1
|
Ye YQ, Ye MQ, Zhang XY, Huang YZ, Zhou ZY, Feng YJ, Du ZJ. Description of the first marine-isolated member of the under-represented phylum Gemmatimonadota, and the environmental distribution and ecogenomics of Gaopeijiales ord. nov. mSystems 2024; 9:e0053524. [PMID: 39560406 DOI: 10.1128/msystems.00535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
The phylum Gemmatimonadota is widespread but rarely cultured and, in fact, there are only six described species isolated from soil, freshwater, and wastewater treatment. However, no isolates of Gemmatimonadota from marine environment have been described; thus, little is known about the physiology and metabolism of members of the marine lineages. In this study, four novel facultatively anaerobic bacterial strains belonging to Gemmatimonadota were isolated from marine sediments collected from Xiaoshi Island in Weihai, China, using an aerobic enrichment method. The integrated results of phylogenetic and phenotypic characteristics supported that these four strains represent one novel species in a novel genus, for which the name Gaopeijia maritima gen. nov., sp. nov. is proposed, as the first representative of novel taxa, Gaopeijiales ord. nov., Gaopeijiaceae fam. nov. in the class Longimicrobiia. Gaopeijiales was detected in 22,884 out of 95,549 amplicon data sets, mainly from soil. However, the highest mean relative abundances were in sponge (0.7%) and marine sediment (0.35%), showing salt-related character. Most of the Gaopeijiales subgroups potentially belong to the rare bacterial biosphere. The aerobic enrichment in this study could significantly increase the relative abundance of Gaopeijiales (from 0.37% to 2.6%). Furthermore, the metabolic capabilities inferred from high-quality representative Gaopeijiales genomes/MAGs suggest that this group primarily performs chemoorganoheterotrophic metabolism with facultatively anaerobic characteristics and possesses various secondary metabolite biosynthesis gene clusters (BGCs), mirroring those observed in the four novel strains.IMPORTANCEDespite rapid advances in molecular and sequencing technologies, obtaining pure cultures remains a crucial research goal in microbiology, as it is essential for a deeper understanding of microbial metabolism. Gemmatimonadota is a widespread but rarely cultured bacterial phylum. Currently, there are only six cultured strains of this interesting group, all isolated from non-marine environments. Little is known about the physiology and metabolism of members of the marine lineages. Here we isolated and characterized four novel marine strains, and proposed a new order Gaopeijiales within Gemmatimonadota. Furthermore, the global distribution, environmental preference, and metabolic potential of Gaopeijiales are analyzed using public data. Our work enriches the resources available for the under-represented phylum Gemmatimonadota and provides insights into the physiological and metabolic characteristics of the marine lineage (Gaopeijiales) through culturology and omics.
Collapse
Affiliation(s)
- Yu-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
| | - Xin-Yue Zhang
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - You-Zhi Huang
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zi-Yang Zhou
- Marine College, Shandong University, Weihai, Shandong, China
| | - Yan-Jun Feng
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Du J, Wang Z, Hu L, Wang L, Fang J, Liu R. Comparative Genomics Reveal Distinct Environment Preference and Functional Adaptation Among Lineages of Gemmatimonadota. Microorganisms 2024; 12:2198. [PMID: 39597587 PMCID: PMC11596202 DOI: 10.3390/microorganisms12112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Bacteria in the phylum Gemmatimonadota are globally distributed and abundant in microbial communities of various environments, playing an important role in driving biogeochemical cycling on Earth. Although high diversities in taxonomic composition and metabolic capabilities have been reported, little is known about the environmental preferences and associated functional features that facilitate adaptation among different Gemmatimonadota lineages. This study systematically analyzed the relationships between the environments, taxonomy, and functions of Gemmatimonadota lineages, by using a comparative genomics approach based on 1356 Gemmatimonadota genomes (213 high-quality and non-redundant genomes) available in a public database (NCBI). The taxonomic analysis showed that the 99.5% of the genomes belong to the class Gemmatimonadetes, and the rest of the genomes belong to the class Glassbacteria. Functional profiling revealed clear environmental preference among different lineages of Gemmatimonadota, and a marine group and two non-marine groups were identified and tested to be significantly different in functional composition. Further annotation and statistical comparison revealed a large number of functional genes (e.g., amiE, coxS, yfbK) that were significantly enriched in genomes from the marine group, supporting enhanced capabilities in energy acquisition, genetic information regulation (e.g., DNA repair), electrolyte homeostasis, and growth rate control. These genomic features are important for their survival in the marine environment, which is oligotrophic, variable, and with high salinity. The findings enhanced our understanding of the metabolic processes and environmental adaptation of Gemmatimonadota, and further advanced the understanding of the interactions of microorganisms and their habitats.
Collapse
Affiliation(s)
| | | | | | | | | | - Rulong Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (J.D.); (Z.W.); (L.H.); (L.W.); (J.F.)
| |
Collapse
|
3
|
Qi Q, Ning S, Guo X, Zhao J, Tian R, Gui H, He JS, Wang H, Zhang Z, Konstantinidis KT, Gao Q, Wang Y, Li S, Zhao W, Yang Y, Zhou J. More sensitive microbial responses to the interactive effects of warming and altered precipitation in subsoil than topsoil of an alpine grassland ecosystem. GLOBAL CHANGE BIOLOGY 2024; 30:e17487. [PMID: 39254230 DOI: 10.1111/gcb.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 09/11/2024]
Abstract
Subsoil is a large organic carbon reservoir, storing more than half of the total soil organic carbon (SOC) globally. Conventionally, subsoil is assumed to not be susceptible to climate change, but recent studies document that climate change could significantly alter subsoil carbon cycling. However, little is known about subsoil microbial responses to the interactive effects of climate warming and altered precipitation. Here, we investigated carbon cycling and associated microbial responses in both subsoil (30-40 cm) and topsoil (0-10 cm) in a Tibetan alpine grassland over 4 years of warming and altered precipitation. Compared to the unchanged topsoil carbon (β = .55, p = .587), subsoil carbon exhibited a stronger response to the interactive effect of warming and altered precipitation (β = 2.04, p = .021), that is, warming decreased subsoil carbon content by 28.20% under decreased precipitation while warming increased subsoil carbon content by 18.02% under increased precipitation.Furthermore, 512 metagenome-assembled genomes (MAGs) were recovered, including representatives of phyla with poor genomic representation. Compared to only one changed topsoil MAG, 16 subsoil MAGs were significantly affected by altered precipitation, and 5 subsoil MAGs were significantly affected by the interactive effect of warming and precipitation. More than twice as many populations whose MAG abundances correlated significantly with the variations of carbon content, components and fluxes were observed in the subsoil than topsoil, suggesting their potential contribution in mediating subsoil carbon cycling. Collectively, our findings highlight the more sensitive responses of specific microbial lineages to the interactive effects of warming and altered precipitation in the subsoil than topsoil, and provide key information for predicting subsoil carbon cycling under future climate change scenarios.
Collapse
Affiliation(s)
- Qi Qi
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Shijie Ning
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xue Guo
- State Key Laboratory of Urban and Regional Ecology, Research Center for eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jianshu Zhao
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Renmao Tian
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Haoran Gui
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Institute of Ecology,College of Urban and Environmental Sciences, and Key Laboratory for EarthSurface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Hao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhenhua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Qun Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education and State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yuxin Wang
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunyi Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
4
|
Gong X, Xu L, Langwig MV, Chen Z, Huang S, Zhao D, Su L, Zhang Y, Francis CA, Liu J, Li J, Baker BJ. Globally distributed marine Gemmatimonadota have unique genomic potentials. MICROBIOME 2024; 12:149. [PMID: 39123272 PMCID: PMC11316326 DOI: 10.1186/s40168-024-01871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecological roles in marine environments are poorly understood. RESULTS Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein composition and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxidizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, viruses associated with Gemmatimonadota have the potential to "hijack" and manipulate host metabolism, including the assembly of the lipopolysaccharide in their hosts. CONCLUSIONS This expanded genomic diversity advances our understanding of these globally distributed bacteria across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities. Video Abstract.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong, China.
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Marguerite V Langwig
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Shujie Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Duo Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Yan Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Christopher A Francis
- Departments of Earth System Science & Oceans, Stanford University, Stanford, CA, 94305, USA
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China.
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
5
|
Haufschild T, Kallscheuer N, Hammer J, Kohn T, Kabuu M, Jogler M, Wohlfarth N, Rohde M, van Teeseling MCF, Jogler C. An untargeted cultivation approach revealed Pseudogemmatithrix spongiicola gen. nov., sp. nov., and sheds light on the gemmatimonadotal mode of cell division: binary fission. Sci Rep 2024; 14:16764. [PMID: 39034380 PMCID: PMC11271474 DOI: 10.1038/s41598-024-67408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Members of the phylum Gemmatimonadota can account for up to 10% of the phylogenetic diversity in bacterial communities. However, a detailed investigation of their cell biology and ecological roles is restricted by currently only six characterized species. By combining low-nutrient media, empirically determined inoculation volumes and long incubation times in a 96-well plate cultivation platform, we isolated two strains from a limnic sponge that belong to this under-studied phylum. The characterization suggests that the two closely related strains constitute a novel species of a novel genus, for which we introduce the name Pseudogemmatithrix spongiicola. The here demonstrated isolation of novel members from an under-studied bacterial phylum substantiates that the cultivation platform can provide access to axenic bacterial cultures from various environmental samples. Similar to previously described members of the phylum, the novel isolates form spherical appendages at the cell poles that were believed to be daughter cells resulting from asymmetric cell division by budding. However, time-lapse microscopy experiments and quantitative image analysis showed that the spherical appendages never grew or divided. Although the role of these spherical cells remains enigmatic, our data suggests that cells of the phylum Gemmatimonadota divide via FtsZ-based binary fission with different division plane localization patterns than in other bacterial phyla.
Collapse
Affiliation(s)
- Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Timo Kohn
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicole Wohlfarth
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Muriel C F van Teeseling
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
6
|
Oren A, Göker M. Validation List no. 213. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2023; 73. [PMID: 37787078 DOI: 10.1099/ijsem.0.005997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures,, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
7
|
Mujakić I, Cabello-Yeves PJ, Villena-Alemany C, Piwosz K, Rodriguez-Valera F, Picazo A, Camacho A, Koblížek M. Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota. Microbiol Spectr 2023; 11:e0111223. [PMID: 37732776 PMCID: PMC10581226 DOI: 10.1128/spectrum.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
Gemmatimonadota is a diverse bacterial phylum commonly found in environments such as soils, rhizospheres, fresh waters, and sediments. So far, the phylum contains just six cultured species (five of them sequenced), which limits our understanding of their diversity and metabolism. Therefore, we analyzed over 400 metagenome-assembled genomes (MAGs) and 5 culture-derived genomes representing Gemmatimonadota from various aquatic environments, hydrothermal vents, sediments, soils, and host-associated (with marine sponges and coral) species. The principal coordinate analysis based on the presence/absence of genes in Gemmatimonadota genomes and phylogenomic analysis documented that marine and host-associated Gemmatimonadota were the most distant from freshwater and wastewater species. A smaller genome size and coding sequences (CDS) number reduction were observed in marine MAGs, pointing to an oligotrophic environmental adaptation. Several metabolic pathways are restricted to specific environments. For example, genes for anoxygenic phototrophy were found only in freshwater, wastewater, and soda lake sediment genomes. There were several genomes from soda lake sediments and wastewater containing type IC/ID ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Various genomes from wastewater harbored bacterial type II RuBisCO, whereas RuBisCO-like protein was found in genomes from fresh waters, soil, host-associated, and marine sediments. Gemmatimonadota does not contain nitrogen fixation genes; however, the nosZ gene, involved in the reduction of N2O, was present in genomes from most environments, missing only in marine water and host-associated Gemmatimonadota. The presented data suggest that Gemmatimonadota evolved as an organotrophic species relying on aerobic respiration and then remodeled its genome inventory when adapting to particular environments. IMPORTANCE Gemmatimonadota is a rarely studied bacterial phylum consisting of a handful of cultured species. Recent culture-independent studies documented that these organisms are distributed in many environments, including soil, marine, fresh, and waste waters. However, due to the lack of cultured species, information about their metabolic potential and environmental role is scarce. Therefore, we collected Gemmatimonadota metagenome-assembled genomes (MAGs) from different habitats and performed a systematic analysis of their genomic characteristics and metabolic potential. Our results show how Gemmatimonadota have adapted their genomes to different environments.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Pedro J. Cabello-Yeves
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
8
|
Srivastava A, Verma D. Comparative bacteriome and antibiotic resistome analysis of water and sediment of the Ganga River of India. World J Microbiol Biotechnol 2023; 39:294. [PMID: 37656255 DOI: 10.1007/s11274-023-03730-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
A comparative analysis between water and sediment can provide better information to understand the dynamics of the inhabitant microbiome and their respective antibiotic resistance genes of a river. Therefore, the present investigation was carried to explore the limited information available on bacterial microbiome and their predictive antibiotic resistance genes (ARGs) from water and sediment of the Ganga River. The study utilized the NGS-based sequences previously submitted under the accession number (PRJNA847424 and PRJNA892876). Overall analysis revealed that twenty phyla and fifty-four genera were shared between the water and sediment of the Ganga River. Of them, nine phyla and nineteen genera were observed as significantly different (p-value < 0.05). Where the majority of the genera were associated with the sediment samples over the water that identify the sediment samples as more diverse for species richness. Similarly, seventy-six ARGs were shared between water and sediment samples. Of the ten abundant antibiotic resistance pathways, seven were relatively abundant in sediment samples as compared to the water. Vancomycin resistance genes were significantly more abundant among sediment samples, whereas β-lactam resistance genes were equally distributed in water and sediment samples. The network analysis further revealed that five genera (Flavobacterium, Pseudomonas, Acinetobacter, Candidatus_divison CL5003, and Candidatus_division SWB02) showed a significantly positive correlation with six antibiotic resistance pathways (β-lactam, vancomycin, multidrug resistance, tetracycline, aminoglycoside, and macrolide resistance pathways). The study comes out with several findings where sediment may be considered as a more atrocious habitat for evolving the resistance mechanisms against threatful antibiotics over the water samples of the Ganga River.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Environmental Microbiology, School of Earth and Environemntal Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environemntal Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
9
|
Structure and Function Analysis of Cultivated Meconopsis integrifolia Soil Microbial Community Based on High-Throughput Sequencing and Culturability. BIOLOGY 2023; 12:biology12020160. [PMID: 36829439 PMCID: PMC9952792 DOI: 10.3390/biology12020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
(1) Background: The structure, function, and community interactions of soil microbial communities of cultivated Meconopsis integrifolia were characterized by studying this alpine flower and traditional endangered Tibetan medicine. (2) Methods: Soil bacteria and fungi were studied based on high-throughput sequencing technology. Bacteria were isolated using culturomics and functionally identified as IAA-producing, organic phosphorus-dissolving, inorganic phosphorus-dissolving, and iron-producing carriers. (3) Results: The dominant bacterial phyla were found to be Proteobacteria and Acidobacteria, and unclassified_Rhizobiales was the most abundant genus. Ascomycota and Mortierellomycota were the dominant fungal phyla. The bacteria were mainly carbon and nitrogen metabolizers, and the fungi were predominantly Saprotroph-Symbiotroph. The identified network was completely dominated by positive correlations, but the fungi were more complex than the bacteria, and the bacterial keystones were unclassified_Caulobacteraceae and Pedobacter. Most of the keystones of fungi belonged to the phyla Ascomycetes and Basidiomycota. The highest number of different species of culturable bacteria belonged to the genus Streptomyces, with three strains producing IAA, 12 strains solubilizing organic phosphorus, one strain solubilizing inorganic phosphorus, and nine strains producing iron carriers. (4) Conclusions: At the cost of reduced ecological stability, microbial communities increase cooperation toward promoting overall metabolic efficiency and enabling their survival in the extreme environment of the Tibetan Plateau. These pioneering results have value for the protection of endangered Meconopsis integrifolia under global warming and the sustainable utilization of its medicinal value.
Collapse
|
10
|
Highlander SK, Wood JM, Gillece JD, Folkerts M, Fofanov V, Furstenau T, Singh NK, Guan L, Seuylemezian A, Benardini JN, Engelthaler DM, Venkateswaran K, Keim PS. Multi-faceted metagenomic analysis of spacecraft associated surfaces reveal planetary protection relevant microbial composition. PLoS One 2023; 18:e0282428. [PMID: 36947490 PMCID: PMC10032485 DOI: 10.1371/journal.pone.0282428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
The National Aeronautics and Space Administration (NASA) has been monitoring the microbial burden of spacecraft since the 1970's Viking missions. Originally culture-based and then focused 16S sequencing techniques were used, but we have now applied whole metagenomic sequencing to a variety of cleanroom samples at the Jet Propulsion Lab (JPL), including the Spacecraft Assembly Facility (SAF) with the goals of taxonomic identification and for functional assignment. Our samples included facility pre-filters, cleanroom vacuum debris, and surface wipes. The taxonomic composition was carried out by three different analysis tools to contrast marker, k-mer, and true alignment approaches. Hierarchical clustering analysis of the data separated vacuum particles from other SAF DNA samples. Vacuum particle samples were the most diverse while DNA samples from the ISO (International Standards Organization) compliant facilities and the SAF were the least diverse; all three were dominated by Proteobacteria. Wipe samples had higher diversity and were predominated by Actinobacteria, including human commensals Cutibacterium acnes and Corynebacterium spp. Taxa identified by the three methods were not identical, supporting the use of multiple methods for metagenome characterization. Likewise, functional annotation was performed using multiple methods. Vacuum particles and SAF samples contained strong signals of the tricarboxylic acid cycle and of amino acid biosynthesis, suggesting that many of the identified microorganisms have the ability to grow in nutrient-limited environments. In total, 18 samples generated high quality metagenome assembled genomes (MAG), which were dominated by Moraxella osloensis or Malassezia restricta. One M. osloensis MAG was assembled into a single circular scaffold and gene annotated. This study includes a rigorous quantitative determination of microbial loads and a qualitative dissection of microbial composition. Assembly of multiple specimens led to greater confidence for the identification of particular species and their predicted functional roles.
Collapse
Affiliation(s)
- Sarah K Highlander
- Pathogen and Microbiome Division, The Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Jason M Wood
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group, Pasadena, California, United States of America
| | - John D Gillece
- Pathogen and Microbiome Division, The Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
- Pathogen & Microbiome Institute (PMI), Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Megan Folkerts
- Pathogen and Microbiome Division, The Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Viacheslav Fofanov
- Pathogen & Microbiome Institute (PMI), Northern Arizona University, Flagstaff, Arizona, United States of America
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Tara Furstenau
- Pathogen & Microbiome Institute (PMI), Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Nitin K Singh
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group, Pasadena, California, United States of America
| | - Lisa Guan
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group, Pasadena, California, United States of America
| | - Arman Seuylemezian
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group, Pasadena, California, United States of America
| | - James N Benardini
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group, Pasadena, California, United States of America
| | - David M Engelthaler
- Pathogen and Microbiome Division, The Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group, Pasadena, California, United States of America
| | - Paul S Keim
- Pathogen and Microbiome Division, The Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
- Pathogen & Microbiome Institute (PMI), Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
11
|
The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica. Microorganisms 2022; 11:microorganisms11010027. [PMID: 36677319 PMCID: PMC9862903 DOI: 10.3390/microorganisms11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The bacterium Gemmatimonas phototrophica AP64 isolated from a freshwater lake in the western Gobi Desert represents the first phototrophic member of the bacterial phylum Gemmatimonadota. This strain was originally cultured on agar plates because it did not grow in liquid medium. In contrast, the closely related species G. groenlandica TET16 grows both on solid and in liquid media. Here, we show that the growth of G. phototrophica in liquid medium can be induced by supplementing the medium with 20 mg CaCl2 L-1. When grown at a lower concentration of calcium (2 mg CaCl2 L-1) in the liquid medium, the growth was significantly delayed, cells were elongated and lacked flagella. The elevated requirement for calcium is relatively specific as it can be partially substituted by strontium, but not by magnesium. The transcriptome analysis documented that several groups of genes involved in flagella biosynthesis and transport of transition metals were co-activated after amendment of 20 mg CaCl2 L-1 to the medium. The presented results document that G. phototrophica requires a higher concentration of calcium for its metabolism and growth compared to other Gemmatimonas species.
Collapse
|
12
|
Perrone MR, Romano S, De Maria G, Tundo P, Bruno AR, Tagliaferro L, Maffia M, Fragola M. Simultaneous monitoring of SARS-CoV-2 and bacterial profiles from the air of hospital environments with COVID-19-affected patients. AEROBIOLOGIA 2022; 38:391-412. [PMID: 36097443 PMCID: PMC9453715 DOI: 10.1007/s10453-022-09754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED The SARS-CoV-2 presence and the bacterial community profile in air samples collected at the Intensive Care Unit (ICU) of the Operational Unit of Infectious Diseases of Santa Caterina Novella Hospital in Galatina (Lecce, Italy) have been evaluated in this study. Air samplings were performed in different rooms of the ICU ward with and without COVID-19 patients. No sample was found positive to SARS-CoV-2, according to Allplex 2019-nCoV Assay. The airborne bacterial community profiles determined by the 16S rRNA gene metabarcoding approach up to the species level were characterized by richness and biodiversity indices, Spearman correlation coefficients, and Principal Coordinate Analysis. Pathogenic and non-pathogenic bacterial species, also detected in outdoor air samples, were found in all collected indoor samples. Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and others coagulase-negative staphylococci, detected at high relative abundances in all the patients' rooms, were the most abundant pathogenic species. The highest mean relative abundance of S. pettenkoferi and C. tuberculostearicum suggested that they were likely the main pathogens of COVID-19 patients at the ICU ward of this study. The identification of nosocomial pathogens representing potential patients' risks in ICU COVID-19 rooms and the still controversial airborne transmission of the SARS-CoV-2 are the main contributions of this study. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-022-09754-7.
Collapse
Affiliation(s)
- Maria Rita Perrone
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Salvatore Romano
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Giuseppe De Maria
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Paolo Tundo
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Anna Rita Bruno
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Luigi Tagliaferro
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Mattia Fragola
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
13
|
(Meta)Genomic Analysis Reveals Diverse Energy Conservation Strategies Employed by Globally Distributed Gemmatimonadota. mSystems 2022; 7:e0022822. [PMID: 35913193 PMCID: PMC9426454 DOI: 10.1128/msystems.00228-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gemmatimonadota is a phylum-level lineage distributed widely but rarely reported. Only six representatives of Gemmatimonadota have so far been isolated and cultured in laboratory. The physiology, ecology, and evolutionary history of this phylum remain unknown. The 16S rRNA gene survey of our salt lake and deep-sea sediments, and Earth Microbiome Project (EMP) samples, reveals that Gemmatimonadota exist in diverse environments globally. In this study, we retrieved 17 metagenome-assembled genomes (MAGs) from salt lake sediments (12 MAGs) and deep-sea sediments (5 MAGs). Analysis of these MAGs and the nonredundant MAGs or genomes from public databases reveals Gemmatimonadota can degrade various complex organic substrates, and mainly employ heterotrophic pathways (e.g., glycolysis and tricarboxylic acid [TCA] cycle) for growth via aerobic respiration. And the processes of sufficient energy being stored in glucose through gluconeogenesis, followed by the synthesis of more complex compounds, are prevalent in Gemmatimonadota. A highly expandable pangenome for Gemmatimonadota has been observed, which presumably results from their adaptation to thriving in diverse environments. The enrichment of the Na+/H+ antiporter in the SG8-23 order represents their adaptation to salty habitats. Notably, we identified a novel lineage of the SG8-23 order, which is potentially anoxygenic phototrophic. This lineage is not closely related to the phototrophs in the order of Gemmatimonadales. The two orders differ distinctly in the gene organization and phylogenetic relationship of their photosynthesis gene clusters, indicating photosystems in Gemmatimonadota have evolved in two independent routes. IMPORTANCE The phylum Gemmatimonadota is widely distributed in various environments. However, their physiology, ecology and evolutionary history remain unknown, primary due to the limited cultured isolates and available genomes. We were intrigued to find out how widespread this phylum is, and how it can thrive under diverse conditions. Our results here expand the knowledge of the genetic and metabolic diversity of Gemmatimonadota, and shed light on the diverse energy conservation strategies (i.e., oxidative phosphorylation, substrate phosphorylation, and photosynthetic phosphorylation) responsible for their global distribution. Moreover, gene organization and phylogenetic analysis of photosynthesis gene clusters in Gemmatimonadota provide a valuable insight into the evolutionary history of photosynthesis.
Collapse
|
14
|
Oshiki M, Toyama Y, Suenaga T, Terada A, Kasahara Y, Yamaguchi T, Araki N. N 2O Reduction by Gemmatimonas aurantiaca and Potential Involvement of Gemmatimonadetes Bacteria in N 2O Reduction in Agricultural Soils. Microbes Environ 2022; 37. [PMID: 35418546 PMCID: PMC9530729 DOI: 10.1264/jsme2.me21090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Agricultural soil is the primary N2O sink limiting the emission of N2O gas into the atmosphere. Although Gemmatimonadetes bacteria are abundant in agricultural soils, limited information is currently available on N2O reduction by Gemmatimonadetes bacteria. Therefore, the effects of pH and temperature on N2O reduction activities and affinity constants for N2O reduction were examined by performing batch experiments using an isolate of Gemmatimonadetes bacteria, Gemmatimonas aurantiaca (NBRC100505T). G. aurantiaca reduced N2O at pH 5–9 and 4–50°C, with the highest activity being observed at pH 7 and 30°C. The affinity constant of G. aurantiaca cells for N2O was 4.4 μM. The abundance and diversity of the Gemmatimonadetes 16S rRNA gene and nosZ encoding nitrous oxide reductase in agricultural soil samples were also investigated by quantitative PCR (qPCR) and amplicon sequencing analyses. Four N2O-reducing agricultural soil samples were assessed, and the copy numbers of the Gemmatimonadetes 16S rRNA gene (clades G1 and G3), nosZ DNA, and nosZ mRNA were 8.62–9.65×108, 5.35–7.15×108, and 2.23–4.31×109 copies (g dry soil)–1, respectively. The abundance of the nosZ mRNA of Gemmatimonadetes bacteria and OTU91, OUT332, and OTU122 correlated with the N2O reduction rates of the soil samples tested, suggesting N2O reduction by Gemmatimonadetes bacteria. Gemmatimonadetes 16S rRNA gene reads affiliated with OTU4572 and OTU3759 were predominant among the soil samples examined, and these Gemmatimonadetes OTUs have been identified in various types of soil samples.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College.,Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Yuka Toyama
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| | | | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology
| | | | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology
| | - Nobuo Araki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| |
Collapse
|
15
|
Xue Y, Jin T, Gao C, Li C, Zhou T, Wan D, Yang M. Effects of biodegradable film mulching on bacterial diversity in soils. Arch Microbiol 2022; 204:195. [PMID: 35217920 DOI: 10.1007/s00203-022-02799-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
The spread of biodegradable plastic films (BDFs) not only increases grain yield but also reduces environmental pollution from plastic film to a large extent. Soil microbes are considered to be involved in biodegradation processes. However, the study of microbe diversity in soil mulched with biodegradable plastic film remains limited. Here, we compared the diversity of microbes between soils with biodegradable film and nonbiodegradable film (NBDF) mulch. The results showed that BDFs affected total C, P and NH4+-N, especially organism C content, as well as microbe species richness (ACE; Chao1) and diversity (Simpson index; Shannon index). In terms of dominant phyla and genera, BDFs and NBDF can influence the abundance of disparate species. Furthermore, BDFs could also contribute to improving the richness of the important functional bacterial groups in soil, e.g., Pedomicrobium and Comamonas, both of which are involved in the degradation of plastic residues in soil. Finally, we found that BDFs improved the transformation of nitrogen by significantly increasing the abundances of Nitrobacter and Nitrospira. Our results highlight the impact of BDF mulch on the abundance of functional bacteria in the soil.
Collapse
Affiliation(s)
- Yinghao Xue
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.,Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Tuo Jin
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Chengyu Gao
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Chongxiao Li
- Agricultural Ecology and Resource Protection Technology Extension Station of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| | - Tao Zhou
- Agricultural Ecology and Resource Protection Technology Extension Station of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Mengran Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
16
|
Mujakić I, Piwosz K, Koblížek M. Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms 2022; 10:microorganisms10010151. [PMID: 35056600 PMCID: PMC8779627 DOI: 10.3390/microorganisms10010151] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Bacteria are an important part of every ecosystem that they inhabit on Earth. Environmental microbiologists usually focus on a few dominant bacterial groups, neglecting less abundant ones, which collectively make up most of the microbial diversity. One of such less-studied phyla is Gemmatimonadota. Currently, the phylum contains only six cultured species. However, data from culture-independent studies indicate that members of Gemmatimonadota are common in diverse habitats. They are abundant in soils, where they seem to be frequently associated with plants and the rhizosphere. Moreover, Gemmatimonadota were found in aquatic environments, such as freshwaters, wastewater treatment plants, biofilms, and sediments. An important discovery was the identification of purple bacterial reaction centers and anoxygenic photosynthesis in this phylum, genes for which were likely acquired via horizontal gene transfer. So far, the capacity for anoxygenic photosynthesis has been described for two cultured species: Gemmatimonas phototrophica and Gemmatimonas groenlandica. Moreover, analyses of metagenome-assembled genomes indicate that it is also common in uncultured lineages of Gemmatimonadota. This review summarizes the current knowledge about this understudied bacterial phylum with an emphasis on its environmental distribution.
Collapse
Affiliation(s)
- Izabela Mujakić
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Kasia Piwosz
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|
17
|
Jia B, Chang X, Fu Y, Heng W, Ye Z, Liu P, Liu L, Al Shoffe Y, Watkins CB, Zhu L. Metagenomic analysis of rhizosphere microbiome provides insights into occurrence of iron deficiency chlorosis in field of Asian pears. BMC Microbiol 2022; 22:18. [PMID: 34996363 PMCID: PMC8742312 DOI: 10.1186/s12866-021-02432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/28/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Fe-deficiency chlorosis (FDC) of Asian pear plants is widespread, but little is known about the association between the microbial communities in the rhizosphere soil and leaf chlorosis. The leaf mineral concentration, leaf subcellular structure, soil physiochemical properties, and bacterial species community and distribution had been analysed to gain insights into the FDC in Asian pear plant. RESULTS The total Fe in leaves with Fe-deficiency was positively correlated with total K, Mg, S, Cu, Zn, Mo and Cl contents, but no differences of available Fe (AFe) were detected between the rhizosphere soil of chlorotic and normal plants. Degraded ribosomes and degraded thylakloid stacks in chloroplast were observed in chlorotic leaves. The annotated microbiome indicated that there were 5 kingdoms, 52 phyla, 94 classes, 206 orders, 404 families, 1,161 genera, and 3,043 species in the rhizosphere soil of chlorotic plants; it was one phylum less and one order, 11 families, 59 genera, and 313 species more than in that of normal plant. Bacterial community and distribution patterns in the rhizosphere soil of chlorotic plants were distinct from those of normal plants and the relative abundance and microbiome diversity were more stable in the rhizosphere soils of normal than in chlorotic plants. Three (Nitrospira defluvii, Gemmatirosa kalamazoonesis, and Sulfuricella denitrificans) of the top five species (N. defluvii, G. kalamazoonesis, S. denitrificans, Candidatus Nitrosoarchaeum koreensis, and Candidatus Koribacter versatilis). were the identical and aerobic in both rhizosphere soils, but their relative abundance decreased by 48, 37, and 22%, respectively, and two of them (G. aurantiaca and Ca. S. usitatus) were substituted by an ammonia-oxidizing soil archaeon, Ca. N. koreensis and a nitrite and nitrate reduction related species, Ca. K. versatilis in that of chlorotic plants, which indicated the adverse soil aeration in the rhizosphere soil of chlorotic plants. A water-impermeable tables was found to reduce the soil aeration, inhibit root growth, and cause some absorption root death from infection by Fusarium solani. CONCLUSIONS It was waterlogging or/and poor drainage of the soil may inhibit Fe uptake not the amounts of AFe in the rhizosphere soil of chlorotic plants that caused FDC in this study.
Collapse
Affiliation(s)
- Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Xiao Chang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Yuanyuan Fu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Wei Heng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Zhenfeng Ye
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Pu Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Li Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Yosef Al Shoffe
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Liwu Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China.
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
18
|
Chen Y, Chen H, Chen Z, Hu H, Deng C, Wang X. The benefits of autotrophic nitrogen removal from high concentration of urea wastewater through a process of urea hydrolysis and partial nitritation in sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112762. [PMID: 34022646 DOI: 10.1016/j.jenvman.2021.112762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
For the sake of high efficiency and saving operational cost for high-concentration urea wastewater treatment, a novel two-stage partial nitritation (PN)-anammox process containing simultaneous urea hydrolysis and PN in sequencing batch reactor (SBR) was investigated. Although the influent urea concentration increased from 500 to 1200 mg/L, the SBR simultaneously achieved urea removal efficiency higher than 98% and stable PN with effluent NO2--N/NH4+-N ratio of 1.0-1.3 without any extra alkalinity addition. The intracellular hydrolysis was the dominant mechanism for urea removal and persistent free ammonia inhibition on nitrite-oxidizing bacteria was the main reason for nitrite accumulation of 97.92% in SBR. The subsequent anammox reactor showed efficient nitrogen removal performance with average ammonium removal efficiency, nitrogen removal efficiency and maximum nitrogen removal loading rate of 98.08%, 81.45% and 1.05 kg N·m-3·d-1 respectively. High-throughput sequencing results indicated Gemmatimonadetes became the most abundant bacterial phylum related to potential intracellular urea hydrolysis and displayed obvious ammonium-oxidizing bacteria enrichment and nitrite-oxidizing bacteria inhibition in SBR, and the dominant anammox bacteria (Candidatus_Kuenenia) in anammox reactor. The proposed process was proven to be promising for high-concentration urea wastewater treatment, facilitating the sustainable development of the urea industry in the future.
Collapse
Affiliation(s)
- Yongxing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Haochuan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Zhenguo Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China; Hua An Biotech Co., Ltd., Foshan, 528300, China
| | - Haolin Hu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Cuilan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China; Hua An Biotech Co., Ltd., Foshan, 528300, China.
| |
Collapse
|
19
|
Wang J, Xie J, Li L, Luo Z, Zhang R, Wang L, Jiang Y. The Impact of Fertilizer Amendments on Soil Autotrophic Bacteria and Carbon Emissions in Maize Field on the Semiarid Loess Plateau. Front Microbiol 2021; 12:664120. [PMID: 34220750 PMCID: PMC8249863 DOI: 10.3389/fmicb.2021.664120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Soil autotrophic bacteria play a crucial role in regulating CO2 fixation and crop productivity. However, the information is limited to how fertilization amendments alter soil autotrophic bacterial community, crop yield, and carbon emission efficiency (CEE). Here, we estimated the impact of the structure and co-occurrence network of soil autotrophic bacterial community on maize yield and CEE. A long-term field experiment was conducted with five fertilization treatments in semiarid Loess Plateau, including no amendment (NA), chemical fertilizer (CF), chemical fertilizer plus commercial organic fertilizer (SC), commercial organic fertilizer (SM), and maize straw (MS). The results showed that fertilization amendments impacted the structure and network of soil Calvin-Benson-Bassham (CBB) (cbbL) gene-carrying bacterial community via changing soil pH and NO3-N. Compared with no amendment, the cbbL-carrying bacterial diversity was increased under the SC, SM, and MS treatments but decreased under the CF treatment. Soil autotrophic bacterial network contained distinct microbial modules that consisted of closely associated microbial species. We detected the higher abundances of soil cbbL-carrying bacterial genus Xanthobacter, Bradyrhizobium, and Nitrosospira. Structural equation modeling further suggested that the diversity, composition, and network of autotrophic bacterial community had strongly positive relationships with CEE and maize yield. Taken together, our results suggest that soil autotrophic bacterial community may drive crop productivity and CEE, and mitigate the atmospheric greenhouse effect.
Collapse
Affiliation(s)
- Jinbin Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China.,College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Junhong Xie
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China.,College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lingling Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China.,College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhuzhu Luo
- College of Resource and Environment, Gansu Agricultural University, Lanzhou, China
| | - Renzhi Zhang
- College of Resource and Environment, Gansu Agricultural University, Lanzhou, China
| | - Linlin Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China.,College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
20
|
Shan J, Sanford RA, Chee-Sanford J, Ooi SK, Löffler FE, Konstantinidis KT, Yang WH. Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. GLOBAL CHANGE BIOLOGY 2021; 27:2669-2683. [PMID: 33547715 DOI: 10.1111/gcb.15545] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 05/02/2023]
Abstract
Many biotic and abiotic processes contribute to nitrous oxide (N2 O) production in the biosphere, but N2 O consumption in the environment has heretofore been attributed primarily to canonical denitrifying microorganisms. The nosZ genes encoding the N2 O reductase enzyme, NosZ, responsible for N2 O reduction to dinitrogen are now known to include two distinct groups: the well-studied Clade I which denitrifiers typically possess, and the novel Clade II possessed by diverse groups of microorganisms, most of which are non-denitrifiers. Clade II N2 O reducers could play an important, previously unrecognized role in controlling N2 O emissions for several reasons, including: (1) the consumption of N2 O produced by processes other than denitrification, (2) hypothesized non-respiratory functions of NosZ as an electron sink or for N2 O detoxification, (3) possible differing enzyme kinetics of Clade II NosZ compared to Clade I NosZ, and (4) greater nosZ gene abundance for Clade II compared to Clade I in soils of many ecosystems. Despite the potential ecological significance of Clade II NosZ, a census of 800 peer-reviewed original research articles discussing nosZ and published from 2013 to 2019 showed that the percentage of articles evaluating or mentioning Clade II nosZ increased from 5% in 2013 to only 22% in 2019. The census revealed that the slowly spreading awareness of Clade II nosZ may result in part from disciplinary silos, with the percentage of nosZ articles mentioning Clade II nosZ ranging from 0% in Agriculture and Agronomy journals to 32% in Multidisciplinary Sciences journals. In addition, inconsistent nomenclature for Clade I nosZ and Clade II nosZ, with 17 different terminologies used in the literature, may have created confusion about the two distinct groups of N2 O reducers. We provide recommendations to accelerate advances in understanding the role of the diversity of N2 O reducers in regulating soil N2 O emissions.
Collapse
Affiliation(s)
- Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Robert A Sanford
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joanne Chee-Sanford
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture - Agricultural Research Station,, Urbana, IL, USA
| | - Sean K Ooi
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wendy H Yang
- Departments of Plant Biology and Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
21
|
Mujakić I, Andrei AŞ, Shabarova T, Fecskeová LK, Salcher MM, Piwosz K, Ghai R, Koblížek M. Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes. mSystems 2021; 6:e01241-20. [PMID: 33727400 PMCID: PMC8547001 DOI: 10.1128/msystems.01241-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
Members of the bacterial phylum Gemmatimonadota are ubiquitous in most natural environments and represent one of the top 10 most abundant bacterial phyla in soil. Sequences affiliated with Gemmatimonadota were also reported from diverse aquatic habitats; however, it remains unknown whether they are native organisms or represent bacteria passively transported from sediment or soil. To address this question, we analyzed metagenomes constructed from five freshwater lakes in central Europe. Based on the 16S rRNA gene frequency, Gemmatimonadota represented from 0.02 to 0.6% of all bacteria in the epilimnion and between 0.1 and 1% in the hypolimnion. These proportions were independently confirmed using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Some cells in the epilimnion were attached to diatoms (Fragilaria sp.) or cyanobacteria (Microcystis sp.), which suggests a close association with phytoplankton. In addition, we reconstructed 45 metagenome-assembled genomes (MAGs) related to Gemmatimonadota They represent several novel lineages, which persist in the studied lakes during the seasons. Three lineages contained photosynthesis gene clusters. One of these lineages was related to Gemmatimonas phototrophica and represented the majority of Gemmatimonadota retrieved from the lakes' epilimnion. The other two lineages came from hypolimnion and probably represented novel photoheterotrophic genera. None of these phototrophic MAGs contained genes for carbon fixation. Since most of the identified MAGs were present during the whole year and cells associated with phytoplankton were observed, we conclude that they represent truly limnic Gemmatimonadota distinct from the previously described species isolated from soils or sediments.IMPORTANCE Photoheterotrophic bacterial phyla such as Gemmatimonadota are key components of many natural environments. Its first photoheterotrophic cultured member, Gemmatimonas phototrophica, was isolated in 2014 from a shallow lake in the Gobi Desert. It contains a unique type of photosynthetic complex encoded by a set of genes which were likely received via horizontal transfer from Proteobacteria We were intrigued to discover how widespread this group is in the natural environment. In the presented study, we analyzed 45 metagenome-assembled genomes (MAGs) that were obtained from five freshwater lakes in Switzerland and Czechia. Interestingly, it was found that phototrophic Gemmatimonadota are relatively common in euphotic zones of the studied lakes, whereas heterotrophic Gemmatimonadota prevail in deeper waters. Moreover, our analysis of the MAGs documented that these freshwater species contain almost the same set of photosynthesis genes identified before in Gemmatimonas phototrophica originating from the Gobi Desert.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Tanja Shabarova
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Lívia Kolesár Fecskeová
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Kasia Piwosz
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
22
|
Jankowiak JG, Gobler CJ. The Composition and Function of Microbiomes Within Microcystis Colonies Are Significantly Different Than Native Bacterial Assemblages in Two North American Lakes. Front Microbiol 2020; 11:1016. [PMID: 32547511 PMCID: PMC7270213 DOI: 10.3389/fmicb.2020.01016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
The toxic cyanobacterium Microcystis is one of the most pervasive harmful algal bloom (HAB) genera and naturally occurs in large colonies known to harbor diverse heterotrophic bacterial assemblages. While colony-associated microbiomes may influence Microcystis blooms, there remains a limited understanding of the structure and functional potential of these communities and how they may be shaped by changing environmental conditions. To address this gap, we compared the dynamics of Microcystis-attached (MCA), free-living (FL), and whole water (W) microbiomes during Microcystis blooms using next-generation amplicon sequencing (16S rRNA), a predictive metagenome software, and other bioinformatic approaches. Microbiomes were monitored through high resolution spatial-temporal surveys across two North American lakes, Lake Erie (LE) and Lake Agawam (LA; Long Island, NY, United States) in 2017, providing the largest dataset of these fractions to date. Sequencing of 126 samples generated 7,922,628 sequences that clustered into 7,447 amplicon sequence variants (ASVs) with 100% sequence identity. Across lakes, the MCA microbiomes were significantly different than the FL and W fractions being significantly enriched in Gemmatimonadetes, Burkholderiaceae, Rhizobiales, and Cytophagales and depleted of Actinobacteria. Further, although MCA communities harbored > 900 unique ASVs, they were significantly less diverse than the other fractions with diversity inversely related to bloom intensity, suggesting increased selection pressure on microbial communities as blooms intensified. Despite taxonomic differences between lakes, predicted metagenomes revealed conserved functional potential among MCA microbiomes. MCA communities were significantly enriched in pathways involved in N and P cycling and microcystin-degradation. Taxa potentially capable of N2-fixation were significantly enriched (p < 0.05) and up to four-fold more abundant within the MCA faction relative to other fractions, potentially aiding in the proliferation of Microcystis blooms during low N conditions. The MCA predicted metagenomes were conserved over 8 months of seasonal changes in temperature and N availability despite strong temporal succession in microbiome composition. Collectively, these findings indicate that Microcystis colonies harbor a statistically distinct microbiome with a conserved functional potential that may help facilitate bloom persistence under environmentally unfavorable conditions.
Collapse
Affiliation(s)
- Jennifer G. Jankowiak
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | - Christopher J. Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| |
Collapse
|
23
|
Chee-Sanford J, Tian D, Sanford R. Consumption of N 2O and other N-cycle intermediates by Gemmatimonas aurantiaca strain T-27. MICROBIOLOGY-SGM 2020; 165:1345-1354. [PMID: 31580255 DOI: 10.1099/mic.0.000847] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacteria affiliated with the phylum Gemmatimonadetes are found in high abundance in many terrestrial and aquatic environments, yet little is known about their metabolic capabilities. Difficulty in their cultivation has prompted interest in identifying better growth conditions for metabolic studies, especially related to their ability to reduce N2O, a potent greenhouse gas. T-27 Gemmatimonas aurantiaca is one of few cultivated strains of Gemmatimonadetes available for physiological studies. Our objective was to test this organism's ability to use nitrite, nitrate, and N2O, and mineral forms of assimilable NH4 + at concentrations not typically used in tests for compound utilization. Cultures incubated under anaerobic conditions with nitrate, nitrite or N2O failed to grow or show depletion of these substrates. Nitrate and nitrite (1 mM) were not used even when cells were grown aerobically with the O2 allowed to deplete first. N2O reduction only commenced in the presence of O2 and continued to be depleted when refed to the culture under anaerobic, microaerobic and aerobic atmospheres. Carbon mineralization was coupled to the electron-accepting processes, with higher reducing equivalents needed for N2O utilization under aerobic atmospheres. N2O was reduced to N2 in the presence of 20% O2, however the rate of this reaction is reduced in the presence of high O2 concentration. This study demonstrated that G. aurantiaca T-27 possesses unique characteristics for assimilative and dissimilative N processes with new implications for cultivation strategies to better assess the metabolic abilities of Gemmatimonadetes.
Collapse
Affiliation(s)
| | - David Tian
- Department of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert Sanford
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
24
|
Allan ERO, Tennessen JA, Sharpton TJ, Blouin MS. Allelic Variation in a Single Genomic Region Alters the Microbiome of the Snail Biomphalaria glabrata. J Hered 2019; 109:604-609. [PMID: 29566237 DOI: 10.1093/jhered/esy014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
Freshwater snails are the intermediate hosts for numerous parasitic worms which can have negative consequences for human health and agriculture. Understanding the transmission of these diseases requires a more complete characterization of the immunobiology of snail hosts. This includes the characterization of its microbiome and genetic factors which may interact with this important commensal community. Allelic variation in the Guadeloupe resistance complex (GRC) genomic region of Guadeloupean Biomphalaria glabrata influences their susceptibility to schistosome infection and may have other roles in the snail immune response. In the present study, we examined whether a snail's GRC genotype has a role in shaping the bacterial diversity and composition present on or in whole snails. We show that the GRC haplotype, including the resistant genotype, has a significant effect on the diversity of bacterial species present in or on whole snails, including the relative abundances of Gemmatimonas aurantiaca and Micavibrio aeruginosavorus. These findings support the hypothesis that the GRC region is likely involved in pathways that can modify the microbial community of these snails and may have more immune roles in B. glabrata than originally believed. This is also one of few examples in which allelic variation at a particular locus has been shown to affect the microbiome in any species.
Collapse
Affiliation(s)
- Euan R O Allan
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR
| | - Jacob A Tennessen
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR
| | - Thomas J Sharpton
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR.,Department of Statistics, College of Science, Oregon State University, Corvallis, OR
| | - Michael S Blouin
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR
| |
Collapse
|
25
|
Pascual J, Foesel BU, Geppert A, Huber KJ, Boedeker C, Luckner M, Wanner G, Overmann J. Roseisolibacter agri gen. nov., sp. nov., a novel slow-growing member of the under-represented phylum Gemmatimonadetes. Int J Syst Evol Microbiol 2018; 68:1028-1036. [PMID: 29458671 DOI: 10.1099/ijsem.0.002619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A novel slow-growing bacterium, designated strain AW1220T, was isolated from agricultural floodplain soil sampled at Mashare (Kavango region, Namibia) by using a high-throughput cultivation approach. Strain AW1220T was characterized as a Gram-negative, non-motile, rod-shaped bacterium. Occasionally, some cells attained an unusual length of up to 35 µm. The strain showed positive responses for catalase and cytochrome-c oxidase and divided by binary fission and/or budding. The strain had an aerobic chemoorganoheterotrophic metabolism and was also able to grow under micro-oxic conditions. Colonies were small and pink pigmented. Strain AW1220T was found to be a mesophilic, neutrophilic and non-halophilic bacterium. Cells accumulated polyphosphate intracellularly and mainly utilized complex protein substrates for growth. 16S rRNA gene sequence comparisons revealed that strain AW1220T belonged to the class Gemmatimonadetes (=group 1). Its closest relatives were found to be Gemmatimonas aurantiaca T-27T (90.9 % gene sequence similarity), Gemmatimonas phototrophica AP64T (90.8 %) and Longimicrobiumterrae CB-286315T (84.2 %). The genomic G+C content was 73.3 mol%. The major fatty acids were iso-C15 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH, iso-C17 : 1ω9c, iso-C15 : 0 3-OH and C16 : 0. The predominant respiratory quinone was MK-9, albeit minor amounts of MK-8 and MK-10 are also present. The polar lipids comprised major amounts of phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and one unidentified phosphoglycolipid. On the basis of its polyphasic characterization, strain AW1220T represents a novel genus and species of the class Gemmatimonadetes for which the name Roseisolibacter agri gen. nov., sp. nov. is proposed, with the type strain AW1220T (=DSM 104292T=LMG 29977T).
Collapse
Affiliation(s)
- Javier Pascual
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Bärbel U Foesel
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Present address: Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Alicia Geppert
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Katharina J Huber
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Christian Boedeker
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Manja Luckner
- Department of Biology I, Biozentrum Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Department of Biology I, Biozentrum Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
26
|
Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, Rodriguez-Valera F. Genomes of Novel Microbial Lineages Assembled from the Sub-Ice Waters of Lake Baikal. Appl Environ Microbiol 2018; 84:e02132-17. [PMID: 29079621 PMCID: PMC5734018 DOI: 10.1128/aem.02132-17] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
We present a metagenomic study of Lake Baikal (East Siberia). Two samples obtained from the water column under the ice cover (5 and 20 m deep) in March 2016 have been deep sequenced and the reads assembled to generate metagenome-assembled genomes (MAGs) that are representative of the microbes living in this special environment. Compared with freshwater bodies studied around the world, Lake Baikal had an unusually high fraction of Verrucomicrobia Other groups, such as Actinobacteria and Proteobacteria, were in proportions similar to those found in other lakes. The genomes (and probably cells) tended to be small, presumably reflecting the extremely oligotrophic and cold prevalent conditions. Baikal microbes are novel lineages recruiting very little from other water bodies and are distantly related to other freshwater microbes. Despite their novelty, they showed the closest relationship to genomes discovered by similar approaches from other freshwater lakes and reservoirs. Some of them were particularly similar to MAGs from the Baltic Sea, which, although it is brackish, connected to the ocean, and much more eutrophic, has similar climatological conditions. Many of the microbes contained rhodopsin genes, indicating that, in spite of the decreased light penetration allowed by the thick ice/snow cover, photoheterotrophy could be widespread in the water column, either because enough light penetrates or because the microbes are already adapted to the summer ice-less conditions. We have found a freshwater SAR11 subtype I/II representative showing striking synteny with Pelagibacterubique strains, as well as a phage infecting the widespread freshwater bacterium PolynucleobacterIMPORTANCE Despite the increasing number of metagenomic studies on different freshwater bodies, there is still a missing component in oligotrophic cold lakes suffering from long seasonal frozen cycles. Here, we describe microbial genomes from metagenomic assemblies that appear in the upper water column of Lake Baikal, the largest and deepest freshwater body on Earth. This lake is frozen from January to May, which generates conditions that include an inverted temperature gradient (colder up), decrease in light penetration due to ice, and, especially, snow cover, and oligotrophic conditions more similar to the open-ocean and high-altitude lakes than to other freshwater or brackish systems. As could be expected, most reconstructed genomes are novel lineages distantly related to others in cold environments, like the Baltic Sea and other freshwater lakes. Among them, there was a broad set of streamlined microbes with small genomes/intergenic spacers, including a new nonmarine Pelagibacter-like (subtype I/II) genome.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Tamara I Zemskaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Riccardo Rosselli
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Felipe H Coutinho
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Alexandra S Zakharenko
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Vadim V Blinov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
27
|
Yao F, Yang S, Wang Z, Wang X, Ye J, Wang X, DeBruyn JM, Feng X, Jiang Y, Li H. Microbial Taxa Distribution Is Associated with Ecological Trophic Cascades along an Elevation Gradient. Front Microbiol 2017; 8:2071. [PMID: 29163383 PMCID: PMC5663944 DOI: 10.3389/fmicb.2017.02071] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 10/10/2017] [Indexed: 12/01/2022] Open
Abstract
The elevational pattern of soil microbial diversity along mountain slopes has received considerable interest over the last decade. An increasing amount of taxonomic data on soil microbial community composition along elevation gradients have been collected, however the trophic patterns and environmental drivers of elevational changes remain largely unclear. Here, we examined the distribution patterns of major soil bacterial and fungal taxa along the northern slope of Changbai Mountain, Northeast China, at five typical vegetation types located between 740 and 2,691 m above sea level. Elevational patterns of the relative abundance of specific microbial taxa could be partially explained by the oligotrophic-copiotrophic theory. Specifically, two dark-coniferous forests, located at mid-elevation sites, were considered to be oligotrophic habitats, with relatively higher soil C/N ratio and [Formula: see text]-N concentrations. As expected, oligotrophic microbial taxa, belonging to the bacterial phyla Acidobacteria and Gemmatimonadetes, and fungal phylum Basidiomycota, were predominant in the two dark-coniferous forests, exhibiting a mid-elevation maximum pattern. In contrast, the broad leaf-Korean pine mixed forest located at the foot of the mountain, Betula ermanii-dominated forest located below the tree line, and alpine tundra at the highest elevation were considered more copiotrophic habitats, characterized by higher substrate-induced-respiration rates and [Formula: see text]-N concentrations. Microbial taxa considered to be so called copiotrophic members, such as bacterial phyla Proteobacteria and Actinobacteria, and fungal phylum Ascomycota, were relatively abundant in these locations, resulting in a mid-elevation minimum pattern. At finer taxonomic levels, the two most abundant proteobacterial classes, alpha- and beta-Proteobacteria, along with Acidobacteria Gp1, 2, 3, 15, and the Basidiomycotal class of Tremellomycetes were classified with the copiotrophic group. Gamma- and delta-Proteobacteria, Acidobacteria Gp4, 6, 7, 16, and Basidiomycotal class of Agaricomycetes were classified as oligotrophic taxa. This work uses the oligotrophic-copiotrophic theory to explain the elevational distribution pattern of the relative abundance of specific microbial taxa, confirming some of the existing trophic classifications of microbial taxa and expanding on the theory to include a broader range of taxonomic levels.
Collapse
Affiliation(s)
- Fei Yao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan Yang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Zhirui Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jennifer M. DeBruyn
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, TN, United States
| | - Xue Feng
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yong Jiang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Hui Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
28
|
Barber NA, Chantos-Davidson KM, Amel Peralta R, Sherwood JP, Swingley WD. Soil microbial community composition in tallgrass prairie restorations converge with remnants across a 27-year chronosequence. Environ Microbiol 2017; 19:3118-3131. [PMID: 28474391 DOI: 10.1111/1462-2920.13785] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 11/30/2022]
Abstract
Restoration and management of natural ecosystems is a critical strategy in mitigating global biodiversity loss. This is exemplified in the American Midwest by efforts aimed at reclaiming historical grasslands lost to high-yield agriculture. While restorations traditionally take the form of plant reintroduction and management, advances in microbial analyses suggest that soil communities could be indicators restoration success. However, current understanding of key microbial taxa and functional activities in both natural and restored ecosystems is limited. Here, we investigated the impact of nearly 30 years of carefully managed restoration on soil microbial communities at the Nachusa Grasslands in northern Illinois, USA. We characterized bacterial and archaeal communities in a chronosequence of restored tallgrass prairies ranging from 1 to 27 years old across a growing season and compared them to communities in pre-restoration agricultural fields and remnant prairies. Results indicate that older restorations harboured communities statistically distinct from newer restorations. These communities converged toward those in local prairie remnants, suggesting that plant-focussed restoration has yielded soil bacterial communities reflective of a successful restoration. Recovery of microbial clades within the Verrucomicrobia and Acidobacteria are an important feature of this convergence, and these groups could be targeted for future soil-focussed, bottom-up restoration studies.
Collapse
Affiliation(s)
- Nicholas A Barber
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA.,Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA
| | | | | | | | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA.,Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
29
|
Nitrous Oxide Reduction by an Obligate Aerobic Bacterium, Gemmatimonas aurantiaca Strain T-27. Appl Environ Microbiol 2017; 83:AEM.00502-17. [PMID: 28389533 DOI: 10.1128/aem.00502-17] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
N2O-reducing organisms with nitrous oxide reductases (NosZ) are known as the only biological sink of N2O in the environment. Among the most abundant nosZ genes found in the environment are nosZ genes affiliated with the understudied Gemmatimonadetes phylum. In this study, a unique regulatory mechanism of N2O reduction in Gemmatimonas aurantiaca strain T-27, an isolate affiliated with the Gemmatimonadetes phylum, was examined. Strain T-27 was incubated with N2O and/or O2 as the electron acceptor. Significant N2O reduction was observed only when O2 was initially present. When batch cultures of strain T-27 were amended with O2 and N2O, N2O reduction commenced after O2 was depleted. In a long-term incubation with the addition of N2O upon depletion, the N2O reduction rate decreased over time and came to an eventual stop. Spiking of the culture with O2 resulted in the resuscitation of N2O reduction activity, supporting the hypothesis that N2O reduction by strain T-27 required the transient presence of O2 The highest level of nosZ transcription (8.97 nosZ transcripts/recA transcript) was observed immediately after O2 depletion, and transcription decreased ∼25-fold within 85 h, supporting the observed phenotype. The observed difference between responses of strain T-27 cultures amended with and without N2O to O2 starvation suggested that N2O helped sustain the viability of strain T-27 during temporary anoxia, although N2O reduction was not coupled to growth. The findings in this study suggest that obligate aerobic microorganisms with nosZ genes may utilize N2O as a temporary surrogate for O2 to survive periodic anoxia.IMPORTANCE Emission of N2O, a potent greenhouse gas and ozone depletion agent, from the soil environment is largely determined by microbial sources and sinks. N2O reduction by organisms with N2O reductases (NosZ) is the only known biological sink of N2O at environmentally relevant concentrations (up to ∼1,000 parts per million by volume [ppmv]). Although a large fraction of nosZ genes recovered from soil is affiliated with nosZ found in the genomes of the obligate aerobic phylum Gemmatimonadetes, N2O reduction has not yet been confirmed in any of these organisms. This study demonstrates that N2O is reduced by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27, and suggests a novel regulation mechanism for N2O reduction in this organism, which may also be applicable to other obligate aerobic organisms possessing nosZ genes. We expect that these findings will significantly advance the understanding of N2O dynamics in environments with frequent transitions between oxic and anoxic conditions.
Collapse
|
30
|
Neal AL, Rossmann M, Brearley C, Akkari E, Guyomar C, Clark IM, Allen E, Hirsch PR. Land-use influences phosphatase gene microdiversity in soils. Environ Microbiol 2017; 19:2740-2753. [PMID: 28447381 DOI: 10.1111/1462-2920.13778] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/05/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
Abstract
Phosphorus cycling exerts significant influence upon soil fertility and productivity - processes largely controlled by microbial activity. We adopted phenotypic and metagenomic approaches to investigate phosphatase genes within soils. Microbial communities in bare fallowed soil showed a marked capacity to utilise phytate for growth compared with arable or grassland soil communities. Bare fallowed soil contained lowest concentrations of orthophosphate. Analysis of metagenomes indicated phoA, phoD and phoX, and histidine acid and cysteine phytase genes were most abundant in grassland soil which contained the greatest amount of NaOH-EDTA extractable orthophosphate. Beta-propeller phytase genes were most abundant in bare fallowed soil. Phylogenetic analysis of metagenome sequences indicated the phenotypic shift observed in the capacity to mineralise phytate in bare fallow soil was accompanied by an increase in phoD, phoX and beta-propeller phytase genes coding for exoenzymes. However, there was a remarkable degree of genetic similarity across the soils despite the differences in land-use. Predicted extracellular ecotypes were distributed across a greater range of soil structure than predicted intracellular ecotypes, suggesting that microbial communities subject to the dual stresses of low nutrient availability and reduced access to organic material in bare fallowed soils rely upon the action of exoenzymes.
Collapse
Affiliation(s)
- Andrew L Neal
- Sustainable Agricultural Systems Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Maike Rossmann
- Sustainable Agricultural Systems Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Charles Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Elsy Akkari
- Sustainable Agricultural Systems Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Cervin Guyomar
- Department of Agroecology, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Ian M Clark
- Department of Agroecology, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Elisa Allen
- Computational and Systems Biology Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Penny R Hirsch
- Department of Agroecology, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
31
|
Pascual J, García-López M, Bills GF, Genilloud O. Longimicrobium terrae gen. nov., sp. nov., an oligotrophic bacterium of the under-represented phylum Gemmatimonadetes isolated through a system of miniaturized diffusion chambers. Int J Syst Evol Microbiol 2016; 66:1976-1985. [DOI: 10.1099/ijsem.0.000974] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Javier Pascual
- Fundación MEDINA, Avenida del Conocimiento 3, Health Sciences Technology Park, 18016 Granada, Spain
| | - Marina García-López
- Fundación MEDINA, Avenida del Conocimiento 3, Health Sciences Technology Park, 18016 Granada, Spain
| | - Gerald F. Bills
- Fundación MEDINA, Avenida del Conocimiento 3, Health Sciences Technology Park, 18016 Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Avenida del Conocimiento 3, Health Sciences Technology Park, 18016 Granada, Spain
| |
Collapse
|
32
|
Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res 2016; 186-187:99-118. [PMID: 27242148 DOI: 10.1016/j.micres.2016.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
33
|
Zeng Y, Baumbach J, Barbosa EGV, Azevedo V, Zhang C, Koblížek M. Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:139-149. [PMID: 26636755 DOI: 10.1111/1758-2229.12363] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Gemmatimonadetes represents a poorly understood bacterial phylum with only a handful of cultured species. Recently, one of its few representatives, Gemmatimonas phototrophica, was found to contain purple bacterial photosynthetic reaction centres. However, almost nothing is known about the environmental distribution of phototrophic Gemmatimonadetes bacteria. To fill this gap, we took advantage of fast-growing public metagenomic databases and performed an extensive survey of metagenomes deposited into the NCBI's WGS database, the JGI's IMG webserver and the MG-RAST webserver. By employing Mg protoporphyrin IX monomethyl ester oxidative cyclase (AcsF) as a marker gene, we identified 291 AcsF fragments (24-361 amino acids long) that are closely related to G. phototrophica from 161 metagenomes originating from various habitats, including air, river waters/sediment, estuarine waters, lake waters, biofilms, plant surfaces, intertidal sediment, soils, springs and wastewater treatment plants, but none from marine waters or sediment. Based on AcsF hit counts, phototrophic Gemmatimonadetes bacteria make up 0.4-11.9% of whole phototrophic microbial communities in these habitats. Unexpectedly, an almost complete 37.9 kb long photosynthesis gene cluster with identical gene composition and arrangement to those in G. phototrophica was reconstructed from the Odense wastewater metagenome, only differing in a 7.2 kb long non-photosynthesis-gene insert. These data suggest that phototrophic Gemmatimonadetes bacteria are much more widely distributed in the environment and exhibit a higher genetic diversity than previously thought.
Collapse
Affiliation(s)
- Yonghui Zeng
- Nordic Center for Earth Evolution (NordCEE) & Institute of Biology, University of Southern Denmark, Odense, 5230, Denmark
- Center Algatech, Institute of Microbiology CAS, Třeboň, 37981, Czech Republic
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, 5230, Denmark
| | - Eudes Guilherme Vieira Barbosa
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, 5230, Denmark
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Chuanlun Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology CAS, Třeboň, 37981, Czech Republic
| |
Collapse
|
34
|
Meng J, Li J, Li J, Sun K, Antwi P, Deng K, Wang C, Buelna G. Efficiency and bacterial populations related to pollutant removal in an upflow microaerobic sludge reactor treating manure-free piggery wastewater with low COD/TN ratio. BIORESOURCE TECHNOLOGY 2016; 201:166-173. [PMID: 26649897 DOI: 10.1016/j.biortech.2015.11.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
A novel upflow microaerobic sludge reactor (UMSR) had proved excellent in nitrogen removal from manure-free piggery wastewater characterized by high concentration of ammonium (NH4(+)-N) and low chemical oxygen demand (COD) to total nitrogen (TN) ratio, but the biological mechanism in the UMSR was still indeterminate. With a constant nitrogen loading rate of 1.10kg/(m(3)d) at hydraulic retention time 8h, the UMSR was kept performing for 67days in the present research and the average load removal of COD, NH4(+)-N and TN was as high as 0.72, 0.76 and 0.94kg/(m(3)d), respectively. Compared with the inoculated sludge, the acclimated sludge was richer in genera responsible for the biological removal of carbon, nitrogen and phosphorus. Ammonium oxidation bacteria, heterotrophic denitrifiers, autotrophic denitrifiers and phosphate accumulating organisms coexisted perfectly in the microaerobic system, and their synergistic action made the UMSR perform well in COD, NH4(+)-N, TN and phosphate removal.
Collapse
Affiliation(s)
- Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jiuling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Kai Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Philip Antwi
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Kaiwen Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Gerardo Buelna
- Centre de Recherche Industrielle du Québec, 333 Franquet, Québec G1P 4C7, Canada
| |
Collapse
|
35
|
Wilkinson N, Hughes RJ, Aspden WJ, Chapman J, Moore RJ, Stanley D. The gastrointestinal tract microbiota of the Japanese quail, Coturnix japonica. Appl Microbiol Biotechnol 2016; 100:4201-9. [PMID: 26758298 DOI: 10.1007/s00253-015-7280-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/19/2015] [Accepted: 12/26/2015] [Indexed: 12/26/2022]
Abstract
Microbiota in the gastrointestinal tract (GIT) plays an essential role in the health and well-being of the host. With the exception of chickens, this area has been poorly studied within birds. The avian GIT harbours unique microbial communities. Birds require rapid energy bursts to enable energy-intensive flying. The passage time of feed through the avian GIT is only 2-3.5 h, and thus requires the presence of microbiota that is extremely efficient in energy extraction. This investigation has used high-throughput 16S rRNA gene sequencing to explore the GIT microbiota of the flighted bird, the Japanese quail (Coturnix japonica). We are reporting, for the first time, the diversity of bacterial phylotypes inhabiting all major sections of the quail GIT including mouth, esophagus, crop, proventriculus, gizzard, duodenum, ileum, cecum, large intestine and feces. Nine phyla of bacteria were found in the quail GIT; however, their distribution varied significantly between GIT sections. Cecal microbiota was the most highly differentiated from all the other communities and showed highest richness at an OTU level but lowest richness at all other taxonomic levels being comprised of only 15 of total 57 families in the quail GIT. Differences were observed in the presence and absence of specific phylotypes between sexes in most sections.
Collapse
Affiliation(s)
- Ngare Wilkinson
- Institute of Future Farming, Central Queensland University, Bruce Highway, Building 6 Room 2.33, Rockhampton, QLD, 4702, Australia.,Poultry Cooperative Research Centre, University of New England Armidale, Armidale, NSW, 2351, Australia
| | - Robert J Hughes
- Poultry Cooperative Research Centre, University of New England Armidale, Armidale, NSW, 2351, Australia.,South Australian Research and Development Institute, Pig and Poultry Production Institute, Roseworthy, South Australia, 5371, Australia.,School of Animal and Veterinary Sciences Roseworthy, The University of Adelaide, Adelaide, South Australia, 5371, Australia
| | - William J Aspden
- Institute of Future Farming, Central Queensland University, Bruce Highway, Building 6 Room 2.33, Rockhampton, QLD, 4702, Australia
| | - James Chapman
- Institute of Future Farming, Central Queensland University, Bruce Highway, Building 6 Room 2.33, Rockhampton, QLD, 4702, Australia.,Poultry Cooperative Research Centre, University of New England Armidale, Armidale, NSW, 2351, Australia
| | - Robert J Moore
- Poultry Cooperative Research Centre, University of New England Armidale, Armidale, NSW, 2351, Australia.,School of Applied Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, 3083, Australia.,Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Dragana Stanley
- Institute of Future Farming, Central Queensland University, Bruce Highway, Building 6 Room 2.33, Rockhampton, QLD, 4702, Australia. .,Poultry Cooperative Research Centre, University of New England Armidale, Armidale, NSW, 2351, Australia.
| |
Collapse
|
36
|
Zeng Y, Selyanin V, Lukeš M, Dean J, Kaftan D, Feng F, Koblížek M. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Int J Syst Evol Microbiol 2015; 65:2410-2419. [PMID: 25899503 DOI: 10.1099/ijs.0.000272] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A red-pigmented, bacteriochlorophyll (BChl) a-producing strain, AP64T, was isolated previously from the freshwater Swan Lake located in the western Gobi Desert. Based on its 16S rRNA gene sequence identity (96.1%) to the type strain Gemmatimonas aurantiaca T-27T, the new isolate was tentatively classified as a member of the bacterial phylum Gemmatimonadetes. Here, we report its formal description and polyphasic characterization. Strain AP64T grew best on agar media under 9.8-15.2% atmospheric oxygen. The cells were rods, dividing by symmetrical or asymmetrical binary fission. Budding structures were also observed. Its genomic DNA G+C content was 64.4% (from the draft genome sequence). Phylogenetic analysis based on the 16S rRNA gene sequence clearly separated AP64T from related species. Its genotypic differentiation from phylogenetically close relatives was further supported by performing in silico DNA-DNA hybridization and calculating average nucleotide identity, whereas the high percentage (67.3%) of shared conserved proteins between strain AP64T and Gemmatimonas aurantiaca T-27T supports the classification of the two strains into the same genus. Strain AP64T contained C16 : 1, C14 : 1 and C18 : 1ω9c as predominant fatty acids. The main respiratory quinone was menaquinone 8 (MK-8). The most distinctive feature of strain AP64T was the presence of fully functional purple bacterial photosynthetic reaction centres. The main CO2-fixation pathways were absent. Strain AP64T was capable of growth and BChl production in constant darkness. Thus, strain AP64T is a facultatively photoheterotrophic organism. It represents a novel species of the genus Gemmatimonas, for which the name Gemmatimonasphototrophica sp. nov. is proposed. The type strain is AP64T ( = DSM 29774T = MCCC 1K00454T). Emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca are also provided.
Collapse
Affiliation(s)
- Yonghui Zeng
- Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Vadim Selyanin
- Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Martin Lukeš
- Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Jason Dean
- Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - David Kaftan
- Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Fuying Feng
- Institute for Applied & Environmental Microbiology, Inner Mongolia Agricultural University, 306 Zhaowuda Road, 010 018 Huhhot, PR China
| | - Michal Koblížek
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic.,Center Algatech, Institute of Microbiology CAS, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| |
Collapse
|
37
|
Rime T, Hartmann M, Brunner I, Widmer F, Zeyer J, Frey B. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol Ecol 2015; 24:1091-108. [DOI: 10.1111/mec.13051] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Rime
- Forest Soils and Biogeochemistry; Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Martin Hartmann
- Forest Soils and Biogeochemistry; Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
- Molecular Ecology; Institute for Sustainability Sciences; Agroscope 8046 Zürich Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry; Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Franco Widmer
- Molecular Ecology; Institute for Sustainability Sciences; Agroscope 8046 Zürich Switzerland
| | - Josef Zeyer
- Institute of Biogeochemistry and Pollutant Dynamics; Federal Institute of Technology (ETH Zürich); 8092 Zürich Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry; Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| |
Collapse
|
38
|
Genome Sequence and Methylome of Soil Bacterium Gemmatirosa kalamazoonensis KBS708T, a Member of the Rarely Cultivated Gemmatimonadetes Phylum. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00226-14. [PMID: 24699952 PMCID: PMC3974934 DOI: 10.1128/genomea.00226-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bacteria belonging to the phylum Gemmatimonadetes are found in a wide variety of environments and are particularly abundant in soils. Here, we present the complete genome sequence and methylation pattern of the newly described Gemmatirosa kalamazoonensis type strain.
Collapse
|