1
|
Jin Y, Christenson ES, Zheng L, Li K. Neutrophils in pancreatic ductal adenocarcinoma: bridging preclinical insights to clinical prospects for improved therapeutic strategies. Expert Rev Clin Immunol 2024; 20:945-958. [PMID: 38690749 DOI: 10.1080/1744666x.2024.2348605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a dismal five-year survival rate of less than 10%. Neutrophils are key components of the innate immune system, playing a pivotal role in the PDAC immune microenvironment. AREAS COVERED This review provides a comprehensive survey of the pivotal involvement of neutrophils in the tumorigenesis and progression of PDAC. Furthermore, it synthesizes preclinical and clinical explorations aimed at targeting neutrophils within the milieu of PDAC, subsequently proposing a conceptual framework to propel further inquiry focused on enhancing the therapeutic efficacy of PDAC through neutrophil-targeted strategies. PubMed and Web of Science databases were utilized for researching neutrophils in pancreatic cancer publications prior to 2024. EXPERT OPINION Neutrophils play roles in promoting tumor growth and metastasis in PDAC and are associated with poor prognosis. However, the heterogeneity and plasticity of neutrophils and their complex relationships with other immune cells and extracellular matrix also provide new insights for immunotherapy targeting neutrophils to achieve a better prognosis for PDAC.
Collapse
Affiliation(s)
- Yi Jin
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Eric S Christenson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Cysneiros MADPC, Cirqueira MB, Barbosa LDF, Chaves de Oliveira Ê, Morais LK, Wastowski IJ, Floriano VG. Immune cells and checkpoints in pancreatic adenocarcinoma: Association with clinical and pathological characteristics. PLoS One 2024; 19:e0305648. [PMID: 38954689 PMCID: PMC11218951 DOI: 10.1371/journal.pone.0305648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
INTRODUCTION Pancreatic adenocarcinoma is an extremely aggressive neoplasm, with many challenges to be overcome in order to achieve a truly effective treatment. It is characterized by a mostly immunosuppressed environment, with dysfunctional immune cells and active immunoinhibitory pathways that favor tumor evasion and progression. Thus, the study and understanding of the tumor microenvironment and the various cells subtypes and their functional capacities are essential to achieve more effective treatments, especially with the use of new immunotherapeutics. METHODS Seventy cases of pancreatic adenocarcinoma divided into two groups 43 with resectable disease and 27 with unresectable disease were analyzed using immunohistochemical methods regarding the expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), and human leukocyte antigen G (HLA-G) molecules as well as the populations of CD4+ and CD8+ T lymphocytes, regulatory T cells (Tregs), and M2 macrophages (MM2). Several statistical tests, including multivariate analyses, were performed to examine how those immune cells and immunoinhibitory molecules impact the evolution and prognosis of pancreatic adenocarcinoma. RESULTS CD8+ T lymphocytes and M2 macrophages predominated in the group operated on, and PD-L2 expression predominated in the unresectable group. PD-L2 was associated with T stage, lymph node metastasis, and clinical staging, while in survival analysis, PD-L2 and HLA-G were associated with a shorter survival. In the inoperable cases, Tregs cells, MM2, PD-L1, PD-L2, and HLA-G were positively correlated. CONCLUSIONS PD-L2 and HLA-G expression correlated with worse survival in the cases studied. Tumor microenvironment was characterized by a tolerant and immunosuppressed pattern, mainly in unresectable lesions, where a broad positive influence was observed between immunoinhibitory cells and immune checkpoint proteins expressed by tumor cells.
Collapse
Affiliation(s)
| | - Magno Belém Cirqueira
- Diagnostic and Therapeutic Support Division of Clinical Hospital, Federal University of Goias, Goiania, Brazil
| | | | | | - Lucio Kenny Morais
- Surgery Department of Medicine College, Federal University of Goias, Goiania, Brazil
| | | | - Vitor Gonçalves Floriano
- Clinics Department of Medicine College, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Bogut A, Stojanovic B, Jovanovic M, Dimitrijevic Stojanovic M, Gajovic N, Stojanovic BS, Balovic G, Jovanovic M, Lazovic A, Mirovic M, Jurisevic M, Jovanovic I, Mladenovic V. Galectin-1 in Pancreatic Ductal Adenocarcinoma: Bridging Tumor Biology, Immune Evasion, and Therapeutic Opportunities. Int J Mol Sci 2023; 24:15500. [PMID: 37958483 PMCID: PMC10650903 DOI: 10.3390/ijms242115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most challenging malignancies to treat, with a complex interplay of molecular pathways contributing to its aggressive nature. Galectin-1 (Gal-1), a member of the galectin family, has emerged as a pivotal player in the PDAC microenvironment, influencing various aspects from tumor growth and angiogenesis to immune modulation. This review provides a comprehensive overview of the multifaceted role of Galectin-1 in PDAC. We delve into its contributions to tumor stroma remodeling, angiogenesis, metabolic reprogramming, and potential implications for therapeutic interventions. The challenges associated with targeting Gal-1 are discussed, given its pleiotropic functions and complexities in different cellular conditions. Additionally, the promising prospects of Gal-1 inhibition, including the utilization of nanotechnology and theranostics, are highlighted. By integrating recent findings and shedding light on the intricacies of Gal-1's involvement in PDAC, this review aims to provide insights that could guide future research and therapeutic strategies.
Collapse
Affiliation(s)
- Ana Bogut
- City Medical Emergency Department, 11000 Belgrade, Serbia;
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (G.B.)
- Department of General Surgery, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (V.M.)
| | | | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojana S. Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Goran Balovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (G.B.)
| | - Milan Jovanovic
- Department of Abdominal Surgery, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Aleksandar Lazovic
- Department of General Surgery, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Milos Mirovic
- Department of Surgery, General Hospital of Kotor, 85330 Kotor, Montenegro;
| | - Milena Jurisevic
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Violeta Mladenovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (V.M.)
| |
Collapse
|
4
|
Myo Min KK, Ffrench CB, Jessup CF, Shepherdson M, Barreto SG, Bonder CS. Overcoming the Fibrotic Fortress in Pancreatic Ductal Adenocarcinoma: Challenges and Opportunities. Cancers (Basel) 2023; 15:2354. [PMID: 37190281 PMCID: PMC10137060 DOI: 10.3390/cancers15082354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
An overabundance of desmoplasia in the tumour microenvironment (TME) is one of the defining features that influences pancreatic ductal adenocarcinoma (PDAC) development, progression, metastasis, and treatment resistance. Desmoplasia is characterised by the recruitment and activation of fibroblasts, heightened extracellular matrix deposition (ECM) and reduced blood supply, as well as increased inflammation through an influx of inflammatory cells and cytokines, creating an intrinsically immunosuppressive TME with low immunogenic potential. Herein, we review the development of PDAC, the drivers that initiate and/or sustain the progression of the disease and the complex and interwoven nature of the cellular and acellular components that come together to make PDAC one of the most aggressive and difficult to treat cancers. We review the challenges in delivering drugs into the fortress of PDAC tumours in concentrations that are therapeutic due to the presence of a highly fibrotic and immunosuppressive TME. Taken together, we present further support for continued/renewed efforts focusing on aspects of the extremely dense and complex TME of PDAC to improve the efficacy of therapy for better patient outcomes.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Charlie B. Ffrench
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Claire F. Jessup
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Mia Shepherdson
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Savio George Barreto
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Gao X, Yi L, Jiang C, Li S, Wang X, Yang B, Li W, Che N, Wang J, Zhang H, Zhang S. PCSK9 regulates the efficacy of immune checkpoint therapy in lung cancer. Front Immunol 2023; 14:1142428. [PMID: 37025995 PMCID: PMC10070680 DOI: 10.3389/fimmu.2023.1142428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) secreted by tumors was reported as a deleterious factor that led to the reduction of lymphocyte infiltration and the poorer efficacy of ICIs in vivo. This study aimed to explore whether PCSK9 expression in tumor tissue could predict the response of advanced non-small cell lung cancer (NSCLC) to anti-PD-1 immunotherapy and the synergistic antitumor effect of the combination of the PCSK9 inhibitor with the anti-CD137 agonist. One hundred fifteen advanced NSCLC patients who received anti-PD-1 immunotherapy were retrospectively studied with PCSK9 expression in baseline NSCLC tissues detected by immunohistochemistry (IHC). The mPFS of the PCSK9lo group was significantly longer than that of the PCSK9hi group [8.1 vs. 3.6 months, hazard ratio (HR): 3.450; 95% confidence interval (CI), 2.166-5.496]. A higher objective response rate (ORR) and a higher disease control rate (DCR) were observed in the PCSK9lo group than in the PCSK9hi group (54.4% vs. 34.5%, 94.7% vs. 65.5%). Reduction and marginal distribution of CD8+ T cells were observed in PCSK9hi NSCLC tissues. Tumor growth was retarded by the PCSK9 inhibitor and the anti-CD137 agonist alone in the Lewis lung carcinoma (LLC) mice model and further retarded by the PCSK9 inhibitor in combination with the CD137 agonist with long-term survival of the host mice with noticeable increases of CD8+ and GzmB+ CD8+ T cells and reduction of Tregs. Together, these results suggested that high PCSK9 expression in baseline tumor tissue was a deleterious factor for the efficacy of anti-PD-1 immunotherapy in advanced NSCLC patients. The PCSK9 inhibitor in combination with the anti-CD137 agonist could not only enhance the recruitment of CD8+ and GzmB+ CD8+ T cells but also deplete Tregs, which may be a novel therapeutic strategy for future research and clinical practice.
Collapse
Affiliation(s)
- Xiang Gao
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ling Yi
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chang Jiang
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Shuping Li
- Department of Cardiology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Weiying Li
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Bockorny B, Grossman JE, Hidalgo M. Facts and Hopes in Immunotherapy of Pancreatic Cancer. Clin Cancer Res 2022; 28:4606-4617. [PMID: 35775964 DOI: 10.1158/1078-0432.ccr-21-3452] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 01/24/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most challenging cancers to treat. For patients with advanced and metastatic disease, chemotherapy has yielded only modest incremental benefits, which are not durable. Immunotherapy has revolutionized the treatment of other solid tumors by leading to cures where none existed only a decade ago, yet it has made few inroads with PDAC. A host of trials with promising preclinical data have failed, except for in a small minority of patients with selected biomarkers. There is, however, a glimmer of hope, which we seek to cultivate. In this review, we discuss recent advances in the understanding of the uniquely immunosuppressive tumor microenvironment (TME) in PDAC, learnings from completed trials of checkpoint inhibitors, TME modifiers, cellular and vaccine therapies, oncolytic viruses, and other novel approaches. We go on to discuss our expectations for improved preclinical models of immunotherapy in PDAC, new approaches to modifying the TME including the myeloid compartment, and emerging biomarkers to better select patients who may benefit from immunotherapy. We also discuss improvements in clinical trial design specific to immunotherapy that will help us better measure success when we find it. Finally, we discuss the urgent imperative to better design and execute bold, but rational, combination trials of novel agents designed to cure patients with PDAC.
Collapse
Affiliation(s)
- Bruno Bockorny
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Manuel Hidalgo
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York
- New York-Presbyterian Hospital, New York, New York
| |
Collapse
|
7
|
Cui L, Jin Y, Zou S, Xun J, Yu X, Zhang Q, Yang Z. The antitumor activity of hPRDX5 against pancreatic cancer and the possible mechanisms. Braz J Med Biol Res 2022; 55:e12324. [PMID: 36102418 PMCID: PMC9467283 DOI: 10.1590/1414-431x2022e12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 12/15/2022] Open
Abstract
Recombinant human peroxiredoxin-5 (hPRDX5), isolated from anti-cancer bioactive peptide (ACBPs), shows a homology of 89% with goat peroxiredoxin-5 (gPRDX5) and is reported to display anti-tumor activity in vivo. Herein, we explored the effect of hPRDX5 and the responsible mechanism in treating pancreatic cancer. Tumor-bearing mice were randomly divided into normal PBS group and treatment group (n=5; 10 mg/kg hPRDX5). Flow cytometry was employed to examine lymphocytes, myeloid-derived suppressor cell subsets, and the function proteins of natural killer (NK) cells in peripheral blood, spleen, and tumor tissues of mice. Western blot was used to measure the protein expressions of the key nodes in TLR4-MAPK-NF-κB signaling pathway. The rate of tumor suppression was 57.6% at a 10 mg/kg dose in orthotopic transplanted tumor mice. Moreover, the population of CD3+CD4+T cells, NK cells, and CD3+CD8+T cells was significantly increased in the tumor tissue of the hPRDX5 group, while the proportion of granulocytic-myeloid-derived suppressor cells decreased slightly. In addition, after treatment with hPRDX5, the percentage of NK cells in blood increased more than 4-fold. Our findings indicated that hPRDX5 effectively suppressed pancreatic cancer possibly via the TLR4-MAPK-NF-κB signaling cascade; hence hPRDX5 could be a prospective immunotherapy candidate for treating pancreatic cancer.
Collapse
Affiliation(s)
- Lihua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Yuanyuan Jin
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tiantanxili, Dongcheng District, Beijing, China
| | - Sen Zou
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tiantanxili, Dongcheng District, Beijing, China
| | - Jing Xun
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Xiangyang Yu
- Department of Gastrointestinal Surgery, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Zhaoyong Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tiantanxili, Dongcheng District, Beijing, China
| |
Collapse
|
8
|
Chong YP, Peter EP, Lee FJM, Chan CM, Chai S, Ling LPC, Tan EL, Ng SH, Masamune A, Ghafar SAA, Ismail N, Ho KL. Conditioned media of pancreatic cancer cells and pancreatic stellate cells induce myeloid-derived suppressor cells differentiation and lymphocytes suppression. Sci Rep 2022; 12:12315. [PMID: 35853996 PMCID: PMC9296552 DOI: 10.1038/s41598-022-16671-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
As pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) are the two major cell types that comprise the immunosuppressive tumor microenvironment of pancreatic cancer, we aimed to investigate the role of conditioned medium derived from PCCs and PSCs co-culture on the viability of lymphocytes. The conditioned medium (CM) collected from PCCs and/or PSCs was used to treat peripheral blood mononuclear cells (PBMCs) to determine CM ability in reducing lymphocytes population. A proteomic analysis has been done on the CM to investigate the differentially expressed protein (DEP) expressed by two PCC lines established from different stages of tumor. Subsequently, we investigated if the reduction of lymphocytes was directly caused by CM or indirectly via CM-induced MDSCs. This was achieved by isolating lymphocyte subtypes and treating them with CM and CM-induced MDSCs. Both PCCs and PSCs were important in suppressing lymphocytes, and the PCCs derived from a metastatic tumor appeared to have a stronger suppressive effect than the PCCs derived from a primary tumor. According to the proteomic profiles of CM, 416 secreted proteins were detected, and 13 DEPs were identified between PANC10.05 and SW1990. However, CM was found unable to reduce lymphocytes viability through a direct pathway. In contrast, CM that contains proteins secreted by PCC and/or PSC appear immunogenic as they increase the viability of lymphocytes subtypes. Lymphocyte subtype treated with CM-induced MDSCs showed reduced viability in T helper 1 (Th1), T helper 2 (Th2), and T regulatory (Treg) cells, but not in CD8+ T cells, and B cells. As a conclusion, the interplay between PCCs and PSCs is important as their co-culture displays a different trend in lymphocytes suppression, hence, their co-culture should be included in future studies to better mimic the tumor microenvironment.
Collapse
Affiliation(s)
- Yuen Ping Chong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Evelyn Priya Peter
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Feon Jia Ming Lee
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chu Mun Chan
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Shereen Chai
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lorni Poh Chou Ling
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Eng Lai Tan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Sook Han Ng
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Siti Aisyah Abd Ghafar
- Department of Basic Science and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Seremban, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ket Li Ho
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Gumberger P, Bjornsson B, Sandström P, Bojmar L, Zambirinis CP. The Liver Pre-Metastatic Niche in Pancreatic Cancer: A Potential Opportunity for Intervention. Cancers (Basel) 2022; 14:3028. [PMID: 35740692 PMCID: PMC9221452 DOI: 10.3390/cancers14123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer-related mortality is primarily a consequence of metastatic dissemination and associated complications. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and tends to metastasize early, especially in the liver. Emerging evidence suggests that organs that develop metastases exhibit microscopic changes that favor metastatic growth, collectively known as "pre-metastatic niches". By definition, a pre-metastatic niche is chronologically established before overt metastatic outgrowth, and its generation involves the release of tumor-derived secreted factors that modulate cells intrinsic to the recipient organ, as well as recruitment of additional cells from tertiary sites, such as bone marrow-all orchestrated by the primary tumor. The pre-metastatic niche is characterized by tumor-promoting inflammation with tumor-supportive and immune-suppressive features, remodeling of the extracellular matrix, angiogenic modulation and metabolic alterations that support growth of disseminated tumor cells. In this paper, we review the current state of knowledge of the hepatic pre-metastatic niche in PDAC and attempt to create a framework to guide future diagnostic and therapeutic studies.
Collapse
Affiliation(s)
- Peter Gumberger
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Bergthor Bjornsson
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Per Sandström
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Linda Bojmar
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | |
Collapse
|
10
|
Zhang AMY, Chu KH, Daly BF, Ruiter T, Dou Y, Yang JCC, de Winter TJJ, Chhuor J, Wang S, Flibotte S, Zhao YB, Hu X, Li H, Rideout EJ, Schaeffer DF, Johnson JD, Kopp JL. Effects of hyperinsulinemia on pancreatic cancer development and the immune microenvironment revealed through single-cell transcriptomics. Cancer Metab 2022; 10:5. [PMID: 35189981 PMCID: PMC8862319 DOI: 10.1186/s40170-022-00282-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hyperinsulinemia is independently associated with increased risk and mortality of pancreatic cancer. We recently reported that genetically reduced insulin production resulted in ~ 50% suppression of pancreatic intraepithelial neoplasia (PanIN) precancerous lesions in mice. However, only female mice remained normoglycemic, and only the gene dosage of the rodent-specific Ins1 alleles was tested in our previous model. Moreover, we did not delve into the molecular and cellular mechanisms associated with modulating hyperinsulinemia. METHODS We studied how reduced Ins2 gene dosage affects PanIN lesion development in both male and female Ptf1aCreER;KrasLSL-G12D mice lacking the rodent-specific Ins1 gene (Ins1-/-). We generated control mice having two alleles of the wild-type Ins2 gene (Ptf1aCreER;KrasLSL-G12D;Ins1-/-;Ins2+/+) and experimental mice having one allele of Ins2 gene (Ptf1aCreER;KrasLSL-G12D;Ins1-/-;Ins2+/-). We then performed thorough histopathological analyses and single-cell transcriptomics for both genotypes and sexes. RESULTS High-fat diet-induced hyperinsulinemia was transiently or modestly reduced in female and male mice, respectively, with only one allele of Ins2. This occurred without dramatically affecting glucose tolerance. Genetic reduction of insulin production resulted in mice with a tendency for less PanIN and acinar-to-ductal metaplasia (ADM) lesions. Using single-cell transcriptomics, we found hyperinsulinemia affected multiple cell types in the pancreas, with the most statistically significant effects on local immune cell types that were highly represented in our sampled cell population. Specifically, hyperinsulinemia modulated pathways associated with protein translation, MAPK-ERK signaling, and PI3K-AKT signaling, which were changed in epithelial cells and subsets of immune cells. CONCLUSIONS These data suggest a potential role for the immune microenvironment in hyperinsulinemia-driven PanIN development. Together with our previous work, we propose that mild suppression of insulin levels may be useful in preventing pancreatic cancer by acting on multiple cell types.
Collapse
Affiliation(s)
- Anni M Y Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ken H Chu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Brian F Daly
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Titine Ruiter
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Yan Dou
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Jenny C C Yang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Twan J J de Winter
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Justin Chhuor
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Su Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Stephane Flibotte
- Life Sciences Institute Bioinformatics Core Facility, University of British Columbia, Vancouver, Canada
| | - Yiwei Bernie Zhao
- Biomedical Research Centre, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Hong Li
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory and Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
11
|
Carbone C, Piro G, Agostini A, Delfino P, De Sanctis F, Nasca V, Spallotta F, Sette C, Martini M, Ugel S, Corbo V, Cappello P, Bria E, Scarpa A, Tortora G. Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer. J Immunother Cancer 2021; 9:jitc-2021-002876. [PMID: 34479922 PMCID: PMC8420705 DOI: 10.1136/jitc-2021-002876] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 02/04/2023] Open
Abstract
Background Complex tumor and immune microenvironment render pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint inhibitors (ICIs). Therefore, a strategy to convert the immune hostile into an immunopermissive tumor is required. Recent studies showed that intratumoral injection of Toll-like receptor 9 agonist IMO-2125 primes the adaptive immune response. Phase I and II trials with intratumoral IMO-2125 demonstrated its safety and antitumoral activity. Methods We generated an array of preclinical models by orthotopically engrafting PDAC-derived cell lines in syngeneic mice and categorized them as high, low and no immunogenic potential, based on the ability of tumor to evoke T lymphocyte or NK cell response. To test the antitumor efficacy of IMO-2125 on locally treated and distant sites, we engrafted cancer cells on both flanks of syngeneic mice and treated them with intratumoral IMO-2125 or vehicle, alone or in combination with anti-PD1 ICI. Tumor tissues and systemic immunity were analyzed by transcriptomic, cytofluorimetric and immunohistochemistry analysis. Results We demonstrated that intratumoral IMO-2125 as single agent triggers immune system response to kill local and distant tumors in a selected high immunogenic subtype affecting tumor growth and mice survival. Remarkably, intratumoral IMO-2125 in combination with systemic anti-PD1 causes a potent antitumor effect on primary injected and distant sites also in pancreatic cancer models with low immunogenic potential, preceded by a transition toward an immunopermissive microenvironment, with increase in tumor-infiltrating dendritic and T cells in tumor and lymph nodes. Conclusion We demonstrated a potent antitumor activity of IMO-2125 and anti-PD1 combination in immunotherapy-resistant PDAC models through the modulation of immune microenvironment, providing the rationale to translate this strategy into a clinical setting.
Collapse
Affiliation(s)
- Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy.,ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Vincenzo Nasca
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Francesco Spallotta
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI - CNR), Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Catholic University of the Sacred Heart, Milano, Italy
| | - Maurizio Martini
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy.,ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Bria
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy.,ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy .,Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
12
|
Zalfa C, Paust S. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:633205. [PMID: 34025641 PMCID: PMC8133367 DOI: 10.3389/fimmu.2021.633205] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous environment composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells play a vital role in fighting tumors, but chronic stimulation and immunosuppression in the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact with innate and adaptive immune cells and play a crucial role in negatively regulating the immune response to tumors. This review discusses MDSC-mediated NK cell regulation within the TME, focusing on critical cellular and molecular interactions. We review current strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy could be improved.
Collapse
Affiliation(s)
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
13
|
Brouwer TP, Vahrmeijer AL, de Miranda NFCC. Immunotherapy for pancreatic cancer: chasing the light at the end of the tunnel. Cell Oncol (Dordr) 2021; 44:261-278. [PMID: 33710604 PMCID: PMC7985121 DOI: 10.1007/s13402-021-00587-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Checkpoint blockade immunotherapy has had a significant impact on the survival of a subset of patients with advanced cancers. It has been particularly effective in immunogenic cancer types that present large numbers of somatic mutations in their genomes. To date, all conventional immunotherapies have failed to produce significant clinical benefits for patients diagnosed with pancreatic cancer, probably due to its poor immunogenic properties, including low numbers of neoantigens and highly immune-suppressive microenvironments. CONCLUSIONS Herein, we discuss advances that have recently been made in cancer immunotherapy and the potential of this field to deliver effective treatment options for pancreatic cancer patients. Preclinical investigations, combining different types of therapies, highlight possibilities to enhance anti-tumor immunity and to generate meaningful clinical responses in pancreatic cancer patients. Results from completed and ongoing (pre)clinical trials are discussed.
Collapse
Affiliation(s)
- Thomas P Brouwer
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands, PO Box 9600, 2300 RC
| | | | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands, PO Box 9600, 2300 RC.
| |
Collapse
|
14
|
Dahiya DS, Kichloo A, Singh J, Albosta M, Lekkala M. Current immunotherapy in gastrointestinal malignancies A Review. J Investig Med 2021; 69:689-696. [PMID: 33443046 DOI: 10.1136/jim-2020-001654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Immunotherapy is an extremely important breakthrough and an exciting new modality of treatment for a wide spectrum of cancers. It is focused around developing agents to stimulate or suppress the immune system, in a specific manner, to fight off a wide spectrum of diseases, particularly cancers. Traditional therapies available for the treatment of cancers include surgical intervention, chemotherapy, radiation therapy or a combination of these, which tend to be very non-specific. However, immunotherapy shows a stark difference from conventional therapy, in fact, that it has a high level of specificity for the tumor-specific antigens. The recent success of cancer immunotherapies in clinical trials is slowly revolutionizing the landscape for cancer therapy. The US Food and Drug Administration has approved numerous agents, after clinical trials showed promising results, for the treatment of multiple cancers. The role of immunotherapy in gastrointestinal cancers has also been very promising, particularly in patients with advanced metastatic disease or malignancies refractory to initial treatment. In this review of literature, we detail and discuss the immunotherapy agents approved for the treatment of GI cancers and glance at the future of immunotherapy for patients with these cancers.
Collapse
Affiliation(s)
| | - Asim Kichloo
- Department of Internal Medicine, CMU Medical Education Partners, Saginaw, Michigan, USA .,Department of Internal Medicine, Samaritan Medical Center, Watertown, New York, USA
| | - Jagmeet Singh
- Internal Medicine, Guthrie Healthcare System, Sayre, Pennsylvania, USA.,Department of Internal Medicine, Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, USA
| | - Michael Albosta
- Internal Medicine, Central Michigan University, Saginaw, Michigan, USA
| | - Manidhar Lekkala
- Hematology and Oncology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
15
|
Tan M, Schaffalitzky de Muckadell OB, Jøergensen MT. Gene Expression Network Analysis of Precursor Lesions in Familial Pancreatic Cancer. J Pancreat Cancer 2020; 6:73-84. [PMID: 32783019 PMCID: PMC7415888 DOI: 10.1089/pancan.2020.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose: High-grade pancreatic intraepithelial neoplasia (PanIN) are aggressive premalignant lesions, associated with risk of progression to pancreatic ductal adenocarcinoma (PDAC). A depiction of co-dysregulated gene activity in high-grade familial pancreatic cancer (FPC)-related PanIN lesions may characterize the molecular events during the progression from familial PanIN to PDAC. Materials and Methods: We performed weighted gene coexpression network analysis (WGCNA) to identify clusters of coexpressed genes associated with FPC-related PanIN lesions in 13 samples with PanIN-2/3 from FPC predisposed individuals, 6 samples with PDAC from sporadic pancreatic cancer (SPC) patients, and 4 samples of normal donor pancreatic tissue. Results: WGCNA identified seven differentially expressed gene (DEG) modules and two commonly expressed gene (CEG) modules with significant enrichment for Gene Ontology (GO) terms in FPC and SPC, including three upregulated (p < 5e-05) and four downregulated (p < 6e-04) gene modules in FPC compared to SPC. Among the DEG modules, the upregulated modules include 14 significant genes (p < 1e-06): ALOX12-AS1, BCL2L11, EHD4, C4B, BTN3A3, NDUFA11, RBM4B, MYOC, ZBTB47, TTTY15, NAPRT, LOC102606465, LOC100505711, and PTK2. The downregulated modules include 170 genes (p < 1e-06), among them 13 highly significant genes (p < 1e-10): COL10A1, SAMD9, PLPP4, COMP, POSTN, IGHV4-31, THBS2, MMP9, FNDC1, HOPX, TMEM200A, INHBA, and SULF1. The DEG modules are enriched for GO terms related to mitochondrial structure and adenosine triphosphate metabolic processes, extracellular structure and binding properties, humoral and complement mediated immune response, ligand-gated ion channel activity, and transmembrane receptor activity. Among the CEG modules, IL22RA1, DPEP1, and BCAT1 were found as highly connective hub genes associated with both FPC and SPC. Conclusion: FPC-related PanIN lesions exhibit a common molecular basis with SPC as shown by gene network activities and commonly expressed high-connectivity hub genes. The differential molecular pathology of FPC and SPC involves multiple coexpressed gene clusters enriched for GO terms including extracellular activities and mitochondrion function.
Collapse
Affiliation(s)
- Ming Tan
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Ove B. Schaffalitzky de Muckadell
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Maiken Thyregod Jøergensen
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| |
Collapse
|
16
|
Mundry CS, Eberle KC, Singh PK, Hollingsworth MA, Mehla K. Local and systemic immunosuppression in pancreatic cancer: Targeting the stalwarts in tumor's arsenal. Biochim Biophys Acta Rev Cancer 2020; 1874:188387. [PMID: 32579889 DOI: 10.1016/j.bbcan.2020.188387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Late detection, compromised immune system, and chemotherapy resistance underlie the poor patient prognosis for pancreatic ductal adenocarcinoma (PDAC) patients, making it the 3rd leading cause of cancer-related deaths in the United States. Cooperation between the tumor cells and the immune system leads to the immune escape and eventual establishment of the tumor. For more than 20 years, sincere efforts have been made to intercept the tumor-immune crosstalk and identify the probable therapeutic targets for breaking self-tolerance toward tumor antigens. However, the success of these studies depends on detailed examination and understanding of tumor-immune cell interactions, not only in the primary tumor but also at distant systemic niches. Innate and adaptive arms of the immune system sculpt tumor immunogenicity, where they not only aid in providing an amenable environment for their survival but also act as a driver for tumor relapse at primary or distant organ sites. This review article highlights the key events associated with tumor-immune communication and associated immunosuppression at both local and systemic microenvironments in PDAC. Furthermore, we discuss the approaches and benefits of targeting both local and systemic immunosuppression for PDAC patients. The present articles integrate data from clinical and genetic mouse model studies to provide a widespread consensus on the role of local and systemic immunosuppression in undermining the anti-tumor immune responses against PDAC.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bone Marrow/drug effects
- Bone Marrow/immunology
- Bone Marrow/pathology
- Cancer Vaccines/administration & dosage
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Chemotherapy, Adjuvant/methods
- Clinical Trials as Topic
- Combined Modality Therapy/methods
- Disease Models, Animal
- Disease-Free Survival
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Humans
- Immunity, Innate/drug effects
- Immunotherapy/methods
- Irinotecan/pharmacology
- Irinotecan/therapeutic use
- Leucovorin/pharmacology
- Leucovorin/therapeutic use
- Lymph Node Excision
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymph Nodes/surgery
- Mice
- Mice, Transgenic
- Neoadjuvant Therapy/methods
- Oxaliplatin/pharmacology
- Oxaliplatin/therapeutic use
- Pancreas/immunology
- Pancreas/pathology
- Pancreas/surgery
- Pancreatectomy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Spleen/immunology
- Spleen/pathology
- Spleen/surgery
- Splenectomy
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transplantation, Autologous/methods
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- United States/epidemiology
Collapse
Affiliation(s)
- Clara S Mundry
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kirsten C Eberle
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Michael A Hollingsworth
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kamiya Mehla
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| |
Collapse
|
17
|
Hwang HK, Lee SH, Kim HI, Kim SH, Choi J, Kang CM, Lee WJ. Yonsei Criteria, a Potential Linkage to Intratumoral Foxp3⁺/CD8⁺ Ratio for the Prediction of Oncologic Outcomes in Resected Left-Sided Pancreatic Cancer. Yonsei Med J 2020; 61:291-300. [PMID: 32233171 PMCID: PMC7105403 DOI: 10.3349/ymj.2020.61.4.291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE This study sought to investigate associations among Yonsei criteria (tumor confined to the pancreas, intact fascia layer between the distal pancreas and the left adrenal gland and kidney, and tumor located more than 1-2 cm from the celiac axis) and tumor infiltrating lymphocytes in pancreatic cancer. MATERIALS AND METHODS Patients who underwent curative distal pancreatectomy due to left-sided pancreatic cancer from January 2000 to December 2011 were enrolled. Follow-up was completed September 30, 2015. RESULTS Fifty patients were enrolled. Having ≥ two metastatic lymph nodes (LNs, p=0.002), intraoperative transfusion (p=0.011), low levels of tumor infiltrating CD8⁺ T-cells (p=0.001), and a high Foxp3⁺/CD8⁺ ratio (p=0.009) were independent risk factors for disease-free survival. Not satisfying the Yonsei criteria (p=0.021), having ≥ two metastatic LNs (p=0.032), low levels of tumor infiltrating CD8⁺ T-cells (p=0.040) and a high Foxp3⁺/CD8⁺ ratio (p=0.032) were associated with unfavorable overall survival. High levels of CA19-9 and not satisfying the Yonsei criteria were significantly associated with a high Foxp3⁺/CD8⁺ ratio [Exp(β)=3.558; 95% confidence inverval: 1.000-12.658; p=0.050]. CONCLUSION Yonsei criteria may be clinically detectable biologic marker with which to predict immunologic status and survival in pancreatic cancer patients.
Collapse
Affiliation(s)
- Ho Kyoung Hwang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| | - Sung Hwan Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hyoung Il Kim
- Department of Gastrointestinal Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Junjeong Choi
- Department of Pharmacy, Yonsei University College of Pharmacy, Seoul, Korea
| | - Chang Moo Kang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, Korea.
| | - Woo Jung Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
18
|
Siret C, Collignon A, Silvy F, Robert S, Cheyrol T, André P, Rigot V, Iovanna J, van de Pavert S, Lombardo D, Mas E, Martirosyan A. Deciphering the Crosstalk Between Myeloid-Derived Suppressor Cells and Regulatory T Cells in Pancreatic Ductal Adenocarcinoma. Front Immunol 2020; 10:3070. [PMID: 32038621 PMCID: PMC6987391 DOI: 10.3389/fimmu.2019.03070] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with rising incidence and a remarkable resistance to current therapies. The reasons for this therapeutic failure include the tumor's extensive infiltration by immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). By using light sheet fluorescent microscopy, we identified here direct interactions between these major immunoregulatory cells in PDAC. The in vivo depletion of MDSCs led to a significant reduction in Tregs in the pancreatic tumors. Through videomicroscopy and ex vivo functional assays we have shown that (i) MDSCs are able to induce Treg cells in a cell-cell dependent manner; (ii) Treg cells affect the survival and/or the proliferation of MDSCs. Furthermore, we have observed contacts between MDSCs and Treg cells at different stages of human cancer. Overall our findings suggest that interactions between MDSCs and Treg cells contribute to PDAC immunosuppressive environment.
Collapse
Affiliation(s)
- Carole Siret
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Aurélie Collignon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | - Françoise Silvy
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | - Stéphane Robert
- Aix Marseille Univ, INSERM, VRCM, Centre de Recherche Vasculaire de Marseille, Marseille, France
| | - Thierry Cheyrol
- Aix Marseille Univ, CEFOS, Centre d'exploration Fonctionnelle Scientifique, Marseille, France
| | - Perrine André
- Aix Marseille Univ, CEFOS, Centre d'exploration Fonctionnelle Scientifique, Marseille, France
| | - Véronique Rigot
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | - Juan Iovanna
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Serge van de Pavert
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Dominique Lombardo
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | - Eric Mas
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | - Anna Martirosyan
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| |
Collapse
|
19
|
Lai E, Puzzoni M, Ziranu P, Pretta A, Impera V, Mariani S, Liscia N, Soro P, Musio F, Persano M, Donisi C, Tolu S, Balconi F, Pireddu A, Demurtas L, Pusceddu V, Camera S, Sclafani F, Scartozzi M. New therapeutic targets in pancreatic cancer. Cancer Treat Rev 2019; 81:101926. [PMID: 31739115 DOI: 10.1016/j.ctrv.2019.101926] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor survival. Of all newly diagnosed patients, only about 20% can benefit from a potentially curative surgical resection, the remaining 80% presenting with unresectable locally advanced (LAPC) or metastatic (MPC) disease. Currently, there are limited therapeutic options for LAPC and MPC patients. Furthermore, despite intensive research efforts to better understand the molecular bases of PDAC and the biological relevance of its tumor microenvironment, treatments still largely consist of classical cytotoxic chemotherapy agents. Several studies of genetic and epigenetic sequencing have demonstrated the existence of 4 molecular PDAC subtypes, with heterogeneous genetic characteristics and different biological behaviour: squamous, pancreatic progenitor, immunogenic and aberrantly differentiated endocrine exocrine (ADEX). These distinct subtypes derive from alterations at multiple levels. Apart from the DNA repair pathway, however, none of these has so far been validated as a clinically relevant therapeutic target. Also, PDAC is unique from an immunological perspective and many studies have recently tried to elucidate the role of intratumoral effector T-cells, RAS oncogene, immunosuppressive leukocytes and desmoplastic reaction in maintaining the immunological homeostasis of this disease. However, there still remains much to be learned about the mechanisms whereby the pancreatic immune microenvironment promotes immune escape of cancer cells. Furthermore, while therapies targeting the stroma as well as immunotherapies hold promise for the future, these are not yet standard of care. This review aims to outline the state-of-the-art of LAPC and MPC treatment, highlighting data on the target therapies failure and current ongoing clinical trials on new promising therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Andrea Pretta
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Valentino Impera
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Nicole Liscia
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Paolo Soro
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Francesca Musio
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Simona Tolu
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Francesca Balconi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Annagrazia Pireddu
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Laura Demurtas
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Silvia Camera
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | | | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| |
Collapse
|
20
|
Bassani-Sternberg M, Digklia A, Huber F, Wagner D, Sempoux C, Stevenson BJ, Thierry AC, Michaux J, Pak H, Racle J, Boudousquie C, Balint K, Coukos G, Gfeller D, Martin Lluesma S, Harari A, Demartines N, Kandalaft LE. A Phase Ib Study of the Combination of Personalized Autologous Dendritic Cell Vaccine, Aspirin, and Standard of Care Adjuvant Chemotherapy Followed by Nivolumab for Resected Pancreatic Adenocarcinoma-A Proof of Antigen Discovery Feasibility in Three Patients. Front Immunol 2019; 10:1832. [PMID: 31440238 PMCID: PMC6694698 DOI: 10.3389/fimmu.2019.01832] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the promising therapeutic effects of immune checkpoint blockade (ICB), most patients with solid tumors treated with anti-PD-1/PD-L1 monotherapy do not achieve objective responses, with most tumor regressions being partial rather than complete. It is hypothesized that the absence of pre-existing antitumor immunity and/or the presence of additional tumor immune suppressive factors at the tumor microenvironment are responsible for such therapeutic failures. It is therefore clear that in order to fully exploit the potential of PD-1 blockade therapy, antitumor immune response should be amplified, while tumor immune suppression should be further attenuated. Cancer vaccines may prime patients for treatments with ICB by inducing effective anti-tumor immunity, especially in patients lacking tumor-infiltrating T-cells. These "non-inflamed" non-permissive tumors that are resistant to ICB could be rendered sensitive and transformed into "inflamed" tumor by vaccination. In this article we describe a clinical study where we use pancreatic cancer as a model, and we hypothesize that effective vaccination in pancreatic cancer patients, along with interventions that can reprogram important immunosuppressive factors in the tumor microenvironment, can enhance tumor immune recognition, thus enhancing response to PD-1/PD-L1 blockade. We incorporate into the schedule of standard of care (SOC) chemotherapy adjuvant setting a vaccine platform comprised of autologous dendritic cells loaded with personalized neoantigen peptides (PEP-DC) identified through our own proteo-genomics antigen discovery pipeline. Furthermore, we add nivolumab, an antibody against PD-1, to boost and maintain the vaccine's effect. We also demonstrate the feasibility of identifying personalized neoantigens in three pancreatic ductal adenocarcinoma (PDAC) patients, and we describe their optimal incorporation into long peptides for manufacturing into vaccine products. We finally discuss the advantages as well as the scientific and logistic challenges of such an exploratory vaccine clinical trial, and we highlight its novelty.
Collapse
Affiliation(s)
- Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dorothea Wagner
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | - Anne-Christine Thierry
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - HuiSong Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Julien Racle
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Caroline Boudousquie
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Silvia Martin Lluesma
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Lana E. Kandalaft
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Zhang Q, Wang JY, Zhou SY, Yang SJ, Zhong SL. Circular RNA expression in pancreatic ductal adenocarcinoma. Oncol Lett 2019; 18:2923-2930. [PMID: 31452773 PMCID: PMC6676441 DOI: 10.3892/ol.2019.10624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 06/13/2019] [Indexed: 12/17/2022] Open
Abstract
The regulatory roles of circular RNAs (circRNAs) in cancer are attracting increasing attention. The aim of the present study was to explore the roles of circRNAs in pancreatic ductal adenocarcinoma (PDAC) using microarray data. The circRNA and microRNA (miRNA) microarray data were downloaded from Gene Expression Omnibus. A total of 256 differentially expressed circRNAs were obtained by analyzing the circRNA microarray data from 26 pairs of PDAC and adjacent normal tissues. Differentially expressed miRNAs were analyzed using a dataset of 6 PDAC tissues and 5 non-neoplastic pancreas samples (GSE43796); 20 differentially expressed miRNAs were detected. circRNA/miRNA interactions were predicted between differentially expressed circRNAs and miRNAs using miRanda and RNAhybrid algorithms and 51 circRNA/miRNA interactions were obtained. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using gene symbols of differentially expressed circRNAs demonstrated that 41 circRNAs were enriched in 17 pathways. Subnetworks that were associated with apoptosis or proliferation were extracted from the 17 pathways and a new network was constructed using Cytoscape software, which identified that mitogen-activated protein kinase, PI3K/AKT and WNT/β-catenin signaling pathways may be associated with PDAC development. In conclusion, 256 differentially expressed circRNAs and 20 differentially expressed miRNAs were identified in PDAC tissues compared with normal tissues; the circRNA/miRNA interactions and the networks of KEGG pathways provided a global view of the function of these differentially expressed circRNAs and miRNAs.
Collapse
Affiliation(s)
- Qian Zhang
- Department of General Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jin Yan Wang
- Department of General Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Si Ying Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Su Jin Yang
- Department of General Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Shan Liang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
22
|
Zhu SK, Xu T, Wang R. Prospects and challenges of immunotherapy for pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:6-12. [DOI: 10.11569/wcjd.v27.i1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a highly malignant digestive system tumor with an extremely poor prognosis. It has been reported that pancreatic cancer has now surpassed breast cancer as the third leading cause of cancer death in the United States. Due to its low early diagnosis rate, most patients have lost the chance of surgery at the time of diagnosis. However, various treatment strategies (like radiotherapy, chemotherapy, targeted therapy, etc.) have not been able to significantly improve their survival rate. A large body of evidence suggests that an important cause of high lethality in pancreatic cancer is the immune privilege of tumors driven by factors such as immunosuppressive microenvironment, low T cell infiltration, and low gene mutation load. In recent years, tumor immunotherapy has become a hot spot in the field of oncology, and significant progress has been made in the treatment of pancreatic cancer. At present, various new immunotherapies such as immunological checkpoint blockers, adoptive cell therapy, and tumor vaccine have entered the clinical or preclinical stage, and all of them have hope to become a new treatment strategy to improve the treatment of patients with pancreatic cancer. Here, we briefly summarize the recent advances in immunotherapy for pancreatic cancer that is being researched and promising in recent years, as well as the challenges and prospects, with an aim to open up new horizons for the development of new and effective immunotherapy for pancreatic tumors.
Collapse
Affiliation(s)
- Shi-Kai Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Tian Xu
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Rui Wang
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
23
|
Yu Q, Qiu Y, Chen X, Wang X, Mei L, Wu H, Liu K, Liu Y, Li M, Zhang Z, He Q. Chemotherapy priming of the Pancreatic Tumor Microenvironment Promotes Delivery and Anti-Metastasis Efficacy of Intravenous Low-Molecular-Weight Heparin-Coated Lipid-siRNA Complex. Am J Cancer Res 2019; 9:355-368. [PMID: 30809279 PMCID: PMC6376180 DOI: 10.7150/thno.29137] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of malignant tumor with high lethality. Its high tumor cell-density and large variety of extracellular matrix (ECM) components present major barriers for drug delivery. Methods: Paclitaxel-loaded PEGylated liposomes (PTX-Lip) were used as a tumor-priming agent to induce tumor cell apoptosis and decrease the abundance of ECM to promote cellular uptake and tumor delivery of nanodrugs. Paclitaxel exerts anti-cancer effects but, paradoxically, exacerbates cancer metastasis and drug resistance by increasing the expression of apoptotic B-cell lymphoma-2 protein (BCL-2). Thus, low-molecular-weight heparin-coated lipid-siRNA complex (LH-Lip/siBCL-2) was constructed to inhibit cancer metastasis and silence BCL-2 by BCL-2 siRNA (siBCL-2). Results: Significant tumor growth inhibition efficacy was observed, accompanied by obvious inhibition of cancer metastasis in vivo. Conclusion: These results suggested our sequential delivery of PTX-Lip and LH-Lip/siBCL-2 might provide a practical approach for PDAC or other ECM-rich tumors.
Collapse
|
24
|
Hu ZI, Hellmann MD, Wolchok JD, Vyas M, Shia J, Stadler ZK, Diaz LA, O'Reilly EM. Acquired resistance to immunotherapy in MMR-D pancreatic cancer. J Immunother Cancer 2018; 6:127. [PMID: 30458888 PMCID: PMC6247688 DOI: 10.1186/s40425-018-0448-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 01/05/2023] Open
Abstract
Background MMR-D pancreatic cancer have been reported to respond to checkpoint inhibitor therapy. Here, we report the first case of acquired resistance to immunotherapy in MMR-D pancreatic cancer. Case presentation A 45-year-old woman with unresectable MMR-D pancreatic cancer was initially treated with FOLFIRINOX, FOLFIRI, and stereotactic body radiation with stable disease burden. After 3 months, imaging showed progression of disease with an increase in CA19-9. She was subsequently enrolled in a clinical trial of an anti-PD-L1 antibody in combination with an IDO1 inhibitor. She demonstrated a partial response to therapy by RECIST 1.1 criteria with declining tumor markers. Twenty-two months after beginning immunotherapy, imaging revealed an increasing left ovarian cystic mass. There were no other sites of progressive disease. The patient underwent a total hysterectomy and bilateral salpingo-oophorectomy, appendectomy, omentectomy and pelvic lymphadenopathy. Pathology was consistent with a metastasis from the pancreas involving the endometrium and left ovary. Thereafter, the patient continued with PD-1 blockade therapy off protocol with no further progressive disease. Immune profiling showed high levels of CD8+ T cells and PD-1 positive immune cells infiltrating the tumor, with a moderate level of PD-L1 expression in both the immune cells and the tumor cells. Next generation sequencing found only the KRAS G12D and RNF43 G659Vfs*41 mutations were retained from the pre-treatment tumor in the treatment-resistant tumor. Conclusions This is the first report describing acquired resistance to immunotherapy in MMR-D pancreatic cancer with accompanying genomic and immune profiling. This case of oligoprogression in the setting of immunotherapy demonstrates the feasibility of localized treatment followed by continuation of immunotherapy to sustain ongoing response.
Collapse
Affiliation(s)
- Zishuo Ian Hu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Division of Solid Tumor Oncology, New York, NY, USA.,Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Division of Solid Tumor Oncology, New York, NY, USA.,Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Monika Vyas
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jinru Shia
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA.,Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Division of Solid Tumor Oncology, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Luis A Diaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Division of Solid Tumor Oncology, New York, NY, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Division of Solid Tumor Oncology, New York, NY, USA. .,Department of Medicine, Weill Cornell Medical College, New York, NY, USA. .,David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA.
| |
Collapse
|
25
|
Meng Q, Valentini D, Rao M, Maeurer M. KRAS RENAISSANCE(S) in Tumor Infiltrating B Cells in Pancreatic Cancer. Front Oncol 2018; 8:384. [PMID: 30283732 PMCID: PMC6156365 DOI: 10.3389/fonc.2018.00384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
KRAS is a driver mutation for malignant transformation. It is found in 30% of all cancers and in 90% of pancreatic cancers. The identification of small molecules selectively inhibiting KRAS mutants has been challenging, yet mutant KRAS has recently been shown to be targeted by tumor-infiltrating lymphocyte (TIL)-derived T cells that confer tumor regression upon adoptive transfer. Furthermore, a human IgG1 monoclonal antibody interfering with mutant KRAS function inside the cell has been described to inhibit growth of KRAS-mutant xenografts in tumor-bearing mice. B cells have been described to infiltrate pancreatic cancer and may be associated with tertiary lymphoid structures associated with good prognosis, or, in contrast, promote tumor growth. However, their function, nor their antigen-specificity has been clearly defined. We discuss here the presence of tumor-infiltrating B cells (TIB) in patients with pancreatic cancer that produce KRAS-mutant specific IgG, underlining that intratumoral T and B cells may exclusively target mutant KRAS. KRAS-specific IgG may, therefore, serve as a readout of the activation of both arms of the anti-tumor adaptive immune armament although some B-cell populations may promote tumor progression.
Collapse
Affiliation(s)
- Qingda Meng
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Mowbray NG, Griffith D, Hammoda M, Shingler G, Kambal A, Al-Sarireh B. A meta-analysis of the utility of the neutrophil-to-lymphocyte ratio in predicting survival after pancreatic cancer resection. HPB (Oxford) 2018; 20:379-384. [PMID: 29336893 DOI: 10.1016/j.hpb.2017.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The neutrophil-to-lymphocyte ratio (NLR) is thought to reflect cancer disease burden. To assess the prognostic ability of the NLR on overall survival in patients with resectable, pancreatic cancer a meta-analysis of published literature was undertaken. METHOD A systematic review was performed independently by two authors using PubMed, Ovid MEDLINE and Embase databases. Included studies detailed the pre-operative NLR and overall survival of pancreatic cancer patients. RESULTS Of the 214 studies retrieved using the search strategy, 8 studies involving 1519 patients were included in the meta-analysis. Only one study did not find a statistically significant association between a high NLR and OS. The pooled Hazard Ratio was 1.77 (95% CI [1.45-2.15]; p < 0.01). The NLR cut-off values ranged from 2 to 5. There was low to moderate inter-study heterogeneity (I2 = 31%; p = 0.17), a low risk of intra-study bias, and potentially 3 unpublished (negative) studies. CONCLUSIONS A high pre-operative NLR indicates a worse prognosis than in patients with a low NLR. There is potential to use the NLR to direct therapies. A specific cut-off value has not been established from this study and so further research is required.
Collapse
Affiliation(s)
| | - David Griffith
- Royal Devon & Exeter Hospital, Barrack Road, Exeter EX2 5DW, UK
| | - Mohammed Hammoda
- Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea SA6 6NL, UK
| | - Guy Shingler
- Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea SA6 6NL, UK
| | - Amir Kambal
- Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea SA6 6NL, UK
| | - Bilal Al-Sarireh
- Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea SA6 6NL, UK
| |
Collapse
|
27
|
Watanabe K, Luo Y, Da T, Guedan S, Ruella M, Scholler J, Keith B, Young RM, Engels B, Sorsa S, Siurala M, Havunen R, Tähtinen S, Hemminki A, June CH. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 2018; 3:99573. [PMID: 29618658 PMCID: PMC5928866 DOI: 10.1172/jci.insight.99573] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/06/2018] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by its highly immunosuppressive tumor microenvironment (TME) that limits T cell infiltration and induces T cell hypofunction. Mesothelin-redirected chimeric antigen receptor T cell (meso-CAR T cell) therapy has shown some efficacy in clinical trials but antitumor efficacy remains modest. We hypothesized that combined meso-CAR T cells with an oncolytic adenovirus expressing TNF-α and IL-2 (Ad5/3-E2F-D24-TNFa-IRES-IL2, or OAd-TNFa-IL2) would improve efficacy. OAd-TNFa-IL2 enhanced the antitumor efficacy of meso-CAR T cells in human-PDA-xenograft immunodeficient mice and efficacy was associated with robustly increased tumor-infiltrating lymphocytes (TILs), enhanced and prolonged T cell function. Mice treated with parental OAd combined with meso-CAR T developed tumor metastasis to the lungs even if primary tumors were controlled. However, no mice treated with combined OAd-TNFa-IL2 and meso-CAR T died of tumor metastasis. We also evaluated this approach in a syngeneic mouse tumor model by combining adenovirus expressing murine TNF-α and IL-2 (Ad-mTNFa-mIL2) and mouse CAR T cells. This approach induced significant tumor regression in mice engrafted with highly aggressive and immunosuppressive PDA tumors. Ad-mTNFa-mIL2 increased both CAR T cell and host T cell infiltration to the tumor and altered host tumor immune status with M1 polarization of macrophages and increased dendritic cell maturation. These findings indicate that combining cytokine-armed oncolytic adenovirus to enhance the efficacy of CAR T cell therapy is a promising approach to overcome the immunosuppressive TME for the treatment of PDA.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yanping Luo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tong Da
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sonia Guedan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian Keith
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Regina M. Young
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Boris Engels
- Department of Immuno-Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Mikko Siurala
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Siri Tähtinen
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Helsinki University Comprehensive Cancer Center, Helsinki, Finland
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Schmitz-Winnenthal FH, Hohmann N, Schmidt T, Podola L, Friedrich T, Lubenau H, Springer M, Wieckowski S, Breiner KM, Mikus G, Büchler MW, Keller AV, Koc R, Springfeld C, Knebel P, Bucur M, Grenacher L, Haefeli WE, Beckhove P. A phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic cancer. Oncoimmunology 2018; 7:e1303584. [PMID: 29632710 DOI: 10.1080/2162402x.2017.1303584] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/17/2022] Open
Abstract
VXM01 is a first-in-kind orally applied tumor vaccine based on live attenuated Salmonella typhi carrying an expression plasmid encoding VEGFR2, an antigen expressed on tumor vasculature and a stable and accessible target for anti-angiogenic intervention. A recent randomized, placebo-controlled, phase I dose-escalation trial in advanced pancreatic cancer patients demonstrated safety, immunogenicity and transient, T-cell response-related anti-angiogenic activity of four priming vaccinations applied within one week. We here evaluated whether monthly boost vaccinations are safe and can sustain increased frequencies of vaccine-specific T cells. Patients with advanced pancreatic cancer were randomly assigned at a ratio of 2:1 to priming with VXM01 followed by up to six monthly boost vaccinations, or placebo treatment. Vaccinations were applied orally at two alternative doses of either 106 colony-forming units (CFU) or 107 CFU, and concomitant treatment with standard-of-care gemcitabine during the priming phase, and any treatment thereafter, was allowed in the study. Immunomonitoring involved interferon-gamma (IFNγ) ELIspot analysis with long overlapping peptides spanning the entire VEGFR2 sequence. A total of 26 patients were treated. Treatment-related adverse events preferentially associated with VXM01 were decreases in lymphocyte numbers in the blood, increased frequencies of neutrophils and diarrhea. Eight out of 16 patients who received at least one boosting vaccination responded with pronounced, i.e. at least 3-fold, increase in VEGFR2-specific T cell response over baseline levels. In the VXM01 vaccination group, VEGFR2-specific T cells peaked preferentially during the boosting phase with an average 4-fold increase over baseline levels. In conclusion, prime/boost vaccination with VXM01 was safe and immunogenic and increased vaccine specific T cell responses compared with placebo treatment.
Collapse
Affiliation(s)
| | - Nicolas Hohmann
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Abdominal and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Lilli Podola
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany.,Medical Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Tobias Friedrich
- Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | - Gerd Mikus
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Abdominal and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ruhan Koc
- Department of General, Abdominal and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Phillip Knebel
- Department of General, Abdominal and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mariana Bucur
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Lars Grenacher
- Diagnostic Munich, Diagnostic Prevention and Imaging Center, Munich, Germany
| | - Walter E Haefeli
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany.,Medical Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| |
Collapse
|
29
|
Sakellariou-Thompson D, Forget MA, Creasy C, Bernard V, Zhao L, Kim YU, Hurd MW, Uraoka N, Parra ER, Kang Y, Bristow CA, Rodriguez-Canales J, Fleming JB, Varadhachary G, Javle M, Overman MJ, Alvarez HA, Heffernan TP, Zhang J, Hwu P, Maitra A, Haymaker C, Bernatchez C. 4-1BB Agonist Focuses CD8 + Tumor-Infiltrating T-Cell Growth into a Distinct Repertoire Capable of Tumor Recognition in Pancreatic Cancer. Clin Cancer Res 2017; 23:7263-7275. [PMID: 28947567 PMCID: PMC6097625 DOI: 10.1158/1078-0432.ccr-17-0831] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/01/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023]
Abstract
Purpose: Survival for pancreatic ductal adenocarcinoma (PDAC) patients is extremely poor and improved therapies are urgently needed. Tumor-infiltrating lymphocyte (TIL) adoptive cell therapy (ACT) has shown great promise in other tumor types, such as metastatic melanoma where overall response rates of 50% have been seen. Given this success and the evidence showing that T-cell presence positively correlates with overall survival in PDAC, we sought to enrich for CD8+ TILs capable of autologous tumor recognition. In addition, we explored the phenotype and T-cell receptor repertoire of the CD8+ TILs in the tumor microenvironment.Experimental Design: We used an agonistic 4-1BB mAb during the initial tumor fragment culture to provide 4-1BB costimulation and assessed changes in TIL growth, phenotype, repertoire, and antitumor function.Results: Increased CD8+ TIL growth from PDAC tumors was achieved with the aid of an agonistic 4-1BB mAb. Expanded TILs were characterized by an activated but not terminally differentiated phenotype. Moreover, 4-1BB stimulation expanded a more clonal and distinct CD8+ TIL repertoire than IL2 alone. TILs from both culture conditions displayed MHC class I-restricted recognition of autologous tumor targets.Conclusions: Costimulation with an anti-4-1BB mAb increases the feasibility of TIL therapy by producing greater numbers of these tumor-reactive T cells. These results suggest that TIL ACT for PDAC is a potential treatment avenue worth further investigation for a patient population in dire need of improved therapy. Clin Cancer Res; 23(23); 7263-75. ©2017 AACR.
Collapse
Affiliation(s)
| | - Marie-Andrée Forget
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caitlin Creasy
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vincent Bernard
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Young Uk Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark W Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naohiro Uraoka
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher A Bristow
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gauri Varadhachary
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hector A Alvarez
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy P Heffernan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
30
|
Abstract
INTRODUCTION Pancreatic cancer remains a deadly disease despite advances in surgery, chemotherapy, and radiation therapy. Treatment failure is likely due to intense chemoresistance and immunosuppression. Therefore, new treatment paradigms are urgently needed. Immunotherapy, particularly adoptive T cell transfer, is a highly-personalized therapy that involves the isolation and ex vivo expansion of tumor-specific T cells before administration to cancer-bearing hosts. Areas covered: This review summarizes different strategies of adoptive T cell therapy and their application in pancreatic cancer treatment. It also highlights recent advances and gives discussion on the future directions in T cell-based immunotherapy for pancreatic cancer. Expert opinion: Pancreatic ductal adenocarcinoma is extremely challenging to treat, in part, due to intense desmoplastic reaction and immunosuppression. The recent progress in cancer immunotherapy triggers a hope to use immunotherapeutic modality to treat pancreatic cancer. Immunotherapy is generally well tolerated, and has the potential to function as a monotherapy or in synergistic combination with conventional chemotherapy. We must make efforts to optimize the immunotherapeutic regimen and to select patients to treat based on their biological profile. To accomplish this goal, an intense collaboration is needed to bridge between bench and bedside.
Collapse
Affiliation(s)
- Fang Liu
- a GI Oncology Program and Experimental Therapeutics , Tufts University School of Medicine , Boston , MA , USA.,b PGY-2, Internal Medicine Residency Program at Metrowest Medical Center , Framingham , MA , USA
| | - Muhammad Wasif Saif
- a GI Oncology Program and Experimental Therapeutics , Tufts University School of Medicine , Boston , MA , USA
| |
Collapse
|
31
|
Pickup MW, Owens P, Gorska AE, Chytil A, Ye F, Shi C, Weaver VM, Kalluri R, Moses HL, Novitskiy SV. Development of Aggressive Pancreatic Ductal Adenocarcinomas Depends on Granulocyte Colony Stimulating Factor Secretion in Carcinoma Cells. Cancer Immunol Res 2017; 5:718-729. [PMID: 28775207 DOI: 10.1158/2326-6066.cir-16-0311] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/18/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
The survival rate for pancreatic ductal adenocarcinoma (PDAC) remains low. More therapeutic options to treat this disease are needed, for the current standard of care is ineffective. Using an animal model of aggressive PDAC (Kras/p48TGFβRIIKO), we discovered an effect of TGFβ signaling in regulation of G-CSF secretion in pancreatic epithelium. Elevated concentrations of G-CSF in PDAC promoted differentiation of Ly6G+ cells from progenitors, stimulated IL10 secretion from myeloid cells, and decreased T-cell proliferation via upregulation of Arg, iNOS, VEGF, IL6, and IL1b from CD11b+ cells. Deletion of csf3 in PDAC cells or use of a G-CSF-blocking antibody decreased tumor growth. Anti-G-CSF treatment in combination with the DNA synthesis inhibitor gemcitabine reduced tumor size, increased the number of infiltrating T cells, and decreased the number of Ly6G+ cells more effectively than gemcitabine alone. Human analysis of human datasets from The Cancer Genome Atlas and tissue microarrays correlated with observations from our mouse model experiments, especially in patients with grade 1, stage II disease. We propose that in aggressive PDAC, elevated G-CSF contributes to tumor progression through promoting increases in infiltration of neutrophil-like cells with high immunosuppressive activity. Such a mechanism provides an avenue for a neoadjuvant therapeutic approach for this devastating disease. Cancer Immunol Res; 5(9); 718-29. ©2017 AACR.
Collapse
Affiliation(s)
- Michael W Pickup
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, California
| | - Philip Owens
- Department of Cancer Biology and the Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Agnieszka E Gorska
- Department of Cancer Biology and the Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Anna Chytil
- Department of Cancer Biology and the Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Fei Ye
- Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, California
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Harold L Moses
- Department of Cancer Biology and the Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Sergey V Novitskiy
- Department of Cancer Biology and the Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
32
|
Lundgren S, Karnevi E, Elebro J, Nodin B, Karlsson MCI, Eberhard J, Leandersson K, Jirström K. The clinical importance of tumour-infiltrating macrophages and dendritic cells in periampullary adenocarcinoma differs by morphological subtype. J Transl Med 2017; 15:152. [PMID: 28673320 PMCID: PMC5496326 DOI: 10.1186/s12967-017-1256-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/24/2017] [Indexed: 12/30/2022] Open
Abstract
Background Dendritic cells (DC) and tumour-associated macrophages (TAM) are essential in linking the innate and adaptive immune response against tumour cells and tumour progression. These cells are also potential target for immunotherapy as well as providing a handle to investigate immune status in the tumour microenvironment. The aim of the present study was to examine their impact on prognosis and chemotherapy response in periampullary adenocarcinoma, including pancreatic cancer, with particular reference to morphological subtype. Methods The density of tolerogenic immature CD1a+ dendritic cells (DC), and MARCO+, CD68+ and CD163+ tissue-associated macrophages (TAM) was analysed by immunohistochemistry in tissue micro arrays with tumours from 175 consecutive cases of periampullary adenocarcinoma who had undergone pancreaticoduodenectomy, 110 with pancreatobiliary type (PB-type) and 65 with intestinal type (I-type) morphology. Kaplan–Meier and Cox regression analyses were applied to determine the impact of immune cell infiltration on 5-year overall survival (OS). Results High density of CD1a+ DCs was an independent prognostic factor for a reduced OS in PB-type but not in I-type tumours (adjusted HR = 2.35; 95% CI 1.13–4.87). High density of CD68+ and CD163+ TAM was significantly associated with poor OS in the whole cohort, however only in unadjusted analysis (HR = 1.67; 95% CI 1.06–2.63, and HR = 1.84; 95% CI 1.09–3.09, respectively) and not in strata according to morphological subtype. High density of MARCO+ macrophages was significantly associated with poor prognosis in I-type but not in PB-type tumours (HR = 2.14 95% CI 1.03–4.44), and this association was only evident in patients treated with adjuvant chemotherapy. The prognostic value of the other investigated immune cells did not differ significantly in strata according to adjuvant chemotherapy. Conclusions The results from this study demonstrate that high infiltration of tolerogenic immature DCs independently predicts a shorter survival in patients with PB-type periampullary adenocarcinoma, and that high density of the MARCO+ subtype of TAMs predicts a shorter survival in patients with I-type tumours. These results emphasise the importance of taking morphological subtype into account in biomarker studies related to periampullary cancer, and indicate that therapies targeting dendritic cells may be of value in the treatment of PB-type tumours, which are associated with the worst prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1256-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Lundgren
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden.
| | - Emelie Karnevi
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Jacob Elebro
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cellbiology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Jakob Eberhard
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Center for Molecular Pathology, Lund University, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| |
Collapse
|
33
|
Khalafalla FG, Khan MW. Inflammation and Epithelial-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma: Fighting Against Multiple Opponents. CANCER GROWTH AND METASTASIS 2017; 10:1179064417709287. [PMID: 28579826 PMCID: PMC5436837 DOI: 10.1177/1179064417709287] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and one of the most lethal human cancers. Inflammation is a critical component in PDAC initiation and progression. Inflammation also contributes to the aggressiveness of PDAC indirectly via induction of epithelial-mesenchymal transition (EMT), altogether leading to enhanced resistance to chemotherapy and poor survival rates. This review gives an overview of the key pro-inflammatory signaling pathways involved in PDAC pathogenesis and discusses the role of inflammation in induction of EMT and development of chemoresistance in patients with PDAC.
Collapse
|
34
|
Bailey P, Chang DK, Forget MA, Lucas FAS, Alvarez HA, Haymaker C, Chattopadhyay C, Kim SH, Ekmekcioglu S, Grimm EA, Biankin AV, Hwu P, Maitra A, Roszik J. Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep 2016; 6:35848. [PMID: 27762323 PMCID: PMC5071896 DOI: 10.1038/srep35848] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy approaches for pancreatic ductal adenocarcinoma (PDAC) have met with limited success. It has been postulated that a low mutation load may lead to a paucity of T cells within the tumor microenvironment (TME). However, it is also possible that while neoantigens are present, an effective immune response cannot be generated due to an immune suppressive TME. To discern whether targetable neoantigens exist in PDAC, we performed a comprehensive study using genomic profiles of 221 PDAC cases extracted from public databases. Our findings reveal that: (a) nearly all PDAC samples harbor potentially targetable neoantigens; (b) T cells are present but generally show a reduced activation signature; and (c) markers of efficient antigen presentation are associated with a reduced signature of markers characterizing cytotoxic T cells. These findings suggest that despite the presence of tumor specific neoepitopes, T cell activation is actively suppressed in PDAC. Further, we identify iNOS as a potential mediator of immune suppression that might be actionable using pharmacological avenues.
Collapse
Affiliation(s)
- Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
| | - David K. Chang
- Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
| | - Marie-Andrée Forget
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Francis A. San Lucas
- Departments of Pathology and Translational Molecular Pathology, Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Hector A. Alvarez
- Departments of Pathology and Translational Molecular Pathology, Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Cara Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Chandrani Chattopadhyay
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Sun-Hee Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Elizabeth A. Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Andrew V. Biankin
- Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
35
|
Hwang HK, Kim HI, Kim SH, Choi J, Kang CM, Kim KS, Lee WJ. Prognostic impact of the tumor-infiltrating regulatory T-cell (Foxp3 +)/activated cytotoxic T lymphocyte (granzyme B +) ratio on resected left-sided pancreatic cancer. Oncol Lett 2016; 12:4477-4484. [PMID: 28105157 PMCID: PMC5228542 DOI: 10.3892/ol.2016.5252] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/22/2016] [Indexed: 01/10/2023] Open
Abstract
Among the subsets of tumor-infiltrating lymphocytes (TILs), activated cytotoxic T lymphocytes (granzyme B+) have an antitumor effect, while regulatory T lymphocytes [forkhead box P3 (Foxp3)+] suppress the antitumor immune response. The aim of the present study was to investigate the possible associations between TIL subsets and survival outcomes in patients with left-sided pancreatic ductal adenocarcinoma (PDAC). From January 2000 to December 2008, 30 patients who underwent curative distal pancreatectomy without neoadjuvant chemoradiotherapy due to left-sided PDAC were enrolled in the present study. TIL subsets were enumerated by immunohistochemical staining for cluster of differentiation (CD)3, CD4, CD8, Foxp3 and granzyme B in the intra-tumoral areas of tissue blocks. Patients were divided into two groups according to the median value of the absolute counts and relative ratios of TIL subsets. In the univariate analysis, age, gender, tumor size, nodal stage, tumor differentiation and lymphovascular/perineural invasion were not significantly associated with survival outcome. However, low levels of preoperative cancer antigen (CA) 19–9 were associated with a longer overall survival (OS), although the association was not significant (37 vs. 18 months; P=0.061). A high level of granzyme B+ was associated with enhanced disease-free survival (DFS) (25 vs. 10 months; P=0.023), and a low Foxp3+/granzyme B+ ratio was associated with a favorable prognosis in terms of DFS (25 vs. 8 months; P=0.008) and OS (47 vs. 17 months; P=0.003). In the multivariate analysis, the ratio of Foxp3+/granzyme B+ was an independent prognostic factor for determining DFS [Exp(B), 3.060; 95% confidence interval (CI), 1.259–47.436; P=0.014] and OS [Exp(B), 3.580; 95% CI, 1.460–8.780; P=0.005]. Among the clinicopathological factors, low levels of CA 19–9 were significantly associated with a low Foxp3+/granzyme B+ ratio (P=0.016). The results of the present study suggested that a low Foxp3+/granzyme B+ ratio may be useful for predicting a good prognosis in surgically resected left-sided PDAC.
Collapse
Affiliation(s)
- Ho Kyoung Hwang
- Division of Hepatobiliary and Pancreatic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hyoung-Il Kim
- Division of Gastrointestinal Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Junjeong Choi
- Department of Pharmacy, Yonsei University College of Pharmacy, Incheon 406-840, Republic of Korea
| | - Chang Moo Kang
- Division of Hepatobiliary and Pancreatic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Kyung Sik Kim
- Division of Hepatobiliary and Pancreatic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Woo Jung Lee
- Division of Hepatobiliary and Pancreatic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| |
Collapse
|
36
|
Kunk PR, Bauer TW, Slingluff CL, Rahma OE. From bench to bedside a comprehensive review of pancreatic cancer immunotherapy. J Immunother Cancer 2016; 4:14. [PMID: 26981244 PMCID: PMC4791889 DOI: 10.1186/s40425-016-0119-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
The incidence of pancreatic cancer has been increasing while its 5-year survival rate has not changed in decades. In the era of personalized medicine, immunotherapy has emerged as a promising treatment modality in a variety of malignancies, including pancreatic cancer. This review will discuss the unique pancreatic tumor microenvironment, including the cells and receptors that transform the pancreas from its normal architecture into a complex mix of suppressor immune cells and dense extracellular matrix that allows for the unrestricted growth of cancer cells. Next, we will highlight the recently completed immunotherapy clinical trials in pancreatic cancer. Finally, we will explore the on-going immunotherapy clinical trials and future directions of this engaging and changing field.
Collapse
Affiliation(s)
- Paul R Kunk
- Department of Medicine, Division of Hematology-Oncology, University of Virginia Health System, UVA Box 800716, Charlottesville, VA 22908 USA
| | - Todd W Bauer
- Department of Surgery, Division of Hepatobiliary Surgery, University of Virginia Health System, Charlottesville, VA USA
| | - Craig L Slingluff
- Department of Surgery, Division of Surgical Oncology, University of Virginia Health System, Charlottesville, VA USA
| | - Osama E Rahma
- Department of Medicine, Division of Hematology-Oncology, University of Virginia Health System, UVA Box 800716, Charlottesville, VA 22908 USA
| |
Collapse
|
37
|
Birtolo C, Go VLW, Ptasznik A, Eibl G, Pandol SJ. Phosphatidylinositol 3-Kinase: A Link Between Inflammation and Pancreatic Cancer. Pancreas 2016; 45:21-31. [PMID: 26658038 PMCID: PMC4859755 DOI: 10.1097/mpa.0000000000000531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though a strong association between inflammation and cancer has been widely accepted, the underlying precise molecular mechanisms are still largely unknown. A complex signaling network between tumor and stromal cells is responsible for the infiltration of inflammatory cells into the cancer microenvironment. Tumor stromal cells such as pancreatic stellate cells (PSCs) and immune cells create a microenvironment that protects cancer cells through a complex interaction, ultimately facilitating their local proliferation and their migration to different sites. Furthermore, PSCs have multiple functions related to local immunity, angiogenesis, inflammation, and fibrosis. Recently, many studies have shown that members of the phosphoinositol-3-phosphate kinase (PI3K) family are activated in tumor cells, PSCs, and tumor-infiltrating inflammatory cells to promote cancer growth. Proinflammatory cytokines and chemokines secreted by immune cells and fibroblasts within the tumor environment can activate the PI3K pathway both in cancer and inflammatory cells. In this review, we focus on the central role of the PI3K pathway in regulating the cross talk between immune/stromal cells and cancer cells. Understanding the role of the PI3K pathway in the development of chronic pancreatitis and cancer is crucial for the discovery of novel and efficacious treatment options.
Collapse
Affiliation(s)
- Chiara Birtolo
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA,Department of Internal Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Italy
| | - Vay Liang W. Go
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Andrzej Ptasznik
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Stephen J. Pandol
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA,VA Greater Los Angeles Health Care System, Los Angeles, CA
| |
Collapse
|
38
|
Macrophages and pancreatic ductal adenocarcinoma. Cancer Lett 2015; 381:211-6. [PMID: 26708507 DOI: 10.1016/j.canlet.2015.11.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 01/09/2023]
Abstract
Monocytes and macrophages make up part of the innate immune system and provide one of the first defenses against variety of treats. Macrophages can also modulate the adaptive immune system. Efficient sensing and response to tissue environmental cues highlights the complexity and dynamic nature of macrophages and their plasticity. Macrophages may have divergent roles depending on their polarity and stimulus received. Accumulating evidence demonstrates the critical role played by macrophages in tumor initiation, development, and progression. In this review, we discuss the characteristics of tumor-associated macrophages (TAMs) and their role in pancreatic adenocarcinoma. In addition, we give an overview on recent advances related to the therapeutic implication associated with targeting TAMs in pancreas cancer.
Collapse
|
39
|
Jiang Y, Du Z, Yang F, Di Y, Li J, Zhou Z, Pillarisetty VG, Fu D. FOXP3+ lymphocyte density in pancreatic cancer correlates with lymph node metastasis. PLoS One 2014; 9:e106741. [PMID: 25191901 PMCID: PMC4156352 DOI: 10.1371/journal.pone.0106741] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 08/09/2014] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To determine if the density of FOXP3+ lymphocytes in primary tumors and lymph nodes in pancreatic cancer correlates with the presence of lymph node metastases. METHODS FOXP3+ lymphocyte density in primary pancreatic cancer tissue and draining lymph nodes was measured using immunohistochemistry. We analyzed the clinical and pathological aspects associated with the accumulation of FOXP3+ lymphocytes in pancreatic cancer. We also analyzed the correlation of density of FOXP3+ lymphocytes in lymph nodes with the nodal status and distance from the primary tumor. RESULTS FOXP3+ lymphocyte density in pancreatic cancer was significantly higher than in paratumoral pancreatic tissue. The density of FOXP3+ lymphocytes in local tumor tissue correlated significantly with the histological grade and overall lymph node status. Furthermore, FOXP3+ lymphocyte density was significantly higher in positive lymph nodes than in negative ones, while it had no correlation with the distance of the lymph node from the primary tumor. CONCLUSION FOXP3+ lymphocyte density in primary tumor tissue in patients with pancreatic cancer correlates with lymph node metastasis. Lymph nodes containing metastases having higher FOXP3+ lymphocyte densities than do negative lymph nodes.
Collapse
Affiliation(s)
- Yongjian Jiang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Di
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Li
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongwen Zhou
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Venu G. Pillarisetty
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - Deliang Fu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
40
|
Holmer R, Goumas FA, Waetzig GH, Rose-John S, Kalthoff H. Interleukin-6: a villain in the drama of pancreatic cancer development and progression. Hepatobiliary Pancreat Dis Int 2014; 13:371-80. [PMID: 25100121 DOI: 10.1016/s1499-3872(14)60259-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with a poor prognosis and little treatment options. The development and progression of the disease is fostered by inflammatory cells and cytokines. One of these cytokines is interleukin-6 (IL-6), which plays an important role in a wide range of biologic activities. DATA SOURCES A systematic search of PubMed was performed to identify relevant studies using key words such as interleukin-6, inflammatory cytokines, inflammation and pancreatic cancer or PDAC. Articles related to IL-6 and pancreatic cancer were systematically reviewed. RESULTS IL-6 is elevated in the serum of pancreatic cancer patients and correlates with cachexia, advanced tumor stage and poor survival. Its expression is enhanced by hypoxia and proteins involved in pancreatic cancer development like Kras, mesothelin or ZIP4. IL-6 in turn contributes to the generation of a pro-tumorigenic microenvironment and is probably involved in angiogenesis and metastasis. In experimental mouse models of PDAC, IL-6 was important for the development and progression of precursor lesions. CONCLUSION IL-6 emerges as a key player in pancreatic cancer development and progression, and hence should be considered as a new therapeutic target.
Collapse
Affiliation(s)
- Reinhild Holmer
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, D-24105 Kiel, Germany.
| | | | | | | | | |
Collapse
|
41
|
Ki CS, Shih H, Lin CC. Effect of 3D matrix compositions on the efficacy of EGFR inhibition in pancreatic ductal adenocarcinoma cells. Biomacromolecules 2013; 14:3017-26. [PMID: 23889305 DOI: 10.1021/bm4004496] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Therapeutics to inhibit signaling of epidermal growth factor receptor (EGFR) has been suggested as a potential treatment for pancreatic cancers, and two-dimensional (2D) cell culture techniques are commonly used to identify and/or verify the therapeutic efficacy of EGFR inhibitors. However, drug targets identified from conventional cell culture techniques may not exhibit desired functions when these drugs are tested in animal studies, in large part due to the complicated tumor microenvironments. Hence, it is crucial to develop a biomimetic cell culture system capable of recapitulating aspects of tumor niches for studying cancer cell fate processes under the influence of various environmental stimuli. In this study, we utilized a versatile PEG-peptide hydrogel system to demonstrate the influence of matrix properties and EGFR inhibition on the growth of a pancreatic ductal adenocarcinoma cell line (PANC-1). PANC-1 cells were encapsulated in 8-arm PEG-norbornene (PEG8NB) hydrogels cross-linked by matrix metalloproteinase (MMP) sensitive peptide (MMP(Linker)) using thiol-ene photoclick chemistry. In soft hydrogels (G' ~ 2 kPa), cells retained high initial viability and formed clusters after prolonged culture, whereas cells encapsulated in stiff hydrogels (G' ~ 12 kPa) exhibited lower initial viability and reduced proliferation. While the immobilization of an EGFR peptide inhibitor, Asn-Tyr-Gln-Gln-Asn or NYQQN, in soft hydrogels did not cause cell death, this peptide induced significant cell apoptosis when immobilized in stiff hydrogels. Western blotting results showed that cell death was due to reduced expression of EGFR and Akt in stiff hydrogels under the influence of immobilized NYQQN peptide. These results shed light on the importance and non-negligible role of matrix properties on the efficacy of antitumor drugs.
Collapse
Affiliation(s)
- Chang Seok Ki
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202, United States
| | | | | |
Collapse
|
42
|
Protti MP, De Monte L. Immune infiltrates as predictive markers of survival in pancreatic cancer patients. Front Physiol 2013; 4:210. [PMID: 23950747 PMCID: PMC3738865 DOI: 10.3389/fphys.2013.00210] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/23/2013] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is a devastating disease with dismal prognosis. The tumor microenvironment is composed by multiple cell types, molecular factors, and extracellular matrix forming a strong desmoplastic reaction, which is a hallmark of the disease. A complex cross-talk between tumor cells and the stroma exists with reciprocal influence that dictates tumor progression and ultimately the clinical outcome. In this context, tumor infiltrating immune cells through secretion of chemokine and cytokines exert an important regulatory role. Here we review the correlation between the immune infiltrates, evaluated on tumor samples of pancreatic cancer patients underwent surgical resection, and disease free and/or overall survival after surgery. Specifically, we focus on tumor infiltrating lymphocytes (TILs), mast cells (MCs) and macrophages that all contribute to a Th2-type inflammatory and immunosuppressive microenvironment. In these patients tumor immune infiltrates not only do not contribute to disease eradication but rather the features of Th2-type inflammation and immunosuppression is significantly associated with more rapid disease progression and reduced survival.
Collapse
Affiliation(s)
- Maria Pia Protti
- Tumor Immunology Unit, Transplantation and Infectious Diseases, San Raffaele Scientific Institute Milan, Italy ; Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute Milan, Italy
| | | |
Collapse
|
43
|
Zheng L, Xue J, Jaffee EM, Habtezion A. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology 2013; 144:1230-40. [PMID: 23622132 PMCID: PMC3641650 DOI: 10.1053/j.gastro.2012.12.042] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/12/2012] [Accepted: 12/21/2013] [Indexed: 12/22/2022]
Abstract
Immune cells are important in the pathogenesis of acute pancreatitis and determine disease severity. Results from cytokine-based clinical trials for acute pancreatitis have been disappointing, so strategies that target and alter the behavior of infiltrating immune cells require consideration. Recurrent acute pancreatitis can progress to chronic pancreatitis, which is a well-described risk factor for pancreatic ductal adenocarcinoma (PDA). However, most patients with chronic pancreatitis do not develop PDA, and most patients with PDA do not have a history of pancreatitis. Interestingly, chronic pancreatitis and PDA tissues have similarities in their desmoplasia and inflammatory infiltrates, indicating overlapping inflammatory responses. Further studies are needed to determine the differences and similarities of these responses, improve our understanding of PDA pathogenesis, and develop specific immune-based therapies. Immune cells in PDA produce immunosuppressive signals that allow tumors to evade the immune response. Unlike single therapeutic agent studies that block immunosuppressive mechanisms, studies of combination therapies that include therapeutic vaccines have provided promising results.
Collapse
Affiliation(s)
- Lei Zheng
- Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California and The Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Xue
- Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California and The Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M. Jaffee
- Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California and The Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aida Habtezion
- Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California and The Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Iovanna JL, Marks DL, Fernandez-Zapico ME, Urrutia R. Mechanistic insights into self-reinforcing processes driving abnormal histogenesis during the development of pancreatic cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1078-86. [PMID: 23375449 DOI: 10.1016/j.ajpath.2012.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/16/2012] [Accepted: 12/24/2012] [Indexed: 12/28/2022]
Abstract
Pancreatic ductal adenocarcinoma, one of the most feared lethal and painful diseases, is increasing in incidence. The poor prognosis of pancreatic ductal adenocarcinoma-affected patients primarily is owing to our inability to develop effective therapies. Mechanistic studies of genetic, epigenetic, and cell-to-cell signaling events are providing clues to molecular pathways that can be targeted in an attempt to cure this disease. The current review article seeks to draw inferences from available mechanistic knowledge to build a theoretical framework that can facilitate these approaches. This conceptual model considers pancreatic cancer as a tissue disease rather than an isolated epithelial cell problem, which develops and progresses in large part as a result of three positive feedback loops: i) genetic and epigenetic changes in epithelial cells modulate their interaction with mesenchymal cells to generate a dynamically changing process of abnormal histogenesis, which drives more changes; ii) the faulty tissue architecture of neoplastic lesions results in unsynchronized secretion of signaling molecules by cells, which generates an environment that is poor in oxygen and nutrients; and iii) the increased metabolic needs of rapidly dividing cells serve as an evolutionary pressure for them to adapt to this adverse microenvironment, leading to the emergence of resistant clones. We discuss how these concepts can guide mechanistic studies, as well as aid in the design of novel experimental therapeutics.
Collapse
Affiliation(s)
- Juan L Iovanna
- Cancer Research Center of Marseille, Inserm U1068, CNRS, UMR7258, Institute Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|
45
|
Vernon PJ, Loux TJ, Schapiro NE, Kang R, Muthuswamy R, Kalinski P, Tang D, Lotze MT, Zeh HJ. The receptor for advanced glycation end products promotes pancreatic carcinogenesis and accumulation of myeloid-derived suppressor cells. THE JOURNAL OF IMMUNOLOGY 2012; 190:1372-9. [PMID: 23269246 DOI: 10.4049/jimmunol.1201151] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has an aggressive natural history and is resistant to therapy. The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor for many damage-associated molecular pattern molecules. RAGE is overexpressed in both human and murine models of PDA as well as most advanced epithelial neoplasms. The immunosuppressive nature of the PDA microenvironment is facilitated, in part, by the accumulation of regulatory immune cell infiltrates such as myeloid-derived suppressor cells (MDSCs). To study the role of RAGE expression in the setting of mutant Ras-promoted pancreatic carcinogenesis (KC), a triple-transgenic model of spontaneous murine PDA in a RAGE-null background (KCR) was generated. KCR mice had markedly delayed pancreatic carcinogenesis and a significant diminution of MDSCs compared with KC mice at comparable time points postweaning. Although RAGE was not required for the development or suppressor activity of MDSCs, its absence was associated with temporally limited pancreatic neoplasia and altered phenotype and function of the myeloid cells. In lieu of MDSCs, KCR animals at comparable time points exhibited mature CD11b(+)Gr1(-)F4/80(+) cells that were not immunosuppressive in vitro. KCR mice also maintained a significantly less suppressive milieu evidenced by marked decreases in CCL22 in relation to CXCL10 and diminished serum levels of IL-6.
Collapse
Affiliation(s)
- Philip J Vernon
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Evans A, Costello E. The role of inflammatory cells in fostering pancreatic cancer cell growth and invasion. Front Physiol 2012; 3:270. [PMID: 22969725 PMCID: PMC3431795 DOI: 10.3389/fphys.2012.00270] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022] Open
Abstract
The pancreatic ductal adenocarcinoma (PDAC) microenvironment accommodates a variety of cell types and a plethora of complex interactions between tumor cells, host cells and extracellular matrix (ECM) components. Here we review the role of inflammatory cells, in particular mast cells, myeloid-derived suppressor cells, macrophages, T regulatory cells, T helper cells and neutrophils. The picture that emerges is that of a tumor microenvironment, in which the immune response is actively suppressed, and inflammatory cells contribute in a variety of ways to tumor progression.
Collapse
Affiliation(s)
- Anthony Evans
- Liverpool Cancer Research UK Centre, University of Liverpool Liverpool, UK
| | | |
Collapse
|