1
|
Dănilă AI, Ghenciu LA, Stoicescu ER, Bolintineanu SL, Iacob R, Săndesc MA, Faur AC. Aldose Reductase as a Key Target in the Prevention and Treatment of Diabetic Retinopathy: A Comprehensive Review. Biomedicines 2024; 12:747. [PMID: 38672103 PMCID: PMC11047946 DOI: 10.3390/biomedicines12040747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The escalating global prevalence of diabetes mellitus (DM) over the past two decades has led to a persistent high incidence of diabetic retinopathy (DR), necessitating screening for early symptoms and proper treatment. Effective management of DR aims to decrease vision impairment by controlling modifiable risk factors including hypertension, obesity, and dyslipidemia. Moreover, systemic medications and plant-based therapy show promise in advancing DR treatment. One of the key mechanisms related to DR pathogenesis is the polyol pathway, through which aldose reductase (AR) catalyzes the conversion of glucose to sorbitol within various tissues, including the retina, lens, ciliary body and iris. Elevated glucose levels activate AR, leading to osmotic stress, advanced glycation end-product formation, and oxidative damage. This further implies chronic inflammation, vascular permeability, and angiogenesis. Our comprehensive narrative review describes the therapeutic potential of aldose reductase inhibitors in treating DR, where both synthetic and natural inhibitors have been studied in recent decades. Our synthesis aims to guide future research and clinical interventions in DR management.
Collapse
Affiliation(s)
- Alexandra-Ioana Dănilă
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.-I.D.); (S.L.B.); (R.I.); (A.C.F.)
| | - Laura Andreea Ghenciu
- Department of Functional Sciences, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Emil Robert Stoicescu
- Doctoral School, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
- Department of Radiology and Medical Imaging, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Sorin Lucian Bolintineanu
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.-I.D.); (S.L.B.); (R.I.); (A.C.F.)
| | - Roxana Iacob
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.-I.D.); (S.L.B.); (R.I.); (A.C.F.)
- Doctoral School, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
| | - Mihai-Alexandru Săndesc
- Department of Orthopedics and Traumatology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Alexandra Corina Faur
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.-I.D.); (S.L.B.); (R.I.); (A.C.F.)
| |
Collapse
|
2
|
Eriksen AZ, Melander F, Eriksen GDM, Kempen PJ, Kjaer A, Andresen TL, Urquhart AJ. Active Transport and Ocular Distribution of Intravitreally Injected Liposomes. Transl Vis Sci Technol 2023; 12:20. [PMID: 37615641 PMCID: PMC10461645 DOI: 10.1167/tvst.12.8.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
Purpose Drug delivery to the retina remains a challenge due to ocular barriers and fast clearing mechanisms. Nanocarrier drug delivery systems (NDDSs) hold the promise of prolonging intraocular retention times and increasing drug concentrations in the retina. Methods Anionic and cationic PEGylated liposomes, loaded with oxaliplatin (OxPt) to be used as trace element, were prepared from dry lipid powders. The differently charged liposomes were intravitreally injected in C57BL/6JrJ mice; eyes were harvested 2 hours and 24 hours post-injection. To investigate active transport mechanisms in the eye, a subset of mice were pre-injected with chloroquine before injection with cationic liposomes. Eyes were dissected and the distribution of OxPt in different tissues were quantified by inductively coupled plasma mass spectrometry (ICP-MS). Results Both liposome formulations enhanced the retention time of OxPt in the vitreous over free OxPt. Surprisingly, when formulated in cationic liposomes, OxPt translocated through the retina and accumulated in the RPE-sclera. Pre-injection with chloroquine inhibited the transport of liposomal OxPt from the vitreous to the RPE-sclera. Conclusions We show that liposomes can enhance the retention time of small molecular drugs in the vitreous and that active transport mechanisms are involved in the trans retinal transport of NDDS after intravitreal injections. Translational Relevance These results highlight the need for understanding the dynamics of ocular transport mechanisms in living eyes when designing NDDS with the back of the eye as the target. Active transport of nanocarriers through the retina will limit the drug concentration in the neuronal retina but might be exploited for targeting the RPE.
Collapse
Affiliation(s)
- Anne Zebitz Eriksen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Fredrik Melander
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Paul Joseph Kempen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- National Center for Nano Fabrication and Characterization, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
3
|
Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative Strategies for Drug Delivery to the Ocular Posterior Segment. Pharmaceutics 2023; 15:1862. [PMID: 37514050 PMCID: PMC10385847 DOI: 10.3390/pharmaceutics15071862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2023] Open
Abstract
Innovative and new drug delivery systems (DDSs) have recently been developed to vehicle treatments and drugs to the ocular posterior segment and the retina. New formulations and technological developments, such as nanotechnology, novel matrices, and non-traditional treatment strategies, open new perspectives in this field. The aim of this mini-review is to highlight promising strategies reported in the current literature based on innovative routes to overcome the anatomical and physiological barriers of the vitreoretinal structures. The paper also describes the challenges in finding appropriate and pertinent treatments that provide safety and efficacy and the problems related to patient compliance, acceptability, effectiveness, and sustained drug delivery. The clinical application of these experimental approaches can help pave the way for standardizing the use of DDSs in developing enhanced treatment strategies and personalized therapeutic options for ocular pathologies.
Collapse
Affiliation(s)
- Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Department of Ophthalmology, Nuovo Ospedale Santo Stefano, 59100 Prato, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Shastri DH, Silva AC, Almeida H. Ocular Delivery of Therapeutic Proteins: A Review. Pharmaceutics 2023; 15:pharmaceutics15010205. [PMID: 36678834 PMCID: PMC9864358 DOI: 10.3390/pharmaceutics15010205] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Therapeutic proteins, including monoclonal antibodies, single chain variable fragment (ScFv), crystallizable fragment (Fc), and fragment antigen binding (Fab), have accounted for one-third of all drugs on the world market. In particular, these medicines have been widely used in ocular therapies in the treatment of various diseases, such as age-related macular degeneration, corneal neovascularization, diabetic retinopathy, and retinal vein occlusion. However, the formulation of these biomacromolecules is challenging due to their high molecular weight, complex structure, instability, short half-life, enzymatic degradation, and immunogenicity, which leads to the failure of therapies. Various efforts have been made to overcome the ocular barriers, providing effective delivery of therapeutic proteins, such as altering the protein structure or including it in new delivery systems. These strategies are not only cost-effective and beneficial to patients but have also been shown to allow for fewer drug side effects. In this review, we discuss several factors that affect the design of formulations and the delivery of therapeutic proteins to ocular tissues, such as the use of injectable micro/nanocarriers, hydrogels, implants, iontophoresis, cell-based therapy, and combination techniques. In addition, other approaches are briefly discussed, related to the structural modification of these proteins, improving their bioavailability in the posterior segments of the eye without affecting their stability. Future research should be conducted toward the development of more effective, stable, noninvasive, and cost-effective formulations for the ocular delivery of therapeutic proteins. In addition, more insights into preclinical to clinical translation are needed.
Collapse
Affiliation(s)
- Divyesh H. Shastri
- Department of Pharmaceutics & Pharmaceutical Technology, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gandhinagar 382016, India
- Correspondence:
| | - Ana Catarina Silva
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Hugo Almeida
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mesosystem Investigação & Investimentos by Spinpark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
5
|
Qu Q, Park K, Zhou K, Wassel D, Farjo R, Criswell T, Ma JX, Zhang Y. Sustained therapeutic effect of an anti-inflammatory peptide encapsulated in nanoparticles on ocular vascular leakage in diabetic retinopathy. Front Cell Dev Biol 2022; 10:1049678. [PMID: 36589744 PMCID: PMC9802579 DOI: 10.3389/fcell.2022.1049678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), an endogenous Wnt signaling inhibitor in the serine proteinase inhibitors (SERPIN) super family, is present in multiple organs, including the vitreous. Significantly low levels of PEDF in the vitreous are found to associate with pathological retinal vascular leakage and inflammation in diabetic retinopathy (DR). Intravitreal delivery of PEDF represents a promising therapeutic approach for DR. However, PEDF has a short half-life after intravitreal injection, which represents a major hurdle for the long-term treatment. Here we report the prolonged therapeutic effects of a 34-mer peptide of the PEDF N-terminus, encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PEDF34-NP), on DR. PEDF34-NP inhibited hypoxia-induced expression of vascular endothelial growth factor and reduced levels of intercellular adhesion molecule 1 (ICAM-1) in cultured retinal cells. In addition, PEDF34-NP significantly ameliorated ischemia-induced retinal neovascularization in the oxygen-induced retinopathy rat model, and significantly reduced retinal vascular leakage and inflammation in streptozotocin-induced diabetic rats up to 4 weeks after intravitreal injection, as compared to PLGA-NP control. Intravitreal injection of PEDF34-NP did not display any detectable toxicities to retinal structure and function. Our findings suggest that PEDF34-NP can confer sustained therapeutic effects on retinal inflammation and vascular leakage, having considerable potential to provide long-term treatment options for DR.
Collapse
Affiliation(s)
- Qiang Qu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kyoungmin Park
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - Kevin Zhou
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Drew Wassel
- EyeCro LLC., Oklahoma City, OK, United States
| | - Rafal Farjo
- EyeCro LLC., Oklahoma City, OK, United States
| | - Tracy Criswell
- Institure for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jian-xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Yuanyuan Zhang
- Institure for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States,*Correspondence: Yuanyuan Zhang,
| |
Collapse
|
6
|
Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug delivery to the retina: current status and implications for gene therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1477-1507. [PMID: 36107200 PMCID: PMC9630211 DOI: 10.1007/s00210-022-02287-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Blindness affects more than 60 million people worldwide. Retinal disorders, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are the leading causes of blindness. Finding means to optimize local and sustained delivery of drugs or genes to the eye and retina is one goal to advance the development of new therapeutics. Despite the ease of accessibility of delivering drugs via the ocular surface, the delivery of drugs to the retina is still challenging due to anatomic and physiologic barriers. Designing a suitable delivery platform to overcome these barriers should enhance drug bioavailability and provide a safe, controlled, and sustained release. Current inventions for posterior segment treatments include intravitreal implants and subretinal viral gene delivery that satisfy these criteria. Several other novel drug delivery technologies, including nanoparticles, micelles, dendrimers, microneedles, liposomes, and nanowires, are now being widely studied for posterior segment drug delivery, and extensive research on gene delivery using siRNA, mRNA, or aptamers is also on the rise. This review discusses the current state of retinal drug/gene delivery and highlights future therapeutic opportunities.
Collapse
Affiliation(s)
- Mohamed Tawfik
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Fang Chen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
7
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Salman A, Kantor A, McClements ME, Marfany G, Trigueros S, MacLaren RE. Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, Challenges, and Limitations. Pharmaceutics 2022; 14:1842. [PMID: 36145593 PMCID: PMC9503525 DOI: 10.3390/pharmaceutics14091842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of the CRISPR/Cas system and its development into a powerful genome engineering tool have revolutionized the field of molecular biology and generated excitement for its potential to treat a wide range of human diseases. As a gene therapy target, the retina offers many advantages over other tissues because of its surgical accessibility and relative immunity privilege due to its blood-retinal barrier. These features explain the large advances made in ocular gene therapy over the past decade, including the first in vivo clinical trial using CRISPR gene-editing reagents. Although viral vector-mediated therapeutic approaches have been successful, they have several shortcomings, including packaging constraints, pre-existing anti-capsid immunity and vector-induced immunogenicity, therapeutic potency and persistence, and potential genotoxicity. The use of nanomaterials in the delivery of therapeutic agents has revolutionized the way genetic materials are delivered to cells, tissues, and organs, and presents an appealing alternative to bypass the limitations of viral delivery systems. In this review, we explore the potential use of non-viral vectors as tools for gene therapy, exploring the latest advancements in nanotechnology in medicine and focusing on the nanoparticle-mediated delivery of CRIPSR genetic cargo to the retina.
Collapse
Affiliation(s)
- Ahmed Salman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ariel Kantor
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | | - Gemma Marfany
- Department of Genetics Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
- CIBERER, University of Barcelona, 08007 Barcelona, Spain
| | - Sonia Trigueros
- Department of Genetics Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
9
|
MicroRNA-539-5p-Loaded PLGA Nanoparticles Grafted with iRGD as a Targeting Treatment for Choroidal Neovascularization. Pharmaceutics 2022; 14:pharmaceutics14020243. [PMID: 35213977 PMCID: PMC8877575 DOI: 10.3390/pharmaceutics14020243] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Choroidal neovascularization (CNV) is a major cause of visual impairment that results from excessive growth of blood vessels in the eye’s choroid. The limited clinical efficacy of the current therapy for this condition requires the emergence of new treatment modalities such as microRNA (miRNAs). A recent study identified microRNA-539-5p (miR-539) as an angiogenic suppressor in a CNV animal model; however, its therapeutic delivery is limited. Therefore, this study aims to formulate miR-539 in targeted nanoparticles (NPs) prepared from polylactic-co-glycolic acid (PLGA). The NPs were decorated with internalizing arginylglycylaspartic (RGD) peptide (iRGD), which specifically targets the alpha-v-beta-3 (αvβ3) integrin receptor that is overexpressed in blood vessels of ocular tissue in CNV patients. The 1H NMR spectra results revealed successful conjugation of iRGD peptide into PLGA NPs. The miR-539-PLGA.NPs and miR-539-iRGD-PLGA.NPs were prepared and showed a particle size of 300 ± 3 and 306.40 ± 4 nm, respectively. A reduction in human retinal microvascular endothelial cell (HRMEC) viability was shown 48 and 72 h post transfection with miR-539 incorporated in PLGA NPs and iRGD-PLGA.NPs. iRGD-functionalized PLGA NPs caused further significant reduction in cell viability when compared with plain ones, revealing an enhancement in the NP uptake with iRGD-grafted NPs. The current study showed that miR-539-PLGA.NPs and miR-539-iRGD-PLGA.NPs are promising approaches that reduced the viability of HRMECs, suggesting their therapeutic potential in the treatment of CNV.
Collapse
|
10
|
Therapeutic Effects of Fenofibrate Nano-Emulsion Eye Drops on Retinal Vascular Leakage and Neovascularization. BIOLOGY 2021; 10:biology10121328. [PMID: 34943243 PMCID: PMC8698460 DOI: 10.3390/biology10121328] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023]
Abstract
Macular edema caused by retinal vascular leakage and ocular neovascularization are the leading causes of severe vision loss in diabetic retinopathy (DR) and age-related macular degeneration (AMD) patients. Oral administration of fenofibrate, a PPARα agonist, has shown therapeutic effects on macular edema and retinal neovascularization in diabetic patients. To improve the drug delivery to the retina and its efficacy, we have developed a nano-emulsion-based fenofibrate eye drop formulation that delivered significantly higher amounts of the drug to the retina compared to the systemic administration, as measured by liquid chromatography-mass spectrometer (LC-MS). The fenofibrate eye drop decreased leukocytes adherent to retinal vasculature and attenuated overexpression of multiple inflammatory factors in the retina of very low-density lipoprotein receptor knockout (Vldlr-/-) mice, a model manifesting AMD phenotypes, and streptozotocin-induced diabetic rats. The fenofibrate eye drop also reduced retinal vascular leakage in these models. The laser-induced choroidal neovascularization was also alleviated by the fenofibrate eye drop. There were no detectable ocular toxicities associated with the fenofibrate eye drop treatment. These findings suggest that fenofibrate can be delivered efficiently to the retina through topical administration of the nano-emulsion eye drop, which has therapeutic potential for macular edema and neovascularization.
Collapse
|
11
|
Silva M, Peng T, Zhao X, Li S, Farhan M, Zheng W. Recent trends in drug-delivery systems for the treatment of diabetic retinopathy and associated fibrosis. Adv Drug Deliv Rev 2021; 173:439-460. [PMID: 33857553 DOI: 10.1016/j.addr.2021.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy is a frequent microvascular complication of diabetes and a major cause of visual impairment. In advanced stages, the abnormal neovascularization can lead to fibrosis and subsequent tractional retinal detachment and blindness. The low bioavailability of the drugs at the target site imposed by the anatomic and physiologic barriers within the eye, requires long term treatments with frequent injections that often compromise patient's compliance and increase the risk of developing more complications. In recent years, much effort has been put towards the development of new drug delivery platforms aiming to enhance their permeation, to prolong their retention time at the target site and to provide a sustained release with reduced toxicity and improved efficacy. This review provides an overview of the etiology and pathophysiology of diabetic retinopathy and current treatments. It addresses the specific challenges associated to the different ocular delivery routes and provides a critical review of the most recent developments made in the drug delivery field.
Collapse
Affiliation(s)
- Marta Silva
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Tangming Peng
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Xia Zhao
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Shuai Li
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Mohd Farhan
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Wenhua Zheng
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau.
| |
Collapse
|
12
|
Di Y, Wang Y, Wang X, Nie QZ. Effects of long non-coding RNA myocardial infarction-associated transcript on retinal neovascularization in a newborn mouse model of oxygen-induced retinopathy. Neural Regen Res 2021; 16:1877-1881. [PMID: 33510096 PMCID: PMC8328761 DOI: 10.4103/1673-5374.306098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whether long non-coding RNA myocardial infarction-associated transcript is involved in oxygen-induced retinopathy remains poorly understood. To validate this hypothesis, we established a newborn mouse model of oxygen-induced retinopathy by feeding in an oxygen concentration of 75 ± 2% from postnatal day 8 to postnatal day 12, followed by in normal air. On postnatal day 11, the mice were injected with the myocardial infarction-associated transcript siRNA plasmid via the vitreous cavity to knockdown long non-coding RNA myocardial infarction-associated transcript. Myocardial infarction-associated transcript siRNA transcription significantly inhibited myocardial infarction-associated transcript mRNA expression, reduced the phosphatidylinosital-3-kinase, phosphorylated Akt and vascular endothelial growth factor immunopositivities, protein and mRNA expression, and alleviated the pathological damage to the retina of oxygen-induced retinopathy mouse models. These findings suggest that myocardial infarction-associated transcript is likely involved in the retinal neovascularization in retinopathy of prematurity and that inhibition of myocardial infarction-associated transcript can downregulate phosphatidylinosital-3-kinase, phosphorylated Akt and vascular endothelial growth factor expression levels and inhibit neovascularization. This study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University, China (approval No. 2016PS074K) on February 25, 2016.
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qing-Zhu Nie
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
13
|
Rescue the retina after the ischemic injury by polymer-mediated intracellular superoxide dismutase delivery. Biomaterials 2020; 268:120600. [PMID: 33360507 DOI: 10.1016/j.biomaterials.2020.120600] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/14/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a hallmark of the pathophysiogenesis of retinal ischemia. The direct delivery of antioxidant enzymes such as superoxide dismutase (SOD) into retinal cells provides a promising option for the down-regulation of oxidative stress in retinal ischemia, however, efficient intracellular protein delivery remains a major challenge for this application. Here, a boronic acid-rich polymer was used for the intracellular delivery of SOD both in vitro and in vivo. The polymer assembled with SOD into uniform nanoparticles with high binding affinity, and transported the cargo protein into several cell lines with maintained bioactivity and low cytotoxicity. We investigated the intraocular biodistribution, therapeutic efficacy and safety of the SOD nanoformulation in a retinal ischemia/reperfusion (I/R) injury model. After intravitreal injection, the nanoparticles rapidly diffused through the vitreous and penetrated into retinal ganglion cells (RGCs). Compared to free SOD, the nanoformulation exhibited much enhanced therapeutic efficacy with reduced RGC apoptosis and protected retinal function. Enzymatic results confirmed that the SOD nanoformulation reduced malondialdehyde expression and increased glutathione level in the ocular tissues, and thereby down-regulated oxidative stress and prevented RGC loss. Overall, this work offers a new therapeutic option for the treatment of retinal ischemic disorders by direct delivery of antioxidant proteins.
Collapse
|
14
|
Amato R, Giannaccini M, Dal Monte M, Cammalleri M, Pini A, Raffa V, Lulli M, Casini G. Association of the Somatostatin Analog Octreotide With Magnetic Nanoparticles for Intraocular Delivery: A Possible Approach for the Treatment of Diabetic Retinopathy. Front Bioeng Biotechnol 2020; 8:144. [PMID: 32158755 PMCID: PMC7051943 DOI: 10.3389/fbioe.2020.00144] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
The somatostatin analog octreotide (OCT) displays important neuroprotective and anti-angiogenic properties that could make it an interesting candidate to treat diabetic retinopathy (DR). Unfortunately, systemic drug administration is hindered by severe side effects, therefore topical administration routes are preferable. However, drug delivery through eye drops may be difficult due to ocular barriers and, in the long term, could induce ocular damage. On the other hand, intraocular injections must be repeated to maintain drug concentration, and this may cause severe damage to the eye. To decrease injection frequency, long-term release and reduced biodegradation could be obtained by binding the drug to biodegradable polymeric nanoparticles. In the present study, we made a preparation of OCT bound to magnetic nanoparticles (MNP-OCT) and tested its possible use as an OCT delivery system to treat retinal pathologies such as DR. In particular, in vitro, ex vivo, and in vivo experimental models of the mammalian retina were used to investigate the possible toxicity of MNPs, possible effects of the binding to MNPs on OCT bioactivity, and the localization of MNP-OCT in the retina after intraocular injection. The results showed that, both in human retinal endothelial cells (HRECs) and in mouse retinal explants, MNPs were not toxic and the binding with MNPs did not influence OCT antiangiogenic or antiapoptotic activity. Rather, effects of MNP-OCT were observed at concentrations up to 100-fold (in HRECs) or 10-fold (in mouse retinal explants) lower compared to OCT, indicating that OCT bioactivity was enhanced in MNP-OCT. MNP-OCT in mouse retinas in vivo after intraocular delivery were initially localized mainly to the outer retina, at the level of the retinal pigment epithelium, while after 5 days they were observed throughout the retinal thickness. These observations demonstrate that MNP-OCT may be used as an OCT intraocular delivery system that may ensure OCT localization to the retina and enhanced OCT bioactivity. Further studies will be necessary to determine the OCT release rate in the retina and the persistence of drug effects in the long period.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Wang Y, Wang X, Ma Y, Wang YX, Di Y. Expression profiles of long noncoding RNAs in retinopathy of prematurity. Neural Regen Res 2020; 15:1962-1968. [PMID: 32246647 PMCID: PMC7513972 DOI: 10.4103/1673-5374.280328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNA (lncRNA) regulates the proliferation and migration of human retinal endothelial cells, as well as retinal neovascularization in diabetic retinopathy. Based on similarities between the pathogenesis of retinopathy of prematurity (ROP) and diabetic retinopathy, lncRNA may also play a role in ROP. Seven-day-old mice were administered 75 ± 2% oxygen for 5 days and normoxic air for another 5 days to establish a ROP model. Expression of lncRNA and mRNA in the retinal tissue of mice was detected by high-throughput sequencing technology, and biological functions of the resulted differentially expressed RNAs were evaluated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The results showed that compared with the control group, 57 lncRNAs were differentially expressed, including 43 upregulated and 14 downregulated, in the retinal tissue of ROP mice. Compared with control mice, 42 mRNAs were differentially expressed in the retinal tissue of ROP mice, including 24 upregulated and 18 downregulated mRNAs. Differentially expressed genes were involved in ocular development and related metabolic pathways. The differentially expressed lncRNAs may regulate ROP in mice via microRNAs and multiple signaling pathways. Our results revealed that these differentially expressed lncRNAs may be therapeutic targets for ROP treatment. This study was approved by the Medical Ethics Committee of Shengjing Hospital of China Medical University on February 25, 2016 (approval No. 2016PS074K).
Collapse
Affiliation(s)
- Yue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuan Ma
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue-Xia Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
16
|
Esteban-Pérez S, Bravo-Osuna I, Andrés-Guerrero V, Molina-Martínez IT, Herrero-Vanrell R. Trojan Microparticles Potential for Ophthalmic Drug Delivery. Curr Med Chem 2019; 27:570-582. [PMID: 31486746 DOI: 10.2174/0929867326666190905150331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 11/22/2022]
Abstract
The administration of drugs to treat ocular disorders still remains a technological challenge in this XXI century. Although there is an important arsenal of active molecules useful to treat ocular diseases, ranging from classical compounds to biotechnological products, currenty, no ideal delivery system is able to profit all their therapeutic potential. Among the Intraocular Drug Delivery Systems (IODDS) proposed to overcome some of the most important limitations, microsystems and nanosystems have raised high attention. While microsystems are able to offer long-term release after intravitreal injection, nanosystems can protect the active compound from external environment (reducing their clearance) and direct it to its target tissues. In recent years, some researchers have explored the possibility of combining micro and nanosystems in "Nanoparticle-in-Microparticle (NiMs)" systems or "trojan systems". This excellent idea is not exempt of technological problems, remains partially unsolved, especially in the case of IODDS. The objective of the present review is to show the state of art concerning the design, preparation and characterization of trojan microparticles for drug delivery and to remark their potential and limitations as IODDS, one of the most important challenges faced by pharmaceutical technology at the moment.
Collapse
Affiliation(s)
- Sergio Esteban-Pérez
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Irene Bravo-Osuna
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Irene T Molina-Martínez
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Rocío Herrero-Vanrell
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| |
Collapse
|
17
|
Huang X, Chau Y. Intravitreal nanoparticles for retinal delivery. Drug Discov Today 2019; 24:1510-1523. [DOI: 10.1016/j.drudis.2019.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/17/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
|
18
|
Qiu F, Meng T, Chen Q, Zhou K, Shao Y, Matlock G, Ma X, Wu W, Du Y, Wang X, Deng G, Ma JX, Xu Q. Fenofibrate-Loaded Biodegradable Nanoparticles for the Treatment of Experimental Diabetic Retinopathy and Neovascular Age-Related Macular Degeneration. Mol Pharm 2019; 16:1958-1970. [PMID: 30912953 DOI: 10.1021/acs.molpharmaceut.8b01319] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fenofibrate is a peroxisome proliferator-activated receptor α (PPARα) agonist and has been shown to have therapeutic effects on diabetic retinopathy (DR). However, the effects of fenofibrate through systemic administration are not as potent as desired due to inefficient drug delivery to the retina. The present study aimed to explore the sustained therapeutic effects of fenofibrate-loaded biodegradable nanoparticles (NP) on both DR and neovascular age-related macular degeneration (AMD). Fenofibrate was successfully encapsulated into poly(lactic- co-glycolic acid) (PLGA) NP (Feno-NP), and Feno-NP were optimized by varying polymer composition to achieve high drug loading and prolonged drug release. The Feno-NP made of PLGA 34 kDa demonstrated a drug content of 6% w/w and a sustained drug release up to 60 days in vitro. Feno-NP (PLGA 34 kDa) was selected for following in vivo studies, and one single intravitreal (IVT) injection of Feno-NP into rat eyes with a 30G fine needle maintained sustained fenofibric acid drug level in the eye for more than 60 days. The efficacy of Feno-NP in DR and neovascular AMD was investigated using streptozotocin (STZ)-induced diabetic rats, laser-induced choroidal neovascularization (CNV) rats, and very low-density lipoprotein receptor knockout ( Vldlr -/-) mice. Therapeutic effects of Feno-NP were evaluated by measuring electroretinogram (ERG), retinal vascular leakage, leukostasis, CNV size, and retinal levels of vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1). In diabetic rats, Feno-NP ameliorated retinal dysfunctions, reduced retinal vascular leakage, inhibited retinal leukostasis, and downregulated the overexpression of VEGF and ICAM-1 at 8 weeks after one IVT injection. In addition, Feno-NP reduced retinal vascular leakage and CNV formation in both CNV rats and Vldlr -/- mice. Moreover, no toxicity of Feno-NP or Blank-NP to retinal structure and function was detected. Feno-NP exhibited good physiochemical characteristics and controlled drug release profile, conferring prolonged beneficial effects on DR and neovascular AMD.
Collapse
Affiliation(s)
| | | | - Qian Chen
- Eye Institute of Xiamen University , Xiamen , Fujian 361000 , China
| | | | - Yan Shao
- Tianjin Medical University Eye Hospital , Tianjin 300384 , China
| | | | | | | | | | | | - Guotao Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center , Sun Yat-sen University , Guangzhou , Guangdong 510060 , China
| | | | | |
Collapse
|
19
|
Zhang W, Chen L, Geng J, Liu L, Xu L. β‑elemene inhibits oxygen‑induced retinal neovascularization via promoting miR‑27a and reducing VEGF expression. Mol Med Rep 2019; 19:2307-2316. [PMID: 30664207 PMCID: PMC6392088 DOI: 10.3892/mmr.2019.9863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the significant role of β-elemene in mouse models of oxygen-induced retinopathy (OIR). C57BL/6J neonatal mice were used to establish OIR models. They were divided into four groups: Normoxia, OIR, OIR control and OIR‑treated. Mice in the OIR group were exposed to 75±5% oxygen for 5 days and returned to a normal oxygen environment on postnatal day 12 (P12). The OIR treated group was intravitreally injected with 1 µl β‑elemene on P12 and subsequently returned to a normal oxygen environment for 5 days (P12‑P17). Retinas were obtained on P17. Retinal neovascularization (RNV) was detected using adenosine diphosphatase staining and analyzed by counting the nuclei of neovascular endothelial cells. Vascular endothelial growth factor (VEGF) expression was determined by reverse transcription‑quantitative polymerase chain reaction, immunohistochemistry and western blot analysis. MicroRNA (miRNA/miR) microarrays were used to screen out differentially expressed miRNAs between the OIR and β‑elemene‑treated groups. Binding the 3'‑untranslated region (UTR) of VEGF and miR‑27a was confirmed using luciferase assays. It was found that high oxygen concentrations accelerated RNV and increased the number of preretinal neovascular cells; β‑elemene treatment reduced these effects. VEGF mRNA and protein expression was higher in the OIR and OIR control groups, compared with the normoxia and OIR‑treated groups. Further, it was shown that miR‑22, miR‑181a‑1, miR‑335‑5p, miR‑669n, miR‑190b, miR‑27a and miR‑93 were upregulated in the OIR‑treated group, and downregulated in the OIR group. The prediction websites TargetScan and miRanda revealed that VEGF contained a potential miR‑27a binding site in its 3'‑untranslated region (UTR). Luciferase assays demonstrated that miR‑27a directly bound to the 3'‑UTR of VEGF. In vitro experiments demonstrated that miR‑27a inhibited VEGF expression. In addition, β‑elemene treatment upregulate miR‑27a expression in vivo and in vitro. When miR‑27a expression was depleted by miR‑27a inhibitor, the protective effect of β‑elemene on RNV was eliminated. The present study demonstrated that β‑elemene reduced RNV in mouse OIR models via miR‑27a upregulation, leading to reduced VEGF expression. This finding may contribute to the development of novel therapeutic strategies for human retinopathy.
Collapse
Affiliation(s)
- Weilai Zhang
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Chen
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jin Geng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Limin Liu
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Li Xu
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| |
Collapse
|
20
|
Delplace V, Ortin-Martinez A, Tsai ELS, Amin AN, Wallace V, Shoichet MS. Controlled release strategy designed for intravitreal protein delivery to the retina. J Control Release 2019; 293:10-20. [DOI: 10.1016/j.jconrel.2018.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/25/2022]
|
21
|
Ahmadi S, Rabiee N, Rabiee M. Application of Aptamer-based Hybrid Molecules in Early Diagnosis and Treatment of Diabetes Mellitus: From the Concepts Towards the Future. Curr Diabetes Rev 2019; 15:309-313. [PMID: 29875005 DOI: 10.2174/1573399814666180607075550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/23/2018] [Accepted: 06/03/2018] [Indexed: 02/07/2023]
Abstract
Aptamers have several positive advantages that made them eminent as a potential factor in diagnosing and treating diseases such as their application in prevention and treatment of diabetes. In this opinion-based mini-review article, we aimed to investigate the DNA and RNA-based hybrid molecules specifically aptamers and had a logical conclusion as a promising future perspective in early diagnosis and treatment of diabetes.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
22
|
Di Y, Chen XL. Inhibition of LY294002 in retinal neovascularization via down-regulation the PI3K/AKT-VEGF pathway in vivo and in vitro. Int J Ophthalmol 2018; 11:1284-1289. [PMID: 30140630 DOI: 10.18240/ijo.2018.08.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/08/2018] [Indexed: 01/01/2023] Open
Abstract
AIM To investigate the effects of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 on retinal neovascularization (RNV) in the oxygen-induced retinopathy (OIR) mouse model and human umbilical vein endothelial cells (HUVECs). METHODS C57BL/6J mice were randomly divided into normoxia-control, OIR-control and LY294002 treatment groups. LY294002 or phosphate-buffered solution was intraperitoneally injected daily into mouse pups from P6 to P9 in LY294002 treatment group or OIR-control group. Morphological and pathological changes in RNV, as well as expression levels of PI3K, serine-threonine kinase (AKT) and vascular endothelial growth factor (VEGF) were observed. HUVECs treating with LY294002 were exposed to hypoxia; the expression of PI3K, AKT and VEGF were examined by Western blot and RT-PCR analyses. RESULTS Compared with the OIR-control group, LY294002 significantly inhibit RNV. Adenosine diphosphatase (ADPase) staining and hematoxylin and eosin staining indicated that the clock hour scores of neovascularization and the nuclei of pre-retinal neovascular cells in the LY294002 treatment group were clearly less than those in the OIR-control group (1.41±0.52 vs 6.20±1.21; 10.50±1.58 vs 22.25±1.82, both P<0.05). Intravitreal injection of LY294002 (in the LY294002 treatment group) markedly decreased PI3K/AKT-VEGF expression compared with the OIR-control group by immunohistochemistry, Western blotting and RT-PCR (all P<0.05). In HUVECs treated with hypoxia, expression of PI3K, AKT and VEGF were downregulated in the hypoxia-LY294002 group (all P<0.05). CONCLUSION The PI3K inhibitor LY294002 can inhibit RNV by downregulating PI3K, AKT, and VEGF expression in vivo and in vitro. LY294002 may provide an effective method for preventing retinopathy of prematurity (ROP).
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiao-Long Chen
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
23
|
Mandal A, Pal D, Agrahari V, Trinh HM, Joseph M, Mitra AK. Ocular delivery of proteins and peptides: Challenges and novel formulation approaches. Adv Drug Deliv Rev 2018; 126:67-95. [PMID: 29339145 DOI: 10.1016/j.addr.2018.01.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 12/21/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The impact of proteins and peptides on the treatment of various conditions including ocular diseases over the past few decades has been advanced by substantial breakthroughs in structural biochemistry, genetic engineering, formulation and delivery approaches. Formulation and delivery of proteins and peptides, such as monoclonal antibodies, aptamers, recombinant proteins and peptides to ocular tissues poses significant challenges owing to their large size, poor permeation and susceptibility to degradation. A wide range of advanced drug delivery systems including polymeric controlled release systems, cell-based delivery and nanowafers are being exploited to overcome the challenges of frequent administration to ocular tissues. The next generation systems integrated with new delivery technologies are anticipated to generate improved efficacy and safety through the expansion of the therapeutic target space. This review will highlight recent advances in formulation and delivery strategies of protein and peptide based biopharmaceuticals. We will also describe the current state of proteins and peptides based ocular therapy and future therapeutic opportunities.
Collapse
|
24
|
Abd AJ, Kanwar RK, Pathak YV, Al Mohammedawi M, Kanwar JR. Nanomedicine-Based Delivery to the Posterior Segment of the Eye: Brighter Tomorrow. DRUG DELIVERY FOR THE RETINA AND POSTERIOR SEGMENT DISEASE 2018:195-212. [DOI: 10.1007/978-3-319-95807-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Amato R, Dal Monte M, Lulli M, Raffa V, Casini G. Nanoparticle-Mediated Delivery of Neuroprotective Substances for the Treatment of Diabetic Retinopathy. Curr Neuropharmacol 2018; 16:993-1003. [PMID: 28714394 PMCID: PMC6120116 DOI: 10.2174/1570159x15666170717115654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/04/2017] [Accepted: 07/14/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major complication of diabetes, characterized by extensive vascular pathology leading to vision loss. Neuronal suffering and death are also present in the diabetic retina as a result of different molecular mechanisms that are compromised or modified in response to high glucose. The aim of this paper is to highlight recent data indicating that neurodegeneration is likely to play a primary role in the development of DR and that strategies based on nanomedicine may be exploited to deliver neuroprotection to the retina. METHODS An extensive analysis of the publications dealing with the role of neuroprotection in DR and with nanoparticle-mediated drug delivery to the retina has been conducted using PubMed, with particular attention to the most recent papers. RESULTS There are important limitations related to possible systemic side effects of neuroprotective substances and to drug bioavailability in the retina such as, for instance, the amount of drug reaching the retina, the need of keeping to a minimum the number of administrations (especially, for example, in the case of intraocular injections) and the need of assuring a long-lasting, graded intraocular drug delivery. In recent years, a variety of investigations have been aimed at the exploitation of approaches of nanomedicine to enhance the pharmacokinetics and pharmacodynamic activity of intraocularly delivered drugs. In particular, we provide some preliminary results that we have obtained about the feasibility of delivering magnetic nanoparticles functionalized with a neuroprotectant to mouse eyes through intraocular injections. CONCLUSION We propose that nanoparticles functionalized with neuroprotective substances may be used to protect the diabetic retina, thus causing an impact in the design of future pharmacologic treatments for DR.
Collapse
Affiliation(s)
| | | | | | | | - Giovanni Casini
- Address correspondence to this author at the Department of Biology, University of Pisa, via S. Zeno 31, I-56127 Pisa, Italy; Tel: ++39-050-2211423; E-mail:
| |
Collapse
|
26
|
Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 2017; 6:686-707. [PMID: 27766598 DOI: 10.1007/s13346-016-0336-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Efficient treatment of ocular diseases can be achieved thanks to the proper use of ophthalmic formulations based on emerging pharmaceutical approaches. Among them, microtechnology and nanotechnology strategies are of great interest in the development of novel drug delivery systems to be used for ocular therapy. The location of the target site in the eye as well as the ophthalmic disease will determine the route of administration (topical, intraocular, periocular, and suprachoroidal administration) and the most adequate device. In this review, we discuss the use of colloidal pharmaceutical systems (nanoparticles, liposomes, niosomes, dendrimers, and microemulsions), microparticles (microcapsules and microspheres), and hybrid systems (combination of different strategies) in the treatment of ophthalmic diseases. Emphasis has been placed in the therapeutic significance of each drug delivery system for clinical translation.
Collapse
|
27
|
Zhou W, Wang H, Yu W, Xie W, Zhao M, Huang L, Li X. The expression of the Slit-Robo signal in the retina of diabetic rats and the vitreous or fibrovascular retinal membranes of patients with proliferative diabetic retinopathy. PLoS One 2017; 12:e0185795. [PMID: 28973045 PMCID: PMC5626485 DOI: 10.1371/journal.pone.0185795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/19/2017] [Indexed: 11/19/2022] Open
Abstract
PURPOSE The Slit-Robo signal has an important role in vasculogenesis and angiogenesis. Our study examined the expression of Slit2 and its receptor, Robo1, in a rat model of streptozotocin-induced diabetes and in patients with proliferative diabetic retinopathy. METHODS Diabetes was induced in male Sprague-Dawley rats via a single, intraperitoneal injection of streptozotocin. The rats were sacrificed 1, 3 or 6 months after the injection. The expression of Slit2 and Robo1 in retinal tissue was measured by real-time reverse transcription polymerase chain reaction (RT-PCR), and protein levels were measured by western blotting and immunohistochemistry. Recombinant N-Slit2 protein was used to study the effects of Slit2 on the expression of VEGF in vivo. The concentration of Slit2 protein in human eyes was measured by enzyme-linked immunosorbent assay in 27 eyes with proliferative diabetic retinopathy and 28 eyes in control group. The expression of Slit2, Robo1 and VEGF in the excised human fibrovascular membranes was examined by fluorescence immunostaining and semi-quantitative RT-PCR. RESULTS The expression of Slit2 and Robo1 in the retina was altered after STZ injection. Recombinant N-Slit2 protein did not increase the retinal VEGF expression. Vitreous concentrations of Slit2 were significantly higher in the study group than in the control group. In the human fibrovascular membranes of the study group, the co-localization of VEGF with the markers for Slit2 and Robo1was observed. The expression of Slit2 mRNA, Robo1 mRNA, and VEGF mRNA was significantly higher in human fibrovascular proliferative diabetic retinopathy membranes than in the control membranes. CONCLUSIONS The alteration of Slit2 and Robo1 expression in the retinas of diabetic rats and patients with proliferative diabetic retinopathy suggests a role for the Slit-Robo signal in the various stages diabetic retinopathy. Further studies should address the possible involvement of the Slit-Robo signal in the pathophysiological progress of diabetic retinopathy.
Collapse
Affiliation(s)
- Weiyan Zhou
- Department of Ophthalmology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Hongya Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Wenzhen Yu
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Wankun Xie
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Min Zhao
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
28
|
Nano-ophthalmology: Applications and considerations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1459-1472. [DOI: 10.1016/j.nano.2017.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 02/03/2023]
|
29
|
Bisht R, Mandal A, Jaiswal JK, Rupenthal ID. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1473] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/05/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Rohit Bisht
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Abhirup Mandal
- Division of Pharmaceutical Sciences, School of Pharmacy; University of Missouri-Kansas City; Kansas City MO USA
| | - Jagdish K. Jaiswal
- Auckland Cancer Society Research Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| |
Collapse
|
30
|
Zhang P, Wang H, Cao H, Xu X, Sun T. Insulin-Like Growth Factor Binding Protein-Related Protein 1 Inhibit Retinal Neovascularization in the Mouse Model of Oxygen-Induced Retinopathy. J Ocul Pharmacol Ther 2017; 33:459-465. [PMID: 28402720 DOI: 10.1089/jop.2016.0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To explore the inhibitory effect of insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) on retinal angiogenesis and its underlying molecular mechanisms in the mouse model of oxygen-induced retinopathy (OIR). METHODS C57BL/6J mice were classified into three groups as control group, OIR nonintervention group, and OIR intervention group. Postnatal day 12 (P12) mice in OIR intervention group were received recombinant mouse IGFBP-rP1 (50, 100, and 200 ng/mL) intravitreal injection. Five days later, the proliferative neovascular responses were estimated by quantifying the new vessel areas in flattening retinal tissues stained by high molecular fluorescein isothiocyanate-dextran and counting the numbers of neovascular cell nuclei breaking through the internal limiting membrane in cross sections. Expressions of phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2), ERK1/2, and vascular endothelial growth factor (VEGF) proteins in retinal tissues were assessed by western blot analysis. RESULTS Irregular neovascularization, nonperfusion region, and fluorescence leakage were observed in OIR models. The expression of retinal p-ERK1/2 and VEGF proteins were significantly upregulated in OIR nonintervention group compared with control group. The area ratio of retinal new vessels and the number of neovascular cell nuclei in OIR intervention group both decreased significantly, following the downregulation of retinal p-ERK1/2 protein expression and VEGF protein expression in a dose-dependent manner. Moreover, there was no significant difference in retinal ERK1/2 protein expression. CONCLUSIONS IGFBP-rP1 inhibits retinal angiogenesis by blocking ERK signaling pathway and downregulating VEGF expression in the mouse model of OIR. It highlights the potential importance of IGFBP-rP1 serving as a target of gene therapy for retinal neovascularization in the future.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Hong Wang
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Hui Cao
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Tao Sun
- Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
31
|
Saraiva SM, Castro-López V, Pañeda C, Alonso MJ. Synthetic nanocarriers for the delivery of polynucleotides to the eye. Eur J Pharm Sci 2017; 103:5-18. [PMID: 28263915 DOI: 10.1016/j.ejps.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
This review is a comprehensive analysis of the progress made so far on the delivery of polynucleotide-based therapeutics to the eye, using synthetic nanocarriers. Attention has been addressed to the capacity of different nanocarriers for the specific delivery of polynucleotides to both, the anterior and posterior segments of the eye, with emphasis on their ability to (i) improve the transport of polynucleotides across the different eye barriers; (ii) promote their intracellular penetration into the target cells; (iii) protect them against degradation and, (iv) deliver them in a long-term fashion way. Overall, the conclusion is that despite the advantages that nanotechnology may offer to the area of ocular polynucleotide-based therapies (especially AS-ODN and siRNA delivery), the knowledge disclosed so far is still limited. This fact underlines the necessity of more fundamental and product-oriented research for making the way of the said nanotherapies towards clinical translation.
Collapse
Affiliation(s)
- Sofia M Saraiva
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Vanessa Castro-López
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Covadonga Pañeda
- Sylentis, R&D Department, c/Santiago Grisolía 2, 28760 Tres Cantos, Madrid, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
32
|
Correction of Monogenic and Common Retinal Disorders with Gene Therapy. Genes (Basel) 2017; 8:genes8020053. [PMID: 28134823 PMCID: PMC5333042 DOI: 10.3390/genes8020053] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
The past decade has seen major advances in gene-based therapies, many of which show promise for translation to human disease. At the forefront of research in this field is ocular disease, as the eye lends itself to gene-based interventions due to its accessibility, relatively immune-privileged status, and ability to be non-invasively monitored. A landmark study in 2001 demonstrating successful gene therapy in a large-animal model for Leber congenital amaurosis set the stage for translation of these strategies from the bench to the bedside. Multiple clinical trials have since initiated for various retinal diseases, and further improvements in gene therapy techniques have engendered optimism for alleviating inherited blinding disorders. This article provides an overview of gene-based strategies for retinal disease, current clinical trials that engage these strategies, and the latest techniques in genome engineering, which could serve as the next frontline of therapeutic interventions.
Collapse
|
33
|
Das A. Diabetic Retinopathy: Battling the Global Epidemic. Invest Ophthalmol Vis Sci 2016; 57:6669-6682. [PMID: 27936469 PMCID: PMC5152562 DOI: 10.1167/iovs.16-21031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/23/2022] Open
Affiliation(s)
- Arup Das
- Department of Surgery, Division of Ophthalmology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| |
Collapse
|
34
|
Di Y, Nie QZ, Chen XL. Matrix metalloproteinase-9 and vascular endothelial growth factor expression change in experimental retinal neovascularization. Int J Ophthalmol 2016; 9:804-8. [PMID: 27366678 DOI: 10.18240/ijo.2016.06.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/15/2016] [Indexed: 01/03/2023] Open
Abstract
AIM To investigate the signal transduction mechanism of matrix metalloproteinase-9 (MMP-9) mediated- vascular endothelial growth factor (VEGF) expression and retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR) model. METHODS C57BL/6J mice were divided into four groups: control group, OIR group, OIR control group (phosphate-buffered saline by intravitreal injection) and treated group [tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) by intravitreal injection]. OIR model was established in C57BL/6J mice exposed to 75%±2% oxygen for 5d. mRNA level and protein expression of MMP-9, TIMP-1 and VEGF were measured by real-time polymerase chain reaction and Western blotting, and located by immunohistochemistry. RESULTS Levels of MMP-9 and VEGF in retina were significantly increased in animals with OIR and OIR control group. Levels of TIMP-1 in retina was significantly reduced in animals with OIR and OIR control group. Furthermore, a significant correlation was found between MMP-9 and VEGF. Intravitreal injection of TIMP-1 significantly reduced MMP-9 and VEGF expression of the OIR mouse model (all P<0.05). CONCLUSION These results demonstrate that MMP-9-mediated up-regulation of VEGF promotes RNV in retinopathy of prematurity (ROP). TIMP-1 may be a potential target for the prevention and treatment of ROP.
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Qing-Zhu Nie
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiao-Long Chen
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
35
|
Jian W, Yu S, Tang M, Duan H, Huang J. A combination of the main constituents of Fufang Xueshuantong Capsules shows protective effects against streptozotocin-induced retinal lesions in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 182:50-56. [PMID: 26692279 DOI: 10.1016/j.jep.2015.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/08/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Xueshuantong Capsule, an herbal formula licensed for clinical use in China, which is composed of Panax notoginseng (Burkill) F.H. Chen, Salvia miltiorrhiza Bunge, Astragalus membranaceus (Fisch.) Bunge, and Scrophularia ningpoensis Hemsl, has proven effective for the treatment of diabetic retinopathy. However, its bioactive constituents are still ambiguous. In this study, the therapeutic effects of a combination of the main constituents of Fufang Xueshuantong Capsule (cFXT) were evaluated in streptozotocin (STZ)-induced retinal lesions to identify the bioactive constituents. METHODS Sprague-Dawley rats, except for those in the control group (vehicle+vehicle), were administered a single injection of 60mg/kg STZ. One-week later, STZ-treated rats were randomly divided into three groups-one STZ group (STZ+vehicle) and two cFXT treatment groups (STZ+cFXT). The rats in the latter two groups received cFXT 44.8mg/kg or cFXT 22.4mg/kg by intragastric gavage once per day, for 24 consecutive weeks. The rats in the control and STZ groups received the vehicle in the same way. Body weights and fasting blood glucose levels were recorded every four weeks. After treatment, hemorheological tests were performed to record the erythrocyte aggregation indexes, blood viscosity, and plasma viscosity. The trypsin digestion method was used to observe pericyte and acellular capillary counts in the retina. Ultraviolet spectrophotometry was utilized to measure the activity of aldose reductase (AR) by measuring the nicotinamide adenine dinucleotide phosphate (NADPH) consumption at 340nm. An immunohistochemical assay was used to observe the expressions of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) in the retina. The expression levels of intercellular adhesion molecule-1 (ICAM-1), endothelin-1 (RT-1),and occludin in the retina were tested by the western blot assay. RESULTS cFXT is composed of 991.44mg/g saponins of Panax notoginseng, 1.62mg/g harpagoside, 0.70mg/g cryptotanshinone, 0.74mg/g tanshinone I, and 5.50mg/g astragaloside A. Although it showed no effects on the increased body weight and blood glucose levels induced by STZ in rats. However, it showed a tendency to attenuate the increase in erythrocyte aggregation, plasma viscosity, and acellular vessel and pericyte loss, paralleled with a reversal of the hyper-activation of AR, the hyper-expression of VEGF, ICAM-1, and ET-1, and the hypo-expression of PEDF and occludin in the retinas of STZ-treated rats. CONCLUSION The saponins of Panax notoginseng, harpagoside, cryptotanshinone, tanshinone I, and astragaloside A are the main bioactive constituents of Fufang Xueshuantong Capsule and contribute to the attenuation of STZ-induced retinal lesions in rats. These constituents can be used as the base to optimize a new drug for the treatment of diabetic retinopathy, and can be selected for quality control of Fufang Xueshuantong Capsules.
Collapse
Affiliation(s)
- Weijie Jian
- School of Chinese Material Medica, Beijing University of Chinese Medicine, 6#, Wangjing Zhonghuan Nanlu, Chaoyang District, Beijing 100102, China
| | - Suyun Yu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, 6#, Wangjing Zhonghuan Nanlu, Chaoyang District, Beijing 100102, China
| | - Minke Tang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, 6#, Wangjing Zhonghuan Nanlu, Chaoyang District, Beijing 100102, China
| | - Huihui Duan
- School of Chinese Material Medica, Beijing University of Chinese Medicine, 6#, Wangjing Zhonghuan Nanlu, Chaoyang District, Beijing 100102, China
| | - Jianmei Huang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, 6#, Wangjing Zhonghuan Nanlu, Chaoyang District, Beijing 100102, China.
| |
Collapse
|
36
|
Wang P, Xing Y, Chen C, Chen Z, Qian Z. Advanced glycation end-product (AGE) induces apoptosis in human retinal ARPE-19 cells via promoting mitochondrial dysfunction and activating the Fas-FasL signaling. Biosci Biotechnol Biochem 2016; 80:250-6. [PMID: 26479732 DOI: 10.1080/09168451.2015.1095065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Advanced glycation end-products (AGEs) are extremely accumulated in the retinal vascular and epithelial cells of diabetes mellitus (DM) patients, particularly with diabetic retinopathy (DR). To elucidate the pathogenesis of the AGE-induced toxicity to retinal epithelial cells, we investigated the role of Fas–Fas ligand (FasL) signaling and mitochondrial dysfunction in the AGE-induced apoptosis. Results demonstrated that the AGE-BSA- induced apoptosis of retinal ARPE-19 cells. And the AGE-BSA treatment caused mitochondrial dysfunction, via deregulating the B-cell lymphoma 2 (Bcl-2) signaling. Moreover, the Fas/FasL and its downstreamer Caspase 8 were promoted by the AGE-BSA treatment, and the exogenous α-Fas exacerbated the activation of Caspase 3/8. On the other side, the siRNA-mediated knockdown of Fas/FasL inhibited the AGE-BSA-induced apoptosis. Taken together, we confirmed the activation of Fas–FasL signaling and of mitochondrial dysfunction in the AGE-BSA-promoted apoptosis in retinal ARPE-19 cells, implying the important role of Fas–FasL signaling in the DR in DM.
Collapse
Affiliation(s)
- Pu Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Department of Ophthalmology, Inner Mongolia People’s Hospital, Hohhot, People’s Republic of China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Changzheng Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Zhen Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Zhimin Qian
- Department of Ophthalmology, Inner Mongolia People’s Hospital, Hohhot, People’s Republic of China
| |
Collapse
|
37
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
38
|
|
39
|
Di Y, Zhang Y, Nie Q, Chen X. CCN1/Cyr61-PI3K/AKT signaling promotes retinal neovascularization in oxygen-induced retinopathy. Int J Mol Med 2015; 36:1507-18. [PMID: 26459773 PMCID: PMC4678165 DOI: 10.3892/ijmm.2015.2371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/06/2015] [Indexed: 01/30/2023] Open
Abstract
Retinal neovascularization (RNV) is a characteristic pathological finding of retinopathy of prematurity (ROP). Cysteine-rich 61 [Cyr61, also known as CCN family member 1 (CCN1)] has been reported to mediate angiogenesis. The aim of the present study was to investigate the mechanisms of CCN1/Cyr61-phosphoinositide 3-kinase (PI3K)/AKT signaling in ROP. The contribution of CCN1 to human umbilical vein endothelial cell (HUVEC) proliferation and apoptosis under hypoxic conditions was determined using a cell counting kit-8 (CCK-8) and Annexin V/propidium iodide (PI) staining, respectively, as well as using siRNA targeting CCN1 (CCN1 siRNA). The cells exposed to hypoxia were also treated with the PI3K/AKT inhibitor, LY294002. In addition, mouse pups with oxygen-induced retinopathy (OIR) were administered an intravitreal injection of CCN1 siRNA. RNV was assessed by magnesium-activated adenosine diphosphatease (ADPase) staining. RT-qPCR, western blot analysis, immunofluorescence staining and immunohistochemistry were used to detect the distribution and expression of CCN1, PI3K and AKT. Exposure to hypoxia increased the neovascularization clock hour scores (from 1.23±0.49 to 5.60±0.73, P<0.05) and the number of preretinal neovascular cells, as well as the mRNA and protein expression levels of CCN1, PI3K and AKT (all P<0.05). The injection of CCN1 siRNA decreased the neovascularization clock hour scores and the number of preretinal neovascular cells (1.53±0.72 vs. 4.76±1.04; 12.0±2.8 vs. 31.4±2.6, respectively, both P<0.05), as well as the mRNA and protein expression levels of CCN1, PI3K and AKT (protein, −45.3, −22.5 and −28.4%; mRNA, −43.7, −58.7 and −42.9%, respectively, all P<0.05) compared to the administration of scrambled siRNA under hypoxic conditions. Treatment with LY294002 decreased the mRNA and protein expression levels of CCN1 in the cells exposed to hypoxia (both P<0.05). The administration of CCN1 siRNA resulted in less severe neovascularization in the eyes of the the mouse pups with OIR. Thus, out data suggest that CCN1 plays an important role in RNV in ROP, and may thus be a potential target for the prevention and treatment of ROP.
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yiou Zhang
- Graduate School, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Qingzhu Nie
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaolong Chen
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
40
|
Delplace V, Payne S, Shoichet M. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions. J Control Release 2015; 219:652-668. [PMID: 26435454 DOI: 10.1016/j.jconrel.2015.09.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022]
Abstract
Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery.
Collapse
Affiliation(s)
- Vianney Delplace
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Samantha Payne
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Molly Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
41
|
Hennig R, Goepferich A. Nanoparticles for the treatment of ocular neovascularizations. Eur J Pharm Biopharm 2015; 95:294-306. [DOI: 10.1016/j.ejpb.2015.02.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 12/27/2022]
|
42
|
Shen HH, Chan EC, Lee JH, Bee YS, Lin TW, Dusting GJ, Liu GS. Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery. Nanomedicine (Lond) 2015; 10:2093-107. [PMID: 26096379 DOI: 10.2217/nnm.15.47] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pathologic neovascularization of the retina is a major cause of substantial and irreversible loss of vision. Drugs are difficult to deliver to the lesions in the back of the eye and this is a major obstacle for the therapeutics. Current pharmacological approach involves an intravitreal injection of anti-VEGF agents to prevent aberrant growth of blood vessels, but it has limitations including therapeutic efficacy and side-effects associated with systemic exposure and invasive surgery. Nanotechnology provides novel opportunities to overcome the limitations of conventional delivery system to reach the back of the eye through fabrication of nanostructures capable of encapsulating and delivering small molecules. This review article introduces various forms of nanocarrier that can be adopted by ocular drug delivery systems to improve current therapy. The application of nanotechnology in medicine brings new hope for ocular drug delivery in the back of the eye to manage the major causes of blindness associated with ocular neovascularization.
Collapse
Affiliation(s)
- Hsin-Hui Shen
- Department of Microbiology, Monash University, Clayton, Melbourne, VIC, Australia
| | - Elsa C Chan
- Centre for Eye Research Australia, East Melbourne, VIC, Australia.,Department of Ophthalmology, University of Melbourne, East Melbourne, VIC, Australia
| | - Jia Hui Lee
- Centre for Eye Research Australia, East Melbourne, VIC, Australia
| | - Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan.,National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, Taichung City, Taiwan
| | - Gregory J Dusting
- Centre for Eye Research Australia, East Melbourne, VIC, Australia.,Department of Ophthalmology, University of Melbourne, East Melbourne, VIC, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, East Melbourne, VIC, Australia.,Department of Ophthalmology, University of Melbourne, East Melbourne, VIC, Australia
| |
Collapse
|
43
|
Nanoengineering of therapeutics for retinal vascular disease. Eur J Pharm Biopharm 2015; 95:323-30. [PMID: 26022642 DOI: 10.1016/j.ejpb.2015.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 01/07/2023]
Abstract
Retinal vascular diseases, including diabetic retinopathy, neovascular age related macular degeneration, and retinal vein occlusion, are leading causes of blindness in the Western world. These diseases share several common disease mechanisms, including vascular endothelial growth factor (VEGF) signaling, hypoxia, and inflammation, which provide opportunities for common therapeutic strategies. Treatment of these diseases using laser therapy, anti-VEGF injections, and/or steroids has significantly improved clinical outcomes. However, these strategies do not address the underlying root causes of pathology, and may have deleterious side effects. Furthermore, many patients continue to progress toward legal blindness despite receiving regular therapy. Nanomedicine, the engineering of therapeutics at the 1-100 nm scale, is a promising approach for improving clinical management of retinal vascular diseases. Nanomedicine-based technologies have the potential to revolutionize the treatment of ophthalmology, through enabling sustained release of drugs over several months, reducing side effects due to specific targeting of dysfunctional cells, and interfacing with currently "undruggable" targets. We will discuss emerging nanomedicine-based applications for the treatment of complications associated with retinal vascular diseases, including angiogenesis and inflammation.
Collapse
|
44
|
Di Y, Zhang Y, Yang H, Wang A, Chen X. The mechanism of CCN1-enhanced retinal neovascularization in oxygen-induced retinopathy through PI3K/Akt-VEGF signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2463-73. [PMID: 25995618 PMCID: PMC4425238 DOI: 10.2147/dddt.s79782] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background CCN1 (also called Cyr 61) is an extracellular matrix signaling molecule that has been implicated in neovascularization through its interactions with several endothelial integrin receptors. The roles of vascular endothelial growth factor (VEGF) in angiogenesis are well described. The aim of this study was to investigate the signal transduction mechanism of CCN1–PI3K/Akt–VEGF in retinopathy of prematurity (ROP), and the effects of CCN1 knockdown on ROP. Methods The oxygen-induced retinopathy (OIR) model was established in C57BL/6J mice exposed to a high concentration of oxygen. Retinas were obtained from the normoxia, OIR, OIR control (treated with scramble siRNA) and OIR treated (with CCN1 siRNA) groups. Retinal neovascularization (RNV) was qualitatively analyzed with ADPase staining and quantitatively analyzed by counting neovascular endothelial cell nuclei at postnatal day 17 when RNV reached a peak. mRNA level and protein expression of CCN1, p-Akt, and VEGF were measured by real-time PCR and Western blotting, and located with immunohistochemistry. Results CCN1 depletion resulted in less neovascularization clock hour scores in the number of preretinal neovascular cells compared with the OIR treated group (1.28±0.83 versus 4.80±0.82; and 7.12±2.50 versus 23.25±2.35, respectively, both P<0.05). Furthermore, CCN1, p-Akt and VEGF mRNA, and protein were significantly expressed in the retina of the OIR and OIR control groups. Intravitreal injection of CCN1 siRNA significantly reduced PI3K/Akt–VEGF pathway expression of the OIR mouse model (all P<0.05). CCN1 siRNA significantly enhanced the avascular area and avascular diameter of OIR model (P<0.05). CCN1 siRNA decreased the levels of IL-1β, IL-6, and TNF-α significantly compared to the OIR group (P<0.05). Conclusion These results suggest that CCN1 plays an important role in RNV via the PI3K/Akt–VEGF signaling pathway. CCN1 may be a potential target for the prevention and treatment of ROP.
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yiou Zhang
- Graduate School, China Medical University, Shenyang, People's Republic of China
| | - Hongwei Yang
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Aiyuan Wang
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaolong Chen
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
45
|
Wang Z, Cheng R, Lee K, Tyagi P, Ding L, Kompella UB, Chen J, Xu X, Ma JX. Nanoparticle-mediated expression of a Wnt pathway inhibitor ameliorates ocular neovascularization. Arterioscler Thromb Vasc Biol 2015; 35:855-64. [PMID: 25657312 DOI: 10.1161/atvbaha.114.304627] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The deficiency of very low-density lipoprotein receptor resulted in Wnt signaling activation and neovascularization in the retina. The present study sought to determine whether the very low-density lipoprotein receptor extracellular domain (VLN) is responsible for the inhibition of Wnt signaling in ocular tissues. APPROACH AND RESULTS A plasmid expressing the soluble VLN was encapsulated with poly(lactide-co-glycolide acid) to form VLN nanoparticles (VLN-NP). Nanoparticles containing a plasmid expressing the low-density lipoprotein receptor extracellular domain nanoparticle were used as negative control. MTT, modified Boyden chamber, and Matrigel (™) assays were used to evaluate the inhibitory effect of VLN-NP on Wnt3a-stimulated endothelial cell proliferation, migration, and tube formation. Vldlr(-/-) mice, oxygen-induced retinopathy, and alkali burn-induced corneal neovascularization models were used to evaluate the effect of VLN-NP on ocular neovascularization. Wnt reporter mice (BAT-gal), Western blotting, and luciferase assay were used to evaluate Wnt pathway activity. Our results showed that VLN-NP specifically inhibited Wnt3a-induced endothelial cell proliferation, migration, and tube formation. Intravitreal injection of VLN-NP inhibited abnormal neovascularization in Vldlr(-/-), oxygen-induced retinopathy, and alkali burn-induced corneal neovascularization models, compared with low-density lipoprotein receptor extracellular domain nanoparticle. VLN-NP significantly inhibited the phosphorylation of low-density lipoprotein receptor-related protein 6, the accumulation of β-catenin, and the expression of vascular endothelial growth factor in vivo and in vitro. CONCLUSIONS Taken together, these results suggest that the soluble VLN is a negative regulator of the Wnt pathway and has antiangiogenic activities. Nanoparticle-mediated expression of VLN may thus represent a novel therapeutic approach to treat pathological ocular angiogenesis and potentially other vascular diseases affected by Wnt signaling.
Collapse
Affiliation(s)
- Zhongxiao Wang
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Rui Cheng
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Kyungwon Lee
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Puneet Tyagi
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Lexi Ding
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Uday B Kompella
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Jing Chen
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.)
| | - Xun Xu
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.).
| | - Jian-Xing Ma
- From the Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China (Z.W., X.X.); Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City (Z.W., R.C., K.L., L.D., J.-x.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora (P.T., U.B.K.); Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China (L.D.); and Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, MA (J.C.).
| |
Collapse
|
46
|
Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm 2015; 95:353-67. [PMID: 25592325 DOI: 10.1016/j.ejpb.2014.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023]
Abstract
For patients with hereditary retinal diseases, retinal gene therapy offers significant promise for the prevention of retinal degeneration. While adeno-associated virus (AAV)-based systems remain the most popular gene delivery method due to their high efficiency and successful clinical results, other delivery systems, such as non-viral nanoparticles (NPs) are being developed as additional therapeutic options. NP technologies come in several categories (e.g., polymer, liposomes, peptide compacted DNA), several of which have been tested in mouse models of retinal disease. Here, we discuss the key biochemical features of the different NPs that influence how they are internalized into cells, escape from endosomes, and are delivered into the nucleus. We review the primary mechanism of NP uptake by retinal cells and highlight various NPs that have been successfully used for in vivo gene delivery to the retina and RPE. Finally, we consider the various strategies that can be implemented in the plasmid DNA to generate persistent, high levels of gene expression.
Collapse
|
47
|
Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm 2014; 95:307-22. [PMID: 25536109 DOI: 10.1016/j.ejpb.2014.12.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023]
Abstract
Diabetic retinopathy (DR) is a consequence of diabetes mellitus at the ocular level, leading to vision loss, and contributing to the decrease of patient's life quality. The biochemical and anatomic abnormalities that occur in DR are discussed in this review to better understand and manage the development of new therapeutic strategies. The use of new drug delivery systems based on nanoparticles (e.g. liposomes, dendrimers, cationic nanoemulsions, lipid and polymeric nanoparticles) is discussed along with the current traditional treatments, pointing out the advantages of the proposed nanomedicines to target this ocular disease. Despite the multifactorial nature of DR, which is not entirely understood, some strategies based on nanoparticles are being exploited for a more efficient drug delivery to the posterior segment of the eye. On the other hand, the use of some nanoparticles also seems to contribute to the development of DR symptoms (e.g. retinal neovascularization), which are also discussed in light of an efficient management of this ocular chronic disease.
Collapse
|
48
|
Nanotherapy for posterior eye diseases. J Control Release 2014; 193:100-12. [PMID: 24862316 DOI: 10.1016/j.jconrel.2014.05.031] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/12/2014] [Accepted: 05/17/2014] [Indexed: 12/11/2022]
Abstract
It is assumed that more than 50% of the most enfeebling ocular diseases have their origin in the posterior segment. Furthermore, most of these diseases lead to partial or complete blindness, if left untreated. After cancer, blindness is the second most dreaded disease world over. However, treatment of posterior eye diseases is more challenging than the anterior segment ailments due to a series of anatomical barriers and physiological constraints confronted for delivery to this segment. In this regard, nanostructured drug delivery systems are proposed to defy ocular barriers, target retina, and act as permeation enhancers in addition to providing a controlled release. Since an important step towards developing effective treatment strategies is to understand the course or a route a drug molecule needs to follow to reach the target site, the first part of the present review discusses various pathways available for effective delivery to and clearance from the posterior eye. Promise held by nanocarrier systems, viz. liposomes, nanoparticles, and nanoemulsion, for effective delivery and selective targeting is also discussed with illustrative examples, tables, and flowcharts. However, the applicability of these nanocarrier systems as self-administration ocular drops is still an unrealized dream which is in itself a huge technological challenge.
Collapse
|
49
|
Sharaf MG, Cetinel S, Heckler L, Damji K, Unsworth L, Montemagno C. Nanotechnology-Based Approaches for Ophthalmology Applications: Therapeutic and Diagnostic Strategies. Asia Pac J Ophthalmol (Phila) 2014; 3:172-80. [PMID: 26107588 DOI: 10.1097/apo.0000000000000059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The purpose of this article was to review recent advances in applications of nanotechnology in ophthalmology. DESIGN Literature review. METHODS Research articles about nanotechnology-based treatments for particular eye diseases and diagnostic technologies were searched through Web of Science, and the most recent advances were reported. RESULTS Nanotechnology enabled to improve drug and gene delivery systems, medicine solubility and short half-life in biological systems, controlled release, targeted delivery, bioavailability, diffusion limitations, and biocompatibility so far. These promising achievements are the assurance of next-generation treatment technologies. As well as treatment, nanofabrications systems such as microelectromechanical manufacturing systems removed the limitations of nanodevice generations and led the development of diagnostic tools such as intraocular pressure monitors and biosensors. CONCLUSIONS The pursuit of personalized medicine approaches for combating ocular diseases may be possible only through the development of nanotechnology platforms that include molecular-level engineering. Nanoparticle engineering is a common thread; herein, we attempt to show unmodified nanoparticles as well as interesting and representative biomimetic strategies can be used for specific diseases. Finally, through combining microelectromechanical and nanoelectromechanical manufacturing system strategies, interesting manufacturing and sensor development can be accomplished for early detection and, in some cases, treatment of ocular diseases.
Collapse
Affiliation(s)
- Mehdi Ghaffari Sharaf
- From the *Chemical & Materials Engineering, †Ingenuity Lab, and ‡Ophthalmology and Visual Sciences, University of Alberta; and §National Institute of Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Ameri H, Liu H, Liu R, Ha Y, Paulucci-Holthauzen AA, Hu S, Motamedi M, Godley BF, Tilton RG, Zhang W. TWEAK/Fn14 pathway is a novel mediator of retinal neovascularization. Invest Ophthalmol Vis Sci 2014; 55:801-13. [PMID: 24408972 DOI: 10.1167/iovs.13-12812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Retinal neovascularization (NV) is a major cause of vision loss in ischemia-induced retinopathy. Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor inducible-14 (Fn14), have been implicated in angiogenesis, but their role in retinal diseases is unknown. The goal of this study was to investigate the role of TWEAK/Fn14 pathway in retinal NV. METHODS Studies were performed in a mouse model of oxygen-induced retinopathy (OIR) and in primary human retinal microvascular endothelial cells (HRMECs). Hyperoxia treatment was initiated on postnatal day (P)14. Immunohistochemistry and quantitative PCR (qPCR) were used to assess retinal vascular changes in relation to expression of Fn14 and TWEAK. RESULTS Fibroblast growth factor-inducible 14 mRNA was prominently increased from P13 to P17 in OIR retinas, whereas TWEAK level was slightly decreased. These alterations were normalized by hyperoxia treatment and were more striking in isolated retinal vessels. There was a discernible shift in the immunoreactivity of Fn14 and TWEAK from the neuronal layers in the healthy retina to the neovascular tufts in that of OIR. Blockade of TWEAK/Fn14 significantly prevented retinal NV while slightly accelerated revascularization. In contrast, activation of Fn14 positively regulated survival pathways in the B-cell lymphoma-2 (Bcl2) family and robustly enhanced HRMEC survival. Furthermore, gene analysis revealed the regulatory region of Fn14 gene contains several conserved hypoxia inducible factor (HIF)-1α binding sites. Overexpression of HIF-1α prominently induced Fn14 expression in HRMECs. CONCLUSIONS We found that the TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor inducible-14 (Fn14) pathway is involved in the development of pathologic retinal neovascularization. Hypoxia inducible factor-1α is likely implicated in the upregulation of Fn14.
Collapse
Affiliation(s)
- Hossein Ameri
- Department of Ophthalmology and Visual Sciences, the University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|