1
|
Vaneev AN, Timoshenko RV, Gorelkin PV, Klyachko NL, Korchev YE, Erofeev AS. Nano- and Microsensors for In Vivo Real-Time Electrochemical Analysis: Present and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3736. [PMID: 36364512 PMCID: PMC9656311 DOI: 10.3390/nano12213736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 05/14/2023]
Abstract
Electrochemical nano- and microsensors have been a useful tool for measuring different analytes because of their small size, sensitivity, and favorable electrochemical properties. Using such sensors, it is possible to study physiological mechanisms at the cellular, tissue, and organ levels and determine the state of health and diseases. In this review, we highlight recent advances in the application of electrochemical sensors for measuring neurotransmitters, oxygen, ascorbate, drugs, pH values, and other analytes in vivo. The evolution of electrochemical sensors is discussed, with a particular focus on the development of significant fabrication schemes. Finally, we highlight the extensive applications of electrochemical sensors in medicine and biological science.
Collapse
Affiliation(s)
- Alexander N. Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman V. Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Natalia L. Klyachko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yuri E. Korchev
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Zhang X, Nakajima T, Mizoi K, Tsushima Y, Ogihara T. Imaging modalities for monitoring acute therapeutic effects after near-infrared photoimmunotherapy in vivo. JOURNAL OF BIOPHOTONICS 2022; 15:e202100266. [PMID: 34783185 DOI: 10.1002/jbio.202100266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) induces immediate cell death after irradiation with near-infrared (NIR) light. Acute therapeutic effects caused by NIR-PIT before the change of tumor size is essential to be monitored by imaging modalities. We summarized and compared the imaging modalities for evaluating acute therapeutic effects after NIR-PIT, and aimed to provide a better understanding of advantages and disadvantages of each modality for evaluation in clinical applications. Fluorescence imaging and fluorescence lifetime, with high resolution, remains high accumulation of fluorescence dyes in the normal organs. High resolution and noninvasiveness are the major advantages of magnetic resonance imaging, while 18 F-fluorodeoxyglucose positron emission tomography provides information about the glucose metabolism. Optical coherence tomography provided more information about the blood vessels. Thus, all of the imaging modalities play an important role in evaluating acute therapeutic effects after NIR-PIT. Clinicians should choose suitable modality according to specific purpose and conditions in clinical application.
Collapse
Affiliation(s)
- Xieyi Zhang
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kenta Mizoi
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Research Program for Diagnostic and Molecular Imaging, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Takuo Ogihara
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| |
Collapse
|
3
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
4
|
Pavuluri KD, Consolino L, Longo DL, Irrera P, Sun PZ, McMahon MT. Renal pH Mapping Using Chemical Exchange Saturation Transfer (CEST) MRI: Experimental Protocol. Methods Mol Biol 2021; 2216:455-471. [PMID: 33476017 PMCID: PMC9703269 DOI: 10.1007/978-1-0716-0978-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Chemical exchange saturation transfer (CEST) is recognized as one of the premier methods for measuring pH with this environmental variable expected to be an excellent biomarker for kidney diseases. Here we describe step-by-step CEST MRI experimental protocols for producing pH and perfusion maps for monitoring kidney pH homeostasis in rodents after administering iopamidol as contrast agent. Several CEST techniques, acquisition protocols and ratiometric approaches are described. The impact of length of acquisition time on the quality of the maps is detailed. These methods may be useful for investigating progression in kidney disease in vivo for rodent models.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol is complemented by two separate chapters describing the basic concepts and data analysis.
Collapse
Affiliation(s)
- Kowsalya Devi Pavuluri
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorena Consolino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Torino, Italy
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Michael T McMahon
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
5
|
Bøgh N, Hansen ESS, Mariager CØ, Bertelsen LB, Ringgaard S, Laustsen C. Cardiac pH-Imaging With Hyperpolarized MRI. Front Cardiovasc Med 2020; 7:603674. [PMID: 33244471 PMCID: PMC7683793 DOI: 10.3389/fcvm.2020.603674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
Regardless of the importance of acid-base disturbances in cardiac disease, there are currently no methods for clinical detection of pH in the heart. Several magnetic resonance imaging techniques hold translational promise and may enable in-vivo mapping of pH. We provide a brief overview of these emerging techniques. A particular focus is on the promising advance of magnetic resonance spectroscopy and imaging with hyperpolarized 13C-subtrates as biomarkers of myocardial pH. Hyperpolarization allows quantification of key metabolic substrates and their metabolites. Hereby, pH-sensitive reactions can be probed to provide a measure of acid-base alterations. To date, the most used substrates are [1-13C]pyruvate and 13C-labeled bicarbonate; however, others have been suggested. In cardiovascular medicine, hyperpolarized magnetic resonance spectroscopy has been used to probe acid-base disturbances following pharmacological stress, ischemia and heart failure in animals. In addition to pH-estimation, the technique can quantify fluxes such as the pivotal conversion of pyruvate to lactate via lactate dehydrogenase. This capability, a good safety profile and the fact that the technique is employable in clinical scanners have led to recent translation in early clinical trials. Thus, magnetic resonance spectroscopy and imaging may provide clinical pH-imaging in the near future.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Lotte Bonde Bertelsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Ringgaard
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
A New Class of Smart Gadolinium Contrast Agent for Tissue pH Probing Using Magnetic Resonance Imaging. Molecules 2020; 25:molecules25071513. [PMID: 32225079 PMCID: PMC7180778 DOI: 10.3390/molecules25071513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 11/17/2022] Open
Abstract
Detecting tissue pH in vivo is extremely vital for medical diagnosis and formulation of treatment decisions. To this end, many investigations have been carried out to develop an accurate and efficient method of in vivo pH measurement. Most of the techniques developed so far suffer from inadequate accuracy, due to poor sensitivity at low concentration of the target or nonspecific interactions within the tissue matrix. To overcome these issues, we describe herein the development of a simple, yet reliable, way to estimate pH with high precision using a Gd(III)-DOTA-silyl-based acid-labile group as a pH-sensitive contrast agent with Magnetic Resonance Imaging (MRI). With this method, a change in T1 weighted image intensity of the newly developed pH-sensitive contrast is directly linked to the proton concentration in the media. As a result, we were able estimate the pH of the target with 95% reliability.
Collapse
|
7
|
Hao G, Xu ZP, Li L. Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC Adv 2018; 8:22182-22192. [PMID: 35541713 PMCID: PMC9081285 DOI: 10.1039/c8ra02095g] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022] Open
Abstract
The pH in tumour cells and the tumour microenvironment has played important roles in cancer development and treatment. It was thought that both the extracellular and intracellular pH values in tumours are acidic and lower than in normal cells. However, recent progress in the measurement of pH in tumour tissue has disclosed that the intracellular pH (pHi) of cancer cells is neutral or even mildly alkaline compared to normal tissue cells. This review article has summarized the recent advancement in the measurement pHi and extracellular pH (pHe) in cancer cells, and the effect of pHi and pHe on proliferation, migration and biological functions of cancer cells. This paper has also elaborated recent treatment strategies to manipulate pHi and pHe for cancer treatment. Based on the recent progress in pHi and pHe manipulation in cancer treatment, we have proposed potential nanoparticle-based strategies to manipulate pHi and pHe to effectively treat cancer.
Collapse
Affiliation(s)
- Guanyu Hao
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia 4072
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia 4072
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia 4072
| |
Collapse
|
8
|
Ardeshirpour Y, Sackett DL, Knutson JR, Gandjbakhche AH. Using in vivo fluorescence lifetime imaging to detect HER2-positive tumors. EJNMMI Res 2018; 8:26. [PMID: 29619584 PMCID: PMC5884746 DOI: 10.1186/s13550-018-0384-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/26/2018] [Indexed: 12/03/2022] Open
Abstract
Background Assessment of the status of tumor biomarkers in individual patients would facilitate personalizing treatment strategy, and continuous monitoring of those biomarkers and their binding process to the therapeutic drugs would provide a means for early evaluation of the efficacy of therapeutic intervention. Fluorescent probes can accumulate inside the tumor region due to the leakiness of its vascularization and this can make it difficult to distinguish if the measured fluorescence intensity is from probes bound to target receptors or just accumulated unbound probes inside the tumor. In this paper, we have studied the fluorescence lifetime as a means to distinguish bound HER2 specific affibody probes to HER2 receptors. Our imaging system is a time-resolved fluorescence system using a Ti-Sapphire femtosecond pulse laser as source and Time correlated Single photon Counting (TCSPC) system as detector for calculating the lifetime of the contrast agent. HER2-specific Affibody (His6-ZHER2:GS-Cys) (Affibody, Stockholm, Sweden) conjugated with a Dylight750 fluorescent probe (Thermo-Fisher-Scientific, Waltham, Massachusetts) was used as contrast agent and six human cancer cell lines, BT-474, SKOV-3, NCI-N87, MDA-MB-361, MCF-7, and MDA-MB-468, known to express different levels of HER2/neu, are used in athymic mice xenografts. Results By comparing the lifetime of unbound contrast agent (at the contralateral site) to the fluorescence lifetime at the tumor site, our results show that the fluorescence lifetime decreases as HER2 specific Affibody probes bind to the tumor receptors. A decrease of ~15% (100ps) in tumor fluorescence lifetime was observed in tumors with mid to high HER2 expression. Smaller decreases were observed in tumors with low-level of HER2 receptors and no change was observed in the non-HER2-expressing tumors. Conclusions Using HER2-specific Affibody conjugated with the Dylight750 fluorescent probe as contrast agent, we demonstrated in live animals that change in fluorescence lifetime of the bound contrast agent can be used to assess the high to mid-level expression of HER2 expressing tumors in-vivo in only one measurement. The rationale is that the fluorescence lifetime of our specific probe is sensitive to affinity to, and specific interaction with, other molecules.
Collapse
Affiliation(s)
- Yasaman Ardeshirpour
- Section on Analytical and Functional Biophotonics, NICHD, NIH, Building 49, Room 5A82, Bethesda, MD, 20892, USA
| | - Dan L Sackett
- Division of Basic and Translational Biophysics, NICHD, NIH, Building 9, Room 1E129, Bethesda, MD, 20892, USA
| | - Jay R Knutson
- Laboratory of Advanced Microscopy and Biophotonics, NHLBI, Building 10, Room 5D14, Bethesda, MD, 20892, USA
| | - Amir H Gandjbakhche
- Section on Analytical and Functional Biophotonics, NICHD, NIH, Building 49, Room 5A82, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Towards in-vivo assessment of fluorescence lifetime: imaging using time-gated intensified CCD camera. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Affiliation(s)
- KowsalyaDevi Pavuluri
- Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; Baltimore, Maryland 21205 United States
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; Baltimore, Maryland 21205 United States
- F. M. Kirby Research Center for Functional Brain Imaging; Kennedy Krieger Research Institute; Baltimore, Maryland 21205 United States
| |
Collapse
|
11
|
Düwel S, Hundshammer C, Gersch M, Feuerecker B, Steiger K, Buck A, Walch A, Haase A, Glaser SJ, Schwaiger M, Schilling F. Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid. Nat Commun 2017; 8:15126. [PMID: 28492229 PMCID: PMC5482723 DOI: 10.1038/ncomms15126] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/02/2017] [Indexed: 01/09/2023] Open
Abstract
Natural pH regulatory mechanisms can be overruled during several pathologies such as cancer, inflammation and ischaemia, leading to local pH changes in the human body. Here we demonstrate that 13C-labelled zymonic acid (ZA) can be used as hyperpolarized magnetic resonance pH imaging sensor. ZA is synthesized from [1-13C]pyruvic acid and its 13C resonance frequencies shift up to 3.0 p.p.m. per pH unit in the physiological pH range. The long lifetime of the hyperpolarized signal enhancement enables monitoring of pH, independent of concentration, temperature, ionic strength and protein concentration. We show in vivo pH maps within rat kidneys and subcutaneously inoculated tumours derived from a mammary adenocarcinoma cell line and characterize ZA as non-toxic compound predominantly present in the extracellular space. We suggest that ZA represents a reliable and non-invasive extracellular imaging sensor to localize and quantify pH, with the potential to improve understanding, diagnosis and therapy of diseases characterized by aberrant acid-base balance. Local pH alterations can be manifestations of pathologies such as cancer, inflammation and ischaemia. Here Düwel et al. show hyperpolarized 13C-labelled zymonic acid can be used as a non-invasive probe to map and measure pH in vivo, suggesting it as a candidate for clinical imaging and a diagnostic tool.
Collapse
Affiliation(s)
- Stephan Düwel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.,Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany.,Institute of Medical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.,Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Malte Gersch
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Benedikt Feuerecker
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Axel Haase
- Institute of Medical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Steffen J Glaser
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.,Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany.,Institute of Medical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| |
Collapse
|
12
|
Tsitovich PB, Cox JM, Spernyak JA, Morrow JR. Gear Up for a pH Shift: A Responsive Iron(II) 2-Amino-6-picolyl-Appended Macrocyclic paraCEST Agent That Protonates at a Pendent Group. Inorg Chem 2016; 55:12001-12010. [PMID: 27934305 DOI: 10.1021/acs.inorgchem.6b02159] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two high-spin Fe(II) and Co(II) complexes of 1,4,7,10-tetraazacyclododecane (CYCLEN) appended with four 2-amino-6-picolyl groups, denoted as [Fe(TAPC)]2+ and [Co(TAPC)]2+, are reported. These complexes demonstrate C2-symmetrical geometry from coordination of two pendents, and they are present in a single diastereomeric form in aqueous solution as shown by 1H NMR spectroscopy and by a single-crystal X-ray structure for the Co(II) complex. A highly shifted but low-intensity CEST (chemical exchange saturation transfer) signal from NH groups is observed at -118 ppm for [Co(TAPC)]2+ at pH 6.0 and 37 °C. A higher intensity CEST peak is observed for [Fe(TAPC)]2+, which demonstrates a pH-dependent frequency shift from -72 to -79 ppm at pH 7.7 to 4.8, respectively, at 37 °C. This shift in the CEST peak correlates with the protonation of the unbound 2-amino-6-picolyl pendents, as suggested by UV-vis and 1H NMR spectroscopy studies at different pH values. Phantom imaging demonstrates the challenges and feasibility of using the [Fe(TAPC)]2+ agent on a low-field MRI scanner. The [Fe(TAPC)]2+ complex is the first transition-metal-based paraCEST agent that produces a pH-induced CEST frequency change toward the development of probes for concentration-independent imaging of pH.
Collapse
Affiliation(s)
- Pavel B Tsitovich
- Department of Chemistry, University at Buffalo, the State University of New York , Buffalo, New York 14260, United States
| | - Jordan M Cox
- Department of Chemistry, University at Buffalo, the State University of New York , Buffalo, New York 14260, United States
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Cancer Institute , Buffalo, New York 14263, United States
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York , Buffalo, New York 14260, United States
| |
Collapse
|
13
|
Fluorescence Lifetime Imaging of Cancer In Vivo. Methods Mol Biol 2016. [PMID: 27283417 DOI: 10.1007/978-1-4939-3721-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Optical imaging of fluorescent reporters in animal models of cancer has become a common tool in oncologic research. Fluorescent reporters including fluorescent proteins, organic dyes, and inorganic photonic materials are used in fluorescence spectroscopy, microscopy, and whole body preclinical imaging. Fluorescence lifetime imaging provides additional, quantitative information beyond that of conventional fluorescence intensity signals, enabling signal multiplexing, background separation, and biological sensing unique to fluorescent materials.
Collapse
|
14
|
Bryant AJ, Carrick RP, McConaha ME, Jones BR, Shay SD, Moore CS, Blackwell TR, Gladson S, Penner NL, Burman A, Tanjore H, Hemnes AR, Karwandyar AK, Polosukhin VV, Talati MA, Dong HJ, Gleaves LA, Carrier EJ, Gaskill C, Scott EW, Majka SM, Fessel JP, Haase VH, West JD, Blackwell TS, Lawson WE. Endothelial HIF signaling regulates pulmonary fibrosis-associated pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2015; 310:L249-62. [PMID: 26637636 DOI: 10.1152/ajplung.00258.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023] Open
Abstract
Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions.
Collapse
Affiliation(s)
- Andrew J Bryant
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Ryan P Carrick
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melinda E McConaha
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Brittany R Jones
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sheila D Shay
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Christy S Moore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Thomas R Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Santhi Gladson
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Niki L Penner
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ankita Burman
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Harikrishna Tanjore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Anna R Hemnes
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ayub K Karwandyar
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Megha A Talati
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Hui-Jia Dong
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Erica J Carrier
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Christa Gaskill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Edward W Scott
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida; and
| | - Susan M Majka
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joshua P Fessel
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Volker H Haase
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James D West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Veterans Affairs Medical Center, Nashville, Tennessee; and
| | - William E Lawson
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Veterans Affairs Medical Center, Nashville, Tennessee; and
| |
Collapse
|
15
|
|
16
|
Evaluating pH in the Extracellular Tumor Microenvironment Using CEST MRI and Other Imaging Methods. ACTA ACUST UNITED AC 2015; 2015. [PMID: 27761517 DOI: 10.1155/2015/206405] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor acidosis is a consequence of altered metabolism, which can lead to chemoresistance and can be a target of alkalinizing therapies. Noninvasive measurements of the extracellular pH (pHe) of the tumor microenvironment can improve diagnoses and treatment decisions. A variety of noninvasive imaging methods have been developed for measuring tumor pHe. This review provides a detailed description of the advantages and limitations of each method, providing many examples from previous research reports. A substantial emphasis is placed on methods that use MR spectroscopy and MR imaging, including recently developed methods that use chemical exchange saturation transfer MRI that combines some advantages of MR spectroscopy and imaging. Together, this review provides a comprehensive overview of methods for measuring tumor pHe, which may facilitate additional creative approaches in this research field.
Collapse
|
17
|
Scholz DJ, Janich MA, Köllisch U, Schulte RF, Ardenkjaer-Larsen JH, Frank A, Haase A, Schwaiger M, Menzel MI. Quantified pH imaging with hyperpolarized (13) C-bicarbonate. Magn Reson Med 2014; 73:2274-82. [PMID: 25046867 DOI: 10.1002/mrm.25357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/18/2014] [Accepted: 06/18/2014] [Indexed: 11/07/2022]
Abstract
PURPOSE Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. METHODS In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. RESULTS After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (< 0.2). Quantification of pH maps shows negligible impact of the residual bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. CONCLUSION Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models.
Collapse
Affiliation(s)
| | | | - Ulrich Köllisch
- Technische Universität München, Institute of Medical Engineering, Munich, Germany
| | | | - Jan H Ardenkjaer-Larsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark.,GE Healthcare, Broendby, Denmark
| | - Annette Frank
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Axel Haase
- Technische Universität München, Institute of Medical Engineering, Munich, Germany
| | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
18
|
Goodwin J, Yachi K, Nagane M, Yasui H, Miyake Y, Inanami O, Bobko AA, Khramtsov VV, Hirata H. In vivo tumour extracellular pH monitoring using electron paramagnetic resonance: the effect of X-ray irradiation. NMR IN BIOMEDICINE 2014; 27:453-458. [PMID: 24470192 PMCID: PMC3960982 DOI: 10.1002/nbm.3081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
Abstract
The in vivo quantification of extracellular pH (pHe ) in tumours may provide a useful biomarker for tumour cell metabolism. In this study, we assessed the viability of continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy with a pH-sensitive nitroxide for the measurement of extracellular tumour pH in a mouse model. CW-EPR spectroscopy (750 MHz) of C3H HeJ mice hind leg squamous cell tumour was performed after intravenous tail vein injection of pH-sensitive nitroxide (R-SG, 2-(4-((2-(4-amino-4-carboxybutanamido)-3-(carboxymethylamino)-3-oxoproylthio)methyl)phenyl)-4-pyrrolidino-2,5,5-triethyl-2,5-dihydro-1Н-imidazol-1-oxyl) during stages of normal tumour growth and in response to a single 10-Gy dose of X-ray irradiation. An inverse relationship was observed between tumour volume and pHe value, whereby, during normal tumour growth, a constant reduction in pHe was observed. This relationship was disrupted by X-ray irradiation and, from 2-3 days post-exposure, a transitory increase in pHe was observed. In this study, we demonstrated the viability of CW-EPR spectroscopy using R-SG nitroxide to obtain high-sensitivity pH measurements in a mouse tumour model with an accuracy of <0.1 pH units. In addition, the measured changes in pHe in response to X-ray irradiation suggest that this may offer a useful method for the assessment of the physiological change in response to existing and novel cancer therapies.
Collapse
Affiliation(s)
- Jonathan Goodwin
- Department of Diagnostic Radiology, Hokkaido University Hospital, Sapporo, Japan
- Division of UltraHigh Field MRI, Iwate Medical University, Yahaba, Iwate, Japan
| | - Katsuya Yachi
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Masaki Nagane
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Miyake
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Andrey A. Bobko
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Valery V. Khramtsov
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Ardeshirpour Y, Chernomordik V, Hassan M, Zielinski R, Capala J, Gandjbakhche A. In vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment. Clin Cancer Res 2014; 20:3531-9. [PMID: 24671949 DOI: 10.1158/1078-0432.ccr-13-1826] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Advances in tumor biology created a foundation for targeted therapy aimed at inactivation of specific molecular mechanisms responsible for cell malignancy. In this paper, we used in vivo fluorescence lifetime imaging with HER2-targeted fluorescent probes as an alternative imaging method to investigate the efficacy of targeted therapy with 17-DMAG (an HSP90 inhibitor) on tumors with high expression of HER2 receptors. EXPERIMENTAL DESIGN HER2-specific Affibody, conjugated to Alexafluor 750, was injected into nude mice bearing HER2-positive tumor xenograft. The fluorescence lifetime was measured before treatment and monitored after the probe injections at 12 hours after the last treatment dose, when the response to the 17-DMAG therapy was the most pronounced as well as a week after the last treatment when the tumors grew back almost to their pretreatment size. RESULTS Imaging results showed significant difference between the fluorescence lifetimes at the tumor and the contralateral site (∼0.13 ns) in the control group (before treatment) and 7 days after the last treatment when the tumors grew back to their pretreatment dimensions. However, at the time frame that the treatment had its maximum effect (12 hours after the last treatment), the difference between the fluorescence lifetime at the tumor and contralateral site decreased to 0.03 ns. CONCLUSIONS The results showed a good correlation between fluorescence lifetime and the efficacy of the treatment. These findings show that in vivo fluorescence lifetime imaging can be used as a promising molecular imaging tool for monitoring the treatment outcome in preclinical models and potentially in patients.
Collapse
Affiliation(s)
- Yasaman Ardeshirpour
- Authors' Affiliations: NIH/National Institute of Child Health and Human Development, Bethesda
| | - Victor Chernomordik
- Authors' Affiliations: NIH/National Institute of Child Health and Human Development, Bethesda
| | - Moinuddin Hassan
- Authors' Affiliations: NIH/National Institute of Child Health and Human Development, Bethesda; Division of Physics, Office of Science and Engineering Laboratories, CDRH, FDA, Silver Spring
| | - Rafal Zielinski
- NIH/National Cancer Institute, Rockville, Maryland; and UT MD Anderson Cancer Center, Houston, Texas
| | - Jacek Capala
- NIH/National Cancer Institute, Rockville, Maryland; and
| | - Amir Gandjbakhche
- Authors' Affiliations: NIH/National Institute of Child Health and Human Development, Bethesda;
| |
Collapse
|
20
|
Zhao L, Abe K, Rajoria S, Pian Q, Barroso M, Intes X. Spatial light modulator based active wide-field illumination for ex vivo and in vivo quantitative NIR FRET imaging. BIOMEDICAL OPTICS EXPRESS 2014; 5:944-60. [PMID: 24688826 PMCID: PMC3959842 DOI: 10.1364/boe.5.000944] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/20/2014] [Accepted: 01/31/2014] [Indexed: 05/20/2023]
Abstract
Fluorescence lifetime imaging is playing an increasing role in drug development by providing a sensitive method to monitor drug delivery and receptor-ligand interactions. However, the wide dynamic range of fluorescence intensity emitted by ex vivo and in vivo samples presents challenges in retrieving information over the whole subject accurately and quantitatively. To overcome this challenge, we developed an active wide-field illumination (AWFI) strategy based on a spatial light modulator that acquires optimal fluorescence signals by enhancing the dynamic range, signal to noise ratio, and estimation of lifetime-based parameters. We demonstrate the ability of AWFI to estimate Förster resonance energy transfer (FRET) donor fraction from dissected organs with high accuracy (standard deviation <6%) over the whole field of view, in contrast with the homogenous wide-field illumination. We further report its successful application to quantitative FRET imaging in a live mouse. AWFI allows improved detection of weak signals and enhanced quantitative accuracy in ex vivo and in vivo molecular fluorescence quantitative imaging. The technique allows for robust quantitative estimation of the bio-distribution of molecular probes and lifetime-based parameters over an extended imaging field exhibiting a large range of fluorescence intensities and at a high acquisition speed (less than 1 min).
Collapse
Affiliation(s)
- Lingling Zhao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Ken Abe
- Center for Cardiovascular Sciences, Albany Medical College, 43 New Scotland Avenue, Albany, NY 12208, USA
| | - Shilpi Rajoria
- Center for Cardiovascular Sciences, Albany Medical College, 43 New Scotland Avenue, Albany, NY 12208, USA
| | - Qi Pian
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 43 New Scotland Avenue, Albany, NY 12208, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
21
|
Nakajima T, Sano K, Sato K, Watanabe R, Harada T, Hanaoka H, Choyke PL, Kobayashi H. Fluorescence-lifetime molecular imaging can detect invisible peritoneal ovarian tumors in bloody ascites. Cancer Sci 2014; 105:308-14. [PMID: 24479901 PMCID: PMC3949209 DOI: 10.1111/cas.12343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 11/27/2022] Open
Abstract
Blood contamination, such as bloody ascites or hemorrhages during surgery, is a potential hazard for clinical application of fluorescence imaging. In order to overcome this problem, we investigate if fluorescence-lifetime imaging helps to overcome this problem. Samples were prepared at concentrations ranging 0.3-2.4 μm and mixed with 0-10% of blood. Fluorescence intensities and lifetimes of samples were measured using a time-domain fluorescence imager. Ovarian cancer SHIN3 cells overexpressing the D-galactose receptor were injected into the peritoneal cavity 2.5 weeks before the experiments. Galactosyl serum albumin-rhodamine green (GSA-RhodG), which bound to the D-galactose receptor and was internalized thereafter, was administered intraperitoneally to peritoneal ovarian cancer-bearing mice with various degrees of bloody ascites. In vitro study showed a linear correlation between fluorescence intensity and probe concentration (r(2) > 0.99), whereas the fluorescence lifetime was consistent (range, 3.33 ± 0.15-3.75 ± 0.04 ns). By adding 10% of blood to samples, fluorescence intensities decreased to <1%, while fluorescence lifetimes were consistent. In vivo fluorescence lifetime of GSA-RhodG stained tumors was longer than the autofluorescence lifetime (threshold, 2.87 ns). Tumor lesions under hemorrhagic peritonitis were not depicted using fluorescence intensity imaging; however, fluorescence-lifetime imaging clearly detected tumor lesions by prolonged lifetimes. In conclusion, fluorescence-lifetime imaging with GSA-RhodG depicted ovarian cancer lesions, which were invisible in intensity images, in hemorrhagic ascites.
Collapse
Affiliation(s)
- Takahito Nakajima
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Aigner D, Dmitriev RI, Borisov SM, Papkovsky DB, Klimant I. pH-sensitive perylene bisimide probes for live cell fluorescence lifetime imaging. J Mater Chem B 2014; 2:6792-6801. [DOI: 10.1039/c4tb01006j] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several new perylene bisimide (PBI) probes comprising oligo-guanidine conjugates and cationic hydrogel nanoparticle structures were designed for sensing intracellular pH in live cell fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- D. Aigner
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- Graz, Austria
| | - R. I. Dmitriev
- School of Biochemistry and Cell Biology
- University College Cork
- Cork, Ireland
| | - S. M. Borisov
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- Graz, Austria
| | - D. B. Papkovsky
- School of Biochemistry and Cell Biology
- University College Cork
- Cork, Ireland
| | - I. Klimant
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- Graz, Austria
| |
Collapse
|
23
|
Dasgeb B, Smirnov AV, Ardeshirpour Y, Sackett DL, Knutson JR, Mehregan D, Gandjbakhche A, Halpern AC. Multiscale BerEp4 molecular imaging of microtumor phantoms: toward theranostics for basal cell carcinoma. Mol Imaging 2014; 13:10.2310/7290.2014.00016. [PMID: 25022347 PMCID: PMC11189108 DOI: 10.2310/7290.2014.00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basal cell carcinoma (BCC), the most common cancer in humans, appears macroscopically and microscopically similar to many other skin lesions, which makes differential diagnosis difficult. We are developing an approach for quantitative molecular imaging of BerEP4, a transmembrane biomarker for BCC, with the goal of increasing the precision and accuracy of diagnosis. This pilot study was conducted to assess the affinity and selectivity of BerEp4 antibody and assess its possible use in designing theranostic probes for BCC. We provide evidence that our photon-counting fluorescence macrodetection system can recover specific signal increases from a film/pellet phantom. Additionally, we show that a two-photon excited fluorescence /backscatter confocal microscopy system can image BerEP4 antibody/antigen complex on the surface of BerEP4-expressing cancer cells in three dimensions. Based on the initial results, BerEP4 seems to be a promising biomarker for molecular imaging of BCC. To prepare BerEP4 for eventual theranostic use, we examined the feasibility of a combined macro-/micro-optical approach to imaging BCC with various histologies. These optical methods, endowed with the ability to monitor treatment in real time, may open an opportunity for noninvasive diagnosis, treatments, and follow-up.
Collapse
|
24
|
Zhegalova NG, Gonzales G, Berezin MY. Synthesis of nitric oxide probes with fluorescence lifetime sensitivity. Org Biomol Chem 2013; 11:8228-34. [PMID: 24166035 PMCID: PMC3872128 DOI: 10.1039/c3ob41498a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the rationale, synthesis and evaluation of the first activatable fluorescent probe that utilizes fluorescence lifetime change for detection of nitric oxide. The new probe DAP-LT1 features a near-infrared polymethine skeleton with a diaminobenzene functionality incorporated into the meso-position. The probe is partially quenched, and upon reaction with nitric oxide shows an increase in the fluorescence lifetime from 1.08 ns to 1.24 ns.
Collapse
Affiliation(s)
- Natalia G Zhegalova
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
25
|
Zhu L, Smith PP, Boyes SG. pH-responsive polymers for imaging acidic biological environments in tumors. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Liping Zhu
- Department of Chemistry and Geochemistry; Colorado School of Mines, Golden; Colorado 80401
| | - Patrizia P. Smith
- Department of Chemistry and Geochemistry; Colorado School of Mines, Golden; Colorado 80401
| | - Stephen G. Boyes
- Department of Chemistry and Geochemistry; Colorado School of Mines, Golden; Colorado 80401
| |
Collapse
|
26
|
Lee H, Berezin MY, Tang R, Zhegalova N, Achilefu S. Pyrazole-substituted near-infrared cyanine dyes exhibit pH-dependent fluorescence lifetime properties. Photochem Photobiol 2012; 89:326-31. [PMID: 23094959 DOI: 10.1111/php.12009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/10/2012] [Indexed: 11/28/2022]
Abstract
Near-infrared heptamethine cyanine dye is functionalized with pyrazole derivatives at the meso-position to induce pH-dependent photophysical properties. The presence of pyrazole unsubstituted at (1) N-position is essential to induce pH-dependent fluorescence intensity and lifetime changes in these dyes. Replacement of meso-chloro group of cyanine dye IR820 with (1) N-unsubstituted pyrazole resulted in the pH-dependent fluorescence lifetime changes from 0.93 ns in neutral media to 1.27 ns in acidic media in DMSO. Time-resolved emission spectra (TRES) revealed that at lower pH, the pyrazole consists of fluorophores with two distinct lifetimes, which cor-responds to pH-sensitive and non-pH-sensitive species. In contrast, (1) N-substituted pyrazoles do not exhibit pH response, suggesting excited state electron transfer as the mechanism of pH-dependent fluorescence lifetime sensitivity for this class of compounds.
Collapse
Affiliation(s)
- Hyeran Lee
- Department of Radiology, Washington University, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
27
|
Nakajima T, Sano K, Mitsunaga M, Choyke PL, Kobayashi H. Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging. Cancer Res 2012; 72:4622-8. [PMID: 22800710 PMCID: PMC3445723 DOI: 10.1158/0008-5472.can-12-1298] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new type of monoclonal antibody (mAb)-based, highly specific phototherapy (photoimmunotherapy; PIT) that uses a near infrared (NIR) phthalocyanine dye, IRDye700DX (IR700) conjugated with a mAb, has recently been described. NIR light exposure leads to immediate, target-selective necrotic cell death in vitro. Detecting immediate in vivo cell death is more difficult because it takes at least 3 days for the tumor to begin to shrink in size. In this study, fluorescence lifetime (FLT) was evaluated before and after PIT for monitoring the immediate cytotoxic effects of NIR mediated mAb-IR700 PIT. Anti-epidermal growth factor receptor (EGFR) panitumumab-IR700 was used for targeting EGFR-expressing A431 tumor cells. PIT with various doses of NIR light was conducted in cell pellets in vitro and in subcutaneously xenografted tumors in mice in vivo. FLT measurements were obtained before and 0, 6, 24, and 48 hours after PIT. In vitro, PIT at higher doses of NIR light immediately led to FLT shortening in A431 cells. In vivo PIT induced immediate shortening of FLT in treated tumors after a threshold NIR dose of 30 J/cm(2) or greater. In contrast, lower levels of NIR light (10 J/cm(2) or smaller) did not induce shortening of FLT. Prolongation of FLT in tissue surrounding the tumor site was noted 6 hours after PIT, likely reflecting phagocytosis by macrophages. In conclusion, FLT imaging can be used to monitor the acute cytotoxic effects of mAb-IR700-induced PIT even before morphological changes can be seen in the targeted tumors.
Collapse
Affiliation(s)
- Takahito Nakajima
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
28
|
Lee YJ, Kang HC, Hu J, Nichols JW, Jeon YS, Bae YH. pH-Sensitive polymeric micelle-based pH probe for detecting and imaging acidic biological environments. Biomacromolecules 2012; 13:2945-51. [PMID: 22861824 DOI: 10.1021/bm300985r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To overcome the limitations of monomeric pH probes for acidic tumor environments, this study designed a mixed micelle pH probe composed of polyethylene glycol (PEG)-b-poly(L-histidine) (PHis) and PEG-b-poly(L-lactic acid) (PLLA), which is well-known as an effective antitumor drug carrier. Unlike monomeric histidine and PHis derivatives, the mixed micelles can be structurally destabilized by changes in pH, leading to a better pH sensing system in nuclear magnetic resonance (NMR) techniques. The acidic pH-induced transformation of the mixed micelles allowed pH detection and pH mapping of 0.2-0.3 pH unit differences by pH-induced "on/off"-like sensing of NMR and magnetic resonance spectroscopy. The micellar pH probes sensed pH differences in nonbiological phosphate buffer and biological buffers such as cell culture medium and rat whole blood. In addition, the pH-sensing ability of the mixed micelles was not compromised by loaded doxorubicin. In conclusion, PHis-based micelles could have potential as a tool to simultaneously treat and map the pH of solid tumors in vivo.
Collapse
Affiliation(s)
- Young Ju Lee
- Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, 421 Wakara Way, Suite 318, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | |
Collapse
|
29
|
Zielinski R, Hassan M, Lyakhov I, Needle D, Chernomordik V, Garcia-Glaessner A, Ardeshirpour Y, Capala J, Gandjbakhche A. Affibody-DyLight conjugates for in vivo assessment of HER2 expression by near-infrared optical imaging. PLoS One 2012; 7:e41016. [PMID: 22911732 PMCID: PMC3401287 DOI: 10.1371/journal.pone.0041016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/15/2012] [Indexed: 01/26/2023] Open
Abstract
Purpose Amplification of the HER2/neu gene and/or overexpression of the corresponding protein have been identified in approximately 20% of invasive breast carcinomas. Assessment of HER2 expression in vivo would advance development of new HER2-targeted therapeutic agents and, potentially, facilitate choice of the proper treatment strategy offered to the individual patient. We present novel HER2-specific probes for in vivo evaluation of the receptor status by near-infrared (NIR) optical imaging. Experimental Design Affibody molecules were expressed, purified, and labeled with NIR-fluorescent dyes. The binding affinity and specificity of the obtained probe were tested in vitro. For in vivo validation, the relationship of the measured NIR signal and HER2 expression was characterized in four breast cancer xenograft models, expressing different levels of HER2. Accumulation of Affibody molecules in tumor tissue was further confirmed by ex vivo analysis. Results Affibody-DyLight conjugates showed high affinity to HER2 (KD = 3.66±0.26). No acute toxicity resulted from injection of the probes (up to 0.5 mg/kg) into mice. Pharmacokinetic studies revealed a relatively short (37.53±2.8 min) half-life of the tracer in blood. Fluorescence accumulation in HER2-positive BT-474 xenografts was evident as soon as a few minutes post injection and reached its maximum at 90 minutes. On the other hand, no signal retention was observed in HER2-negative MDA-MB-468 xenografts. Immunostaining of extracted tumor tissue confirmed penetration of the tracer into tumor tissue. Conclusions The results of our studies suggest that Affibody-DyLight-750 conjugate is a powerful tool to monitor HER2 status in a preclinical setting. Following clinical validation, it might provide complementary means for assessment of HER2 expression in breast cancer patients (assuming availability of proper NIR scanners) and/or be used to facilitate detection of HER2-positive metastatic lesions during NIR-assisted surgery.
Collapse
Affiliation(s)
- Rafal Zielinski
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lapointe E, Pichette J, Bérubé-Lauzière Y. A multi-view time-domain non-contact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:063703. [PMID: 22755630 DOI: 10.1063/1.4726016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a non-contact diffuse optical tomography (DOT) scanner with multi-view detection (over 360°) for localizing fluorescent markers in scattering and absorbing media, in particular small animals. It relies on time-domain detection after short pulse laser excitation. Ultrafast time-correlated single photon counting and photomultiplier tubes are used for time-domain measurements. For light collection, seven free-space optics non-contact dual wavelength detection channels comprising 14 detectors overall are placed around the subject, allowing the measurement of time point-spread functions at both excitation and fluorescence wavelengths. The scanner is endowed with a stereo camera pair for measuring the outer shape of the subject in 3D. Surface and DOT measurements are acquired simultaneously with the same laser beam. The hardware and software architecture of the scanner are discussed. Phantoms are used to validate the instrument. Results on the localization of fluorescent point-like inclusions immersed in a scattering and absorbing object are presented. The localization algorithm relies on distance ranging based on the measurement of early photons arrival times at different positions around the subject. This requires exquisite timing accuracy from the scanner. Further exploiting this capability, we show results on the effect of a scattering hetereogenity on the arrival time of early photons. These results demonstrate that our scanner provides all that is necessary for reconstructing images of small animals using full tomographic reconstruction algorithms, which will be the next step. Through its free-space optics design and the short pulse laser used, our scanner shows unprecedented timing resolution compared to other multi-view time-domain scanners.
Collapse
Affiliation(s)
- Eric Lapointe
- Laboratoire TomOptUS, Département de génie électrique et de génie informatique, Université de Sherbrooke, 2500 boul. Université, Sherbrooke, Québec J1K 2R1, Canada
| | | | | |
Collapse
|
31
|
Hassan M, Chernomordik V, Zielinski R, Ardeshirpour Y, Capala J, Gandjbakhche A. In Vivo Method to Monitor Changes in HER2 Expression Using Near-Infrared Fluorescence Imaging. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Moinuddin Hassan
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Victor Chernomordik
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Rafal Zielinski
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Yasaman Ardeshirpour
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Jacek Capala
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Amir Gandjbakhche
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
32
|
In vivo fluorescence lifetime imaging monitors binding of specific probes to cancer biomarkers. PLoS One 2012; 7:e31881. [PMID: 22384092 PMCID: PMC3285647 DOI: 10.1371/journal.pone.0031881] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 01/19/2012] [Indexed: 11/19/2022] Open
Abstract
One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the “image and treat” concept, especially for early evaluation of the efficacy of the therapy.
Collapse
|
33
|
Sarantopoulos A, Beziere N, Ntziachristos V. Optical and Opto-Acoustic Interventional Imaging. Ann Biomed Eng 2012; 40:346-66. [DOI: 10.1007/s10439-011-0501-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/23/2011] [Indexed: 12/20/2022]
|
34
|
Sheth VR, Liu G, Li Y, Pagel MD. Improved pH measurements with a single PARACEST MRI contrast agent. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:26-34. [PMID: 22344877 PMCID: PMC4882612 DOI: 10.1002/cmmi.460] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The measurement of extracellular pH has potential utility for assessing the therapeutic effects of pH-dependent and pH-altering therapies. A PARAmagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agent, Yb-DO3A-oAA, has two CEST effects that are dependent on pH. A ratio derived from these CEST effects was linearly correlated with pH throughout the physiological pH range. The pH can be measured with a precision of 0.21 pH units and an accuracy of 0.09 pH units. The pH measurement is independent of concentration and T₁ relaxation times, but is dependent on temperature. Although MR coalescence affects the CEST measurements, especially at high pH, the ratiometric analysis of the CEST effects can account for incomplete saturation of the agent's amide and amine that results from MR coalescence. Provided that an empirical calibration is determined with saturation conditions, magnetic field strength and temperature that can be used for subsequent studies, these results demonstrate that this single PARACEST MRI contrast agent can accurately measure pH.
Collapse
Affiliation(s)
- Vipul R. Sheth
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Yuguo Li
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Mark D. Pagel
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ USA
- Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
35
|
Ardeshirpour Y, Chernomordik V, Capala J, Hassan M, Zielinsky R, Griffiths G, Achilefu S, Smith P, Gandjbakhckhe A. Using in-vivo fluorescence imaging in personalized cancer diagnostics and therapy, an image and treat paradigm. Technol Cancer Res Treat 2011; 10:549-60. [PMID: 22066595 PMCID: PMC3718028 DOI: 10.1177/153303461101000605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The major goal in developing drugs targeting specific tumor receptors, such as Monoclonal AntiBodies (MAB), is to make a drug compound that targets selectively the cancer-causing biomarkers, inhibits their functionality, and/or delivers the toxin specifically to the malignant cells. Recent advances in MABs show that their efficacy depends strongly on characterization of tumor biomarkers. Therefore, one of the main tasks in cancer diagnostics and treatment is to develop non-invasive in-vivo imaging techniques for detection of cancer biomarkers and monitoring their down regulation during the treatment. Such methods can potentially result in a new imaging and treatment paradigm for cancer therapy. In this article we have reviewed fluorescence imaging approaches, including those developed in our group, to detect and monitor Human Epidermal Growth Factor 2 (HER2) receptors before and during therapy. Transition of these techniques from the bench to bedside is the ultimate goal of our project. Similar approaches can be used potentially for characterization of other cancer related cell biomarkers.
Collapse
Affiliation(s)
- Yasaman Ardeshirpour
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| | - Victor Chernomordik
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| | - Jacek Capala
- NIH/National Cancer Institute, Building 10-Magnuson Clinical Center, 10 Center Dr, Bethesda, MD, 20892
| | - Moinuddin Hassan
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| | - Rafal Zielinsky
- NIH/National Cancer Institute, Building 10-Magnuson Clinical Center, 10 Center Dr, Bethesda, MD, 20892
| | - Gary Griffiths
- NIH/Imaging Probe Development Center, Building 9800, Medical Center Dr., Rockville, MD, 20850
| | - Samuel Achilefu
- Optical Radiology Lab, Department of Radiology, Washington University, 4525 Scott Avenue, St. Louis, MO 63110
| | - Paul Smith
- NIH/National Institute of Biomedical Imaging and Bioengineering, Building 13, 3N18A 13 South Dr, Bethesda, MD, 20892
| | - Amir Gandjbakhckhe
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| |
Collapse
|
36
|
Patsenker LD, Tatarets AL, Povrozin YA, Terpetschnig EA. Long-wavelength fluorescence lifetime labels. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12566-011-0025-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Mathejczyk JE, Pauli J, Dullin C, Napp J, Tietze LF, Kessler H, Resch-Genger U, Alves F. Spectroscopically Well-Characterized RGD Optical Probe as a Prerequisite for Lifetime-Gated Tumor Imaging. Mol Imaging 2011. [DOI: 10.2310/7290.2011.00018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Labeling of RGD peptides with near-infrared fluorophores yields optical probes for noninvasive imaging of tumors overexpressing αvβ3 integrins. An important prerequisite for optimum detection sensitivity in vivo is strongly absorbing and highly emissive probes with a known fluorescence lifetime. The RGD-Cy5.5 optical probe was derived by coupling Cy5.5 to a cyclic arginine–glycine–aspartic acid–d-phenylalanine–lysine (RGDfK) peptide via an aminohexanoic acid spacer. Spectroscopic properties of the probe were studied in different matrices in comparison to Cy5.5. For in vivo imaging, human glioblastoma cells were subcutaneously implanted into nude mice, and in vivo fluorescence intensity and lifetime were measured. The fluorescence quantum yield and lifetime of Cy5.5 were found to be barely affected on RGD conjugation but dramatically changed in the presence of proteins. By time domain fluorescence imaging, we demonstrated specific binding of RGD-Cy5.5 to glioblastoma xenografts in nude mice. Discrimination of unspecific fluorescence by lifetime-gated analysis further enhanced the detection sensitivity of RGD-Cy5.5-derived signals. We characterized RGD-Cy5.5 as a strongly emissive and stable probe adequate for selective targeting of αvβ3 integrins. The specificity and thus the overall detection sensitivity in vivo were optimized with lifetime gating, based on the previous determination of the probes fluorescence lifetime under application-relevant conditions.
Collapse
Affiliation(s)
- Julia Eva Mathejczyk
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Jutta Pauli
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Christian Dullin
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Joanna Napp
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Lutz-F. Tietze
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Horst Kessler
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Ute Resch-Genger
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Frauke Alves
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| |
Collapse
|
38
|
Tichauer KM, Holt RW, El-Ghussein F, Zhu Q, Dehghani H, Leblond F, Pogue BW. Imaging workflow and calibration for CT-guided time-domain fluorescence tomography. BIOMEDICAL OPTICS EXPRESS 2011; 2:3021-36. [PMID: 22076264 PMCID: PMC3207372 DOI: 10.1364/boe.2.003021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/17/2011] [Accepted: 09/22/2011] [Indexed: 05/20/2023]
Abstract
In this study, several key optimization steps are outlined for a non-contact, time-correlated single photon counting small animal optical tomography system, using simultaneous collection of both fluorescence and transmittance data. The system is presented for time-domain image reconstruction in vivo, illustrating the sensitivity from single photon counting and the calibration steps needed to accurately process the data. In particular, laser time- and amplitude-referencing, detector and filter calibrations, and collection of a suitable instrument response function are all presented in the context of time-domain fluorescence tomography and a fully automated workflow is described. Preliminary phantom time-domain reconstructed images demonstrate the fidelity of the workflow for fluorescence tomography based on signal from multiple time gates.
Collapse
Affiliation(s)
- Kenneth M. Tichauer
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
| | - Robert W. Holt
- Department of Physics and Astronomy, Dartmouth College, NH 03755, USA
| | - Fadi El-Ghussein
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
| | - Qun Zhu
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Frederic Leblond
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
- Department of Physics and Astronomy, Dartmouth College, NH 03755, USA
| |
Collapse
|
39
|
Kobayashi H, Longmire MR, Ogawa M, Choyke PL. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev 2011; 40:4626-48. [PMID: 21607237 PMCID: PMC3417232 DOI: 10.1039/c1cs15077d] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references).
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, National Cancer Institute/NIH, Bldg. 10, Room B3B69, MSC 1088, 10 Center Dr Bethesda, Maryland 20892-1088, USA.
| | | | | | | |
Collapse
|
40
|
Berezin MY, Guo K, Akers W, Northdurft RE, Culver JP, Teng B, Vasalatiy O, Barbacow K, Gandjbakhche A, Griffiths GL, Achilefu S. Near-infrared fluorescence lifetime pH-sensitive probes. Biophys J 2011; 100:2063-72. [PMID: 21504743 DOI: 10.1016/j.bpj.2011.02.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/16/2011] [Accepted: 02/23/2011] [Indexed: 11/18/2022] Open
Abstract
We report what we believe to be the first near-infrared pH-sensitive fluorescence lifetime molecular probe suitable for biological applications in physiological range. Specifically, we modified a known fluorophore skeleton, hexamethylindotricarbocyanine, with a tertiary amine functionality that was electronically coupled to the fluorophore, to generate a pH-sensitive probe. The pK(a) of the probe depended critically on the location of the amine. Peripheral substitution at the 5-position of the indole ring resulted in a compound with pK(a) ∼ 4.9 as determined by emission spectroscopy. In contrast, substitution at the meso-position shifted the pK(a) to 5.5. The resulting compound, LS482, demonstrated steady-state and fluorescence-lifetime pH-sensitivity. This sensitivity stemmed from distinct lifetimes for protonated (∼1.16 ns in acidic DMSO) and deprotonated (∼1.4 ns in basic DMSO) components. The suitability of the fluorescent dyes for biological applications was demonstrated with a fluorescence-lifetime tomography system. The ability to interrogate cellular processes and subsequently translate the findings in living organisms further augments the potential of these lifetime-based pH probes.
Collapse
Affiliation(s)
- Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zielinski R, Lyakhov I, Hassan M, Kuban M, Shafer-Weaver K, Gandjbakhche A, Capala J. HER2-affitoxin: a potent therapeutic agent for the treatment of HER2-overexpressing tumors. Clin Cancer Res 2011; 17:5071-81. [PMID: 21791637 PMCID: PMC3149757 DOI: 10.1158/1078-0432.ccr-10-2887] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancers overexpressing the HER2/neu gene are usually more aggressive and are associated with poor prognosis. Although trastuzumab has significantly improved the outcome, many tumors do not respond or acquire resistance to current therapies. To provide an alternative HER2-targeted therapy, we have developed and characterized a novel recombinant protein combining an HER2-specific Affibody and modified Pseudomonas aeruginosa exotoxin A (PE 38), which, after binding to HER2, is internalized and delivered to the cytosol of the tumor cell, where it blocks protein synthesis by ADP ribosylation of eEF-2. EXPERIMENTAL DESIGN The effect of the Affitoxin on cell viability was assessed using CellTiter-Glo (Promega). To assess HER2-specific efficacy, athymic nude mice bearing BT-474 breast cancer, SK-OV-3 ovarian cancer, and NCI-N87 gastric carcinoma xenografts were treated with the Affitoxin (HER2- or Tag-specific), which was injected every third day. Affitoxin immunogenicity in female BALB/c mice was investigated using standard antibody production and splenocyte proliferation assays. RESULTS In vitro experiments proved that HER2-Affitoxin is a potent agent that eliminates HER2-overexpressing cells at low picomolar concentrations. Therapeutic efficacy studies showed complete eradication of relatively large BT-474 tumors and significant effects on SK-OV-3 and NCI-N87 tumors. HER2-Affitoxin cleared quickly from circulation (T(1/2) < 10 minutes) and was well tolerated by mice at doses of 0.5 mg/kg and below. Immunogenicity studies indicated that HER2-Affitoxin induced antibody development after the third injected dose. CONCLUSIONS Our findings showed that HER2-Affitoxin is an effective anticancer agent and a potential candidate for clinical studies.
Collapse
Affiliation(s)
- Rafal Zielinski
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ilya Lyakhov
- Protein Chemistry Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD
| | - Moinuddin Hassan
- Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Monika Kuban
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kimberly Shafer-Weaver
- Laboratory of Cell-Mediated Immunity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD
| | - Amir Gandjbakhche
- Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Jacek Capala
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
42
|
Rusanov AL, Ivashina TV, Vinokurov LM, Fiks II, Orlova AG, Turchin IV, Meerovich IG, Zherdeva VV, Savitsky AP. Lifetime imaging of FRET between red fluorescent proteins. JOURNAL OF BIOPHOTONICS 2010; 3:774-83. [PMID: 20925107 DOI: 10.1002/jbio.201000065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Numerous processes in cells can be traced by using fluorescence resonance energy transfer (FRET) between two fluorescent proteins. The novel FRET pair including the red fluorescent protein TagRFP and kindling fluorescent protein KFP for sensing caspase-3 activity is developed. The lifetime mode of FRET measurements with a nonfluorescent protein KFP as an acceptor is used to minimize crosstalk due to its direct excitation. The red fluorescence is characterized by a better penetrability through the tissues and minimizes the cell autofluorescence signal. The effective transfection and expression of the FRET sensor in eukaryotic cells is shown by FLIM. The induction of apoptosis by camptothecine increases the fluorescence lifetime, which means effective cleavage of the FRET sensor by caspase-3. The instruments for detecting whole-body fluorescent lifetime imaging are described. Experiments on animals show distinct fluorescence lifetimes for the red fluorescent proteins possessing similar spectral properties.
Collapse
Affiliation(s)
- Alexander L Rusanov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chernomordik V, Gandjbakhche AH, Hassan M, Pajevic S, Weiss GH. A CTRW-based model of time-resolved fluorescence lifetime imaging in a turbid medium. OPTICS COMMUNICATIONS 2010; 283:4832-4839. [PMID: 21057657 PMCID: PMC2968744 DOI: 10.1016/j.optcom.2010.06.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a semi-infinite turbid medium bounded by an infinite plane in the presence of a single stationary point fluorophore embedded in the medium. In contrast to earlier models of fluorescent imaging in which photon motion is assumed to be some form of continuous diffusion process, the present analysis is based on a continuous-time random walk (CTRW) on a simple cubic lattice, the object being to estimate the position and lifetime of the fluorophore. Such information can provide information related to local variations in pH and temperature with potential medical significance. Aspects of the theory were tested using time-resolved measurements of the fluorescence from small inclusions inside tissue-like phantoms. The experimental results were found to be in good agreement with theoretical predictions provided that the fluorophore was not located too close to the planar boundary, a common problem in many diffusive systems.
Collapse
Affiliation(s)
- Victor Chernomordik
- Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | | | | | | | | |
Collapse
|
44
|
Abstract
Studies over the last few decades have demonstrated that the intracellular pH of solid tumors is maintained within a range of 7.0-7.2, whereas the extracellular pH is acidic. A low extracellular pH may be an important factor inducing more aggressive cancer phenotypes. Research into the causes and consequences of this acidic pH of tumors is highly dependent on accurate, precise, and reproducible measurements, and these have undergone great changes in the last decade. This review focuses on the most recent advances in the in vivo measurement of tumor pH by pH-sensitive PET radiotracers, MR spectroscopy, MRI, and optical imaging.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona, USA
| | | | | |
Collapse
|
45
|
Raymond SB, Boas DA, Bacskai BJ, Kumar ATN. Lifetime-based tomographic multiplexing. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:046011. [PMID: 20799813 PMCID: PMC2929260 DOI: 10.1117/1.3469797] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 05/16/2010] [Accepted: 06/01/2010] [Indexed: 05/18/2023]
Abstract
Near-infrared (NIR) fluorescence tomography of multiple fluorophores has previously been limited by the bandwidth of the NIR spectral regime and the broad emission spectra of most NIR fluorophores. We describe in vivo tomography of three spectrally overlapping fluorophores using fluorescence lifetime-based separation. Time-domain images are acquired using a voltage-gated, intensified charge-coupled device (CCD) in free-space transmission geometry with 750 nm Ti:sapphire laser excitation. Lifetime components are fit from the asymptotic portion of fluorescence decay curve and reconstructed separately with a lifetime-adjusted forward model. We use this system to test the in vivo lifetime multiplexing suitability of commercially available fluorophores, and demonstrate lifetime multiplexing in solution mixtures and in nude mice. All of the fluorophores tested exhibit nearly monoexponential decays, with narrow in vivo lifetime distributions suitable for lifetime multiplexing. Quantitative separation of two fluorophores with lifetimes of 1.1 and 1.37 ns is demonstrated for relative concentrations of 1:5. Finally, we demonstrate tomographic imaging of two and three fluorophores in nude mice with fluorophores that localize to distinct organ systems. This technique should be widely applicable to imaging multiple NIR fluorophores in 3-D.
Collapse
Affiliation(s)
- Scott B Raymond
- The Harvard-MIT Division of Health Sciences and Technology, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
46
|
Chernomordik V, Hassan M, Lee SB, Zielinski R, Gandjbakhche A, Capala J. Quantitative Analysis of HER2 Receptor Expression In Vivo by Near-Infrared Optical Imaging. Mol Imaging 2010. [DOI: 10.2310/7290.2010.00018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Victor Chernomordik
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Moinuddin Hassan
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sang Bong Lee
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rafal Zielinski
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amir Gandjbakhche
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jacek Capala
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
47
|
Benincasa M, Pelillo C, Zorzet S, Garrovo C, Biffi S, Gennaro R, Scocchi M. The proline-rich peptide Bac7(1-35) reduces mortality from Salmonella typhimurium in a mouse model of infection. BMC Microbiol 2010; 10:178. [PMID: 20573188 PMCID: PMC2896951 DOI: 10.1186/1471-2180-10-178] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bac7 is a proline-rich peptide with a potent in vitro antimicrobial activity against Gram-negative bacteria. Here we investigated its activity in biological fluids and in vivo using a mouse model of S. typhimurium infection. RESULTS The efficacy of the active 1-35 fragment of Bac7 was assayed in serum and plasma, and its stability in biological fluids analyzed by Western blot and mass spectrometry. The ability of the peptide to protect mice against Salmonella was assayed in a typhoid fever model of infection by determination of survival rates and bacterial load in liver and spleen of infected animals. In addition, the peptide's biodistribution was evaluated by using time-domain optical imaging. Bac7(1-35) retained a substantial in vivo activity showing a very low toxicity. The peptide increased significantly the number of survivors and the mean survival times of treated mice reducing the bacterial load in their organs despite its rapid clearance. CONCLUSIONS Our results provide a first indication for a potential development of Bac7-based drugs in the treatment of salmonellosis and, eventually, other Gram-negative infections. The in vivo activity for this peptide might be substantially enhanced by decreasing its excretion rate or modifying the treatment schedule.
Collapse
Affiliation(s)
- Monica Benincasa
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Kobayashi H, Longmire MR, Ogawa M, Choyke PL, Kawamoto S. Multiplexed imaging in cancer diagnosis: applications and future advances. Lancet Oncol 2010; 11:589-95. [PMID: 20338808 PMCID: PMC3412687 DOI: 10.1016/s1470-2045(10)70009-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of imaging technologies that have sufficient specificity and sensitivity to enable early, accurate detection of cancer and response to therapy has long been a goal in oncology. Various radiological techniques have been used for diagnosis and surveillance of disease recurrence and imaging has revolutionised oncology. However, despite the widespread use of technologies, the ability of currently available imaging methods to facilitate early detection, precise characterisation, and accurate localisation of malignant disease could be improved. The simultaneous use of two or more techniques, contrast reagents, signalling methods, or the coupling of agent and tissue properties to achieve so-called multiplexed imaging is a promising approach. In this review, we provide a broad overview of current and emerging multiplexed, imaging technologies.
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1088, USA.
| | | | | | | | | |
Collapse
|
49
|
Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 2010; 110:2620-40. [PMID: 20000749 PMCID: PMC3241938 DOI: 10.1021/cr900263j] [Citation(s) in RCA: 1532] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1088, USA.
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| |
Collapse
|