1
|
Zhu Z, Huang F, Gao M, Liu M, Zhang Y, Tang L, Wu J, Yu H, He C, Chen J, Yang Z, Chen Z, Li Y, Chen H, Lei T, Zeng F, Cui Y. Osteogenic-Like Microenvironment of Renal Interstitium Induced by Osteomodulin Contributes to Randall's Plaque Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405875. [PMID: 39225583 PMCID: PMC11516157 DOI: 10.1002/advs.202405875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Calcium oxalate (CaOx) kidney stones are common and recurrent, lacking pharmacological prevention. Randall's plaques (RPs), calcium deposits in renal papillae, serve as niduses for some CaOx stones. This study explores the role of osteogenic-like cells in RP formation resembling ossification. CaP crystals deposit around renal tubules, interstitium, and blood vessels in RP tissues. Human renal interstitial fibroblasts (hRIFs) exhibit the highest osteogenic-like differentiation potential compared to chloride voltage-gated channel Ka positive tubular epithelial cells, aquaporin 2 positive collecting duct cells, and vascular endothelial cells, echoing the upregulated osteogenic markers primarily in hRIFs within RP tissues. Utilizing RNA-seq, osteomodulin (OMD) is found to be upregulated in hRIFs within RP tissues and hRIFs following osteogenic induction. Furthermore, OMD colocalizes with CaP crystals and calcium vesicles within RP tissues. OMD can enhance osteogenic-like differentiation of hRIFs in vitro and in vivo. Additionally, crystal deposits are attenuated in mice with Omd deletion in renal interstitial fibroblasts following CaOx nephrocalcinosis induction. Mechanically, a positive feedback loop of OMD/BMP2/BMPR1A/RUNX2/OMD drives hRIFs to adopt osteogenic-like fates, by which OMD induces osteogenic-like microenvironment of renal interstitium to participate in RP formation. We identify OMD upregulation as a pathological feature of RP, paving the way for preventing CaOx stones.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of Internal MedicineSection EndocrinologyYale University School of MedicineNew HavenCT06519USA
| | - Fang Huang
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Meng Gao
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Minghui Liu
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Youjie Zhang
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Liang Tang
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Jian Wu
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Hao Yu
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Cheng He
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Jinbo Chen
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Zhongqing Yang
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Zhiyong Chen
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yang Li
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Hequn Chen
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Ting Lei
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310006China
| | - Feng Zeng
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yu Cui
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW This short review is intended to highlight the potential role of inflammation as a key pathological driver, rather than a mere consequence, of nephrolithiasis. Although there is clearly a strong likelihood that the relationship is bidirectional, and that kidney stone-triggered inflammation can establish a vicious cycle of tissue injury and stone formation. RECENT FINDINGS These consist of data from both recent preclinical and clinical studies demonstrating the importance of inflammation in models of stone disease and in kidney tissue from patients with nephrolithiasis, and as a potential driver of disease recurrence and a suitable treatment target. In particular, the role of immune cells and their relationship to the NLRP3 inflammasome is becoming clearer, as well as the potential contribution to tissue injury and stone formation of the pro-inflammatory cytokines interleukin-1β and interleukin-18. SUMMARY This concept is not new and raises the possibility that targeting inflammation directly may prove to be a novel and suitable means of treatment for at least some types of kidney stone, and in certain clinical settings, both acutely and as prevention, especially in those patients experiencing recurrent stone episodes and/or who have a well defined metabolic cause such as uric acid or calcium oxalate stones.
Collapse
Affiliation(s)
- Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples
| | - Pietro Manuel Ferraro
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London (UCL), London, UK
| |
Collapse
|
3
|
Paulini F, Marangon ARM, Azevedo CL, Brito JLM, Lemos MS, Sousa MH, Veiga-Souza FH, Souza PEN, Lucci CM, Azevedo RB. In Vivo Evaluation of DMSA-Coated Magnetic Nanoparticle Toxicity and Biodistribution in Rats: A Long-Term Follow-Up. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3513. [PMID: 36234641 PMCID: PMC9565739 DOI: 10.3390/nano12193513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This work presents a long-term follow-up (300 days) of rats after a single intravenous injection of DMSA-coated magnetite nanoparticles (DMSA-MNP). The animals were systematically evaluated by hematological, biochemical, and ultrasound examinations, monitoring the same animal over time. In addition, oxidative stress evaluation, DMSA-MNP biodistribution, computerized tomography for ex vivo organs, and histopathology analysis were performed at the end of the experiment period. Overall, DMSA-MNP administration did not cause serious damage to the rats' health over the course of 300 days post-administration. All animals presented hematological parameters within the normal limits, and no alterations on serum creatinine, urea, ALT, and AST were related to DMSA-MNP administration. Liver and spleen showed no important alterations in any of the examinations. The kidneys of treated animals displayed intermittent pelvis dilation at ultrasound analysis, but without damage to the organ parenchyma after 300 days. The lungs of treated animals presented a light interalveolar septal thickening, but the animals did not present any clinical respiratory symptom. Nanoparticles were not detected in the vital organs of treated animals 300 days after administration. This work represents the first assessment of the long-term effects of DMSA-MNP and goes a step further on the safety of its use for biomedical applications.
Collapse
Affiliation(s)
- Fernanda Paulini
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Aline R. M. Marangon
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Carolina L. Azevedo
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Juliana L. M. Brito
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Marcelo H. Sousa
- Faculty of Ceilandia, University of Brasilia, Brasilia 70910-900, Brazil
| | - Fabiane H. Veiga-Souza
- Faculty of Ceilandia, University of Brasilia, Brasilia 70910-900, Brazil
- Department of Cell Biology, Laboratory of Protein Chemistry and Biochemistry, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Paulo E. N. Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, University of Brasilia, Brasilia 70910-900, Brazil
| | - Carolina M. Lucci
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Ricardo B. Azevedo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| |
Collapse
|
4
|
Mercurio M, Izzo F, Gatta GD, Salzano L, Lotrecchiano G, Saldutto P, Germinario C, Grifa C, Varricchio E, Carafa A, Di Meo MC, Langella A. May a comprehensive mineralogical study of a jackstone calculus and some other human bladder stones unveil health and environmental implications? ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3297-3320. [PMID: 34529244 DOI: 10.1007/s10653-021-01083-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
This paper represents the first result of an active collaboration between the University of Sannio and the San Pio Hospital (Benevento, Italy), started in the 2018, that aims to a detailed mineralogical investigation of urinary stones of patients from Campania region. Herein, selected human bladder stones have been deeply characterized for clinical purposes and environmental biomonitoring, focusing on the importance to evaluate the concentration and distribution of undesired trace elements by means of microscopic techniques in the place of conventional wet chemical analyses. A rare bladder stone with a sea-urchin appearance, known as jackstone calculus, were also investigated (along with bladder stones made of uric acid and brushite) by means a comprehensive analytical approach, including Synchrotron X-ray Diffraction and Simultaneous Thermal Analyses. Main clinical assumptions were inferred according to the morpho-constitutional classification of bladder stones and information about patient's medical history and lifestyle. In most of the analyzed uroliths, undesired trace elements such as copper, cadmium, lead, chromium, mercury and arsenic have been detected and generally attributable to environmental pollution or contaminated food. Simultaneous occurrence of selenium and mercury should denote a methylmercury detoxification process, probably leading to the formation of a very rare HgSe compound known as tiemannite.
Collapse
Affiliation(s)
- M Mercurio
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - F Izzo
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy.
| | - Giacomo Diego Gatta
- Dipartimento Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, 20133, Milan, Italy
| | - L Salzano
- UOC Urologia, Azienda Ospedaliera San Pio di Benevento, Via dell'Angelo 82100, Benevento, Italy
| | - G Lotrecchiano
- UOC Urologia, Azienda Ospedaliera San Pio di Benevento, Via dell'Angelo 82100, Benevento, Italy
| | - P Saldutto
- UOC Urologia, Azienda Ospedaliera San Pio di Benevento, Via dell'Angelo 82100, Benevento, Italy
| | - C Germinario
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - C Grifa
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - E Varricchio
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - A Carafa
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - Maria Chiara Di Meo
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - A Langella
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Complesso Universitario Di Monte Sant'Angelo, Edificio 10, Via Vicinale Cupa Cintia 21, 80126, Naples, Italy
| |
Collapse
|
5
|
Liu Y, Sun Y, Kang J, He Z, Liu Q, Wu J, Li D, Wang X, Tao Z, Guan X, She W, Xu H, Deng Y. Role of ROS-Induced NLRP3 Inflammasome Activation in the Formation of Calcium Oxalate Nephrolithiasis. Front Immunol 2022; 13:818625. [PMID: 35154136 PMCID: PMC8828488 DOI: 10.3389/fimmu.2022.818625] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 01/18/2023] Open
Abstract
Calcium oxalate nephrolithiasis is a common and highly recurrent disease in urology; however, its precise pathogenesis is still unknown. Recent research has shown that renal inflammatory injury as a result of the cell-crystal reaction plays a crucial role in the development of calcium oxalate kidney stones. An increasing amount of research have confirmed that inflammation mediated by the cell-crystal reaction can lead to inflammatory injury of renal cells, promote the intracellular expression of NADPH oxidase, induce extensive production of reactive oxygen species, activate NLRP3 inflammasome, discharge a great number of inflammatory factors, trigger inflammatory cascading reactions, promote the aggregation, nucleation and growth process of calcium salt crystals, and ultimately lead to the development of intrarenal crystals and even stones. The renal tubular epithelial cells (RTECs)-crystal reaction, macrophage-crystal reaction, calcifying nanoparticles, endoplasmic reticulum stress, autophagy activation, and other regulatory factors and mechanisms are involved in this process.
Collapse
Affiliation(s)
- Yunlong Liu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Sun
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juening Kang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqi He
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Quan Liu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jihua Wu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Derong Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Wang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwei Tao
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaofeng Guan
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wusheng She
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua Xu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yaoliang Deng
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Vodyanoy V. The Role of Endogenous Metal Nanoparticles in Biological Systems. Biomolecules 2021; 11:1574. [PMID: 34827572 PMCID: PMC8615972 DOI: 10.3390/biom11111574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
The blood and tissues of vertebrate animals and mammals contain small endogenous metal nanoparticles. These nanoparticles were observed to be composed of individual atoms of iron, copper, zinc, silver, gold, platinum, and other metals. Metal nanoparticles can bind proteins and produce proteinaceous particles called proteons. A small fraction of the entire pool of nanoparticles is usually linked with proteins to form proteons. These endogenous metal nanoparticles, along with engineered zinc and copper nanoparticles at subnanomolar levels, were shown to be lethal to cultured cancer cells. These nanoparticles appear to be elemental crystalline metal nanoparticles. It was discovered that zinc nanoparticles produce no odor response but increase the odor reaction if mixed with an odorant. Some other metal nanoparticles, including copper, silver, gold, and platinum nanoparticles, do not affect the responses to odorants. The sources of metal nanoparticles in animal blood and tissues may include dietary plants and gut microorganisms. The solid physiological and biochemical properties of metal nanoparticles reflect their importance in cell homeostasis and disease.
Collapse
Affiliation(s)
- Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Rowińska I, Szyperska-Ślaska A, Zariczny P, Pasławski R, Kramkowski K, Kowalczyk P. The Influence of Diet on Oxidative Stress and Inflammation Induced by Bacterial Biofilms in the Human Oral Cavity. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1444. [PMID: 33809616 PMCID: PMC8001659 DOI: 10.3390/ma14061444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
The article is a concise compendium of knowledge on the etiology of pathogenic microorganisms of all complexes causing oral diseases. The influence of particular components of the diet and the role of oxidative stress in periodontal diseases were described. The study investigated the bacteriostatic effect of the diet of adults in in vivo and in vitro tests on the formation of bacterial biofilms living in the subgingival plaque, causing diseases called periodontitis. If left untreated, periodontitis can damage the gums and alveolar bones. Anaerobic bacteria, called periopathogens or periodontopathogens, play a key role in the etiopathogenesis of periodontitis. The most important periopathogens of the oral microbiota are bacteria of all complexes, including the red complex. The obtained results suggest the possibility of using a specific diet in the prevention and treatment of periodontal diseases-already treated as a disease of civilization. The quoted article is an innovative compilation of knowledge on this subject and it can be a valuable source of knowledge for professional hygienists, dentists, peridontologists, dentistry students and anyone who cares about proper oral hygiene. The obtained results suggest the possibility of using this type of diet in the prophylaxis of the oral cavity in order to avoid periodontitis.
Collapse
Affiliation(s)
- Ilona Rowińska
- The Medical and Social Center for Vocational and Continuing Education in Toruń, St. Jana 1/3, 87-100 Toruń, Poland; (I.R.); (A.S.-Ś.)
| | - Adrianna Szyperska-Ślaska
- The Medical and Social Center for Vocational and Continuing Education in Toruń, St. Jana 1/3, 87-100 Toruń, Poland; (I.R.); (A.S.-Ś.)
| | - Piotr Zariczny
- Toruń City Hall, Business Support Center in Toruń, ul. Marii Konopnickiej 13, 87-100 Toruń, Poland;
| | - Robert Pasławski
- Veterinary Insitute, Nicolaus Copernicus University in Toruń, str. Gagarina 7, 87-100 Toruń, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1str, 15-089 Bialystok, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
8
|
Zhu Z, Huang F, Xia W, Zeng H, Gao M, Li Y, Zeng F, He C, Chen J, Chen Z, Li Y, Cui Y, Chen H. Osteogenic Differentiation of Renal Interstitial Fibroblasts Promoted by lncRNA MALAT1 May Partially Contribute to Randall's Plaque Formation. Front Cell Dev Biol 2021; 8:596363. [PMID: 33505960 PMCID: PMC7829506 DOI: 10.3389/fcell.2020.596363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022] Open
Abstract
Background The current belief is that Randall's plaques (RP) constitute a nidus for the formation of idiopathic calcium oxalate stones, but the upstream events in RP formation remain unclear. The present study aimed to investigate whether RP formation shares similarities with biomineralization and to illustrate the potential role played by the lncRNA MALAT1 in osteogenic differentiation of human renal interstitial fibroblasts (hRIFs). Materials and Methods Biomineralization and MALAT1 expression were assessed in RP, and hRIFs were isolated and induced under osteogenic conditions for further experiments. The transcription initiation and termination sites in MALAT1 were identified by 5' and 3' RACE. RNA immunoprecipitation assays and luciferase assays were used to validate the interactions among MALAT1, Runx2 and miRNAs. Results Upregulated expression of osteogenic markers and MALAT1 was observed in RP and hRIFs induced with osteogenic medium. Biomineralization in RP and calcium phosphate (CaP) deposits in induced hRIFs were further verified by electron microscopy. Furthermore, overexpression of MALAT1 promoted the osteogenic phenotype of hRIFs, while treatment with a miR-320a-5p mimic and knockdown of Runx2 significantly suppressed the osteogenic phenotype. Further analysis showed that MALAT1 functioned as a competing endogenous RNA to sponge miR-320a-5p, leading to upregulation of Runx2 and thus promoting osteogenic differentiation of hRIFs. Conclusion Ectopic calcification and MALAT1 partially contributed to the formation of RP, in which MALAT1 might promote Runx2 expression to regulate osteogenic differentiation of hRIFs by sponging miRNA-320a-5p. The current study sheds new light on the lncRNA-directed mechanism of RP formation via a process driven by osteogenic-like cells.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Huimin Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongchao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyong Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Zhu Z, Cui Y, Huang F, Zeng H, Xia W, Zeng F, He C, Chen J, Chen Z, Chen H, Li Y. Long non-coding RNA H19 promotes osteogenic differentiation of renal interstitial fibroblasts through Wnt-β-catenin pathway. Mol Cell Biochem 2020; 470:145-155. [PMID: 32440841 DOI: 10.1007/s11010-020-03753-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
Randall's plaque (RP) serves as a nidus on which idiopathic calcium oxalate stones form. Renal interstitial mineralization may be the cause underlying RP, and recent studies demonstrated the similarities between the interstitial mineralization and ectopic calcification. The present study aimed to investigate whether human renal interstitial fibroblasts (hRIFs) could form calcification under osteogenic conditions, and whether long non-coding RNA H19 participated in regulating osteogenic differentiation of hRIFs through Wnt-β-catenin pathway. HRIFs were isolated and induced for osteogenic differentiation under osteogenic conditions. Runx2, OCN, alkaline phosphatase (ALP) activity, and the mineralized nodule formation were used to assess the osteogenic phenotype. Molecule expressions were determined by qRT-PCR, immunofluorescence staining, and western blot. The mineralized nodules were assessed by Alizarin red staining. Compared to the normal renal papillary tissue, Runx2, OCN, and H19 were significantly upregulated in RP. After hRIFs were induced with osteogenic medium, osteogenic markers (Runx2, OCN and ALP), β-catenin and H19 were significantly upregulated, and the mineralized nodules are formed. Additionally, overexpression of H19 promoted the osteogenic phenotype of hRIFs and increased the expression of β-catenin, whereas knock-down of H19 or XAV939 (inhibitor of Wnt-β-catenin signaling pathway) significantly repressed the osteogenic phenotype of hRIFs and decreased the β-catenin. Moreover, XAV939 was shown to abolish the osteogenic differentiation of hRIFs promoted by H19. The study demonstrated that ectopic calcification partly participated in the formation of RP, and H19 promoted osteogenic differentiation of hRIFs by activating Wnt-β-catenin pathway, which shed new light on the molecular mechanism of the RP formation.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huimin Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Feng Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhiyong Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
10
|
Zhang Y, Zhu R, Liu D, Gong M, Hu W, Yi Q, Zhang J. Tetracycline attenuates calcifying nanoparticles-induced renal epithelial injury through suppression of inflammation, oxidative stress, and apoptosis in rat models. Transl Androl Urol 2019; 8:619-630. [PMID: 32038958 DOI: 10.21037/tau.2019.11.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Calcifying nanoparticles (CNPs) has been associated with the occurrence and development of kidney stones, but the exact mechanism is not clear. This study aimed to establish a rat model of CNP-induced renal epithelial injury and assess the efficacy of tetracycline in preventing this injury. Methods Kidney stones from patients after percutaneous nephrolithotomy (PCNL) were collected to isolate and culture CNPs. Thirty Sprague-Dawley rats were divided into three groups: the sham group (G1), the CNP group (G2), and the CNP + tetracycline group (G3). Rats in G2 and G3 were given an intravenous injection of CNPs via the tail vein, while rats in G1 were given saline. Meanwhile, rats in G3 were given tetracycline by gavage twice a day at a dose of 25 mg/kg. After 8 weeks, the 24-h urine of all rats was collected, and all rats were sacrificed to obtain blood and kidneys. Results The results revealed that in G2, activities of antioxidant enzymes such as superoxide dismutase and catalase were significantly lower than those in G1, while malondialdehyde activity in G2 was significantly higher than that in G1 and both of them were inhibited by tetracycline co-treatment in G3. CNPs significantly increased expression of inflammatory cytokines, including monocyte chemotactic protein 1 and interleukin 6, which were largely alleviated in G3. CNPs significantly increased TUNEL-positive cells and the apoptosis activity of Bcl2-associated X protein but decreased B-cell lymphoma-2 level compared with that in G1, and was limited by tetracycline co-treatment in G3. Furthermore, CNPs led to notable renal tubular epithelial cell damage, hyaline cast formation, desquamation, swelling, vacuolization in histology, all of which were alleviated by tetracycline. Conclusions Tetracycline can attenuate CNP-induced renal epithelial injury through suppression of inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Rujian Zhu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Dong Liu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Min Gong
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Wei Hu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Qingtong Yi
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Jie Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
11
|
Anatomically-specific intratubular and interstitial biominerals in the human renal medullo-papillary complex. PLoS One 2017; 12:e0187103. [PMID: 29145401 PMCID: PMC5690653 DOI: 10.1371/journal.pone.0187103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 10/15/2017] [Indexed: 01/03/2023] Open
Abstract
Limited information exists on the anatomically-specific early stage events leading to clinically detectable mineral aggregates in the renal papilla. In this study, quantitative multiscale correlative maps of structural, elemental and biochemical properties of whole medullo-papillary complexes from human kidneys were developed. Correlative maps of properties specific to the uriniferous and vascular tubules using high-resolution X-ray computed tomography, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, and immunolocalization of noncollagenous proteins (NCPs) along with their association with anatomy specific biominerals were obtained. Results illustrated that intratubular spherical aggregates primarily form at the proximal regions distant from the papillary tip while interstitial spherical and fibrillar aggregates are distally located near the papillary tip. Biominerals at the papillary tip were closely localized with 10 to 50 μm diameter vasa recta immunolocalized for CD31 inside the medullo-papillary complex. Abundant NCPs known to regulate bone mineralization were localized within nanoparticles, forming early pathologic mineralized regions of the complex. Based on the physical association between vascular and urothelial tubules, results from light and electron microscopy techniques suggested that these NCPs could be delivered from vasculature to prompt calcification of the interstitial regions or they might be synthesized from local vascular smooth muscle cells after transdifferentiation into osteoblast-like phenotypes. In addition, results provided insights into the plausible temporal events that link the anatomically specific intratubular mineral aggregates with the interstitial biomineralization processes within the functional unit of the kidney.
Collapse
|
12
|
|
13
|
Mulay SR, Anders HJ. Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat Rev Nephrol 2017; 13:226-240. [DOI: 10.1038/nrneph.2017.10] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Khan SR. Histological aspects of the "fixed-particle" model of stone formation: animal studies. Urolithiasis 2016; 45:75-87. [PMID: 27896391 DOI: 10.1007/s00240-016-0949-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/22/2016] [Indexed: 01/25/2023]
Abstract
Crystallization by itself is not harmful as long as the crystals are not retained in the kidneys and are allowed to pass freely down the renal tubules to be excreted in the urine. A number of theories have been proposed, and studies performed, to determine the mechanisms involved in crystal retention within the kidneys. It has been suggested that urinary transit through the nephron is too fast for crystals to grow large enough to be retained. Thus, free particle mechanism alone cannot lead to stone formation, and there must be a mechanism for crystal fixation within the kidneys. Animal model studies suggest that crystal retention is possible through both the free- and fixed-particle mechanisms. Crystal-cell interaction leads to pathological changes which promote crystal attachment to either epithelial cells or their basement membrane. Alternatively, crystals aggregate and produce large enough particles to block the tubules particularly at sites, where urinary flow is affected because of changes in the luminal diameter of the tubule. Crystal deposits plugging the openings of the ducts of Bellini may be the result of such a phenomenon. Intratubular crystals translocating to renal interstitium may produce osteogenic changes in the epithelial or endothelial cells resulting in the formation of the Randall's plaques. Thus, fixation appears to be either through the formation of Randall's plugs, crystal plugs clogging the openings of the ducts of Bellini or sub-epithelial crystal deposits, and the Randall's plaques.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Investigation, College of Medicine, University of Florida, Gainesville, FL, USA. .,Department of Urology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Fong-ngern K, Sueksakit K, Thongboonkerd V. Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells. J Biol Inorg Chem 2016; 21:463-74. [DOI: 10.1007/s00775-016-1355-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/13/2016] [Indexed: 02/04/2023]
|
16
|
Khan SR, Gambaro G. Role of Osteogenesis in the Formation of Randall's Plaques. Anat Rec (Hoboken) 2015; 299:5-7. [PMID: 26414710 DOI: 10.1002/ar.23275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/01/2015] [Accepted: 08/19/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Saeed R Khan
- Departments of Pathology and Urology College of Medicine, University of Florida, Gainesville, Florida
| | - Giovanni Gambaro
- Division of Nephrology and Dialysis, Columbus-Gemelli University Hospital Catholic University, School of Medicine, Rome, Italy
| |
Collapse
|
17
|
Yaghobee S, Bayani M, Samiei N, Jahedmanesh N. What are the nanobacteria? BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1052761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
18
|
Joshi S, Clapp WL, Wang W, Khan SR. Osteogenic changes in kidneys of hyperoxaluric rats. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2000-12. [PMID: 26122267 DOI: 10.1016/j.bbadis.2015.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/30/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Many calcium oxalate (CaOx) kidney stones develop attached to renal papillary sub-epithelial deposits of calcium phosphate (CaP), called Randall's plaque (RP). Pathogenesis of the plaques is not fully understood. We hypothesize that abnormal urinary environment in stone forming kidneys leads to epithelial cells losing their identity and becoming osteogenic. To test our hypothesis male rats were made hyperoxaluric by administration of hydroxy-l-proline (HLP). After 28days, rat kidneys were extracted. We performed genome wide analyses of differentially expressed genes and determined changes consistent with dedifferentiation of epithelial cells into osteogenic phenotype. Selected molecules were further analyzed using quantitative-PCR and immunohistochemistry. Genes for runt related transcription factors (RUNX1 and 2), zinc finger protein Osterix, bone morphogenetic proteins (BMP2 and 7), bone morphogenetic protein receptor (BMPR2), collagen, osteocalcin, osteonectin, osteopontin (OPN), matrix-gla-protein (MGP), osteoprotegrin (OPG), cadherins, fibronectin (FN) and vimentin (VIM) were upregulated while those for alkaline phosphatase (ALP) and cytokeratins 10 and 18 were downregulated. In conclusion, epithelial cells of hyperoxaluric kidneys acquire a number of osteoblastic features but without CaP deposition, perhaps a result of downregulation of ALP and upregulation of OPN and MGP. Plaque formation may additionally require localized increases in calcium and phosphate and decrease in mineralization inhibitory potential.
Collapse
Affiliation(s)
- Sunil Joshi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - William L Clapp
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Wei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States; Department of Urology, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
19
|
Yiu AJ, Callaghan D, Sultana R, Bandyopadhyay BC. Vascular Calcification and Stone Disease: A New Look towards the Mechanism. J Cardiovasc Dev Dis 2015; 2:141-164. [PMID: 26185749 PMCID: PMC4501032 DOI: 10.3390/jcdd2030141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Calcium phosphate (CaP) crystals are formed in pathological calcification as well as during stone formation. Although there are several theories as to how these crystals can develop through the combined interactions of biochemical and biophysical factors, the exact mechanism of such mineralization is largely unknown. Based on the published scientific literature, we found that common factors can link the initial stages of stone formation and calcification in anatomically distal tissues and organs. For example, changes to the spatiotemporal conditions of the fluid flow in tubular structures may provide initial condition(s) for CaP crystal generation needed for stone formation. Additionally, recent evidence has provided a meaningful association between the active participation of proteins and transcription factors found in the bone forming (ossification) mechanism that are also involved in the early stages of kidney stone formation and arterial calcification. Our review will focus on three topics of discussion (physiological influences-calcium and phosphate concentration-and similarities to ossification, or bone formation) that may elucidate some commonality in the mechanisms of stone formation and calcification, and pave the way towards opening new avenues for further research.
Collapse
Affiliation(s)
- Allen J. Yiu
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
| | - Daniel Callaghan
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Road, NW, Washington, DC 20007, USA
| | - Razia Sultana
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Road, NW, Washington, DC 20007, USA
- Department of Pharmacology and Physiology, School of Medicine, George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-202-745-8622; Fax: +1-202-462-2006
| |
Collapse
|
20
|
Mezzabotta F, Cristofaro R, Ceol M, Del Prete D, Priante G, Familiari A, Fabris A, D'Angelo A, Gambaro G, Anglani F. Spontaneous calcification process in primary renal cells from a medullary sponge kidney patient harbouring a GDNF mutation. J Cell Mol Med 2015; 19:889-902. [PMID: 25692823 PMCID: PMC4395202 DOI: 10.1111/jcmm.12514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/18/2014] [Indexed: 11/30/2022] Open
Abstract
Medullary nephrocalcinosis is a hallmark of medullary sponge kidney (MSK). We had the opportunity to study a spontaneous calcification process in vitro by utilizing the renal cells of a patient with MSK who was heterozygous for the c.-27 + 18G>A variant in the GDNF gene encoding glial cell-derived neurotrophic factor. The cells were obtained by collagenase digestion of papillary tissues from the MSK patient and from two patients who had no MSK or nephrocalcinosis. These cells were typed by immunocytochemistry, and the presence of mineral deposits was studied using von Kossa staining, scanning electron microscopy analysis and an ALP assay. Osteoblastic lineage markers were studied using immunocytochemistry and RT-PCR. Staminality markers were also analysed using flow cytometry, magnetic cell separation technology, immunocytochemistry and RT-PCR. Starting from p2, MSK and control cells formed nodules with a behaviour similar to that of calcifying pericytes; however, Ca2PO4 was only found in the MSK cultures. The MSK cells had morphologies and immunophenotypes resembling those of pericytes or stromal stem cells and were positive for vimentin, ZO1, αSMA and CD146. In addition, the MSK cells expressed osteocalcin and osteonectin, indicating an osteoblast-like phenotype. In contrast to the control cells, GDNF was down-regulated in the MSK cells. Stable GDNF knockdown was established in the HK2 cell line and was found to promote Ca2PO4 deposition when the cells were incubated with calcifying medium by regulating the osteonectin/osteopontin ratio in favour of osteonectin. Our data indicate that the human papilla may be a perivascular niche in which pericyte/stromal-like cells can undergo osteogenic differentiation under particular conditions and suggest that GDNF down-regulation may have influenced the observed phenomenon.
Collapse
Affiliation(s)
- Federica Mezzabotta
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Nephrology Division, Department of Medicine DIMED, University of Padua, Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Asghar MT, Al-Ghanim K, Mahboob S, Sharif M, Nazir J, Shakoori AR. Sphingomonas sp. is a novel cell culture contaminant. J Cell Biochem 2015; 116:934-42. [PMID: 25559735 DOI: 10.1002/jcb.25044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 11/09/2022]
Abstract
A novel contaminant was isolated from Madin Darby Bovine Kidney (MDBK) cells. The organism was unable to grow on standard microbiological media by conventional techniques, but grew well in Dulbecco's Modified Eagle's Medium (DMEM) containing high glucose concentration. The organism formed a white biofilm on the bottom without any signs of turbidity. Upon genome sequence analysis of 16 S rDNA, the contaminant was identified as Sphingomonas sp. Shah, a member of the group α-Proteobacteria. Neutral red dye uptake method confirmed clear cytotoxic potential of the bacterium on A-549 cells. The organism was capable of invading and infecting different mammalian cell lines: MDBK, ZZ-R, 293-T, A549, and HeLa cells. Infected cells showed a variety of cytopathic effects including vacuolation at perinuclear area, cytoplasmic granulation and membrane blebbing. Microscopic analysis of the infected cells revealed the presence of cytoplasmic vacuoles harboring motile organisms. Apparently local serum preparations seem to be the source of this contamination, which is imperceptibly passed on from one culture passage to the other and ultimately leading to serious cytopathic manifestations.
Collapse
Affiliation(s)
- Muhammad Tahir Asghar
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
| | | | | | | | | | | |
Collapse
|
22
|
Khan SR, Canales BK. Unified theory on the pathogenesis of Randall's plaques and plugs. Urolithiasis 2014; 43 Suppl 1:109-23. [PMID: 25119506 DOI: 10.1007/s00240-014-0705-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/23/2014] [Indexed: 01/19/2023]
Abstract
Kidney stones develop attached to sub-epithelial plaques of calcium phosphate (CaP) crystals (termed Randall's plaque) and/or form as a result of occlusion of the openings of the Ducts of Bellini by stone-forming crystals (Randall's plugs). These plaques and plugs eventually extrude into the urinary space, acting as a nidus for crystal overgrowth and stone formation. To better understand these regulatory mechanisms and the pathophysiology of idiopathic calcium stone disease, this review provides in-depth descriptions of the morphology and potential origins of these plaques and plugs, summarizes existing animal models of renal papillary interstitial deposits, and describes factors that are believed to regulate plaque formation and calcium overgrowth. Based on evidence provided within this review and from the vascular calcification literature, we propose a "unified" theory of plaque formation-one similar to pathological biomineralization observed elsewhere in the body. Abnormal urinary conditions (hypercalciuria, hyperoxaluria, and hypocitraturia), renal stress or trauma, and perhaps even the normal aging process lead to transformation of renal epithelial cells into an osteoblastic phenotype. With this de-differentiation comes an increased production of bone-specific proteins (i.e., osteopontin), a reduction in crystallization inhibitors (such as fetuin and matrix Gla protein), and creation of matrix vesicles, which support nucleation of CaP crystals. These small deposits promote aggregation and calcification of surrounding collagen. Mineralization continues by calcification of membranous cellular degradation products and other fibers until the plaque reaches the papillary epithelium. Through the activity of matrix metalloproteinases or perhaps by brute physical force produced by the large sub-epithelial crystalline mass, the surface is breached and further stone growth occurs by organic matrix-associated nucleation of CaOx or by the transformation of the outer layer of CaP crystals into CaOx crystals. Should this theory hold true, developing an understanding of the cellular mechanisms involved in progression of a small, basic interstitial plaque to that of an expanding, penetrating plaque could assist in the development of new therapies for stone prevention.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA,
| | | |
Collapse
|
23
|
Hunter LW, Charlesworth JE, Yu S, Lieske JC, Miller VM. Calcifying nanoparticles promote mineralization in vascular smooth muscle cells: implications for atherosclerosis. Int J Nanomedicine 2014; 9:2689-98. [PMID: 24920905 PMCID: PMC4043721 DOI: 10.2147/ijn.s63189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Nano-sized complexes of calcium phosphate mineral and proteins (calcifying nanoparticles [CNPs]) serve as mineral chaperones. Thus, CNPs may be both a result and cause of soft tissue calcification processes. This study determined if CNPs could augment calcification of arterial vascular smooth muscle cells in vitro. Methods CNPs 210 nm in diameter were propagated in vitro from human serum. Porcine aortic smooth muscle cells were cultured for up to 28 days in medium in the absence (control) or presence of 2 mM phosphate ([P] positive calcification control) or after a single 3-day exposure to CNPs. Transmission electron-microscopy was used to characterize CNPs and to examine their cellular uptake. Calcium deposits were visualized by light microscopy and von Kossa staining and were quantified by colorimetry. Cell viability was quantified by confocal microscopy of live-/dead-stained cells and apoptosis was examined concurrently by fluorescent labeling of exposed phosphatidylserine. Results CNPs, as well as smaller calcium crystals, were observed by transmission electron-microscopy on day 3 in CNP-treated but not P-treated cells. By day 28, calcium deposits were visible in similar amounts within multicellular nodules of both CNP- and P-treated cells. Apoptosis increased with cell density under all treatments. CNP treatment augmented the density of apoptotic bodies and cellular debris in association with mineralized multicellular nodules. Conclusion Exogenous CNPs are taken up by aortic smooth muscle cells in vitro and potentiate accumulation of smooth-muscle-derived apoptotic bodies at sites of mineralization. Thus, CNPs may accelerate vascular calcification.
Collapse
Affiliation(s)
| | - Jon E Charlesworth
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sam Yu
- Lincoln University, Christchurch, New Zealand ; Izon Science Ltd., Christchurch, New Zealand
| | - John C Lieske
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA ; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Virginia M Miller
- Department of Surgery, Mayo Clinic, Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Martel J, Peng HH, Young D, Wu CY, Young JD. Of nanobacteria, nanoparticles, biofilms and their role in health and disease: facts, fancy and future. Nanomedicine (Lond) 2014; 9:483-99. [DOI: 10.2217/nnm.13.221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nanobacteria have been at the center of a major scientific controversy in recent years owing to claims that they represent not only the smallest living microorganisms on earth but also new emerging pathogens associated with several human diseases. We and others have carefully examined these claims and concluded that nanobacteria are in fact nonliving mineralo-organic nanoparticles (NPs) that form spontaneously in body fluids. We have shown that these mineral particles possess intriguing biomimetic properties that include the formation of cell- and tissue-like morphologies and the possibility to grow, proliferate and propagate by subculture. Similar mineral NPs (bions) have now been found in both physiological and pathological calcification processes and they appear to represent precursors of physiological calcification cycles, which may at times go awry in disease conditions. Furthermore, by functioning at the nanoscale, these mineralo-organic NPs or bions may shed light on the fate of nanomaterials in the body, from both nanotoxicological and nanopathological perspectives.
Collapse
Affiliation(s)
- Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - Hsin-Hsin Peng
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - David Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Primordia Institute of New Sciences & Medicine, Florham Park, NJ 07932, USA
| | - Cheng-Yeu Wu
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - John D Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Laboratory of Cellular Physiology & Immunology, The Rockefeller University, New York, NY 10021, USA
- Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan
| |
Collapse
|
25
|
Gonzalez D, Elias M, Chabrière E. The DING Family of Phosphate Binding Proteins in Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 824:27-32. [DOI: 10.1007/978-3-319-07320-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Pathophysiology. Urolithiasis 2014. [DOI: 10.1007/978-1-4614-8196-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Moran ME. Modern Stone Science. Urolithiasis 2014. [DOI: 10.1007/978-1-4614-8196-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Alenazy MS, Mosadomi HA. Clinical implications of calcifying nanoparticles in dental diseases: a critical review. Int J Nanomedicine 2013; 9:27-31. [PMID: 24376354 PMCID: PMC3865087 DOI: 10.2147/ijn.s51538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Unknown cell-culture contaminants were described by Kajander and Ciftçioğlu in 1998. These contaminants were called nanobacteria initially and later calcifying nanoparticles (CNPs). Their exact nature is unclear and controversial. CNPs have unique and unusual characteristics, which preclude placing them into any established evolutionary branch of life. AIM The aim of this systematic review was to assess published data concerning CNPs since 1998 in general and in relation to dental diseases in particular. MATERIALS AND METHODS The National Library of Medicine (PubMed) and Society of Photographic Instrumentation Engineers (SPIE) electronic and manual searches were conducted. Nanobacteria and calcifying nanoparticles were used as keywords. The search yielded 135 full-length papers. Further screening of the titles and abstracts that followed the review criteria resulted in 43 papers that met the study aim. CONCLUSION The review showed that the existence of nanobacteria is still controversial. Some investigators have described a possible involvement of CNPs in pulpal and salivary gland calcifications, as well as the possible therapeutic use of CNPs in the treatment of cracked and/or eroded teeth.
Collapse
Affiliation(s)
- Mohammed S Alenazy
- Restorative Dentistry Department, Riyadh Colleges of Dentistry and Pharmacy, Riyadh, Saudi Arabia
| | - Hezekiah A Mosadomi
- Oral and Maxillofacial Pathology Department, Riyadh Colleges of Dentistry and Pharmacy, Riyadh, Saudi Arabia
- Research Center, Riyadh Colleges of Dentistry and Pharmacy, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Wu CY, Young L, Young D, Martel J, Young JD. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids. PLoS One 2013; 8:e75501. [PMID: 24086546 PMCID: PMC3783384 DOI: 10.1371/journal.pone.0075501] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/14/2013] [Indexed: 12/17/2022] Open
Abstract
Mineralo-organic nanoparticles form spontaneously in human body fluids when the concentrations of calcium and phosphate ions exceed saturation. We have shown previously that these mineralo-organic nanoparticles possess biomimetic properties and can reproduce the whole phenomenology of the so-called nanobacteria-mineralized entities initially described as the smallest microorganisms on earth. Here, we examine the possibility that various charged elements and ions may form mineral nanoparticles with similar properties in biological fluids. Remarkably, all the elements tested, including sodium, magnesium, aluminum, calcium, manganese, iron, cobalt, nickel, copper, zinc, strontium, and barium form mineralo-organic particles with bacteria-like morphologies and other complex shapes following precipitation with phosphate in body fluids. Upon formation, these mineralo-organic particles, which we term bions, invariably accumulate carbonate apatite during incubation in biological fluids; yet, the particles also incorporate additional elements and thus reflect the ionic milieu in which they form. Bions initially harbor an amorphous mineral phase that gradually converts to crystals in culture. Our results show that serum produces a dual inhibition-seeding effect on bion formation. Using a comprehensive proteomic analysis, we identify a wide range of proteins that bind to these mineral particles during incubation in medium containing serum. The two main binding proteins identified, albumin and fetuin-A, act as both inhibitors and seeders of bions in culture. Notably, bions possess several biomimetic properties, including the possibility to increase in size and number and to be sub-cultured in fresh culture medium. Based on these results, we propose that bions represent biological, mineralo-organic particles that may form in the body under both physiological and pathological homeostasis conditions. These mineralo-organic particles may be part of a physiological cycle that regulates the function, transport and disposal of elements and minerals in the human body.
Collapse
Affiliation(s)
- Cheng-Yeu Wu
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
| | - Lena Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - David Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
| | - John D. Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, United States of America
- Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, Taipei, Taiwan, Republic of China
| |
Collapse
|
30
|
Macropinocytosis is the Major Mechanism for Endocytosis of Calcium Oxalate Crystals into Renal Tubular Cells. Cell Biochem Biophys 2013; 67:1171-9. [DOI: 10.1007/s12013-013-9630-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Green W, Ratan H. Molecular mechanisms of urolithiasis. Urology 2013; 81:701-4. [PMID: 23434095 DOI: 10.1016/j.urology.2012.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/05/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Will Green
- Department of Urology, Royal Derby Hospital, Derby, United Kingdom.
| | | |
Collapse
|
32
|
|
33
|
Kutikhin AG, Brusina EB, Yuzhalin AE. The role of calcifying nanoparticles in biology and medicine. Int J Nanomedicine 2012; 7:339-50. [PMID: 22287843 PMCID: PMC3266001 DOI: 10.2147/ijn.s28069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Calcifying nanoparticles (CNPs) (nanobacteria, nanobacteria-like particles, nanobes) were discovered over 25 years ago; nevertheless, their nature is still obscure. To date, nobody has been successful in credibly determining whether they are the smallest self-replicating life form on Earth, or whether they represent mineralo-protein complexes without any relation to living organisms. Proponents of both theories have a number of arguments in favor of the validity of their hypotheses. However, after epistemological analysis carried out in this review, all arguments used by proponents of the theory about the physicochemical model of CNP formation may be refuted on the basis of the performed investigations, and therefore published data suggest a biological nature of CNPs. The only obstacle to establish CNPs as living organisms is the absence of a fairly accurately sequenced genome at the present time. Moreover, it is clear that CNPs play an important role in etiopathogenesis of many diseases, and this association is independent from their nature. Consequently, emergence of CNPs in an organism is a pathological, not a physiological, process. The classification and new directions of further investigations devoted to the role of CNPs in biology and medicine are proposed.
Collapse
Affiliation(s)
- Anton G Kutikhin
- Department of Epidemiology, Kemerovo State Medical Academy, Kemerovo, Russian Federation.
| | | | | |
Collapse
|
34
|
Thurgood LA, Sørensen ES, Ryall RL. The effect of intracrystalline and surface-bound osteopontin on the degradation and dissolution of calcium oxalate dihydrate crystals in MDCKII cells. ACTA ACUST UNITED AC 2011; 40:1-15. [PMID: 21932131 DOI: 10.1007/s00240-011-0423-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/22/2011] [Indexed: 01/12/2023]
Abstract
In vivo, urinary crystals are associated with proteins located within the mineral bulk as well as upon their surfaces. Proteins incarcerated within the mineral phase of retained crystals could act as a defence against urolithiasis by rendering them more vulnerable to destruction by intracellular and interstitial proteases. The aim of this study was to examine the effects of intracrystalline and surface-bound osteopontin (OPN) on the degradation and dissolution of urinary calcium oxalate dihydrate (COD) crystals in cultured Madin Darby canine kidney (MDCK) cells. [(14)C]-oxalate-labelled COD crystals with intracrystalline (IC), surface-bound (SB) and IC + SB OPN, were generated from ultrafiltered (UF) urine containing 0, 1 and 5 mg/L human milk OPN and incubated with MDCKII cells, using UF urine as the binding medium. Crystal size and degradation were assessed using field emission scanning electron microscopy (FESEM) and dissolution was quantified by the release of radioactivity into the culture medium. Crystal size decreased directly with OPN concentration. FESEM examination indicated that crystals covered with SB OPN were more resistant to cellular degradation than those containing IC OPN, whose degree of disruption appeared to be related to OPN concentration. Whether bound to the crystal surface or incarcerated within the mineral interior, OPN inhibited crystal dissolution in direct proportion to its concentration. Under physiological conditions OPN may routinely protect against stone formation by inhibiting the growth of COD crystals, which would encourage their excretion in urine and thereby perhaps partly explain why, compared with calcium oxalate monohydrate crystals, COD crystals are more prevalent in urine, but less common in kidney stones.
Collapse
Affiliation(s)
- Lauren A Thurgood
- Urology Unit, Department of Surgery, Flinders Medical Centre, Flinders University, Bedford Park, SA 5042, Australia
| | | | | |
Collapse
|
35
|
Schwille PO, Schmiedl A, Manoharan M, Wipplinger J. Idiopathic Recurrent Calcium Urolithiasis (IRCU): pathophysiology evaluated in light of oxidative metabolism, without and with variation of several biomarkers in fasting urine and plasma--a comparison of stone-free and -bearing male patients, emphasizing mineral, acid-base, blood pressure and protein status. Eur J Med Res 2011; 16:349-66. [PMID: 21813378 PMCID: PMC3351987 DOI: 10.1186/2047-783x-16-8-349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND IRCU is traditionally considered as life?style disease (associations with, among others, overweight, obesity, hypertension, type-2 diabetes), arising from excess, in 24 h urine, of calcium (Ca) salts (calcium oxalate (CaOx), calcium phosphate (CaPi)), supersaturation of, and crystallization in, tubular fluid and urine, causing crystal-induced epithelial cell damage, proteinuria, crystal aggregation and uroliths. METHODS Another picture emerges from the present uncontrolled study of 154 male adult IRCU patients (75 stone-bearing (SB) and 79 age-matched stone-free (SF)), in whom stone-forming and other parameters in fasting urine and plasma were contrasted with five biomarkers (see footnote) of oxidative metabolism (OM), without and with variation of markers. RESULTS 1) In SB vs. SF unstratified OM biomarkers were statistically unchanged, but the majority of patients was overweight; despite, in SB vs. SF urine pH, total and non-albumin protein concentration were elevated, fractional urinary uric acid excretion and blood bicarbonate decreased, whereas urine volume, sodium, supersaturation with CaOx and CaPi (as hydroxyapatite) were unchanged; 2) upon variation of OM markers (strata below and above median) numerous stone parameters differed significantly, among others urine volume, total protein, Ca/Pi ratio, pH, sodium, potassium, plasma Ca/Pi ratio and parathyroid hormone, blood pressure, renal excretion of non-albumin protein and other substances; 3) a significant shift from SF to SB patients occurred with increase of urine pH, decrease of blood bicarbonate, and increase of diastolic blood pressure, whereas increase of plasma uric acid impacted only marginally; 4) in both SF and SB patients a strong curvilinear relationship links a rise of urine Ca/Pi to urine Ca/Pi divided by plasma Ca/Pi, but in SB urine Ca/Pi failed to correlate significantly with urine hydroxyapatite supersaturation; 5) also in SB, plasma Ca/Pi and urinary nitrate were negatively correlated, whereas in SF plasma Ca/Pi ratio, PTH and body mass index correlated positively; 6) multivariate regression analysis revealed that PTH, body mass index and nitrate together could explain 22 (p = 0.002) and only 7 (p = 0.06) per cent of variation of plasma Ca/Pi in SF and SB, respectively. CONCLUSIONS In IRCU a) numerous constituents of fasting urine, plasma, blood and blood pressure change in response to variation of OM biomarkers, suggesting involvement of OM imbalance as factor in functional deterioration of tissue; b) in the majority of patients a positive exponential relationship links urine Ca/Pi to urine Ca/Pi divided by plasma Ca/Pi, presumably to accumulate Ca outside tubular lumen, thereby minimizing intratubular and urinary Ca salt crystallization; c) alteration of interactions of low urine nitrate, PTH and Ca/Pi in plasma may be of importance in formation of new Ca stone and co-regulation of dynamics of blood vasculature; d) overweight, combined with OM-modified renal interstitial environment appears to facilitate these processes, carrying the risk that CaPi mineral develops within or/and close to blood vessel tissue, and spreads towards urothelium. - For future research focussing on IRCU pathogenesis studies are recommended on the role of affluent lifestyle mediated renal ischemia, mild hypertensive nephropathy, rise of uric acid precursor oxypurines and uricemia, clarifying also why loss of significance of interrelationships of OM biomarkers with traditional Ca stone risk factors is characteristic for SB patients.
Collapse
|
36
|
Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall's plaques? J Urol 2011; 186:1107-13. [PMID: 21784483 DOI: 10.1016/j.juro.2011.04.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Indexed: 01/08/2023]
Abstract
PURPOSE Idiopathic Ca oxalate stones may develop with attachment to renal interstitial Ca phosphate deposits (Randall's plaques). Sodium phosphate cotransporter (Npt2a) null mice have hypercalciuria and hyperphosphaturia, and produce tubular and interstitial Ca phosphate deposits. To determine whether this mouse is suitable for Randall's plaque investigations we chronologically studied Ca phosphate deposit sites, structure and composition. MATERIALS AND METHODS The kidneys of Npt2a null mice 2 days to 1 year old were examined by light, scanning and transmission electron microscopy. Electron diffraction and energy dispersive x-ray microanalyses were done to determine mineral composition. RESULTS Poorly crystalline, biological apatite deposits were seen in collecting duct lumina. Deposits consisted of aggregates approximately 5 μm in diameter appearing as microspheres of concentrically organized needle or plate-like, matrix rich crystals. Epithelium/crystal interfaces were filled with membrane bound vesicles. Some tubules were completely occluded by crystals and occasionally lost the epithelium while crystals moved into the interstitium. CONCLUSIONS Ca phosphate crystals formed in the tubular lumina and were organized as microspheres. The aggregation of Ca phosphate crystals produced nuclei, which grew by adding crystals at the periphery. They eventually became large enough to occlude the tubular lumina and obliterate the tubular epithelium, leading to the relocation of microliths into the interstitium. The pathogenesis of interstitial deposits in Npt2a null mice appears different from that proposed for Randall's plaques. Since Npt2a null mice purge the renal crystal deposits, these mice may serve as a model in which to investigate the elimination of crystal deposits in children and adults with nephrocalcinosis.
Collapse
|
37
|
Hunter LW, Shiekh FA, Pisimisis GT, Kim SH, Edeh SN, Miller VM, Lieske JC. Key role of alkaline phosphatase in the development of human-derived nanoparticles in vitro. Acta Biomater 2011; 7:1339-45. [PMID: 21029794 DOI: 10.1016/j.actbio.2010.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/15/2010] [Accepted: 10/22/2010] [Indexed: 12/24/2022]
Abstract
Alkaline phosphatase (ALP) is an enzyme critical for physiological and pathological biomineralization. Experiments were designed to determine whether ALP participates in the formation of calcifying nanometer sized particles (NPs) in vitro. Filtered homogenates of human calcified carotid artery, aorta and kidney stones were inoculated into cell culture medium containing 10% fetal bovine serum in the absence or presence of inhibitors of ALP or pyrophosphate. A calcific NP biofilm developed within 1 week after inoculation and their development was reduced by pyrophosphate and inhibitors of ALP. ALP protein and enzymatic activity were detected in washed NPs, whether calcified or decalcified. Therefore, ALP activity is required for the formation of calcifying NPs in vitro, as has previously been implicated during pathological calcification in vivo.
Collapse
Affiliation(s)
- Larry W Hunter
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Shiekh FA, Charlesworth JE, Kim SH, Hunter LW, Jayachandran M, Miller VM, Lieske JC. Proteomic evaluation of biological nanoparticles isolated from human kidney stones and calcified arteries. Acta Biomater 2010; 6:4065-72. [PMID: 20466084 DOI: 10.1016/j.actbio.2010.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 04/16/2010] [Accepted: 05/06/2010] [Indexed: 12/25/2022]
Abstract
Calcifying biological nanoparticles (NPs) develop under cell culture conditions from homogenates of diverse tissue samples displaying extraosseous mineralization, including kidney stones and calcified aneurysms. Probes to definitively identify NPs in biological systems are lacking. Therefore, the aim of this study was to begin to establish a proteomic biosignature of NPs in order to facilitate more definitive investigation of their contribution to disease. Biological NPs derived from human kidney stones and calcified aneurysms were completely decalcified by overnight treatment with ethylenediaminetetraacetic acid or brief incubation in HCl, as evidenced by lack of a calcium shell and of Alizarin Red S staining, by transmission electron microscopy and confocal microscopy, respectively. Decalcified NPs contained numerous proteins, including some from bovine serum and others of prokaryotic origin. Most prominent of the latter group was EF-Tu, which appeared to be identical to EF-Tu from Staphylococcus epidermidis. A monoclonal antibody against human EF-Tu recognized a protein in Western blots of total NP lysate, as well as in intact NPs by immunofluorescence and immunogold EM. Approximately 8% of NPs were quantitatively recognized by the antibody using flow cytometry. Therefore, we have defined methods to reproducibly decalcify biological NPs, and identified key components of their proteome. These elements, including EF-Tu, can be used as biomarkers to further define the processes that mediate propagation of biological NPs and their contribution to disease.
Collapse
|
39
|
Onyango LA, Dunstan RH, Roberts TK. Filterability of staphylococcal species through membrane filters following application of stressors. BMC Res Notes 2010; 3:152. [PMID: 20509961 PMCID: PMC2896367 DOI: 10.1186/1756-0500-3-152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Passage of bacterial cells through filter pores has been reported for a number of bacterial species. In this investigation, we tested the filterability of staphylococcal cultures that were exposed to several environmental stress conditions by passing them through 0.22 and 0.45 μm sterile filters, which are industry standards. Findings Results showed repeated passage of viable staphylococcal cells through both pore sizes, although more passage was seen through the 0.45 μm pore size. Of the three staphylococcal species, S. lugdunensis showed the best passage at relatively higher numbers regardless of the treatment, while both S. aureus and S. epidermidis showed limited passage or complete inhibition. Conclusion The data showed that staphylococcal bacteria were capable of passing through sterile filters in a viable state. There was better passage through 0.45 μm sterile filters than through the 0.22 μm sterile filters. Application of a stress condition did not appear to enhance filterability of these bacterial cultures.
Collapse
Affiliation(s)
- Laura A Onyango
- Environmental and Pathogenic Microbiology Laboratory, Faculty of Science and Information Technology, School of Environmental and Life Sciences, Department of Biology, University Drive, Callaghan, 2308, NSW, Australia.
| | | | | |
Collapse
|
40
|
Ciftçioğlu N, McKay DS. Pathological calcification and replicating calcifying-nanoparticles: general approach and correlation. Pediatr Res 2010; 67:490-9. [PMID: 20094006 DOI: 10.1203/pdr.0b013e3181d476ce] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcification, a phenomenon often regarded by pathologists little more than evidence of cell death, is becoming recognized to be important in the dynamics of a variety of diseases from which millions of beings suffer in all ages. In calcification, all that is needed for crystal formation to start is nidi (nuclei) and an environment of available dissolved components at or near saturation concentrations, along with the absence of inhibitors for crystal formation. Calcifying nanoparticles (CNP) are the first calcium phosphate mineral containing particles isolated from human blood and were detected in numerous pathologic calcification related diseases. Controversy and critical role of CNP as nidi and triggering factor in human pathologic calcification are discussed.
Collapse
Affiliation(s)
- Neva Ciftçioğlu
- Astromaterials Research and Exploration Science [N.C., D.S.M.], National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas 77058, USA.
| | | |
Collapse
|
41
|
Critical evaluation of gamma-irradiated serum used as feeder in the culture and demonstration of putative nanobacteria and calcifying nanoparticles. PLoS One 2010; 5:e10343. [PMID: 20436679 PMCID: PMC2859944 DOI: 10.1371/journal.pone.0010343] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 03/27/2010] [Indexed: 12/23/2022] Open
Abstract
The culture and demonstration of putative nanobacteria (NB) and calcifying nanoparticles (CNP) from human and animal tissues has relied primarily on the use of a culture supplement consisting of FBS that had been γ-irradiated at a dose of 30 kGy (γ-FBS). The use of γ-FBS is based on the assumption that this sterilized fluid has been rid entirely of any residual NB/CNP, while it continues to promote the slow growth in culture of NB/CNP from human/animal tissues. We show here that γ-irradiation (5–50 kGy) produces extensive dose-dependent serum protein breakdown as demonstrated through UV and visible light spectrophotometry, fluorometry, Fourier-transformed infrared spectroscopy, and gel electrophoresis. Yet, both γ-FBS and γ-irradiated human serum (γ-HS) produce NB/CNP in cell culture conditions that are morphologically and chemically indistinguishable from their normal serum counterparts. Contrary to earlier claims, γ-FBS does not enhance the formation of NB/CNP from several human body fluids (saliva, urine, ascites, and synovial fluid) tested. In the presence of additional precipitating ions, both γ-irradiated serum (FBS and HS) and γ-irradiated proteins (albumin and fetuin-A) retain the inherent dual NB inhibitory and seeding capabilities seen also with their untreated counterparts. By gel electrophoresis, the particles formed from both γ-FBS and γ-HS are seen to have assimilated into their scaffold the same smeared protein profiles found in the γ-irradiated sera. However, their protein compositions as identified by proteomics are virtually identical to those seen with particles formed from untreated serum. Moreover, particles derived from human fluids and cultured in the presence of γ-FBS contain proteins derived from both γ-FBS and the human fluid under investigation—a confusing and unprecedented scenario indicating that these particles harbor proteins from both the host tissue and the FBS used as feeder. Thus, the NB/CNP described in the literature clearly bear hybrid protein compositions belonging to different species. We conclude that there is no basis to justify the use of γ-FBS as a feeder for the growth and demonstration of NB/CNP or any NB-like particles in culture. Moreover, our results call into question the validity of the entire body of literature accumulated to date on NB and CNP.
Collapse
|
42
|
Kahn E, Baarine M, Pelloux S, Riedinger JM, Frouin F, Tourneur Y, Lizard G. Iron nanoparticles increase 7-ketocholesterol-induced cell death, inflammation, and oxidation on murine cardiac HL1-NB cells. Int J Nanomedicine 2010; 5:185-95. [PMID: 20463934 PMCID: PMC2865013 DOI: 10.2147/ijn.s8458] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To evaluate the cytotoxicity of iron nanoparticles on cardiac cells and to determine whether they can modulate the biological activity of 7-ketocholesterol (7KC) involved in the development of cardiovascular diseases. Nanoparticles of iron labeled with Texas Red are introduced in cultures of nonbeating mouse cardiac cells (HL1-NB) with or without 7-ketocholesterol 7KC, and their ability to induce cell death, pro-inflammatory and oxidative effects are analyzed simultaneously. STUDY DESIGN Flow cytometry (FCM), confocal laser scanning microscopy (CLSM), and subsequent factor analysis image processing (FAMIS) are used to characterize the action of iron nanoparticles and to define their cytotoxicity which is evaluated by enhanced permeability to SYTOX Green, and release of lactate deshydrogenase (LDH). Pro-inflammatory effects are estimated by ELISA in order to quantify IL-8 and MCP-1 secretions. Pro-oxidative effects are measured with hydroethydine (HE). RESULTS Iron Texas Red nanoparticles accumulate at the cytoplasmic membrane level. They induce a slight LDH release, and have no inflammatory or oxidative effects. However, they enhance the cytotoxic, pro-inflammatory and oxidative effects of 7KC. The accumulation dynamics of SYTOX Green in cells is measured by CLSM to characterize the toxicity of nanoparticles. The emission spectra of SYTOX Green and nanoparticles are differentiated, and corresponding factor images specify the possible capture and cellular localization of nanoparticles in cells. CONCLUSION The designed protocol makes it possible to show how Iron Texas Red nanoparticles are captured by cardiomyocytes. Interestingly, whereas these fluorescent iron nanoparticles have no cytotoxic, pro-inflammatory or oxidative activities, they enhance the side effects of 7KC.
Collapse
Affiliation(s)
- Edmond Kahn
- INSERM U678/UMR - S UPMC, IFR 14, CHU Pitié-Salpêtrière, 75634 Paris Cedex 13, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Schwartz MK, Hunter LW, Huebner M, Lieske JC, Miller VM. Characterization of biofilm formed by human-derived nanoparticles. Nanomedicine (Lond) 2010; 4:931-41. [PMID: 19958229 DOI: 10.2217/nnm.09.72] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM Microbial biofilm matrix contains polysaccharides and proteins and can require extracellular nucleic acids for initial formation. Experiments were designed to identify infectious pathogens in human aneurysms and to characterize biofilm formed by calcified human arterial-derived nanoparticles. MATERIALS & METHOD A total of 26 different microbial pathogens were isolated from 48 inflammatory aneurysms. Consistent amounts (0.49 McFarland units) of nanoparticles derived from similar tissue were seeded into 24-well plates and cultured for 21 days in the absence (control) or presence of RNase, tetracycline or gentamicin. RESULTS Control biofilm developed within 14 days, as detected by concanavalin A and BacLight Green staining. The formation of biofilm in wells treated with RNase was not different from the control; however, gentamicin partially inhibited and tetracycline completely inhibited biofilm formation. Therefore, nanoparticle biofilm retains some characteristics of conventional bacterial biofilm and requires protein-calcium interactions, although extracellular RNA is not required. CONCLUSION This model system may also allow study of nanosized vesicles derived from donor tissue, including any microbes present, and could provide a useful tool for in vitro investigation of nanoparticle biofilm formation.
Collapse
Affiliation(s)
- Maria K Schwartz
- Department of Physiology & Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
44
|
Miller VM, Hunter LW, Chu K, Kaul V, Squillace PD, Lieske JC, Jayachandran M. Biologic nanoparticles and platelet reactivity. Nanomedicine (Lond) 2010; 4:725-33. [PMID: 19839809 DOI: 10.2217/nnm.09.61] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Nanosized particles (NPs) enriched in hydroxyapatite and protein isolated from calcified human tissue accelerate occlusion of endothelium-denuded arteries when injected intravenously into rabbits. Since platelet aggregation and secretory processes participate in normal hemostasis, thrombosis and vascular remodeling, experiments were designed to determine if these biologic NPs alter specific platelet functions in vitro. METHODS Platelet-rich plasma was prepared from citrate anticoagulated human blood. Platelet aggregation and ATP secretion were monitored in response to thrombin receptor agonists peptide (10 microM) or convulxin (50 microg/ml) prior to and following 15 min incubation with either control solution, human-derived NPs, bovine-derived NPs or crystals of hydroxyapatite at concentrations of 50 and 150 nephelometric turbidity units. RESULTS Incubation of platelets for 15 min with either human- or bovine-derived NPs reduced aggregation induced by thrombin receptor activator peptide and convulxin in a concentration-dependent manner. Hydroxyapatite caused a greater inhibition than either of the biologically derived NPs. Human-derived NPs increased ATP secretion by unstimulated platelets during the 15 min incubation period. CONCLUSION Effects of bovine-derived and hydroxyapatite NPs on basal release of ATP were both time and concentration dependent. These results suggest that biologic NPs modulate both platelet aggregation and secretion. Biologically derived NPs could modify platelet responses within the vasculature, thereby reducing blood coagulability and the vascular response to injury.
Collapse
Affiliation(s)
- Virginia M Miller
- Department of Surgery, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Wu CY, Martel J, Young D, Young JD. Fetuin-A/albumin-mineral complexes resembling serum calcium granules and putative nanobacteria: demonstration of a dual inhibition-seeding concept. PLoS One 2009; 4:e8058. [PMID: 19956594 PMCID: PMC2779105 DOI: 10.1371/journal.pone.0008058] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 11/04/2009] [Indexed: 12/02/2022] Open
Abstract
Serum-derived granulations and purported nanobacteria (NB) are pleomorphic apatite structures shown to resemble calcium granules widely distributed in nature. They appear to be assembled through a dual inhibitory-seeding mechanism involving proteinaceous factors, as determined by protease (trypsin and chymotrypsin) and heat inactivation studies. When inoculated into cell culture medium, the purified proteins fetuin-A and albumin fail to induce mineralization, but they will readily combine with exogenously added calcium and phosphate, even in submillimolar amounts, to form complexes that will undergo morphological transitions from nanoparticles to spindles, films, and aggregates. As a mineralization inhibitor, fetuin-A is much more potent than albumin, and it will only seed particles at higher mineral-to-protein concentrations. Both proteins display a bell-shaped, dose-dependent relationship, indicative of the same dual inhibitory-seeding mechanism seen with whole serum. As ascertained by both seeding experiments and gel electrophoresis, fetuin-A is not only more dominant but it appears to compete avidly for nanoparticle binding at the expense of albumin. The nanoparticles formed in the presence of fetuin-A are smaller than their albumin counterparts, and they have a greater tendency to display a multi-layered ring morphology. In comparison, the particles seeded by albumin appear mostly incomplete, with single walls. Chemically, spectroscopically, and morphologically, the protein-mineral particles resemble closely serum granules and NB. These particles are thus seen to undergo an amorphous to crystalline transformation, the kinetics and completeness of which depend on the protein-to-mineral ratios, with low ratios favoring faster conversion to crystals. Our results point to a dual inhibitory-seeding, de-repression model for the assembly of particles in supersaturated solutions like serum. The presence of proteins and other inhibitory factors tend to block apatite nuclei formation or to stabilize the nascent nuclei as amorphous or semi-crystalline spherical nanoparticles, until the same inhibitory influences are overwhelmed or de-repressed, whereby the apatite nuclei grow in size to coalesce into crystalline spindles and films-a mechanism that may explain not only the formation of calcium granules in nature but also normal or ectopic calcification in the body.
Collapse
Affiliation(s)
- Cheng-Yeu Wu
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Gueishan, Taiwan, Republic of China
| | - Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taiwan, Republic of China
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, Chang Gung University, Gueishan, Taiwan, Republic of China
| | - David Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taiwan, Republic of China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John D. Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taiwan, Republic of China
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, United States of America
- Biochemical Engineering Research Center, Mingchi University of Technology, Taipei, Taiwan, Republic of China
| |
Collapse
|
46
|
Contribution of biologically derived nanoparticles to disease. Surgery 2009; 147:181-4. [PMID: 19767047 DOI: 10.1016/j.surg.2009.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/09/2009] [Indexed: 11/20/2022]
|
47
|
Young JD, Martel J, Young D, Young A, Hung CM, Young L, Chao YJ, Young J, Wu CY. Characterization of granulations of calcium and apatite in serum as pleomorphic mineralo-protein complexes and as precursors of putative nanobacteria. PLoS One 2009; 4:e5421. [PMID: 19412552 PMCID: PMC2673041 DOI: 10.1371/journal.pone.0005421] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022] Open
Abstract
Calcium and apatite granulations are demonstrated here to form in both human and fetal bovine serum in response to the simple addition of either calcium or phosphate, or a combination of both. These granulations are shown to represent precipitating complexes of protein and hydroxyapatite (HAP) that display marked pleomorphism, appearing as round, laminated particles, spindles, and films. These same complexes can be found in normal untreated serum, albeit at much lower amounts, and appear to result from the progressive binding of serum proteins with apatite until reaching saturation, upon which the mineralo-protein complexes precipitate. Chemically and morphologically, these complexes are virtually identical to the so-called nanobacteria (NB) implicated in numerous diseases and considered unusual for their small size, pleomorphism, and the presence of HAP. Like NB, serum granulations can seed particles upon transfer to serum-free medium, and their main protein constituents include albumin, complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as well as other calcium and apatite binding proteins found in the serum. However, these serum mineralo-protein complexes are formed from the direct chemical binding of inorganic and organic phases, bypassing the need for any biological processes, including the long cultivation in cell culture conditions deemed necessary for the demonstration of NB. Thus, these serum granulations may result from physiologically inherent processes that become amplified with calcium phosphate loading or when subjected to culturing in medium. They may be viewed as simple mineralo-protein complexes formed from the deployment of calcification-inhibitory pathways used by the body to cope with excess calcium phosphate so as to prevent unwarranted calcification. Rather than representing novel pathophysiological mechanisms or exotic lifeforms, these results indicate that the entities described earlier as NB most likely originate from calcium and apatite binding factors in the serum, presumably calcification inhibitors, that upon saturation, form seeds for HAP deposition and growth. These calcium granulations are similar to those found in organisms throughout nature and may represent the products of more general calcium regulation pathways involved in the control of calcium storage, retrieval, tissue deposition, and disposal.
Collapse
Affiliation(s)
- John D Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schwedler SB, Gröne EF, Luft FC. Chronic hypokalaemia and nephrocalcinosis. NDT Plus 2009; 2:314-7. [PMID: 25984026 PMCID: PMC4421252 DOI: 10.1093/ndtplus/sfp047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 04/07/2009] [Indexed: 01/01/2023] Open
Affiliation(s)
| | - Elisabeth F Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg
| | - Friedrich C Luft
- Experimental and Clinical Research Center, HELIOS-Klinikum, Berlin , Germany
| |
Collapse
|
49
|
Vervaet BA, Verhulst A, D'Haese PC, De Broe ME. Nephrocalcinosis: new insights into mechanisms and consequences. Nephrol Dial Transplant 2009; 24:2030-5. [PMID: 19297353 DOI: 10.1093/ndt/gfp115] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Benjamin A Vervaet
- Department of Medicine, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
50
|
Schwartz MK, Lieske JC, Hunter LW, Miller VM. Systemic injection of planktonic forms of mammalian-derived nanoparticles alters arterial response to injury in rabbits. Am J Physiol Heart Circ Physiol 2009; 296:H1434-41. [PMID: 19286948 DOI: 10.1152/ajpheart.00993.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Experiments were designed to test the hypothesis that the systemic delivery of planktonic forms of nanoparticles (NPs) derived from calcified, diseased human tissue or bovine blood are transmissible particles that exacerbate arterial response to injury. New Zealand White rabbits in which the endothelium was mechanically removed from one carotid artery were injected intravenously with either saline (control), lipopolysaccharide (LPS; surrogate for subclinical infection), hydroxyapatite crystals (HA; surrogate for NP shell), HA crystals exposed to culture media, or planktonic forms of bovine- or human-derived NPs. Carotid arteries were monitored by ultrasonography for 5 wk and then removed for histological examination. Uninjured arteries from all animals in each group remained patent with a normal anatomy. Injured arteries from 6 of 11 animals injected with human-derived NPs occluded and/or calcified; none of the injured arteries from animals in the other groups occluded (n = 28; P < or = 0.05). Injured arteries of rabbits injected with LPS or HA crystals developed eccentric hyperplasia. Discontinuous internal elastic laminae and thinning media characterized arteries from animals injected with bovine-derived NPs or cultured HA crystals. In conclusion, the systemic administration of planktonic forms of human-derived NPs exacerbated arterial response to injury distinct from that of bovine-derived NPs and other inflammatory agents.
Collapse
Affiliation(s)
- Maria K Schwartz
- Department of Physiology and Biomedical Engineering, Medical Sciences 4-62, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|