells stop dividing in vitro within 24-72 h after their isolation, starting cellular quiescence. This ubiquitous quiescent state should be modified in a way that at least some of the quiescent cells will become pluripotent, so they will have the ability to divide and become immortal. Following the above need, this essay introduces the rationale that the discipline of marine invertebrates' cell culture should gain from applying of two research routes, relevant to mammalian systems but less explored in the marine arena. The first is the use of adult stem cells (ASC) from marine organisms. Many marine invertebrate taxa maintain large pools of ASC in adulthood. Ample evidence attests that these cells from sponges, cnidarians, flatworms, crustaceans, mollusks, echinoderms, and ascidians play important roles in maintenance, regeneration, and asexual cloning, actively proliferating in vivo, resembling the vertebrates' cancer stem cells features. The second route is to target resting somatic cell constituents, manipulating them in the same way as has recently been performed on mammalian induced pluripotent stem (iPS) cells. While "iPS cells" are the outcome of an experimental manipulation, ASC are natural and rather frequent in a number of marine invertebrates. Above two cell categories reveal that there are more than a few types of seeds (cells) waiting to be sowed in the right soil (in vitro environmental conditions) for acquiring stemness and immortality. This rationale carries the potential to revolutionize the discipline of marine invertebrate cell cultures. When cultured "correctly," ASC and "iPS cells" from marine invertebrates may stay in their primitive stage and proliferate without differentiating into cells lineages, harnessing the stem cell's inherent abilities of self-replication versus differentiated progenies, toward the development of immortal cell lines.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel-Shikmona, P.O. Box 8030, Haifa, 31080, Israel.
| |
Collapse
|
12
|
Isaeva VV. The diversity of ontogeny in animals with asexual reproduction and plasticity of early development. Russ J Dev Biol 2010. [DOI: 10.1134/s1062360410050048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Albani CM, Elissondo MC, Cumino AC, Chisari A, Denegri GM. Primary cell culture of Echinococcus granulosus developed from the cystic germinal layer: Biological and functional characterization. Int J Parasitol 2010; 40:1269-75. [DOI: 10.1016/j.ijpara.2010.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
14
|
Meneses G, Berzunza M, Becker I, Bobes RJ, Rosas G, Sciutto E, Fragoso G. Taenia crassiceps cysticercosis: variations in its parasite growth permissiveness that encounter with local immune features in BALB/c substrains. Exp Parasitol 2009; 123:362-8. [PMID: 19735657 DOI: 10.1016/j.exppara.2009.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 08/07/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
This study describes the first days of Taenia crassiceps infection in BALB/c substrains, BALB/cAnN and BALB/cJ, using two stocks of the same strains which were kept in different animal facilities, conventional and pathogen-free conditions, respectively. This study shows that parasite growth restriction shown by conventional BALB/cJ mice changed to parasite growth permissiveness when pathogen-free BALB/cJ mice were used. In addition, the higher number of macrophages, NK cells and intraperitoneal level of IFN-gamma found in the conventional restrictive BALB/cJ substrain vanished when the permissiveness to the parasite growth increased. No differences were found in DNA sequences of parasites collected before and after the change in the permissiveness to parasite growth which favors the possibility that the observed modifications could be due to changes in the murine strains and/or their maintenance conditions.
Collapse
Affiliation(s)
- Gabriela Meneses
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Mexico City C.P. 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Since first described, acoels were considered members of the flatworms (Platyhelminthes). However, no clear synapomorphies among the three large flatworm taxa -- the Catenulida, the Acoelomorpha and the Rhabditophora -- have been characterized to date. Molecular phylogenies, on the other hand, commonly positioned acoels separate from other flatworms. Accordingly, our own multi-locus phylogenetic analysis using 43 genes and 23 animal species places the acoel flatworm Isodiametra pulchra at the base of all Bilateria, distant from other flatworms. By contrast, novel data on the distribution and proliferation of stem cells and the specific mode of epidermal replacement constitute a strong synapomorphy for the Acoela plus the major group of flatworms, the Rhabditophora. The expression of a piwi-like gene not only in gonadal, but also in adult somatic stem cells is another unique feature among bilaterians. These two independent stem-cell-related characters put the Acoela into the Platyhelminthes-Lophotrochozoa clade and account for the most parsimonious evolutionary explanation of epidermal cell renewal in the Bilateria. Most available multigene analyses produce conflicting results regarding the position of the acoels in the tree of life. Given these phylogenomic conflicts and the contradiction of developmental and morphological data with phylogenomic results, the monophyly of the phylum Platyhelminthes and the position of the Acoela remain unresolved. By these data, both the inclusion of Acoela within Platyhelminthes, and their separation from flatworms as basal bilaterians are well-supported alternatives.
Collapse
|
16
|
|
17
|
Brehm K, Spiliotis M. Recent advances in the in vitro cultivation and genetic manipulation of Echinococcus multilocularis metacestodes and germinal cells. Exp Parasitol 2008; 119:506-515. [DOI: 10.1016/j.exppara.2008.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/13/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
|
18
|
Ponce A, Willms K, Romano MC. Taenia crassiceps: chloride currents expressed in Xenopus oocytes upon injection of mRNA of cysticerci (WFU strain) isolated from mice. Exp Parasitol 2008; 120:242-8. [PMID: 18706415 DOI: 10.1016/j.exppara.2008.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 11/27/2022]
Abstract
To study the properties of ion channels of the tapeworm Taenia crassiceps, mRNA was isolated from cysticerci and injected into mature oocytes of the frog Xenopus laevis and ion currents were recorded four days after injection with the two-electrode voltage clamp technique. Oocytes injected with mRNA of T. crassiceps expressed outward currents (I(TC)) that activated instantly after onset of the test pulse, followed by a slow inactivation at potentials over +40 mV, with a reversal potential of -23.2+/-5 mV. They were not affected by changes on monovalent cationic composition of external media, but replacement of external chloride by gluconate shifted significantly the reversal potential, suggesting that I(TC) are anion currents, with a permeability sequence of NO3->Cl(-)>I(-)>>Gluconate. These currents were sensitive to changes of external pH but not to hypotonic challenges. They were significantly inhibited by DIDS, NPPB and Niflumic acid, but not by 9-anthracene. These results suggest that I(TC) are the result of expression of anion channels from the tapeworm T. crassiceps.
Collapse
Affiliation(s)
- A Ponce
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav IPN, Nacional 2508 Col. San Pedro Zacatenco 07360, Mexico.
| | | | | |
Collapse
|
19
|
Díaz-Orea MA, de Aluja AS, de L'Erosa M, Gomez-Conde E, Castellanos Sánchez VO, Willms K, Sciutto E, Fragoso G. Different Effects of Chorionic Gonadotropin on Taenia crassiceps and Taenia solium Cysticerci Cultured In Vitro. J Parasitol 2007; 93:1518-20. [DOI: 10.1645/ge-1196.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Spiliotis M, Lechner S, Tappe D, Scheller C, Krohne G, Brehm K. Transient transfection of Echinococcus multilocularis primary cells and complete in vitro regeneration of metacestode vesicles. Int J Parasitol 2007; 38:1025-39. [PMID: 18086473 DOI: 10.1016/j.ijpara.2007.11.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/03/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
Abstract
A major limitation in studying molecular interactions between parasitic helminths and their hosts is the lack of suitable in vitro cultivation systems for helminth cells and larvae. Here we present a method for long-term in vitro cultivation of larval cells of the tapeworm Echinococcus multilocularis, the causative agent of alveolar echinococcosis. Primary cells isolated from cultivated metacestode vesicles in vitro showed a morphology typical of Echinococcus germinal cells, displayed an Echinococcus-specific gene expression profile and a cestode-like DNA content of approximately 300Mbp. When kept under reducing conditions in the presence of Echinococcus vesicle fluid, the primary cells could be maintained in vitro for several months and proliferated. Most interestingly, upon co-cultivation with host hepatocytes in a trans-well system, mitotically active Echinococcus cells formed cell aggregates that subsequently developed central cavities, surrounded by germinal cells. After 4 weeks, the cell aggregates gave rise to young metacestode vesicles lacking an outer laminated layer. This layer was formed after 6 weeks of cultivation indicating the complete in vitro regeneration of metacestode larvae. As an initial step toward the creation of a fully transgenic strain, we carried out transient transfection of Echinococcus primary cells using plasmids and obtained heterologous expression of a reporter gene. Furthermore, we successfully carried out targeted infection of Echinococcus cells with the facultatively intracellular bacterium Listeria monocytogenes, a DNA delivery system for genetic manipulation of mammalian cells. Taken together, the methods presented herein constitute important new tools for molecular investigations on host-parasite interactions in alveolar echinococcosis and on the roles of totipotent germinal cells in parasite regeneration and metastasis formation. Moreover, they enable the development of fully transgenic techniques in this group of helminth parasites for the first time.
Collapse
Affiliation(s)
- Markus Spiliotis
- University of Würzburg, Institute of Hygiene and Microbiology, Josef-Schneider-Strasse 2, D97080 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Egger B, Gschwentner R, Rieger R. Free-living flatworms under the knife: past and present. Dev Genes Evol 2006; 217:89-104. [PMID: 17146688 PMCID: PMC1784541 DOI: 10.1007/s00427-006-0120-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 10/24/2006] [Indexed: 11/25/2022]
Abstract
Traditionally, regeneration research has been closely tied to flatworm research, as flatworms (Plathelminthes) were among the first animals where the phenomenon of regeneration was discovered. Since then, the main focus of flatworm regeneration research was on triclads, for which various phenomena were observed and a number of theories developed. However, free-living flatworms encompass a number of other taxa where regeneration was found to be possible. This review aims to display and to compare regeneration in all major free-living flatworm taxa, with special focus on a new player in the field of regeneration, Macrostomum lignano (Macrostomorpha). Findings on the regeneration capacity of this organism provide clues for links between regeneration and (post-)embryonic development, starvation, and asexual reproduction. The role of the nervous system and especially the brain for regeneration is discussed, and similarities as well as particularities in regeneration among free-living flatworms are pointed out.
Collapse
Affiliation(s)
- Bernhard Egger
- Ultrastructural Research and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria.
| | | | | |
Collapse
|
22
|
Reuter M, Kreshchenko N. Flatworm asexual multiplication implicates stem cells and regeneration. CAN J ZOOL 2004. [DOI: 10.1139/z03-219] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phenomenon of asexual multiplication is rare in the animal kingdom, but it occurs in all main flatworm taxa. In the present paper, we review data regarding the presence of different forms of asexual multiplication in flatworms and argue that the presence of a population of totipotent or pluripotent stem cells, "neoblasts", is a primitive feature of decisive importance for the developing potential of flatworms. Next we present information on the role of stem cells in fission, head regeneration, and pharynx regeneration of planarians. Furthermore, the tracing of neoblasts in lower flatworms and cestodes is presented, and the results indicating heterogeneity of the neoblast pool are discussed. Finally, the mode by which the neoblasts are stimulated to divide, migrate, and differentiate and the nature of the interactions are discussed. We focus on (i) biogenic amines and neuropeptides, (ii) the role of neuropeptides in the early stage of regeneration, (iii) the evidence for the influences of growth factors and nitric oxide, and (iv) the influence of weak electromagnetic fields. We discuss the pattern in which a gradient system of morphogens and (or) a hierarchical system of inductions is expressed in development.
Collapse
|
23
|
Sánchez Alvarado A, Newmark PA, Robb SM, Juste R. The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 2002; 129:5659-65. [PMID: 12421706 DOI: 10.1242/dev.00167] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platyhelminthes are excellent models for the study of stem cell biology, regeneration and the regulation of scale and proportion. In addition, parasitic forms infect millions of people worldwide. Therefore, it is puzzling that they remain relatively unexplored at the molecular level. We present the characterization of approximately 3,000 non-redundant cDNAs from a clonal line of the planarian Schmidtea mediterranea. The obtained cDNA sequences, homology comparisons and high-throughput whole-mount in situ hybridization data form part of the S. mediterranea database (SmedDb; http://planaria.neuro.utah.edu). Sixty-nine percent of the cDNAs analyzed share similarities with sequences deposited in GenBank and dbEST. The remaining gene transcripts failed to match sequences in other organisms, even though a large number of these (approximately 80%) contained putative open reading frames. Taken together, the molecular resources presented in this study, along with the ability of abrogating gene expression in planarians using RNA interference technology, pave the way for a systematic study of the remarkable biological properties displayed by Platyhelminthes.
Collapse
|
24
|
Espíndola NM, Vaz AJ, Pardini AX, Fernandes I. Excretory/secretory antigens (ES) from in-vitro cultures of Taenia crassiceps cysticerci, and use of an anti-ES monoclonal antibody for antigen detection in samples of cerebrospinal fluid from patients with neurocysticercosis. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2002; 96:361-8. [PMID: 12171617 DOI: 10.1179/000349802125001140] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Antigens were obtained from cysticerci of the ORF strain of Taenia crassiceps, by culture of cysts in protein-free hybridoma medium (PFHM). Budding of new vesicles was observed after 24-48 h. Excretory/secretory (ES) antigens (peptides of <20 kDa) were recovered in the medium after culture for 48 h. SDS-PAGE analysis of vesicular-fluid (VF) antigens (obtained by rupturing T. crassiceps cysticerci in PFHM) and the ES antigens indicated partial homology between the two preparations. ES peptides of 18- and 14-kDa were recognized by polyclonal antibodies produced in rabbits immunized either with the VF antigens or with a total-antigen preparation of T. solium cysticerci. Antibodies present in samples of serum or cerebrospinal fluid (CSF) from patients with neurocysticercosis also reacted with ES peptides. An anti-ES monoclonal antibody detected antigens in the CSF from 10 patients with neurocysticercosis, showing the antigenic homology of the ES antigens with those of T. solium cysticerci in human infections.
Collapse
Affiliation(s)
- N M Espíndola
- Laboratory of Clinical Immunology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bloco 17, 05508-900, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
25
|
García G, Sciutto E, Fragoso G, Cruz-Revilla C, Toledo A, Villalobos N, Flores I, Aluja A, José MV, Larralde C. Inhibitory role of antibodies in the development of Taenia solium and Taenia crassiceps toward reproductive and pathogenic stages. J Parasitol 2001; 87:582-6. [PMID: 11426721 DOI: 10.1645/0022-3395(2001)087[0582:iroait]2.0.co;2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Untreated Taenia solium cysticerci obtained from different naturally infected pigs vary notably in their capacity to develop into intestinal tapeworms in prednisolone-treated hamsters, whereas cells derived from Taenia crassiceps cysticerci after 2 mo of infection almost always develop to cysticerci in the peritoneal cavity of susceptible BALB/cAnN mice. Preincubation of whole cysticerci or parasite cells with mice immunoglobulins raised against an 18-mer peptide epitope (GK-1) common to both parasites significantly interferes with both transformations. These crippling effects of antiparasite antibodies suggest new forms of immunological interference with parasite biology other than simple killing. Antibodies that cripple biological functions of the parasite, e.g., their development to reproductive or pathogenic stages, make them important protagonists in taeniasis/cysticercosis disease as classic parasitocidal antibodies. Different serum levels of crippling antibodies in the infected pigs could be responsible for the varied ability of cysticerci to convert to tapeworms. Antigens capable of inducing crippling antibodies, e.g., GK-1, could be useful as a therapeutic vaccine for pigs in order to reduce parasite transmission.
Collapse
Affiliation(s)
- G García
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, DF, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Toledo A, Fragoso G, Rosas G, Hernández M, Gevorkian G, López-Casillas F, Hernández B, Acero G, Huerta M, Larralde C, Sciutto E. Two epitopes shared by Taenia crassiceps and Taenia solium confer protection against murine T. crassiceps cysticercosis along with a prominent T1 response. Infect Immun 2001; 69:1766-73. [PMID: 11179354 PMCID: PMC98083 DOI: 10.1128/iai.69.3.1766-1773.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Taenia crassiceps recombinant antigens KETc1 and KETc12 have been shown to induce high level of protection against experimental murine T. crassiceps cysticercosis, an experimental model successfully used to test candidate antigens for use in vaccination against porcine Taenia solium cysticercosis. Based on the deduced amino acid sequence, KETc1 and KETc12 were chemically synthesized in linear form. Immunization with KETc1 induced 66.7 to 100% protection against murine cysticercosis, and immunization with KETc12 induced 52.7 to 88.1% protection. The elicited immune response indicated that both peptides contain at least one B-cell epitope (as demonstrated by their ability to induce specific antibodies) and one T-cell epitope that strongly stimulated the proliferation of T cells primed with either the free peptide or total cysticercal T. crassiceps antigens. The high percentage of spleen cells expressing inflammatory cytokines points to the likelihood of a T1 response being involved in protection. The protective capacity of the peptides and their presence in all developmental stages of T. solium point to these two epitopes as strong candidates for inclusion in a polyepitopic synthetic vaccine against T. solium pig cysticercosis.
Collapse
Affiliation(s)
- A Toledo
- Instituto de Investigaciones Biomédicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huerta M, Sciutto E, García G, Villalobos N, Hernández M, Fragoso G, Díaz J, Díaz A, Ramírez R, Luna S, García J, Aguilar E, Espinoza S, Castilla G, Bobadilla JR, Avila R, José MV, Larralde C, de Aluja AS. Vaccination against Taenia solium cysticercosis in underfed rustic pigs of México: roles of age, genetic background and antibody response. Vet Parasitol 2000; 90:209-19. [PMID: 10842001 DOI: 10.1016/s0304-4017(00)00233-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vaccination of pigs of mixed genetic make-up, raised as rustically as done in rural Mexico, resulted in effective protection to experimental challenge against Taenia solium cysticercosis. Maximum protection was achieved if pigs were immunized at 70 days of age. There was large variation of viable parasite load within vaccinated pigs and controls, which is suggestive of significant genetic factors influencing susceptibility, besides immunization. Our results strengthen the advisability of pig vaccination for control of T. solium cysticercosis, since it lowers the number of viable cysticerci capable of transforming into tapeworms.
Collapse
Affiliation(s)
- M Huerta
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rinkevich B. Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J Biotechnol 1999. [DOI: 10.1016/s0168-1656(99)00067-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. PROGRESS IN INDUSTRIAL MICROBIOLOGY 1999. [DOI: 10.1016/s0079-6352(99)80107-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Abstract
Establishment of cell lines from insect and arachnid invertebrates has become routine, whereas other invertebrate taxa have been frustratingly unproductive of cell lines. None is available for any marine invertebrate, despite a strong and well-recognized need for cell lines from species that are important in aquaculture, from parasite vectors and intermediate hosts of parasites, from parasites themselves, from certain biomedical models, and from other species that are pests. Drawing on experiences gained attempting to establish cell lines from molluscs and trematodes and on published and ongoing research with diverse invertebrates, this chapter attempts to anticipate the problems that are likely to be encountered in such endeavors and discusses possible solutions. Criteria to be considered in the selection of basic culture media, temperature, pH, and media additives; approaches that have been developed to yield sterile primary cultures; and factors to consider in decisions about feeding schedules, retention of tissue fragments and nonadherent cells, use of heterologous feeder layers, and other variables are described. Suggestions are made concerning means to objectively score the success of tested variables and means to induce cell replication. The chapter ends with notes on conventional means to characterize cell lines and an account of contemporary efforts to immortalize cells by means of genome manipulation. Enduring success with a single molluscan cell line, transient successes with crustacean and helminth cell lines, and promising developments in transgenesis with invertebrates all lead to the hopeful conclusion that the invisible barrier to cell propagation in historically refractory species will soon be a thing of the past.
Collapse
Affiliation(s)
- C J Bayne
- Department of Zoology, Oregon State University, Corvallis 97331, USA
| |
Collapse
|