1
|
Ribeiro AF, Fitas AL, Pires MO, Matoso P, Ligeiro D, Sobral D, Penha-Gonçalves C, Demengeot J, Caramalho Í, Limbert C. Whole Exome Sequencing in Children With Type 1 Diabetes Before Age 6 Years Reveals Insights Into Disease Heterogeneity. J Diabetes Res 2024; 2024:3076895. [PMID: 39364395 PMCID: PMC11449554 DOI: 10.1155/2024/3076895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024] Open
Abstract
Aims: This study is aimed at comparing whole exome sequencing (WES) data with the clinical presentation in children with type 1 diabetes onset ≤ 5 years of age (EOT1D). Methods: WES was performed in 99 unrelated children with EOT1D with subsequent analysis to identify potentially deleterious rare variants in MODY genes. High-resolution HLA class II haplotyping, SNP genotyping, and T1D-genetic risk score (T1D-GRS) were also evaluated. Results: Eight of the ninety-nine EOT1D participants carried a potentially deleterious rare variant in a MODY gene. Rare variants affected five genes: GCK (n = 1), HNF1B (n = 2), HNF4A (n = 1), PDX1 (n = 2), and RFX6 (n = 2). At diagnosis, these children had a mean age of 3.0 years, a mean HbA1c of 10.5%, a detectable C-peptide in 5/8, and a positive islet autoantibody in 6/7. Children with MODY variants tend to exhibit a lower number of pancreatic autoantibodies and a lower fasting C-peptide compared to EOT1D without MODY rare variants. They also carried at least one high-risk DR3-DQ2 or DR4-DQ8 haplotype and exhibited a T1D-GRS similar to the other individuals in the EOT1D cohort, but higher than healthy controls. Conclusions: WES found potentially deleterious rare variants in MODY genes in 8.1% of EOT1D, occurring in the context of a T1D genetic background. Such genetic variants may contribute to disease precipitation by a β-cell dysfunction mechanism. This supports the concept of different endotypes of T1D, and WES at T1D onset may be a prerequisite for the implementation of precision therapies in children with autoimmune diabetes.
Collapse
Affiliation(s)
- Andreia Fiúza Ribeiro
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Pediatric DepartmentHospital Prof. Doutor Fernando FonsecaAmadora Sintra Local Health Unit, Amadora, Portugal
| | - Ana Laura Fitas
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC)NOVA Medical SchoolUniversidade NOVA de Lisboa, Lisbon, Portugal
| | - Marcela Oliveira Pires
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Pediatric DepartmentHospital de São Francisco XavierLisboa Ocidental Local Health Unit, Lisbon, Portugal
| | - Paula Matoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Dário Ligeiro
- Blood and Transplantation Center of LisbonInstituto Português do Sangue e da Transplantação, Lisbon, Portugal
- Immunosurgery UnitChampalimaud Foundation, Lisbon, Portugal
| | | | | | | | - Íris Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculty of SciencesUniversity of Lisbon, Lisbon, Portugal
| | - Catarina Limbert
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC)NOVA Medical SchoolUniversidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Kim T, Surapaneni AL, Schmidt IM, Eadon MT, Kalim S, Srivastava A, Palsson R, Stillman IE, Hodgin JB, Menon R, Otto EA, Coresh J, Grams ME, Waikar SS, Rhee EP. Plasma Proteins Associated with Chronic Histopathologic Lesions on Kidney Biopsy. J Am Soc Nephrol 2024; 35:910-922. [PMID: 38656806 PMCID: PMC11230715 DOI: 10.1681/asn.0000000000000358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
Key Points Proteomic profiling identified 35 blood proteins associated with chronic histopathologic lesions in the kidney. Testican-2 was expressed in the glomerulus, released by the kidney into circulation, and inversely associated with glomerulosclerosis severity. NELL1 was expressed in tubular epithelial cells, released by the kidney into circulation, and inversely associated with interstitial fibrosis and tubular atrophy severity. Background The severity of chronic histopathologic lesions on kidney biopsy is independently associated with higher risk of progressive CKD. Because kidney biopsies are invasive, identification of blood markers that report on underlying kidney histopathology has the potential to enhance CKD care. Methods We examined the association between 6592 plasma protein levels measured by aptamers and the severity of interstitial fibrosis and tubular atrophy (IFTA), glomerulosclerosis, arteriolar sclerosis, and arterial sclerosis among 434 participants of the Boston Kidney Biopsy Cohort. For proteins significantly associated with at least one histologic lesion, we assessed renal arteriovenous protein gradients among 21 individuals who had undergone invasive catheterization and assessed the expression of the cognate gene among 47 individuals with single-cell RNA sequencing data in the Kidney Precision Medicine Project. Results In models adjusted for eGFR, proteinuria, and demographic factors, we identified 35 proteins associated with one or more chronic histologic lesions, including 20 specific for IFTA, eight specific for glomerulosclerosis, and one specific for arteriolar sclerosis. In general, higher levels of these proteins were associated with more severe histologic score and lower eGFR. Exceptions included testican-2 and NELL1, which were associated with less glomerulosclerosis and IFTA, respectively, and higher eGFR; notably, both of these proteins demonstrated significantly higher levels from artery to renal vein, demonstrating net kidney release. In the Kidney Precision Medicine Project, 13 of the 35 protein hits had cognate gene expression enriched in one or more cell types in the kidney, including podocyte expression of select glomerulosclerosis markers (including testican-2) and tubular expression of several IFTA markers (including NELL1). Conclusions Proteomic analysis identified circulating proteins associated with chronic histopathologic lesions, some of which had concordant site-specific expression within the kidney.
Collapse
Affiliation(s)
- Taesoo Kim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Aditya L. Surapaneni
- Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Insa M. Schmidt
- Section of Nephrology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Anand Srivastava
- Division of Nephrology, University of Illinois Chicago, Chicago, Illinois
| | - Ragnar Palsson
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Isaac E. Stillman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Edgar A. Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Josef Coresh
- Departments of Population Health and Medicine, New York University Grossman School of Medicine, New York, New York
| | - Morgan E. Grams
- Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Eugene P. Rhee
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
3
|
Kind L, Molnes J, Tjora E, Raasakka A, Myllykoski M, Colclough K, Saint-Martin C, Adelfalk C, Dusatkova P, Pruhova S, Valtonen-André C, Bellanné-Chantelot C, Arnesen T, Kursula P, Njølstad PR. Molecular mechanism of HNF-1A-mediated HNF4A gene regulation and promoter-driven HNF4A-MODY diabetes. JCI Insight 2024; 9:e175278. [PMID: 38855865 PMCID: PMC11382887 DOI: 10.1172/jci.insight.175278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Monogenic diabetes is a gateway to precision medicine through molecular mechanistic insight. Hepatocyte nuclear factor 1A (HNF-1A) and HNF-4A are transcription factors that engage in crossregulatory gene transcription networks to maintain glucose-stimulated insulin secretion in pancreatic β cells. Variants in the HNF1A and HNF4A genes are associated with maturity-onset diabetes of the young (MODY). Here, we explored 4 variants in the P2-HNF4A promoter region: 3 in the HNF-1A binding site and 1 close to the site, which were identified in 63 individuals from 21 families of different MODY disease registries across Europe. Our goal was to study the disease causality for these variants and to investigate diabetes mechanisms on the molecular level. We solved a crystal structure of HNF-1A bound to the P2-HNF4A promoter and established a set of techniques to probe HNF-1A binding and transcriptional activity toward different promoter variants. We used isothermal titration calorimetry, biolayer interferometry, x-ray crystallography, and transactivation assays, which revealed changes in HNF-1A binding or transcriptional activities for all 4 P2-HNF4A variants. Our results suggest distinct disease mechanisms of the promoter variants, which can be correlated with clinical phenotype, such as age of diagnosis of diabetes, and be important tools for clinical utility in precision medicine.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine and
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics and
| | - Erling Tjora
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Cécile Saint-Martin
- Department of Medical Genetics, Sorbonne Université, AP-HP, Pitié-Salpêtrière Hospital, DMU BioGeM, Paris, France
- Monogenic Diabetes Study Group of the Société Francophone du Diabète, Paris, France
| | - Caroline Adelfalk
- Clinical Genetics, Pathology and Molecular Diagnostics, University Hospital Skåne, Lund, Sweden
| | - Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Christine Bellanné-Chantelot
- Department of Medical Genetics, Sorbonne Université, AP-HP, Pitié-Salpêtrière Hospital, DMU BioGeM, Paris, France
- Monogenic Diabetes Study Group of the Société Francophone du Diabète, Paris, France
| | - Thomas Arnesen
- Department of Biomedicine and
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine and
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Pål Rasmus Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
de Santana LS, Caetano LA, Costa‐Riquetto AD, Franco PC, Dotto RP, Reis AF, Weinert LS, Silveiro SP, Vendramini MF, do Prado FA, Abrahão GCP, de Almeida AGFP, Tavares MDGR, Gonçalves WRB, Santomauro Junior AC, Halpern B, Jorge AAL, Nery M, Teles MG. Targeted sequencing identifies novel variants in common and rare MODY genes. Mol Genet Genomic Med 2019; 7:e962. [PMID: 31595705 PMCID: PMC6900361 DOI: 10.1002/mgg3.962] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is a form of monogenic diabetes with autosomal dominant inheritance. To date, mutations in 11 genes have been frequently associated with this phenotype. In Brazil, few cohorts have been screened for MODY, all using a candidate gene approach, with a high prevalence of undiagnosed cases (MODY-X). METHODS We conducted a next-generation sequencing target panel (tNGS) study to investigate, for the first time, a Brazilian cohort of MODY patients with a negative prior genetic analysis. One hundred and two patients were selected, of which 26 had an initial clinical suspicion of MODY-GCK and 76 were non-GCK MODY. RESULTS After excluding all benign and likely benign variants and variants of uncertain significance, we were able to assign a genetic cause for 12.7% (13/102) of the probands. Three rare MODY subtypes were identified (PDX1/NEUROD1/ABCC8), and eight variants had not been previously described/mapped in genomic databases. Important clinical findings were evidenced in some cases after genetic diagnosis, such as MODY-PDX1/HNF1B. CONCLUSION A multiloci genetic approach allowed the identification of rare MODY subtypes, reducing the large percentage of MODY-X in Brazilian cases and contributing to a better clinical, therapeutic, and prognostic characterization of these rare phenotypes.
Collapse
Affiliation(s)
- Lucas S. de Santana
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Lilian A. Caetano
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
- Diabetes UnitClinics HospitalSchool of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Aline D. Costa‐Riquetto
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
- Diabetes UnitClinics HospitalSchool of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Pedro C. Franco
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
- Diabetes UnitClinics HospitalSchool of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Renata P. Dotto
- Departamento de MedicinaDisciplina de EndocrinologiaUniversidade Federal de São Paulo (UNIFESP)Sao PauloSPBrazil
| | - André F. Reis
- Departamento de MedicinaDisciplina de EndocrinologiaUniversidade Federal de São Paulo (UNIFESP)Sao PauloSPBrazil
| | | | | | - Marcio F. Vendramini
- Serviço de EndocrinologiaHospital do Servidor Público Estadual de São Paulo (HSPE‐SP)Sao PauloSPBrazil
| | - Flaviene A. do Prado
- Hospital Regional de Taguatinga da Secretaria de Saúde do Distrito FederalTaguatingaDFBrazil
| | | | | | | | | | - Augusto C. Santomauro Junior
- Serviço de Endocrinologia Prof. Dr. Fadlo Fraige FilhoHospital Beneficência Portuguesa de São Paulo (BP‐SP)Sao PauloSPBrazil
| | - Bruno Halpern
- Departamento de Endocrinologia e MetabologiaHospital das ClínicasFaculdade de MedicinaUniversidade de São Paulo (USP)Sao PauloSPBrazil
| | - Alexander A. L. Jorge
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Marcia Nery
- Diabetes UnitClinics HospitalSchool of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Milena G. Teles
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
- Diabetes UnitClinics HospitalSchool of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| |
Collapse
|
5
|
Guo S, Lu H. Novel mechanisms of regulation of the expression and transcriptional activity of hepatocyte nuclear factor 4α. J Cell Biochem 2019; 120:519-532. [PMID: 30191603 PMCID: PMC7745837 DOI: 10.1002/jcb.27407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a master regulator of development and function of digestive tissues. The HNF4A gene uses two separate promoters P1 and P2, with P1 products predominant in adult liver, whereas P2 products prevalent in fetal liver, pancreas, and liver/colon cancer. To date, the mechanisms for the regulation of HNF4A and the dynamic switch of P1-HNF4α and P2-HNF4α during ontogenesis and carcinogenesis are still obscure. Our study validated the previously reported self-stimulation of P1-HNF4α but invalidated the reported synergism between HNF4α and HNF1α. HNF4A-AS1, a long noncoding RNA, is localized between the P2 and P1 promoters of HNF4A. We identified critical roles of P1-HNF4α in regulating the expression of HNF4A-AS1 and its mouse ortholog Hnf4a-os. Paired box 6 (PAX6), a master regulator of pancreas development overexpressed in colon cancer, cooperated with HNF1α to induce P2-HNF4α but antagonized HNF4α in HNF4A-AS1 expression. Thus, PAX6 may be important in determining ontogenic and carcinogenic changes of P2-HNF4α and HNF4A-AS1 in the pancreas and intestine. We also interrogated transactivation activities on multiple gene targets by multiple known and novel HNF4α mutants identified in patients with maturity onset diabetes of the young 1 (MODY1) and liver cancer. Particularly, HNF4α-D78A and HNF4α-G79S, two mutants found in liver cancer with mutations in DNA-binding domain, displayed highly gene-specific transactivation activities. Interestingly, HNF4α-Q277X, a MODY1 truncation mutant, antagonized the transactivation activities of HNF1α and farnesoid X receptor, key regulators of insulin secretion. Taken together, our study provides novel mechanistic insights regarding the transcriptional regulation and transactivation activity of HNF4α in digestive tissues.
Collapse
Affiliation(s)
- Shangdong Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S
| |
Collapse
|
6
|
Dusatkova P, Fang M, Pruhova S, Gjesing AP, Cinek O, Hansen T, Pedersen OB, Xu X, Lebl J. Lessons from whole-exome sequencing in MODYX families. Diabetes Res Clin Pract 2014; 104:e72-4. [PMID: 24698406 DOI: 10.1016/j.diabres.2014.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 02/27/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
Abstract
We report the first results from whole-exome sequencing performed in families with Maturity-Onset Diabetes of the Young without a known genetic cause of diabetes (MODYX). This next generation sequencing technique pointed out that routine testing of MODY needs constant awareness and regular re-evaluation of both clinical criteria and primer sequences.
Collapse
Affiliation(s)
- Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic.
| | | | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ondrej Cinek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Oluf B Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Xun Xu
- BGI-Shenzen, Shenzhen 518083, China
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
7
|
Colclough K, Saint-Martin C, Timsit J, Ellard S, Bellanné-Chantelot C. Clinical utility gene card for: Maturity-onset diabetes of the young. Eur J Hum Genet 2014; 22:ejhg201414. [PMID: 24518839 DOI: 10.1038/ejhg.2014.14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Kevin Colclough
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Cécile Saint-Martin
- Department of Genetics, AP-HP Hôpitaux Universitaires Pitie-Salpétrière-Charles Foix, Université Pierre et Marie Curie, Paris, France
| | - José Timsit
- Department of Diabetology and Endocrinology, AP-HP Groupe Hospitalier Cochin-Hôtel Dieu, Université Paris Descartes, Paris, France
| | - Sian Ellard
- 1] Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK [2] Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Christine Bellanné-Chantelot
- Department of Genetics, AP-HP Hôpitaux Universitaires Pitie-Salpétrière-Charles Foix, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
8
|
Fujiwara M, Namba N, Miura K, Kitaoka T, Hirai H, Kondou H, Shimotsuji T, Numakura C, Ozono K. Detection and characterization of two novel mutations in the HNF4A gene in maturity-onset diabetes of the young type 1 in two Japanese families. Horm Res Paediatr 2013; 79:220-6. [PMID: 23652628 DOI: 10.1159/000350520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is a subgroup of monogenic diabetes mellitus, of which MODY1, caused by HNF4A mutations, accounts for only 5% or less and has been rarely reported in East Asian countries. Here we report two novel HNF4A mutations in two Japanese families with MODY1. METHODS Proband 1 is an 8-year-old girl and proband 2 is a 14-year-old girl. Both were nonobese, demonstrated elevated HbA1c and negative serum anti-glutamic acid decarboxylase antibodies, and had a family history of diabetes. We directly sequenced HNF4A and performed functional analysis of the detected missense mutation. RESULTS Proband 1 had a heterozygous missense mutation, c.824A>G (p.Asn275Ser). Luciferase assay demonstrated a significant reduction in transcriptional activity. A heterozygous frame shift mutation, c.692-695delAGGA (p.Lys231ThrfsX5), was detected in proband 2. Affected family members shared the same mutations, showing high penetrance. Both mutations reside in the HNF4α dimerization domain and the corresponding amino acids are well conserved between species. CONCLUSIONS These two mutations are most likely the cause of MODY1 in these families. Considering the effectiveness of sulfonylureas, it is important to correctly diagnose MODY1.
Collapse
Affiliation(s)
- Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Flannick J, Beer NL, Bick AG, Agarwala V, Molnes J, Gupta N, Burtt NP, Florez JC, Meigs JB, Taylor H, Lyssenko V, Irgens H, Fox E, Burslem F, Johansson S, Brosnan MJ, Trimmer JK, Newton-Cheh C, Tuomi T, Molven A, Wilson JG, O'Donnell CJ, Kathiresan S, Hirschhorn JN, Njølstad PR, Rolph T, Seidman J, Gabriel S, Cox DR, Seidman C, Groop L, Altshuler D. Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nat Genet 2013; 45:1380-5. [PMID: 24097065 PMCID: PMC4051627 DOI: 10.1038/ng.2794] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Abstract
Genome sequencing can identify individuals in the general population who harbor rare coding variants in genes for Mendelian disorders and who may consequently have increased disease risk. Previous studies of rare variants in phenotypically extreme individuals display ascertainment bias and may demonstrate inflated effect-size estimates. We sequenced seven genes for maturity-onset diabetes of the young (MODY) in well-phenotyped population samples (n = 4,003). We filtered rare variants according to two prediction criteria for disease-causing mutations: reported previously in MODY or satisfying stringent de novo thresholds (rare, conserved and protein damaging). Approximately 1.5% and 0.5% of randomly selected individuals from the Framingham and Jackson Heart Studies, respectively, carry variants from these two classes. However, the vast majority of carriers remain euglycemic through middle age. Accurate estimates of variant effect sizes from population-based sequencing are needed to avoid falsely predicting a substantial fraction of individuals as being at risk for MODY or other Mendelian diseases.
Collapse
Affiliation(s)
- Jason Flannick
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Nicola L Beer
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Alexander G Bick
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Vineeta Agarwala
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, USA
- Program in Biophysics, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Janne Molnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Noel P Burtt
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- General Medicine Division, Massachusetts General Hospital, Boston, MA, USA
| | - Herman Taylor
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Jackson State University, Jackson, MS, USA
- Tougaloo College, Tougaloo MS, USA
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Henrik Irgens
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Ervin Fox
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Frank Burslem
- Cardiovascular and Metabolic Diseases Practice, Prescient Life Sciences, London, UK
| | - Stefan Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - M Julia Brosnan
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Jeff K Trimmer
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Tiinamaija Tuomi
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Department of Medicine, Helsinki University Central Hospital and Research Program for Molecular Medicine
| | - Anders Molven
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Christopher J O'Donnell
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Joel N Hirschhorn
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Endocrinology and Program in Genomics, Children's Hospital, Boston, MA, USA
| | - Pål R Njølstad
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Tim Rolph
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - J.G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - David R Cox
- Applied Quantitative Genotherapeutics, Pfizer Inc., South San Francisco, CA, USA
| | - Christine Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmö, Sweden
- Finnish Institute for Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - David Altshuler
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Thanabalasingham G, Kaur K, Talbot F, Colclough K, Mathews A, Taylor J, Ellard S, Owen KR. Atypical phenotype associated with reported GCK exon 10 deletions: Clinical judgement is needed alongside appropriate genetic investigations. Diabet Med 2013; 30:e233-8. [PMID: 23586928 DOI: 10.1111/dme.12210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) caused by heterozygous mutations in the glucokinase (GCK) gene typically presents with lifelong, stable, mild fasting hyperglycaemia. With the exception of pregnancy, patients with GCK-MODY usually do not require pharmacological therapy. We report two unrelated patients whose initial genetic test results indicated a deletion of GCK exon 10, but whose clinical phenotypes were not typical of GCK-MODY. CASE REPORTS In case 1, the patient was hyperglycaemic at diagnosis (glucose > 30 mmol/l) and elevated glucose levels > 10 mmol/l persisted after withdrawal of insulin therapy. The patient in case 2 was also hyperglycaemic at diagnosis [HbA1c > 86 mmol/mol (10%)], which improved with the introduction of oral hypoglycaemic agents. These clinical features were not consistent with GCK-MODY. Both patients had a single nucleotide variant that prevented multiplex ligation-dependent probe analysis, which generated a false positive result of a GCK exon 10 deletion. CONCLUSION False positive genetic results in these two unrelated cases were attributable to the presence of a rare single nucleotide variant that prevented ligation of the probe in the multiplex ligation-dependent probe analysis kit used and falsely indicated deletion of exon 10 within GCK. Both cases had clinical features that did not tally with the typical GCK-MODY phenotype. These cases emphasize the need to interpret the results of definitive genetic tests within the specific clinical context. Increased medical sequencing is likely to lead to more reports of novel mutations of uncertain significance. If genetic investigations do not agree with the clinical picture, clinicians should exercise caution when making therapeutic changes based on these results.
Collapse
Affiliation(s)
- G Thanabalasingham
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Colclough K, Bellanne-Chantelot C, Saint-Martin C, Flanagan SE, Ellard S. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat 2013; 34:669-85. [PMID: 23348805 DOI: 10.1002/humu.22279] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/08/2013] [Indexed: 12/16/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic disorder characterized by autosomal dominant inheritance of young-onset (typically <25 years), noninsulin-dependent diabetes due to defective insulin secretion. MODY is both clinically and genetically heterogeneous with mutations in at least 10 genes. Mutations in the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are the most common cause of MODY in most adult populations studied. The number of different pathogenic HNF1A mutations totals 414 in 1,247 families. Mutations in the HNF4A gene encoding hepatocyte nuclear factor-4 alpha are a rarer cause of MODY with 103 different mutations reported in 173 families to date. Sensitivity to treatment with sulfonylurea tablets is a feature of both HNF1A and HNF4A mutations. The HNF4A MODY phenotype has been expanded by the reports of macrosomia in ∼50% of babies, and more rarely, neonatal hyperinsulinemic hypoglycemia. The identification of an HNF1A or HNF4A gene mutation has important implications for clinical management in diabetes and pregnancy, but MODY is significantly underdiagnosed. Current research is focused on identifying biomarkers and developing probability models to identify those patients most likely to have MODY, until next generation sequencing technology enables cost-effective gene analysis for all patients with young onset diabetes.
Collapse
Affiliation(s)
- Kevin Colclough
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | | | | | | | | |
Collapse
|
12
|
Hellwege JN, Hicks PJ, Palmer ND, Ng MCY, Freedman BI, Bowden DW. Examination of Rare Variants in HNF4 α in European Americans with Type 2 Diabetes. ACTA ACUST UNITED AC 2011; 2. [PMID: 23227446 DOI: 10.4172/2155-6156.1000145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hepatocyte nuclear factor 4-α (HNF4α) gene codes for a transcription factor which is responsible for regulating gene transcription in pancreatic beta cells, in addition to its primary role in hepatic gene regulation. Mutations in this gene can lead to maturity-onset diabetes of the young (MODY), an uncommon, autosomal dominant, non-insulin dependent form of diabetes. Mutations in HNF4α have been found in few individuals, and infrequently have they segregated completely with MODY in families. In addition, due to similarity of phenotypes, it is unclear what proportion of type 2 diabetes (T2DM) in the general population is due to MODY or HNF4α mutations specifically. In this study, 27 documented rare and common variants were genotyped in a European American population of 1270 T2DM cases and 1017 controls from review of databases and literature implicating HNF4α variants in MODY and T2DM. Seventeen variants were found to be monomorphic. Two cases and one control subject had one copy of a 6-bp P2 promoter deletion. The intron 1 variant (rs6103716; MAF = 0.31) was not significantly associated with disease status (p>0.8) and the missense variant Thr130Ile (rs1800961; MAF = 0.027) was also not significantly different between cases and controls (p>0.2), but showed a trend consistent with association with T2DM. Four variants were found to be rare as heterozygotes in small numbers of subjects. Since many variants were infrequent, a pooled chi-squared analysis of rare variants was used to assess the overall burden of variants between cases and controls. This analysis revealed no significant difference (P=0.22). We conclude there is little evidence to suggest that HNF4α variants contribute significantly to risk of T2DM in the general population, but a modest contribution cannot be excluded. In addition, the observation of some mutations in controls suggests they are not highly penetrant MODY-causing variants.
Collapse
Affiliation(s)
- Jacklyn N Hellwege
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA ; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA ; Program in Molecular Genetics and Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | |
Collapse
|
13
|
Pörksen S, Laborie LB, Nielsen L, Louise Max Andersen M, Sandal T, de Wet H, Schwarcz E, Åman J, Swift P, Kocova M, Schönle EJ, de Beaufort C, Hougaard P, Ashcroft F, Molven A, Knip M, Mortensen HB, Hansen L, Njølstad PR. Disease progression and search for monogenic diabetes among children with new onset type 1 diabetes negative for ICA, GAD- and IA-2 Antibodies. BMC Endocr Disord 2010; 10:16. [PMID: 20863361 PMCID: PMC2955624 DOI: 10.1186/1472-6823-10-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 09/23/2010] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND To investigate disease progression the first 12 months after diagnosis in children with type 1 diabetes negative (AAB negative) for pancreatic autoantibodies [islet cell autoantibodies(ICA), glutamic acid decarboxylase antibodies (GADA) and insulinoma-associated antigen-2 antibodies (IA-2A)]. Furthermore the study aimed at determining whether mutations in KCNJ11, ABCC8, HNF1A, HNF4A or INS are common in AAB negative diabetes. MATERIALS AND METHODS In 261 newly diagnosed children with type 1 diabetes, we measured residual β-cell function, ICA, GADA, and IA-2A at 1, 6 and 12 months after diagnosis. The genes KCNJ11, ABCC8, HNF1A, HNF4A and INS were sequenced in subjects AAB negative at diagnosis. We expressed recombinant K-ATP channels in Xenopus oocytes to analyse the functional effects of an ABCC8 mutation. RESULTS Twenty-four patients (9.1%) tested AAB negative after one month. Patients, who were AAB-negative throughout the 12-month period, had higher residual β-cell function (P = 0.002), lower blood glucose (P = 0.004), received less insulin (P = 0.05) and had lower HbA1c (P = 0.02) 12 months after diagnosis. One patient had a heterozygous mutation leading to the substitution of arginine at residue 1530 of SUR1 (ABCC8) by cysteine. Functional analyses of recombinant K-ATP channels showed that R1530C markedly reduced the sensitivity of the K-ATP channel to inhibition by MgATP. Morover, the channel was highly sensitive to sulphonylureas. However, there was no effect of sulfonylurea treatment after four weeks on 1.0-1.2 mg/kg/24 h glibenclamide. CONCLUSION GAD, IA-2A, and ICA negative children with new onset type 1 diabetes have slower disease progression as assessed by residual beta-cell function and improved glycemic control 12 months after diagnosis. One out of 24 had a mutation in ABCC8, suggesting that screening of ABCC8 should be considered in patients with AAB negative type 1 diabetes.
Collapse
Affiliation(s)
- Sven Pörksen
- Department of Pediatrics, Glostrup Hospital & University of Copenhagen, Copenhagen, Denmark
| | - Lene Bjerke Laborie
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Lotte Nielsen
- Department of Pediatrics, Glostrup Hospital & University of Copenhagen, Copenhagen, Denmark
| | | | - Tone Sandal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- Gade Institute, University of Bergen, Bergen, Norway
| | - Heidi de Wet
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Erik Schwarcz
- Department of Pediatrics, University Hospital Ørebro, Ørebro, Sweden
| | - Jan Åman
- Department of Pediatrics, University Hospital Ørebro, Ørebro, Sweden
| | - Peter Swift
- Department of Pediatrics, Leicester Royal Infirmery Children's Hospital, Leicester, UK
| | - Mirjana Kocova
- Department of Endocrinology and Genetics, Paediatric Clinic, Skopje, Former Yugoslav Republic of Macedonia
| | - Eugen J Schönle
- Department of Pediatrics, University Childrens Hospital, Zurich, Switzerland
| | | | - Philip Hougaard
- Department of Biostatistics, University of Southern Denmark, Odense, Denmark
| | - Frances Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Anders Molven
- Gade Institute, University of Bergen, Bergen, Norway
| | - Mikael Knip
- Department of Pediatrics, Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | - Henrik B Mortensen
- Department of Pediatrics, Glostrup Hospital & University of Copenhagen, Copenhagen, Denmark
| | - Lars Hansen
- Department of Pediatrics, Glostrup Hospital & University of Copenhagen, Copenhagen, Denmark
| | - Pål R Njølstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Chen Z, Zhang D, Liu Y, Zhou D, Zhao T, Yang Y, He L, Xu H. Variants in hepatocyte nuclear factor 4alpha gene promoter region and type 2 diabetes risk in Chinese. Exp Biol Med (Maywood) 2010; 235:857-61. [PMID: 20558840 DOI: 10.1258/ebm.2010.010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a key regulator of insulin secretion and metabolism of glucose, cholesterol and fatty acid, hepatocyte nuclear factor 4alpha (HNF4A) was suggested as a candidate gene for type 2 diabetes (T2D); however, no association study between HNF4A and T2D in the Chinese population has been conducted before. To address this issue, we evaluated the impact of the HNF4A variants (rs1884614 and rs2425637) on T2D and metabolic traits in 1912 unrelated patients and 2041 control subjects in the Chinese Han population. Our results suggested that no individual single nucleotide polymorphisms of HNF4A was significantly associated with T2D at either allele or genotype level. However, rs2425637 in the promoter region of HNF4A was found to have an effect on total cholesterol and high-density lipoprotein before multiple testing correction. To summarize, our investigation did not confirm the effects of HNF4A variants (rs1884614 and rs2425637) on T2D risk, but found that the risk HNF4A contributed to T2D might be population specific.
Collapse
Affiliation(s)
- Zhuo Chen
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Njølstad PR, Hertel JK, Søvik O, Raeder H, Johansson S, Molven A. [Progress in diabetes genetics]. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2010; 130:1145-9. [PMID: 20531501 DOI: 10.4045/tidsskr.09.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Diabetes is classified as Type 1 diabetes, Type 2 diabetes, gestational diabetes and other types. Our goal was to provide an overview of new genetic knowledge of monogenic and type 2 diabetes. MATERIAL AND METHOD The article is based on literature identified through a non-systematic search in PubMed and own experience concerning research in diabetes genetics and treatment of patients with monogenic diabetes. RESULTS 18 genes have been found for which one single mutation may cause diabetes. The most common causes for such monogenic diabetes are mutations in the genes KCNJ11, ABCC8 and INS when the condition is diagnosed at the age 0 - 6 months, and in the genes HNF1A, GCK, HNF4A and HNF1B when the diagnosis is made later than six months of age. Genetic testing is appropriate in assessment of monogenic diabetes, because antidiabetic tablets rather that insulin injections can be used to treat patients with mutations in certain genes; i.e. KCNJ11, ABCC8, HNF1A and HNF4A. Genome-wide association studies have recently identified about 20 genetic variants that increase the risk of Type 2 diabetes, but which have a low predictive value for development of disease. How these genetic variants can cause Type 2 diabetes has not been assessed and clinical relevance remains to be shown. INTERPRETATION So far, genetic findings only affect diagnosis and treatment of monogenic diabetes.
Collapse
Affiliation(s)
- Pål R Njølstad
- Senter for diabetesgenetikk, Barneklinikken, Haukeland universitetssykehus, 5021 Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
16
|
Wirsing A, Johnstone KA, Harries LW, Ellard S, Ryffel GU, Stanik J, Gasperikova D, Klimes I, Murphy R. Novel monogenic diabetes mutations in the P2 promoter of the HNF4A gene are associated with impaired function in vitro. Diabet Med 2010; 27:631-5. [PMID: 20546279 DOI: 10.1111/j.1464-5491.2010.03003.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS Mutations in HNF4A cause a form of monogenic beta-cell diabetes. We aimed to identify mutations in the pancreas-specific P2 promoter of HNF4A in families with suspected HNF4A diabetes and to show that they impaired the function of the promoter in vitro. METHODS We screened families with a clinical suspicion of HNF4A monogenic beta-cell diabetes for mutations in the HNF4A P2 promoter. We investigated the function of the previously reported HNF4A P2 promoter mutation -192C>G linked to late-onset diabetes in several families, along with two new segregating mutations, in vitro using a modified luciferase reporter assay system with enhanced sensitivity. RESULTS We identified two novel HNF4A P2 promoter mutations that co-segregate with diabetes in two families, -136A>G and -169C>T. Both families displayed phenotypes typical of HNF4A monogenic beta-cell diabetes, including at least two affected generations, good response to sulphonylurea treatment and increased birthweight and/or neonatal hypoglycaemia. We show that both of these novel mutations and -192C>G impair the function of the promoter in transient transfection assays. CONCLUSIONS Two novel mutations identified here and the previously identified late-onset diabetes mutation, -192C>G, impair the function of the HNF4A P2 promoter in vitro.
Collapse
Affiliation(s)
- A Wirsing
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rampersaud E, Mitchell BD, Naj AC, Pollin TI. Investigating parent of origin effects in studies of type 2 diabetes and obesity. Curr Diabetes Rev 2008; 4:329-39. [PMID: 18991601 PMCID: PMC2896493 DOI: 10.2174/157339908786241179] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The role of parent-of-origin effects (POE) in the etiology of complex diseases such as type 2 diabetes (T2DM) and obesity is currently of intense interest, but still largely unclear. POE are transmittable genetic effects whereby the expression of the phenotype in the offspring depends upon whether the transmission originated from the mother or father. In mammals, POE can be caused by genetic imprinting, intrauterine effects, or maternally inherited mitochondrial genes. In this paper, we describe the different mechanisms underlying POE, characterize known examples of POE in rare forms of diabetes, and review the evidence from linkage and association studies for POE in T2DM and obesity. Finally, we summarize some of the new and established statistical and experimental approaches commonly used to detect POE. Through this paper, we hope emphasizes the potentially significant importance of POE in the etiology of T2DM and obesity.
Collapse
Affiliation(s)
- Evadnie Rampersaud
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
18
|
Sagen JV, Bjørkhaug L, Molnes J, Raeder H, Grevle L, Søvik O, Molven A, Njølstad PR. Diagnostic screening of MODY2/GCK mutations in the Norwegian MODY Registry. Pediatr Diabetes 2008; 9:442-9. [PMID: 18399931 DOI: 10.1111/j.1399-5448.2008.00399.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young, type 2 (MODY2) is caused by mutations in the glucokinase gene (GCK). The aim of our study was to determine the prevalence of GCK mutations in the Norwegian MODY Registry and to delineate the clinical phenotype of identified GCK mutation carriers. METHODS We screened 122 probands referred to the MODY Registry for mutations in GCK and studied extended families with MODY2. RESULTS We found 2 novel (S76Y and N231S) and 13 previously reported (V62A, G72R, L146R, R191W, A208T, M210K, Y215X, M235T, R275C, E339G, R377C, S453L, and IVS5+1G>C) GCK mutations in 23 probands and in their 33 family members. The prevalence of MODY2 was 12% in the Norwegian MODY Registry. The subjects with GCK mutations had features of mild diabetes. Yet, 15 of 56 MODY2 subjects were treated with oral drugs or insulin. Three subjects had retinopathy and one had macrovascular disease. Also, a limited number of cases had elevated fasting serum triglyceride values. Moreover, two GCK mutation carriers were diagnosed with type 1 diabetes. CONCLUSIONS According to our diagnostic screening of GCK in the MODY Registry, MODY2 is less prevalent than MODY3 in Norway but is likely to be underreported. Recognizing MODY2 in diabetic patients is important in order to prevent overtreatment. Finally, our study demonstrates the co-occurrence of MODY2 in families with type 1 or type 2 diabetes.
Collapse
Affiliation(s)
- Jørn V Sagen
- Section for Endocrinology, Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Eide SA, Raeder H, Johansson S, Midthjell K, Søvik O, Njølstad PR, Molven A. Prevalence of HNF1A (MODY3) mutations in a Norwegian population (the HUNT2 Study). Diabet Med 2008; 25:775-81. [PMID: 18513305 DOI: 10.1111/j.1464-5491.2008.02459.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Previous reports have indicated that maturity-onset diabetes of the young (MODY) caused by hepatocyte nuclear factor 1A (HNF1A) mutations (MODY3) is the most common MODY subtype in Northern Europe, but population-based prevalence estimates are lacking. We sought to determine the prevalence of HNF1A-MODY in diabetic subjects of a defined Norwegian population (the HUNT2 Study). METHODS Of the 1972 diabetic HUNT2 subjects, we identified a subgroup of 43 suspected MODY cases based on information on family history, disease onset and anti-glutamic acid decarboxylase autoantibody status. These cases were considered a discovery group for HNF1A mutations and underwent full DNA sequencing. Subsequently, the entire cohort of diabetic HUNT2 subjects was screened for three selected HNF1A mutations. Possible founder effects were examined using the Norwegian MODY Registry. RESULTS Three subjects from the discovery group harboured HNF1A mutations. Two subjects had the previously described R229Q mutation, one had a novel S6N alteration, whereas the HNF1A hot-spot mutation P291fsinsC was not identified. Genotyping the cohort of diabetic HUNT2 subjects identified five additional R229Q-positive subjects. Microsatellite analysis performed for all R229Q-positive probands of the Norwegian MODY Registry and those found in the HUNT2 population revealed that 17 of 18 (94%) had genotypes consistent with a common haplotype. CONCLUSIONS Clinical MODY criteria were fulfilled in 2.2% of diabetic HUNT2 subjects. The minimum prevalence of HNF1A-MODY among diabetic HUNT2 subjects was 0.4%. Because of founder effects, registry-based prevalence studies probably need to be very large and they should also include prospectively collected phenotypes and extensive mutation screening to establish the true prevalence of MODY.
Collapse
Affiliation(s)
- S A Eide
- Section for Pediatrics, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
20
|
Harries LW, Locke JM, Shields B, Hanley NA, Hanley KP, Steele A, Njølstad PR, Ellard S, Hattersley AT. The diabetic phenotype in HNF4A mutation carriers is moderated by the expression of HNF4A isoforms from the P1 promoter during fetal development. Diabetes 2008; 57:1745-52. [PMID: 18356407 DOI: 10.2337/db07-1742] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Mutations in the alternatively spliced HNF4A gene cause maturity-onset diabetes of the young (MODY). We characterized the spatial and developmental expression patterns of HNF4A transcripts in human tissues and investigated their role as potential moderators of the MODY phenotype. RESEARCH DESIGN AND METHODS We measured the expression of HNF4A isoforms in human adult tissues and gestationally staged fetal pancreas by isoform-specific real-time PCR. The correlation between mutation position and age of diagnosis or age-related penetrance was assessed in a cohort of 190 patients with HNF4A mutations. RESULTS HNF4A was expressed exclusively from the P2 promoter in adult pancreas, but from 9 weeks until at least 26 weeks after conception, up to 23% of expression in fetal pancreas was of P1 origin. HNF4A4-6 transcripts were not detected in any tissue. In whole pancreas, HNF4A9 expression was greater than in islets isolated from the endocrine pancreas (relative level 22 vs. 7%). Patients with mutations in exons 9 and 10 (absent from HNF4A3, HNF4A6, and HNF4A9 isoforms) developed diabetes later than those with mutations in exons 2-8, where all isoforms were affected (40 vs. 24 years; P = 0.029). Exon 9/10 mutations were also associated with a reduced age-related penetrance (53 vs. 10% without diabetes at age 55 years; P < 0.00001). CONCLUSIONS We conclude that isoforms derived from the HNF4A P1 promoter are expressed in human fetal, but not adult, pancreas, and that their presence during pancreatic development may moderate the diabetic phenotype in individuals with mutations in the HNF4A gene.
Collapse
Affiliation(s)
- Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Exeter, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ellard S, Bellanné-Chantelot C, Hattersley AT. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008; 51:546-53. [PMID: 18297260 PMCID: PMC2270360 DOI: 10.1007/s00125-008-0942-y] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 01/03/2008] [Indexed: 12/03/2022]
Abstract
AIMS/HYPOTHESIS Mutations in the GCK and HNF1A genes are the most common cause of the monogenic forms of diabetes known as 'maturity-onset diabetes of the young'. GCK encodes the glucokinase enzyme, which acts as the pancreatic glucose sensor, and mutations result in stable, mild fasting hyperglycaemia. A progressive insulin secretory defect is seen in patients with mutations in the HNF1A and HNF4A genes encoding the transcription factors hepatocyte nuclear factor-1 alpha and -4 alpha. A molecular genetic diagnosis often changes management, since patients with GCK mutations rarely require pharmacological treatment and HNF1A/4A mutation carriers are sensitive to sulfonylureas. These monogenic forms of diabetes are often misdiagnosed as type 1 or 2 diabetes. Best practice guidelines for genetic testing were developed to guide testing and reporting of results. METHODS A workshop was held to discuss clinical criteria for testing and the interpretation of molecular genetic test results. The participants included 22 clinicians and scientists from 13 countries. Draft best practice guidelines were formulated and edited using an online tool (http://www.coventi.com). RESULTS An agreed set of clinical criteria were defined for the testing of babies, children and adults for GCK, HNF1A and HNF4A mutations. Reporting scenarios were discussed and consensus statements produced. CONCLUSIONS/INTERPRETATION Best practice guidelines have been established for monogenic forms of diabetes caused by mutations in the GCK, HNF1A and HNF4A genes. The guidelines include both diagnostic and predictive genetic tests and interpretation of the results.
Collapse
Affiliation(s)
- S Ellard
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK.
| | | | | |
Collapse
|
22
|
Johansson S, Raeder H, Eide SA, Midthjell K, Hveem K, Søvik O, Molven A, Njølstad PR. Studies in 3,523 Norwegians and meta-analysis in 11,571 subjects indicate that variants in the hepatocyte nuclear factor 4 alpha (HNF4A) P2 region are associated with type 2 diabetes in Scandinavians. Diabetes 2007; 56:3112-7. [PMID: 17827402 DOI: 10.2337/db07-0513] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Recent publications have found an association between common variants near the hepatocyte nuclear factor 4 alpha (HNF4A) P2 promoter and type 2 diabetes in some populations but not in others, and the role for HNF4A in type 2 diabetes has remained unclear. In an attempt to address these inconsistencies, we investigated HNF4A single nucleotide polymorphisms (SNPs) in a large population-based sample and included a meta-analysis of published studies. RESEARCH DESIGN AND METHODS We genotyped 12 SNPs in the HNF4A region in a Norwegian population-based sample of 1,644 individuals with type 2 diabetes and 1,879 control subjects (the Nord-Trøndelag Health Study [HUNT] 2). We combined our data with all previously published case/control studies and performed a meta-analysis. RESULTS Consistent with initial studies, we found a trend toward association for the SNPs rs1884613 (odds ratio [OR] 1.17 [95% CI 1.03-1.35]) and rs2144908 (1.21 [1.05-1.38]) in the P2 region and for rs4812831 (1.21 [1.02-1.44]), located 34 kb downstream of the P2 promoter. Meta-analysis, comprising 12,292 type 2 diabetic case and 15,519 control subjects, revealed a nonsignificant OR of 1.05 (95% CI 0.98-1.12) but with significant heterogeneity between the populations. We therefore performed a subanalysis including only the data for subjects from Scandinavia. Among the 4,000 case and 7,571 control Scandinavian subjects, a pooled OR of 1.14 (1.06-1.23), P = 0.0004, was found for the SNP rs1884613. CONCLUSIONS Our results suggest that variation in the HNF4A region is associated with type 2 diabetes in Scandinavians, highlighting the importance of exploring small genetic effects in large, homogenous populations.
Collapse
Affiliation(s)
- Stefan Johansson
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Abstract
PURPOSE OF REVIEW Variants in the hepatocyte nuclear factor 4alpha (HNF4A) gene play a role in the development of diabetes mellitus. Although genetic variation in and around HNF4A regulatory regions has received considerable attention, the significance of these variants in the common type 2 diabetes varies in the literature. This review will provide a general overview of recent genetic studies involving the evaluation of HNF4A as a contributor to the risk and pathophysiology of diabetes mellitus and related risk factors. RECENT FINDINGS These studies report newly identified variants, evaluate previously reported polymorphisms that were associated with type 2 diabetes in several distinct populations with maturity-onset diabetes of the young, type 2 diabetes, gestational diabetes, and diabetes related risk factors, and propose a role for HNF4A in insulin secretion via the potassium ATP channel. SUMMARY HNF4A variants identified so far appear to modestly contribute to predisposition for type 2 diabetes. Continued identification and especially functional characterization of variants, however, will be critical in future studies to enhance our understanding of the metabolic impact of this gene.
Collapse
Affiliation(s)
- Latisha Love-Gregory
- Nutritional Sciences, Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
25
|
Abstract
Maturity-onset diabetes of the young (MODY) is a type of non-insulin-dependent diabetes mellitus caused by rare autosomal-dominant mutations. MODY genes play key biochemical roles in the pancreatic beta cell; therefore, common variants of MODY genes are excellent candidate genes for type 2 diabetes. We review recent studies that suggest that common MODY gene variation contributes modestly to the heritability of type 2 diabetes.
Collapse
Affiliation(s)
- Michael N Weedon
- Institute of Biomedical & Clinical Sciences, Peninsula College of Medicine & Dentistry, Peninsula Medical School, St. Lukes Campus, Magdalen Road, Exeter EX1 2LU, UK.
| | | |
Collapse
|
26
|
Lehman DM, Richardson DK, Jenkinson CP, Hunt KJ, Dyer TD, Leach RJ, Arya R, Abboud HE, Blangero J, Duggirala R, Stern MP. P2 promoter variants of the hepatocyte nuclear factor 4alpha gene are associated with type 2 diabetes in Mexican Americans. Diabetes 2007; 56:513-7. [PMID: 17259399 DOI: 10.2337/db06-0881] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Common and rare variants of the hepatocyte nuclear factor 4alpha (HNF4A) gene have been associated with type 2 diabetes and related traits in several populations suggesting the involvement of this transcription factor in diabetes pathogenesis. Single nucleotide polymorphisms (SNPs) within a large haplotype block surrounding the alternate P2 promoter, located approximately 45 kb upstream from the coding region, have been investigated in several populations of varying ethnicity with inconsistent results. Additionally, SNPs located within the P1 promoter and coding region have also been inconsistently associated with type 2 diabetes. Characterization of variation across this gene region in Mexican-American populations has not been reported. We therefore examined polymorphisms across the HNF4A gene in a cohort of Mexican-American pedigrees and assessed their association with type 2 diabetes. We observed evidence for association of SNPs in the P2 promoter region with type 2 diabetes (P = 0.003) and its age at diagnosis (P = 0.003). The risk allele frequency (53%) was intermediate to that reported in Caucasian populations (20-27%) and Pima Indians (83%). No other SNPs were associated with either trait. These results support the possibility that a variant in the P2 promoter region of HNF4A, or variants in linkage disequilibrium within this region, contributes to susceptibility to type 2 diabetes in many ethnic populations including Mexican Americans.
Collapse
Affiliation(s)
- Donna M Lehman
- Department of Medicine/Clinical Epidemiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Harries LW. Alternate mRNA processing of the hepatocyte nuclear factor genes and its role in monogenic diabetes. Expert Rev Endocrinol Metab 2006; 1:715-726. [PMID: 30754156 DOI: 10.1586/17446651.1.6.715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Variation in mRNA processing has the capacity to exert fine control over gene expression in most cell types. The hepatic nuclear factor genes, like approximately 74% of the genome, produce multiple transcripts. Hepatic nuclear factor isoforms exhibit both spatial and temporal variation in expression. In this review, the known isoforms of the hepatocyte nuclear factor-1α, hepatocyte nuclear factor-1β and hepatocyte nuclear factor-4α genes are described and their properties are compared. Finally, data are discussed regarding the influence of hepatocyte nuclear factor-1α alternate mRNA processing on the clinical phenotype of maturity-onset diabetes of the young.
Collapse
Affiliation(s)
- Lorna W Harries
- a RCUK Diabetes and Metabolism Academic Fellow, Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
28
|
Abstract
Monogenic diabetes results from one or more mutations in a single gene which might hence be rare but has great impact leading to diabetes at a very young age. It has resulted in great challenges for researchers elucidating the aetiology of diabetes and related features in other organ systems, for clinicians specifying a diagnosis that leads to improved genetic counselling, predicting of clinical course and changes in treatment, and for patients to altered treatment that has lead to coming off insulin and injections with no alternative (Glucokinase mutations), insulin injections being replaced by tablets (e.g. low dose in HNFalpha or high dose in potassium channel defects -Kir6.2 and SUR1) or with tablets in addition to insulin (e.g. metformin in insulin resistant syndromes). Genetic testing requires guidance to test for what gene especially given limited resources. Monogenic diabetes should be considered in any diabetic patient who has features inconsistent with their current diagnosis (unspecified neonatal diabetes, type 1 or type 2 diabetes) and clinical features of a specific subtype of monogenic diabetes (neonatal diabetes, familial diabetes, mild hyperglycaemia, syndromes). Guidance is given by clinical and physiological features in patient and family and the likelihood of the proposed mutation altering clinical care. In this article, I aimed to provide insight in the genes and mutations involved in insulin synthesis, secretion, and resistance, and to provide guidance for genetic testing by showing the clinical and physiological features and tests for each specified diagnosis as well as the opportunities for treatment.
Collapse
Affiliation(s)
- Annabelle S Slingerland
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, EX2 5DW, UK.
| |
Collapse
|
29
|
Ek J, Hansen SP, Lajer M, Nicot C, Boesgaard TW, Pruhova S, Johansen A, Albrechtsen A, Yderstraede K, Lauenborg J, Parrizas M, Boj SF, Jørgensen T, Borch-Johnsen K, Damm P, Ferrer J, Lebl J, Pedersen O, Hansen T. A novel -192c/g mutation in the proximal P2 promoter of the hepatocyte nuclear factor-4 alpha gene (HNF4A) associates with late-onset diabetes. Diabetes 2006; 55:1869-73. [PMID: 16731855 DOI: 10.2337/db05-1684] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recently, it has been shown that mutations in the P2 promoter of the hepatocyte nuclear factor (HNF)-4 alpha gene (HNF4A) cause maturity-onset diabetes of the young (MODY), while single nucleotide polymorphisms in this locus are associated with type 2 diabetes. In this study, we examined 1,189 bp of the P2 promoter and the associated exon 1D of HNF4A for variations associated with diabetes in 114 patients with type 2 diabetes, 72 MODYX probands, and 85 women with previous gestational diabetes mellitus. A -192c/g mutation was found in five patients. We screened 1,587 diabetic subjects and 4,812 glucose-tolerant subjects for the -192c/g mutation and identified 5 diabetic and 1 glucose-tolerant mutation carriers (P=0.004). Examination of the families showed that carriers of the -192c/g mutation had a significantly impaired glucose-stimulated insulin release and lower levels of serum total cholesterol compared with matched control subjects. Furthermore, the mutation disrupted the binding of an unidentified sequence-specific DNA binding complex present in human islet extracts. Also, two novel linked polymorphisms in the P2 promoter at positions -1107g/t and -858c/t were identified. These variants were not significantly associated with type 2 diabetes or any pre-diabetic traits. In conclusion, a rare, novel mutation that disrupts a protein binding site in the pancreatic HNF4A promoter associates with late-onset diabetes.
Collapse
Affiliation(s)
- Jakob Ek
- Steno Diabetes Center and Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|