1
|
Nascimento H, Martins TMM, Moreira R, Barbieri G, Pires P, Carvalho LN, Rosa LR, Almeida A, Araujo MS, Pessuti CL, Ferrer H, Pereira Gomes JÁ, Belfort R, Raia S. Current Scenario and Future Perspectives of Porcine Corneal Xenotransplantation. Cornea 2024:00003226-990000000-00715. [PMID: 39413247 DOI: 10.1097/ico.0000000000003723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/25/2024] [Indexed: 10/18/2024]
Abstract
ABSTRACT Corneal diseases represent a significant cause of blindness worldwide, with corneal transplantation being an effective treatment to prevent vision loss. Despite substantial advances in transplantation techniques, the demand for donor corneas exceeds the available supply, particularly in developing countries. Cornea xenotransplantation has emerged as a promising strategy to address the worldwide scarcity, notably using porcine corneas. In addition to the inherent immune privilege of the cornea, the low cost of porcine breeding and the anatomical and physiological similarities between humans and pigs have made porcine corneas a viable alternative. Nonetheless, ethical concerns, specifically the risk of xenozoonotic transmission and the necessity for stringent biosafety measures, remain significant obstacles. Moreover, the success of xenotransplantation is compromised by innate and adaptive immune responses, which requires meticulous consideration and further studies. Despite these challenges, recent breakthroughs have further contributed to reducing immunogenicity while preserving the corneal architecture. Advances in genetic engineering, such as the use of CRISPR-Cas9 to eliminate critical porcine antigens, have shown promise for mitigating immune reactions. Additionally, new immunosuppressive protocols, such as have techniques like decellularization and the use of porcine-derived acellular matrices, have greatly increased graft survival in preclinical models. Future research must focus on refining immunomodulatory strategies and improving graft preparation techniques to ensure the long-term survival and safety of porcine corneal xenotransplantation in clinical trials in humans.
Collapse
Affiliation(s)
- Heloisa Nascimento
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Thaís M M Martins
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
| | | | - Gabriel Barbieri
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Pedro Pires
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Lucimeire N Carvalho
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Larissa R Rosa
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Augusto Almeida
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | | | - Carmen Luz Pessuti
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Henrique Ferrer
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
- Vision Institute (IPEPO), Sao Paulo, Brazil
| | - Silvano Raia
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
2
|
Ma X, Cao L, Raneri M, Wang H, Cao Q, Zhao Y, Bediaga NG, Naselli G, Harrison LC, Hawthorne WJ, Hu M, Yi S, O’Connell PJ. Human HLA-DR+CD27+ regulatory T cells show enhanced antigen-specific suppressive function. JCI Insight 2023; 8:e162978. [PMID: 37874660 PMCID: PMC10795828 DOI: 10.1172/jci.insight.162978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Regulatory T cells (Tregs) have potential for the treatment of autoimmune diseases and graft rejection. Antigen specificity and functional stability are considered critical for their therapeutic efficacy. In this study, expansion of human Tregs in the presence of porcine PBMCs (xenoantigen-expanded Tregs, Xn-Treg) allowed the selection of a distinct Treg subset, coexpressing the activation/memory surface markers HLA-DR and CD27 with enhanced proportion of FOXP3+Helios+ Tregs. Compared with their unsorted and HLA-DR+CD27+ double-positive (DP) cell-depleted Xn-Treg counterparts, HLA-DR+CD27+ DP-enriched Xn-Tregs expressed upregulated Treg function markers CD95 and ICOS with enhanced suppression of xenogeneic but not polyclonal mixed lymphocyte reaction. They also had less Treg-specific demethylation in the region of FOXP3 and were more resistant to conversion to effector cells under inflammatory conditions. Adoptive transfer of porcine islet recipient NOD/SCID IL2 receptor γ-/- mice with HLA-DR+CD27+ DP-enriched Xn-Tregs in a humanized mouse model inhibited porcine islet graft rejection mediated by 25-fold more human effector cells. The prolonged graft survival was associated with enhanced accumulation of FOXP3+ Tregs and upregulated expression of Treg functional genes, IL10 and cytotoxic T lymphocyte antigen 4, but downregulated expression of effector Th1, Th2, and Th17 cytokine genes, within surviving grafts. Collectively, human HLA-DR+CD27+ DP-enriched Xn-Tregs expressed a specific regulatory signature that enabled identification and isolation of antigen-specific and functionally stable Tregs with potential as a Treg-based therapy.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Martina Raneri
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Qi Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Yuanfei Zhao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Naiara G. Bediaga
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Gaetano Naselli
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Leonard C. Harrison
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Wayne J. Hawthorne
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Min Hu
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Philip J. O’Connell
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
4
|
Cao L, Ma X, Zhang J, Yang M, He Z, Yang C, Li S, Rong P, Wang W. CD27-Expressing Xenoantigen-Expanded Human Regulatory T Cells Are Efficient in Suppressing Xenogeneic Immune Response. Cell Transplant 2023; 32:9636897221149444. [PMID: 36644879 PMCID: PMC9846302 DOI: 10.1177/09636897221149444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Clinically, xenotransplantation often leads to T-cell-mediated graft rejection. Immunosuppressive agents including polyclonal regulatory T cells (poly-Tregs) promote global immunosuppression, resulting in serious infections and malignancies in patients. Xenoantigen-expanded Tregs (xeno-Tregs) have become a promising immune therapy strategy to protect xenografts with fewer side effects. In this study, we aimed to identify an efficient and stable subset of xeno-Tregs. We enriched CD27+ xeno-Tregs using cell sorting and evaluated their suppressive functions and stability in vitro via mixed lymphocyte reaction (MLR), real-time polymerase chain reaction, inflammatory induction assay, and Western blotting. A STAT5 inhibitor was used to investigate the relationship between the function and stability of CD27+ xeno-Tregs and the JAK3-STAT5 signaling pathway. A humanized xenotransplanted mouse model was used to evaluate the function of CD27+ xeno-Tregs in vivo. Our results show that CD27+ xeno-Tregs express higher levels of Foxp3, cytotoxic T-lymphocyte antigen-4 (CTLA4), and Helios and lower levels of interleukin-17 (IL-17) than their CD27- counterparts. In addition, CD27+ xeno-Tregs showed enhanced suppressive function in xeno-MLR at ratios of 1:4 and 1:16 of Tregs:responder cells. Under inflammatory conditions, a lower percentage of CD27+ xeno-Tregs secretes IL-17 and interferon-γ (IFN-γ). CD27+ xeno-Tregs demonstrated an upregulated JAK3-STAT5 pathway compared with that of CD27- xeno-Tregs and showed decreased Foxp3, Helios, and CTLA4 expression after addition of STAT5 inhibitor. Mice that received porcine skin grafts showed a normal tissue phenotype and less leukocyte infiltration after reconstitution with CD27+ xeno-Tregs. Taken together, these data indicate that CD27+ xeno-Tregs may suppress immune responses in a xenoantigen-specific manner, which might be related to the activation of the JAK3-STAT5 signaling pathway.
Collapse
Affiliation(s)
- Lu Cao
- The Institute for Cell Transplantation
and Gene Therapy, The Third XiangYa Hospital, Central South University, Changsha,
China,Department of Radiology, The Third
XiangYa Hospital, Central South University, Changsha, China
| | - Xiaoqian Ma
- The Institute for Cell Transplantation
and Gene Therapy, The Third XiangYa Hospital, Central South University, Changsha,
China,Department of Radiology, The Third
XiangYa Hospital, Central South University, Changsha, China
| | - Juan Zhang
- The Institute for Cell Transplantation
and Gene Therapy, The Third XiangYa Hospital, Central South University, Changsha,
China,Department of Radiology, The Third
XiangYa Hospital, Central South University, Changsha, China
| | - Min Yang
- The Institute for Cell Transplantation
and Gene Therapy, The Third XiangYa Hospital, Central South University, Changsha,
China,Department of Radiology, The Third
XiangYa Hospital, Central South University, Changsha, China
| | - Zhenhu He
- Department of Radiology, The Third
XiangYa Hospital, Central South University, Changsha, China
| | - Cejun Yang
- The Institute for Cell Transplantation
and Gene Therapy, The Third XiangYa Hospital, Central South University, Changsha,
China,Department of Radiology, The Third
XiangYa Hospital, Central South University, Changsha, China
| | - Sang Li
- The Institute for Cell Transplantation
and Gene Therapy, The Third XiangYa Hospital, Central South University, Changsha,
China
| | - Pengfei Rong
- Department of Radiology, The Third
XiangYa Hospital, Central South University, Changsha, China
| | - Wei Wang
- The Institute for Cell Transplantation
and Gene Therapy, The Third XiangYa Hospital, Central South University, Changsha,
China,Department of Radiology, The Third
XiangYa Hospital, Central South University, Changsha, China,Wei Wang, The Institute for Cell
Transplantation and Gene Therapy, The Third XiangYa Hospital, Central South
University, Changsha 410013, Hunan, China.
| |
Collapse
|
5
|
Eisenson DL, Hisadome Y, Santillan MR, Yamada K. Progress in islet xenotransplantation: Immunologic barriers, advances in gene editing, and tolerance induction strategies for xenogeneic islets in pig-to-primate transplantation. FRONTIERS IN TRANSPLANTATION 2022; 1:989811. [PMID: 38390384 PMCID: PMC10883655 DOI: 10.3389/frtra.2022.989811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Islet transplantation has emerged as a curative therapy for diabetes in select patients but remains rare due to shortage of suitable donor pancreases. Islet transplantation using porcine islets has long been proposed as a solution to this organ shortage. There have already been several small clinical trials using porcine islets in humans, but results have been mixed and further trials limited by calls for more rigorous pre-clinical data. Recent progress in heart and kidney xenograft transplant, including three studies of pig-to-human xenograft transplant, have recaptured popular imagination and renewed interest in clinical islet xenotransplantation. This review outlines immunologic barriers to islet transplantation, summarizes current strategies to overcome these barriers with a particular focus on approaches to induce tolerance, and describes an innovative strategy for treatment of diabetic nephropathy with composite islet-kidney transplantation.
Collapse
Affiliation(s)
- Daniel L Eisenson
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Yu Hisadome
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| | | | - Kazuhiko Yamada
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
6
|
Sykes M, Sachs DH. Progress in xenotransplantation: overcoming immune barriers. Nat Rev Nephrol 2022; 18:745-761. [PMID: 36198911 DOI: 10.1038/s41581-022-00624-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
A major limitation of organ allotransplantation is the insufficient supply of donor organs. Consequently, thousands of patients die every year while waiting for a transplant. Progress in xenotransplantation that has permitted pig organ graft survivals of years in non-human primates has led to renewed excitement about the potential of this approach to alleviate the organ shortage. In 2022, the first pig-to-human heart transplant was performed on a compassionate use basis, and xenotransplantation experiments using pig kidneys in deceased human recipients provided encouraging data. Many advances in xenotransplantation have resulted from improvements in the ability to genetically modify pigs using CRISPR-Cas9 and other methodologies. Gene editing has the capacity to generate pig organs that more closely resemble those of humans and are hence more physiologically compatible and less prone to rejection. Despite such modifications, immune responses to xenografts remain powerful and multi-faceted, involving innate immune components that do not attack allografts. Thus, the induction of innate and adaptive immune tolerance to prevent rejection while preserving the capacity of the immune system to protect the recipient and the graft from infection is desirable to enable clinical xenotransplantation.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, USA.
| | - David H Sachs
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, Yao Q. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol 2022; 13:923241. [PMID: 35903090 PMCID: PMC9315421 DOI: 10.3389/fimmu.2022.923241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing β cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.
Collapse
Affiliation(s)
- Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| |
Collapse
|
8
|
Hu M, Hawthorne WJ, Yi S, O’Connell PJ. Cellular Immune Responses in Islet Xenograft Rejection. Front Immunol 2022; 13:893985. [PMID: 35874735 PMCID: PMC9300897 DOI: 10.3389/fimmu.2022.893985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Porcine islets surviving the acute injury caused by humoral rejection and IBMIR will be subjected to cellular xenograft rejection, which is predominately mediated by CD4+ T cells and is characterised by significant infiltration of macrophages, B cells and T cells (CD4+ and CD8+). Overall, the response is different compared to the alloimmune response and more difficult to suppress. Activation of CD4+ T cells is both by direct and indirect antigen presentation. After activation they recruit macrophages and direct B cell responses. Although they are less important than CD4+ T cells in islet xenograft rejection, macrophages are believed to be a major effector cell in this response. Rodent studies have shown that xenoantigen-primed and CD4+ T cell-activated macrophages were capable of recognition and rejection of pancreatic islet xenografts, and they destroyed a graft via the secretion of various proinflammatory mediators, including TNF-α, reactive oxygen and nitrogen species, and complement factors. B cells are an important mediator of islet xenograft rejection via xenoantigen presentation, priming effector T cells and producing xenospecific antibodies. Depletion and/or inhibition of B cells combined with suppressing T cells has been suggested as a promising strategy for induction of xeno-donor-specific T- and B-cell tolerance in islet xenotransplantation. Thus, strategies that expand the influence of regulatory T cells and inhibit and/or reduce macrophage and B cell responses are required for use in combination with clinical applicable immunosuppressive agents to achieve effective suppression of the T cell-initiated xenograft response.
Collapse
Affiliation(s)
- Min Hu
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wayne J. Hawthorne
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Shounan Yi
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Philip J. O’Connell
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Philip J. O’Connell,
| |
Collapse
|
9
|
Chen X, Ma H, Gong L, Yang G, Jin X. Porcine-Stimulated Human Tr1 Cells Showed Enhanced Suppression in Xenoantigen Stimulation Response. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2725799. [PMID: 34790251 PMCID: PMC8592757 DOI: 10.1155/2021/2725799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Type 1 regulatory T (Tr1) cells play a fundamental role in maintaining and inducing immune tolerance. Our preliminary study demonstrated that an interleukin- (IL-) 10-mediated pathway is a possible regulatory mechanism underlying the xenoantigen-specific human Treg enhanced suppressive capacity. Here, we developed a feasible protocol for expanding IL-10-induced xenoantigen-specific human Tr1 cells in vitro which would be more efficient in transplantation immunotherapy efficiency. In this study, xenoantigen-specific Tr1 cells are generated from human naive CD4+ T cells expanded for two subsequent xenoantigen-stimulation cycles with recombinant human IL-10. The phenotype and suppressive capacity of xenoantigen-stimulated Tr1 cells are assessed, and the mechanism of their suppression is studied. Tr1 cells can be induced by porcine xenoantigen stimulation combined with IL-10, IL-2, and IL-15, displaying an increased expression of CD49b, CTLA-4, and LAG-3 without expressing Foxp3 which also showed an effector memory Treg phenotype and expressed high levels of CD39. After xenoantigen stimulation, the IL-10 and IL-5 gene expression in Tr1 cells increased, secreting more IL-10, and xenoantigen-stimulated Tr1 cells changed their T cell receptor (TCR) Vβ repertoire, increasing the expression of TCR Vβ2, TCR Vβ9, and TCR Vβ13. In a pig to human mixed lymphocyte reaction (MLR), xenoantigen-stimulated Tr1 cells displayed enhanced suppressive capacity via CD39 in a dose-dependent manner. Moreover, IL-5 could affect the proliferation of xenoantigen-specific Tr1 cells, but not their phenotypes' expression. This study provides a theory and feasible method for immune tolerance induction in clinical xenotransplantation.
Collapse
Affiliation(s)
- Xiaoting Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongwen Ma
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lina Gong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guang Yang
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Jin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Hu M, Rogers NM, Li J, Zhang GY, Wang YM, Shaw K, O'Connell PJ, Alexander SI. Antigen Specific Regulatory T Cells in Kidney Transplantation and Other Tolerance Settings. Front Immunol 2021; 12:717594. [PMID: 34512640 PMCID: PMC8428972 DOI: 10.3389/fimmu.2021.717594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Kidney transplantation is the most common solid organ transplant and the best current therapy for end-stage kidney failure. However, with standard immunosuppression, most transplants develop chronic dysfunction or fail, much of which is due to chronic immune injury. Tregs are a subset of T cells involved in limiting immune activation and preventing autoimmune disease. These cells offer the potential to provide tolerance or to allow reduction in immunosuppression in kidney transplants. The importance of Tregs in kidney transplantation has been shown in a number of seminal mouse and animal studies, including those with T cell receptors (TCRs) transgenic Tregs (TCR-Tregs) or Chimeric Antigen Receptor (CAR) Tregs (CAR-Tregs) showing that specificity increases the potency of Treg function. Here we outline the animal and human studies and clinical trials directed at using Tregs in kidney transplantation and other tolerance settings and the various modifications to enhance allo-specific Treg function in vivo and in vitro.
Collapse
Affiliation(s)
- Min Hu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Geoff Y Zhang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Karli Shaw
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
11
|
Kaur G, Wright K, Mital P, Hibler T, Miranda JM, Thompson LA, Halley K, Dufour JM. Neonatal Pig Sertoli Cells Survive Xenotransplantation by Creating an Immune Modulatory Environment Involving CD4 and CD8 Regulatory T Cells. Cell Transplant 2021; 29:963689720947102. [PMID: 32841048 PMCID: PMC7564626 DOI: 10.1177/0963689720947102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The acute cell-mediated immune response presents a significant barrier to
xenotransplantation. Immune-privileged Sertoli cells (SC) can prolong the
survival of co-transplanted cells including xenogeneic islets, hepatocytes, and
neurons by protecting them from immune rejection. Additionally, SC survive as
allo- and xenografts without the use of any immunosuppressive drugs suggesting
elucidating the survival mechanism(s) of SC could be used to improve survival of
xenografts. In this study, the survival and immune response generated toward
neonatal pig SC (NPSC) or neonatal pig islets (NPI), nonimmune-privileged
controls, was compared after xenotransplantation into naïve Lewis rats without
immune suppression. The NPSC survived throughout the study, while NPI were
rejected within 9 days. Analysis of the grafts revealed that macrophages and T
cells were the main immune cells infiltrating the NPSC and NPI grafts. Further
characterization of the T cells within the grafts indicated that the NPSC grafts
contained significantly more cluster of differentiation 4 (CD4) and cluster of
differentiation 8 (CD8) regulatory T cells (Tregs) at early time points than the
NPI grafts. Additionally, the presence of increased amounts of interleukin 10
(IL-10) and transforming growth factor (TGF) β and decreased levels of tumor
necrosis factor (TNF) α and apoptosis in the NPSC grafts compared to NPI grafts
suggests the presence of regulatory immune cells in the NPSC grafts. The NPSC
expressed several immunoregulatory factors such as TGFβ, thrombospondin-1
(THBS1), indoleamine-pyrrole 2,3-dioxygenase, and galectin-1, which could
promote the recruitment of these regulatory immune cells to the NPSC grafts. In
contrast, NPI grafts had fewer Tregs and increased apoptosis and inflammation
(increased TNFα, decreased IL-10 and TGFβ) suggestive of cytotoxic immune cells
that contribute to their early rejection. Collectively, our data suggest that a
regulatory graft environment with regulatory immune cells including CD4 and
CD8 Tregs in NPSC grafts could be attributed to the prolonged survival of the
NPSC xenografts.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Medical Education, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kandis Wright
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Payal Mital
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Taylor Hibler
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jonathan M Miranda
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lea Ann Thompson
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Katelyn Halley
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Medical Education, 12343Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
12
|
Kim TH, Yan JJ, Jang JY, Lee GM, Lee SK, Kim BS, Chung JJ, Kim SH, Jung Y, Yang J. Tissue-engineered vascular microphysiological platform to study immune modulation of xenograft rejection. SCIENCE ADVANCES 2021; 7:7/22/eabg2237. [PMID: 34049875 PMCID: PMC8163083 DOI: 10.1126/sciadv.abg2237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Most of the vascular platforms currently being studied are lab-on-a-chip types that mimic capillary networks and are applied for vascular response analysis in vitro. However, these platforms have a limitation in clearly assessing the physiological phenomena of native blood vessels compared to in vivo evaluation. Here, we developed a simply fabricable tissue-engineered vascular microphysiological platform (TEVMP) with a three-dimensional (3D) vascular structure similar to an artery that can be applied for ex vivo and in vivo evaluation. Furthermore, we applied the TEVMP as ex vivo and in vivo screening systems to evaluate the effect of human CD200 (hCD200) overexpression in porcine endothelial cells (PECs) on vascular xenogeneic immune responses. These screening systems, in contrast to 2D in vitro and cellular xenotransplantation in vivo models, clearly demonstrated that hCD200 overexpression effectively suppressed vascular xenograft rejection. The TEVMP has a high potential as a platform to assess various vascular-related responses.
Collapse
Affiliation(s)
- Tae Hee Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ji-Jing Yan
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Young Jang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gwang-Min Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Kyung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea
| | - Jaeseok Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Transplantation Center, Seoul National University hospital, Seoul, Republic of Korea
| |
Collapse
|
13
|
Pathak S, Meyer EH. Tregs and Mixed Chimerism as Approaches for Tolerance Induction in Islet Transplantation. Front Immunol 2021; 11:612737. [PMID: 33658995 PMCID: PMC7917336 DOI: 10.3389/fimmu.2020.612737] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Pancreatic islet transplantation is a promising method for the treatment of type 1 and type 3 diabetes whereby replacement of islets may be curative. However, long-term treatment with immunosuppressive drugs (ISDs) remains essential for islet graft survival. Current ISD regimens carry significant side-effects for transplant recipients, and are also toxic to the transplanted islets. Pre-clinical efforts to induce immune tolerance to islet allografts identify ways in which the recipient immune system may be reeducated to induce a sustained transplant tolerance and even overcome autoimmune islet destruction. The goal of these efforts is to induce tolerance to transplanted islets with minimal to no long-term immunosuppression. Two most promising cell-based therapeutic strategies for inducing immune tolerance include T regulatory cells (Tregs) and donor and recipient hematopoietic mixed chimerism. Here, we review preclinical studies which utilize Tregs for tolerance induction in islet transplantation. We also review myeloablative and non-myeloablative hematopoietic stem cell transplantation (HSCT) strategies in preclinical and clinical studies to induce sustained mixed chimerism and allograft tolerance, in particular in islet transplantation. Since Tregs play a critical role in the establishment of mixed chimerism, it follows that the combination of Treg and HSCT may be synergistic. Since the success of the Edmonton protocol, the feasibility of clinical islet transplantation has been established and nascent clinical trials testing immune tolerance strategies using Tregs and/or hematopoietic mixed chimerism are underway or being formulated.
Collapse
Affiliation(s)
- Shiva Pathak
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Everett H. Meyer
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
14
|
Hong SH, Kim HJ, Kang SJ, Park CG. Novel Immunomodulatory Approaches for Porcine Islet Xenotransplantation. Curr Diab Rep 2021; 21:3. [PMID: 33433735 DOI: 10.1007/s11892-020-01368-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Porcine islet xenotransplantation is a promising alternative to overcome the shortage of organ donors. For the successful application of islet xenotransplantation, robust immune/inflammatory responses against porcine islets should be thoroughly controlled. Over the last few decades, there have been numerous attempts to surmount xenogeneic immune barriers. In this review, we summarize the current progress in immunomodulatory therapy for the clinical application of porcine islet xenotransplantation. RECENT FINDINGS Long-term graft survival of porcine islets was achieved by using anti-CD154 Ab-based regimens in a preclinical non-human primate (NHP) model. However, owing to a serious complication of thromboembolism in clinical trials, the development of an anti-CD154 Ab-sparing immunosuppressant procedure is required. The efficacy of new immunosuppressive practices that employ anti-CD40 Abs or other immunosuppressive reagents has been tested in a NHP model to realize their utility in porcine islet xenotransplantation. The recent progress in the development of immunomodulatory approaches, including the immunosuppressive regimen, which enables long-term graft survival in a pig-to-non-human primate islet xenotransplantation model, with their potential clinical applicability was reviewed.
Collapse
Affiliation(s)
- So-Hee Hong
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| | - Hyun-Je Kim
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea
| | - Seong-Jun Kang
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea.
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea.
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea.
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea.
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea.
- Xenotransplantation Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
15
|
Huang Q, Ma X, Wang Y, Niu Z, Wang R, Yang F, Wu M, Liang G, Rong P, Wang H, Harris DC, Wang W, Cao Q. IL-10 producing type 2 innate lymphoid cells prolong islet allograft survival. EMBO Mol Med 2020; 12:e12305. [PMID: 33034128 PMCID: PMC7645373 DOI: 10.15252/emmm.202012305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) are a subset of ILCs with critical roles in immunoregulation. However, the possible role of ILC2s as immunotherapy against allograft rejection remains unclear. Here, we show that IL‐33 significantly prolonged islet allograft survival. IL‐33‐treated mice had elevated numbers of ILC2s and regulatory T cells (Tregs). Depletion of Tregs partially abolished the protective effect of IL‐33 on allograft survival, and additional ILC2 depletion in Treg‐depleted DEREG mice completely abolished the protective effects of IL‐33, indicating that ILC2s play critical roles in IL‐33‐mediated islet graft protection. Two subsets of ILC2s were identified in islet allografts of IL‐33‐treated mice: IL‐10 producing ILC2s (ILC210) and non‐IL‐10 producing ILC2s (non‐ILC10). Intravenous transfer of ILC210 cells, but not non‐ILC10, prolonged islet allograft survival in an IL‐10‐dependent manner. Locally transferred ILC210 cells led to long‐term islet graft survival, suggesting that ILC210 cells are required within the allograft for maximal suppressive effect and graft protection. This study has uncovered a major protective role of ILC210 in islet transplantation which could be potentiated as a therapeutic strategy.
Collapse
Affiliation(s)
- Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaoqian Ma
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Zhiguo Niu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Fuyan Yang
- The Department of Nephrology, First People's Hospital of Xinxiang Medical University, Xinxiang, China
| | - Menglin Wu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Guining Liang
- The Department of Physiology, Guangxi Medical University, Nanning, China
| | - Pengfei Rong
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - David Ch Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Wei Wang
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Cao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Bertolini M, McElwee K, Gilhar A, Bulfone‐Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol 2020; 29:703-725. [DOI: 10.1111/exd.14155] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Kevin McElwee
- Monasterium Laboratory Münster Germany
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver British Columbia Canada
| | - Amos Gilhar
- Laboratory for Skin Research Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Silvia Bulfone‐Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
| | - Ralf Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| |
Collapse
|
17
|
Iwaszkiewicz-Grzes D, Gliwinski M, Eugster A, Piotrowska M, Dahl A, Marek-Trzonkowska N, Trzonkowski P. Antigen-reactive regulatory T cells can be expanded in vitro with monocytes and anti-CD28 and anti-CD154 antibodies. Cytotherapy 2020; 22:629-641. [PMID: 32778404 DOI: 10.1016/j.jcyt.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND In recent years, therapies with CD4+CD25highFoxP3+ regulatory T cells (Tregs) have been successfully tested in many clinical trials. The important issue regarding the use of this treatment in autoimmune conditions remains the specificity toward particular antigen, as because of epitope spread, there are usually multiple causative autoantigens to be regulated in such conditions. METHODS Here we show a method of generation of Tregs enriched with antigen-reactive clones that potentially covers the majority of such autoantigens. In our research, Tregs were expanded with anti-CD28 and anti-CD154 antibodies and autologous monocytes and loaded with a model peptide, such as whole insulin or insulin β chain peptide 9-23. The cells were then sorted into cells recognizing the presented antigen. The reactivity was verified with functional assays in which Tregs suppressed proliferation or interferon gamma production of autologous effector T cells (polyclonal and antigen-specific) used as responders challenged with the model peptide. Finally, we analyzed clonotype distribution and TRAV gene usage in the specific Tregs. RESULTS Altogether, the applied technique had a good yield and allowed us to obtain a Treg product enriched with a specific subset, as confirmed in the functional tests. The product consisted of many clones; nevertheless, the content of these clones was different from that found in polyclonal or unspecific Tregs. CONCLUSIONS The presented technique might be used to generate populations of Tregs enriched with cells reactive to any given peptide, which can be used as a cellular therapy medicinal product in antigen-targeted therapies.
Collapse
Affiliation(s)
- Dorota Iwaszkiewicz-Grzes
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland.
| | - Mateusz Gliwinski
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland
| | - Anne Eugster
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden and the Cluster of Excellence, Dresden, Germany
| | | | - Andreas Dahl
- Technische Universität Dresden, DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Dresden, Germany
| | - Natalia Marek-Trzonkowska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland; International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland.
| |
Collapse
|
18
|
Hu M, Hawthorne WJ, Nicholson L, Burns H, Qian YW, Liuwantara D, Jimenez Vera E, Chew YV, Williams L, Yi S, Keung K, Watson D, Rogers N, Alexander SI, O'Connell PJ. Low-Dose Interleukin-2 Combined With Rapamycin Led to an Expansion of CD4 +CD25 +FOXP3 + Regulatory T Cells and Prolonged Human Islet Allograft Survival in Humanized Mice. Diabetes 2020; 69:1735-1748. [PMID: 32381646 DOI: 10.2337/db19-0525] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/03/2020] [Indexed: 11/13/2022]
Abstract
Islet transplantation is an emerging therapy for type 1 diabetes and hypoglycemic unawareness. However, a key challenge for islet transplantation is cellular rejection and the requirement for long-term immunosuppression. In this study, we established a diabetic humanized NOD-scidIL2Rγnull (NSG) mouse model of T-cell-mediated human islet allograft rejection and developed a therapeutic regimen of low-dose recombinant human interleukin-2 (IL-2) combined with low-dose rapamycin to prolong graft survival. NSG mice that had received renal subcapsular human islet allografts and were transfused with 1 × 107 of human spleen mononuclear cells reconstituted human CD45+ cells that were predominantly CD3+ T cells and rejected their grafts with a median survival time of 27 days. IL-2 alone (0.3 × 106 IU/m2 or 1 × 106 IU/m2) or rapamycin alone (0.5-1 mg/kg) for 3 weeks did not prolong survival. However, the combination of rapamycin with IL-2 for 3 weeks significantly prolonged human islet allograft survival. Graft survival was associated with expansion of CD4+CD25+FOXP3+ regulatory T cells (Tregs) and enhanced transforming growth factor-β production by CD4+ T cells. CD8+ T cells showed reduced interferon-γ production and reduced expression of perforin-1. The combination of IL-2 and rapamycin has the potential to inhibit human islet allograft rejection by expanding CD4+FOXP3+ Tregs in vivo and suppressing effector cell function and could be the basis of effective tolerance-based regimens.
Collapse
Affiliation(s)
- Min Hu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Clinical Schools, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Leigh Nicholson
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Heather Burns
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Yi Wen Qian
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - David Liuwantara
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Elvira Jimenez Vera
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Yi Vee Chew
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Lindy Williams
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Karen Keung
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Natasha Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Clinical Schools, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
An anti-CD103 antibody-drug conjugate prolongs the survival of pancreatic islet allografts in mice. Cell Death Dis 2019; 10:735. [PMID: 31570722 PMCID: PMC6769010 DOI: 10.1038/s41419-019-1980-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/05/2023]
Abstract
CD103 mediates T-cell infiltration and organ allograft rejection, and depletion of CD103-expressing cells is a promising therapeutic strategy for allograft intolerance. Recently, we verified that M290-MC-MMAF, an anti-CD103 antibody-drug conjugate, potently eliminates CD103-positive cells in vivo, with high specificity and minimal toxicity. However, the contribution of M290-MC-MMAF to blocking the CD103/E-cadherin pathway involved in transplant rejection remains unclear. Herein, we examined the impact of systemic administration of M290-MC-MMAF on allografts in an islet transplantation model. M290-MC-MMAF treatment maintained the long-term survival of islet allografts (>60 days) compared to mock injection or unconjugated M290 antibody treatment (<18 days). The change was associated with a decrease in CD103+CD8+ effector T cells and an increase in CD4+CD25+ regulatory T cells. CD103+CD8+ effector T-cell transfer or CD4+CD25+ regulatory T-cell depletion resulted in a rapid loss of allografts in long-surviving islet hosts. Moreover, M290-MC-MMAF treatment reduced IL-4, IL-6, and TNF-α expression levels and increased IL-10 expression in the grafts, which presented an immunosuppressive cytokine profile. In conclusion, targeting CD103 with M290-MC-MMAF induced immunosuppression and prolonged the survival of pancreatic islet allografts in mice, indicating the potential clinical value of M290-MC-MMAF in therapeutic interventions for allograft rejection.
Collapse
|
20
|
Xenotransplantation tolerance: applications for recent advances in modified swine. Curr Opin Organ Transplant 2019; 23:642-648. [PMID: 30379724 DOI: 10.1097/mot.0000000000000585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to review the recent progress in xenotransplantation achieved through genetic engineering and discuss the potential of tolerance induction to overcome remaining barriers to extended xenograft survival. RECENT FINDINGS The success of life-saving allotransplantation has created a demand for organ transplantation that cannot be met by the supply of human organs. Xenotransplantation is one possible solution that would allow for a nearly unlimited supply of organs. Recent genetic engineering of swine has decreased the reactivity of preformed antibodies to some, but not all, potential human recipients. Experiments using genetically modified swine organs have now resulted in survival of life-supporting kidneys for over a year. However, the grafts show evidence of antibody-mediated rejection on histology, suggesting additional measures will be required for further extension of graft survival. Tolerance induction through mixed chimerism or thymic transplantation across xenogeneic barriers would be well suited for patients with a positive crossmatch to genetically modified swine or relatively negative crossmatches to genetically modified swine, respectively. SUMMARY This review highlights the current understanding of the immunologic processes in xenotransplantation and describes the development and application of strategies designed to overcome them from the genetic modification of the source animal to the induction of tolerance to xenografts.
Collapse
|
21
|
Christiansen D, Mouhtouris E, Hodgson R, Sutton VR, Trapani JA, Ierino FL, Sandrin MS. Antigen-specific CD4 + CD25 + T cells induced by locally expressed ICOS-Ig: the role of Foxp3, Perforin, Granzyme B and IL-10 - an experimental study. Transpl Int 2019; 32:1203-1215. [PMID: 31225919 DOI: 10.1111/tri.13474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/24/2019] [Accepted: 06/17/2019] [Indexed: 01/03/2023]
Abstract
We have previously reported that ICOS-Ig expressed locally by a PIEC xenograft induces a perigraft cellular accumulation of CD4+ CD25+ Foxp3+ T cells and specific xenograft prolongation. In the present study we isolated and purified CD4+ CD25+ T cells from ICOS-Ig secreting PIEC grafts to examine their phenotype and mechanism of xenograft survival using knockout and mutant mice. CD4+ CD25+ T cells isolated from xenografts secreting ICOS-Ig were analysed by flow cytometry and gene expression by real-time PCR. Regulatory function was examined by suppression of xenogeneic or allogeneic primed CD4 T cells in vivo. Graft prolongation was shown to be dependent on a pre-existing Foxp3+ Treg, IL-10, perforin and granzyme B. CD4+ CD25+ Foxp3+ T cells isolated from xenografts secreting ICOS-Ig demonstrated a phenotype consistent with nTreg but with a higher expression of CD275 (ICOSL), expression of CD278 (ICOS) and MHC II and loss of CD73. Moreover, these cells were functional and specifically suppressed xenogeinic but not allogeneic primed T cells in vivo.
Collapse
Affiliation(s)
- Dale Christiansen
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Vic., Australia
| | - Effie Mouhtouris
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Vic., Australia
| | - Russell Hodgson
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Vic., Australia
| | - Vivien R Sutton
- Cancer Cell Death/Killer Cell Biology Laboratories, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Joseph A Trapani
- Cancer Cell Death/Killer Cell Biology Laboratories, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Francesco L Ierino
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Vic., Australia.,Department of Nephrology, Austin Health, Melbourne, Vic., Australia
| | - Mauro S Sandrin
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Vic., Australia
| |
Collapse
|
22
|
Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol 2019; 10:203. [PMID: 30837986 PMCID: PMC6389733 DOI: 10.3389/fimmu.2019.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carlos Rosas
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Jin X, Hu M, Gong L, Li H, Wang Y, Ji M, Li H. Adoptive transfer of xenoantigen‑stimulated T cell receptor Vβ‑restricted human regulatory T cells prevents porcine islet xenograft rejection in humanized mice. Mol Med Rep 2018; 18:4457-4467. [PMID: 30221725 PMCID: PMC6172378 DOI: 10.3892/mmr.2018.9471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/03/2018] [Indexed: 02/05/2023] Open
Abstract
Polyclonal expansion of human regulatory T cells (Tregs) prevents xenogeneic rejection by suppressing effector T cell responses in vitro and in vivo. However, a major limitation to using polyclonally expanded Tregs is that they may cause pan‑immunosuppressive effects. The present study was conducted to compare the ability of ex vivo expanded human xenoantigen‑stimulated Tregs (Xeno‑Treg) and polyclonal Tregs (Poly‑Treg) to protect islet xenografts from rejection in NOD‑SCID interleukin (IL)‑2 receptor (IL2r)γ‑/‑ mice. Human cluster of differentiation (CD)4+CD25+CD127lo Tregs, expanded either by stimulating with porcine peripheral blood mononuclear cells (PBMCs) or anti‑CD3/CD28 beads, were characterized by immune cell phenotyping, T cell receptor (TCR) Vβ CDR3 spectratyping and performing suppressive activity assays in vitro. The efficiency of adoptively transferred ex vivo human Tregs was evaluated in vivo using neonatal porcine islet cell clusters (NICC) transplanted into NOD‑SCID IL‑2rγ‑/‑ mice, which received human PBMCs with or without Xeno‑Treg or Poly‑Treg. Xeno‑Treg, which expressed increased levels of human leukocyte antigen‑DR and secreted higher levels of IL‑10, demonstrated enhanced suppressive capacity in a pig‑human mixed lymphocyte reaction. Spectratypes of TCR Vβ4, Vβ10, Vβ18 and Vβ20 in Xeno‑Treg showed restriction and expanded clones at sizes of 205, 441, 332 and 196 respectively, compared to those of Poly‑Treg. Reconstitution of mice with human PBMCs and Poly‑Treg resulted in NICC xenograft rejection at 63 days. Adoptive transfer with human PBMCs and Xeno‑Treg prolonged islet xenograft survival beyond 84 days, with grafts containing intact insulin‑secreting cells surrounded by a small number of human CD45+ cells. This study demonstrated that adoptive transfer of ex vivo expanded human Xeno‑Treg may potently prevent islet xenograft rejection in humanized NOD‑SCID IL2rγ‑/‑ mice compared with Poly‑Treg. These findings suggested that adoptive Treg therapy may be used for immunomodulation in islet xenotransplantation by minimizing systemic immunosuppression.
Collapse
Affiliation(s)
- Xi Jin
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Hu
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Lina Gong
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huifang Li
- Cellular Biology Laboratory, Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan Wang
- Cellular Biology Laboratory, Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming Ji
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410083, P.R. China
| | - Hong Li
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
24
|
Sun W, Wei JW, Li H, Wei FQ, Li J, Wen WP. Adoptive cell therapy of tolerogenic dendritic cells as inducer of regulatory T cells in allergic rhinitis. Int Forum Allergy Rhinol 2018; 8:1291-1299. [PMID: 30281915 DOI: 10.1002/alr.22217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/22/2018] [Accepted: 09/09/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Sun
- Department of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
- Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Jia-Wei Wei
- Department of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
- Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Hang Li
- Department of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
- Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Fan-Qin Wei
- Department of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
- Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Jian Li
- Department of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
- Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Wei-Ping Wen
- Department of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
- Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| |
Collapse
|
25
|
Lin S, Huang G, Cheng L, Li Z, Xiao Y, Deng Q, Jiang Y, Li B, Lin S, Wang S, Wu Q, Yao H, Cao S, Li Y, Liu P, Wei W, Pei D, Yao Y, Wen Z, Zhang X, Wu Y, Zhang Z, Cui S, Sun X, Qian X, Li P. Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. MAbs 2018; 10:1301-1311. [PMID: 30204048 DOI: 10.1080/19420862.2018.1518948] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Animal models used to evaluate efficacies of immune checkpoint inhibitors are insufficient or inaccurate. We thus examined two xenograft models used for this purpose, with the aim of optimizing them. One method involves the use of peripheral blood mononuclear cells and cell line-derived xenografts (PBMCs-CDX model). For this model, we implanted human lung cancer cells into NOD-scid-IL2Rg-/- (NSI) mice, followed by injection of human PBMCs. The second method involves the use of hematopoietic stem and progenitor cells and CDX (HSPCs-CDX model). For this model, we first reconstituted the human immune system by transferring human CD34+ hematopoietic stem and progenitor cells (HSPCs-derived humanized model) and then transplanted human lung cancer cells. We found that the PBMCs-CDX model was more accurate in evaluating PD-L1/PD-1 targeted immunotherapies. In addition, it took only four weeks with the PBMCs-CDX model for efficacy evaluation, compared to 10-14 weeks with the HSPCs-CDX model. We then further established PBMCs-derived patient-derived xenografts (PDX) models, including an auto-PBMCs-PDX model using cancer and T cells from the same tumor, and applied them to assess the antitumor efficacies of anti-PD-L1 antibodies. We demonstrated that this PBMCs-derived PDX model was an invaluable tool to study the efficacies of PD-L1/PD-1 targeted cancer immunotherapies. Overall, we found our PBMCs-derived models to be excellent preclinical models for studying immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Shouheng Lin
- a Guangzhou Medical University , Guangzhou , China.,b Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Guohua Huang
- d Department of Respiratory medicine, Nanfang Hospital , Southern Medical University , Guangzhou , China
| | - Lin Cheng
- b Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Zhen Li
- e MabSpace Biosciences Co. Ltd , Suzhou , China
| | - Yiren Xiao
- b Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Qiuhua Deng
- d Department of Respiratory medicine, Nanfang Hospital , Southern Medical University , Guangzhou , China
| | - Yuchuan Jiang
- f Department of Thoracic Oncology , Sun Yat-Sen University Cancer Center , Guangzhou , China
| | - Baiheng Li
- b Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Simiao Lin
- b Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Suna Wang
- b Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Qiting Wu
- b Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Huihui Yao
- g Department of Outpatient , The 91th Military Hospital , Jiaozuo , China
| | - Su Cao
- h Division of General Pediatrics , The 91th Military Hospital , Jiaozuo , China
| | - Yang Li
- i Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital , Sun Yat-Sen University , Guangzhou , China
| | - Pentao Liu
- j School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Centre , University of Hong Kong , Hong Kong , China
| | - Wei Wei
- k Guangdong Cord Blood Bank , Guangdong , China
| | - Duanqing Pei
- b Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Yao Yao
- b Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Zhesheng Wen
- f Department of Thoracic Oncology , Sun Yat-Sen University Cancer Center , Guangzhou , China
| | - Xuchao Zhang
- l Guangdong Lung Cancer Institute, Medical Research Center , Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Yilong Wu
- l Guangdong Lung Cancer Institute, Medical Research Center , Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Zhenfeng Zhang
- m Department of Radiology , The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Shuzhong Cui
- n Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , China
| | - Xiaofang Sun
- o Key Lab for Major Obstetric Diseases of Guangdong Province, Experimental Department of Institute of Gynaecology and Obstetrics , The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | | | - Peng Li
- b Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China.,n Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , China
| |
Collapse
|
26
|
Liu L, He C, Liu J, Lv Z, Wang G, Gao H, Dai Y, Cooper DKC, Cai Z, Mou L. Transplant Tolerance: Current Insights and Strategies for Long-Term Survival of Xenografts. Arch Immunol Ther Exp (Warsz) 2018; 66:355-364. [PMID: 29992337 DOI: 10.1007/s00005-018-0517-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
Abstract
Xenotransplantation is an attractive solution to the problem of allograft shortage. However, transplants across discordant species barriers are subject to vigorous immunologic and pathobiologic hurdles, some of which might be overcome with the induction of immunologic tolerance. Several strategies have been designed to induce tolerance to a xenograft at both the central (including induction of mixed chimerism and thymic transplantation) and peripheral (including adoptive transfer of regulatory cells and blocking T cell costimulation) levels. Currently, xenograft tolerance has been well-established in rodent models, but these protocols have not yet achieved similar success in nonhuman primates. This review will discuss the major barriers that impede the establishment of immunological tolerance across xenogeneic barriers and the potential solution to these challenges, and provide a perspective on the future of the development of novel tolerance-inducing strategies.
Collapse
Affiliation(s)
- Lu Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.,Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Chen He
- Department of Ophthalmology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Jintao Liu
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Zhiwu Lv
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Ganlu Wang
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Hanchao Gao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - David K C Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
27
|
Ezzelarab MB. Regulatory T cells from allo- to xenotransplantation: Opportunities and challenges. Xenotransplantation 2018; 25:e12415. [DOI: 10.1111/xen.12415] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Mohamed B. Ezzelarab
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| |
Collapse
|
28
|
Li J, Tan J, Martino MM, Lui KO. Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Front Immunol 2018; 9:585. [PMID: 29662491 PMCID: PMC5890151 DOI: 10.3389/fimmu.2018.00585] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
The identification of stem cells and growth factors as well as the development of biomaterials hold great promise for regenerative medicine applications. However, the therapeutic efficacy of regenerative therapies can be greatly influenced by the host immune system, which plays a pivotal role during tissue repair and regeneration. Therefore, understanding how the immune system modulates tissue healing is critical to design efficient regenerative strategies. While the innate immune system is well known to be involved in the tissue healing process, the adaptive immune system has recently emerged as a key player. T-cells, in particular, regulatory T-cells (Treg), have been shown to promote repair and regeneration of various organ systems. In this review, we discuss the mechanisms by which Treg participate in the repair and regeneration of skeletal and heart muscle, skin, lung, bone, and the central nervous system.
Collapse
Affiliation(s)
- Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jean Tan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
29
|
Huang D, Wang Y, Hawthorne WJ, Hu M, Hawkes J, Burns H, Davies S, Gao F, Chew YV, Yi S, O'Connell PJ. Ex vivo-expanded baboon CD39 + regulatory T cells prevent rejection of porcine islet xenografts in NOD-SCID IL-2rγ -/- mice reconstituted with baboon peripheral blood mononuclear cells. Xenotransplantation 2017; 24. [PMID: 28963731 DOI: 10.1111/xen.12344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/05/2017] [Accepted: 08/14/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND A high immunosuppressive burden is required for long-term islet xenograft survival in non-human primates even using genetically modified donor pigs. AIMS We aimed to investigate the capacity of baboon regulatory T cells (Treg) to suppress islet xenograft rejection, thereby developing a potential immunoregulatory or tolerance therapy that could be evaluated in NHP models of xenotransplantation. MATERIALS & METHODS Baboon Treg expanded with stimulation by porcine peripheral blood mononuclear cells (PBMC) were characterized by cell phenotyping and suppressive activity assays in vitro. Their function in vivo was evaluated in neonatal porcine islet cell clusters (NICC) transplanted NOD-SCID IL-2rγ-/- (NSG) mice receiving baboon PBMC alone or with expanded autologous Treg. RESULTS The majority of expanded Treg coexpressed Foxp3 and CD39 and were highly suppressive of the baboon anti-pig xenogeneic T cell response in vitro. Reconstitution of mice with baboon PBMC alone resulted in NICC xenograft rejection within 35 days. Cotransfer with baboon PBMC and Treg prolonged islet xenograft survival beyond 100 days, correlating with Treg engraftment, intragraft CD39 and Foxp3 gene expression, and reduced graft infiltrating effector T cells and reduced interferon-γ production. DISCUSSION & CONCLUSION Our data supports the capacity of ex vivo expanded CD39+ baboon Treg to suppress islet xenograft rejection in primatized mice, suggesting it has potential as an adjunctive immunotherapy in preclinical NHP models of xenotransplantation.
Collapse
Affiliation(s)
- Dandan Huang
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Ya Wang
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Min Hu
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Joanne Hawkes
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Heather Burns
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Sussan Davies
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Feng Gao
- Cell Transplantation and Gene Therapy, 3rd Xiangya Hospital of Central South University, Changsha, China
| | - Yi Vee Chew
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Shounan Yi
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
30
|
In Vivo Costimulation Blockade-Induced Regulatory T Cells Demonstrate Dominant and Specific Tolerance to Porcine Islet Xenografts. Transplantation 2017; 101:1587-1599. [PMID: 27653300 DOI: 10.1097/tp.0000000000001482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Although islet xenotransplantation is a promising therapy for type 1 diabetes, its clinical application has been hampered by cellular rejection and the requirement for high levels of immunosuppression. The aim of this study was to determine the role of Foxp3 regulatory T (Treg) cells in costimulation blockade-induced dominant tolerance to porcine neonatal islet cell cluster (NICC) xenografts in mice. METHODS Porcine-NICC were transplanted under the renal capsule of BALB/c or C57BL/6 recipients and given a single dose of CTLA4-Fc at the time of transplant and 4doses of anti-CD154 mAb to day 6. Depletion of Foxp3Treg cell was performed in DEpletion of REGulatory T cells mice at day 80 posttransplantation. Foxp3Treg cell from spleens of treated BALB/c mice (tolerant Treg cell), and splenocytes were cotransferred into islet transplanted nonobese diabetic background with severe combined immunodeficiency mice to assess suppressive function. RESULTS In treated mice, increased numbers of Foxp3Treg cell were identified in the porcine-NICC xenografts, draining lymph node, and spleen. Porcine-NICC xenografts from treated mice expressed elevated levels of TGF-β, IL-10 and IFN-γ. Porcine-NICC xenograft tolerance was abrogated after depletion of Foxp3Treg cell. Tolerant Treg cell produced high levels of IL-10 and had diverse T cell receptor Vβ repertoires with an oligoclonal expansion in CDR3 of T cell receptor Vβ14. These tolerant Treg cells had the capacity to transfer dominant tolerance and specifically exhibited more potent regulatory function to porcine-NICC xenografts that naive Treg cell. CONCLUSIONS This study demonstrated that short-term costimulation blockade-induced dominant tolerance and that Foxp3Treg cell played an essential role in its maintenance. Foxp3Treg cells were activated and had more potent regulatory function in vivo than naive Treg cells.
Collapse
|
31
|
Guo F, Hu M, Huang D, Zhao Y, Heng B, Guillemin G, Lim CK, Hawthorne WJ, Yi S. Human regulatory macrophages are potent in suppression of the xenoimmune response via indoleamine-2,3-dioxygenase-involved mechanism(s). Xenotransplantation 2017; 24. [PMID: 28771838 DOI: 10.1111/xen.12326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 05/17/2017] [Accepted: 07/06/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND For xenotransplantation to truly succeed, we must develop immunomodulatory strategies to suppress the xenoimmune response but by minimizing immunosuppression over the long term. Regulatory macrophages (Mreg) have been shown to suppress polyclonal T-cell proliferation in vitro and prolong allograft survival in vivo. However, the question of whether they are capable of suppressing xenoimmune responses remains unknown. This study assessed the potential of human Mreg to be used as an effective immunomodulatory method in xenotransplantation. METHODS CD14+ monocytes selected from human peripheral blood mononuclear cells (PBMC) were cultured with macrophage colony-stimulating factor (M-CSF) for 7 days with IFN-γ added at day 6 for Mreg induction. Mreg phenotyping was performed by flow cytometric analysis, and the in vitro suppressive function was assessed by mixed lymphocyte reaction (MLR) using irradiated pig PBMC as the xenogeneic stimulator cells, human PBMC as responder cells, and autologous Mreg as suppressor cells. To assess mRNA expression of Mreg functional molecules indoleamine-2,3-dioxygenase (IDO), IL-10, inducible nitric oxide synthase (iNOS) and TGF-β were measured by real-time PCR. Supernatants were collected from the MLR cultures for IDO activity assay by high-performance liquid chromatography (HPLC). The effects of the IDO inhibitor 1-D/L-methyl-tryptophan (1-MT), iNOS inhibitor NG -monomethyl-l-arginine (L-NMMA), and anti-IFN-γ or anti-TGF-β monoclonal antibody (mAb) treatment on Mreg suppressive capacity were tested from the supernatants of the MLR assays. RESULTS We demonstrated that induced Mreg with a phenotype of CD14low CD16-/low CD80low CD83-/low CD86+/hi HLA-DR+/hi were capable of suppressing proliferating human PBMC, CD4+, and CD8+ T cells, even at a higher responder:Mreg ratio of 32:1 in a pig-human xenogeneic MLR. The strong suppressive potency of Mreg was further correlated with their upregulated IDO expression and activity. The IDO upregulation of Mreg was associated with an increased production of IFN-γ, an IDO stimulator, by xenoreactive responder cells in the xenogeneic MLR. While no effect on Mreg suppressive potency was detected by addition of the iNOS inhibitor L-NMMA or anti-TGF-β mAb into the MLR assays, inhibition of IDO activity by neutralizing IFN-γ or by IDO inhibitor 1-MT substantially impaired the capacity of Mreg to suppress the xenogeneic response, indicating the importance of upregulated IDO activity in Mreg-mediated suppression of the xenogeneic response in vitro. CONCLUSION This study demonstrates that human Mreg are capable of suppressing the xenoimmune response in vitro via IDO-involved mechanism(s), suggesting their potential role as an effective immunomodulatory tool in xenotransplantation.
Collapse
Affiliation(s)
- Fei Guo
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia.,Cell Transplantation and Gene Therapy Institute of Central South University at the 3rd Xiangya Hospital, Changsha, Hunan, China
| | - Min Hu
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Dandan Huang
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Yuanfei Zhao
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Benjamin Heng
- Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Gilles Guillemin
- Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Wayne J Hawthorne
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Shounan Yi
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
32
|
Li M, Eckl J, Geiger C, Schendel DJ, Pohla H. A novel and effective method to generate human porcine-specific regulatory T cells with high expression of IL-10, TGF-β1 and IL-35. Sci Rep 2017. [PMID: 28638110 PMCID: PMC5479824 DOI: 10.1038/s41598-017-04322-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organ transplantation remains the most effective treatment for patients with late stage organ failure. Transgenic pigs provide an alternative organ donor source to the limited availability of human organs. However, cellular rejection still remains to be the obstacle for xenotransplantation. Superior to other methods, antigen-specific regulatory T cells (Treg) alleviate cellular rejection with fewer side effects. Here we demonstrate the use of a fast method to provide tolerogenic dendritic cells (tolDC) that can be used to generate effective porcine-specific Treg cells (PSTreg). TolDC were produced within three days from human monocytes in medium supplemented with anti-inflammatory cytokines. Treg were generated from naïve CD4+ T cells and induced to become PSTreg by cocultivation with porcine-antigen-loaded tolDC. Results showed that PSTreg exhibited the expected phenotype, CD4+CD25+CD127low/− Foxp3+, and a more activated phenotype. The specificity of PSTreg was demonstrated by suppression of effector T cell (Teff) activation markers of different stages and inhibition of Teff cell proliferation. TolDC and PSTreg exhibited high expression of IL-10 and TGF-β1 at both protein and RNA levels, and PSTreg also highly expressed IL-35 at RNA levels. Upon restimulation, PSTreg retained the activated phenotype and specificity. Taken together, the newly developed procedure allows efficient generation of highly suppressive PSTreg.
Collapse
Affiliation(s)
- Mingqian Li
- Laboratory of Tumor Immunology, LIFE Center, Ludwig-Maximilians-Universität, Munich, Germany.,Department of Urology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Judith Eckl
- Institute of Molecular Immunology, HelmholtzZentrum München, German Research Center for Environmental Health, and Clinical Cooperation Group "Immune Monitoring", Munich, Germany.,Medigene Immunotherapies GmbH, Planegg, Martinsried, Germany
| | - Christiane Geiger
- Institute of Molecular Immunology, HelmholtzZentrum München, German Research Center for Environmental Health, and Clinical Cooperation Group "Immune Monitoring", Munich, Germany.,Medigene Immunotherapies GmbH, Planegg, Martinsried, Germany
| | - Dolores J Schendel
- Institute of Molecular Immunology, HelmholtzZentrum München, German Research Center for Environmental Health, and Clinical Cooperation Group "Immune Monitoring", Munich, Germany.,Medigene Immunotherapies GmbH, Planegg, Martinsried, Germany
| | - Heike Pohla
- Laboratory of Tumor Immunology, LIFE Center, Ludwig-Maximilians-Universität, Munich, Germany. .,Department of Urology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany. .,Institute of Molecular Immunology, HelmholtzZentrum München, German Research Center for Environmental Health, and Clinical Cooperation Group "Immune Monitoring", Munich, Germany.
| |
Collapse
|
33
|
Su S, Liao J, Liu J, Huang D, He C, Chen F, Yang L, Wu W, Chen J, Lin L, Zeng Y, Ouyang N, Cui X, Yao H, Su F, Huang JD, Lieberman J, Liu Q, Song E. Blocking the recruitment of naive CD4 + T cells reverses immunosuppression in breast cancer. Cell Res 2017; 27:461-482. [PMID: 28290464 PMCID: PMC5385617 DOI: 10.1038/cr.2017.34] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 01/24/2017] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
The origin of tumor-infiltrating Tregs, critical mediators of tumor immunosuppression, is unclear. Here, we show that tumor-infiltrating naive CD4+ T cells and Tregs in human breast cancer have overlapping TCR repertoires, while hardly overlap with circulating Tregs, suggesting that intratumoral Tregs mainly develop from naive T cells in situ rather than from recruited Tregs. Furthermore, the abundance of naive CD4+ T cells and Tregs is closely correlated, both indicating poor prognosis for breast cancer patients. Naive CD4+ T cells adhere to tumor slices in proportion to the abundance of CCL18-producing macrophages. Moreover, adoptively transferred human naive CD4+ T cells infiltrate human breast cancer orthotopic xenografts in a CCL18-dependent manner. In human breast cancer xenografts in humanized mice, blocking the recruitment of naive CD4+ T cells into tumor by knocking down the expression of PITPNM3, a CCL18 receptor, significantly reduces intratumoral Tregs and inhibits tumor progression. These findings suggest that breast tumor-infiltrating Tregs arise from chemotaxis of circulating naive CD4+ T cells that differentiate into Tregs in situ. Inhibiting naive CD4+ T cell recruitment into tumors by interfering with PITPNM3 recognition of CCL18 may be an attractive strategy for anticancer immunotherapy.
Collapse
Affiliation(s)
- Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jianyou Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Chonghua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Fei Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - LinBing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Ling Lin
- Department of Internal Medicine, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yunjie Zeng
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Nengtai Ouyang
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiuying Cui
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jian-dong Huang
- Department of Biochemistry, the University of Hong Kong, Hong Kong, SAR, China
| | - Judy Lieberman
- Department of Pediatrics, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- E-mail:
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- E-mail:
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- E-mail:
| |
Collapse
|
34
|
Chemoattractant Signals and Adhesion Molecules Promoting Human Regulatory T Cell Recruitment to Porcine Endothelium. Transplantation 2016; 100:753-62. [PMID: 26720299 DOI: 10.1097/tp.0000000000001034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human CD4+CD25+Foxp3+ T regulatory cells (huTreg) suppress CD4+ T cell-mediated antipig xenogeneic responses in vitro and might therefore be used to induce xenograft tolerance. The present study investigated the role of the adhesion molecules, their porcine ligands, and the chemoattractant factors that may promote the recruitment of huTreg to porcine aortic endothelial cells (PAEC) and their capacity to regulate antiporcine natural killer (NK) cell responses. METHODS Interactions between ex vivo expanded huTreg and PAEC were studied by static chemotaxis assays and flow-based adhesion and transmigration assays. In addition, the suppressive function of huTreg on human antiporcine NK cell responses was analyzed. RESULTS The TNFα-activated PAEC released factors that induce huTreg chemotaxis, partially inhibited by antihuman CXCR3 blocking antibodies. Coating of PAEC with human CCL17 significantly increased the transmigration of CCR4+ huTreg under physiological shear stress. Under static conditions, transendothelial Treg migration was inhibited by blocking integrin sub-units (CD18, CD49d) on huTreg, or their respective porcine ligands intercellular adhesion molecule 2 (CD102) and vascular cell adhesion molecule 1 (CD106). Finally, huTreg partially suppressed xenogeneic human NK cell adhesion, NK cytotoxicity and degranulation (CD107 expression) against PAEC; however, this inhibition was modest, and there was no significant change in the production of IFNγ. CONCLUSIONS Recruitment of huTreg to porcine endothelium depends on particular chemokine receptors (CXCR3, CCR4) and integrins (CD18 and CD49d) and was increased by CCL17 coating. These results will help to develop new strategies to enhance the recruitment of host huTreg to xenogeneic grafts to regulate cell-mediated xenograft rejection including NK cell responses.
Collapse
|
35
|
Hu M, Wang YM, Wang Y, Zhang GY, Zheng G, Yi S, O'Connell PJ, Harris DCH, Alexander SI. Regulatory T cells in kidney disease and transplantation. Kidney Int 2016; 90:502-14. [PMID: 27263492 DOI: 10.1016/j.kint.2016.03.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/06/2016] [Accepted: 03/17/2016] [Indexed: 01/03/2023]
Abstract
Regulatory T cells (Tregs) have been shown to be important in maintaining immune homeostasis and preventing autoimmune disease, including autoimmune kidney disease. It is also likely that they play a role in limiting kidney transplant rejection and potentially in promoting transplant tolerance. Although other subsets of Tregs exist, the most potent and well-defined Tregs are the Foxp3 expressing CD4(+) Tregs derived from the thymus or generated peripherally. These CD4(+)Foxp3(+) Tregs limit autoimmune renal disease in animal models, especially chronic kidney disease, and kidney transplantation. Furthermore, other subsets of Tregs, including CD8 Tregs, may play a role in immunosuppression in kidney disease. The development and protective mechanisms of Tregs in kidney disease and kidney transplantation involve multiple mechanisms of suppression. Here we review the development and function of CD4(+)Foxp3(+) Tregs. We discuss the specific application of Tregs as a therapeutic strategy to prevent kidney disease and to limit kidney transplant rejection and detail clinical trials in this area of transplantation.
Collapse
Affiliation(s)
- Min Hu
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Geoff Y Zhang
- Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - David C H Harris
- Centre for Transplantation and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, The Children's Hospital at Westmead, University of Sydney, Westmead, New South Wales, Australia.
| |
Collapse
|
36
|
Zhang HL, Zheng YJ, Pan YD, Xie C, Sun H, Zhang YH, Yuan MY, Song BL, Chen JF. Regulatory T-cell depletion in the gut caused by integrin β7 deficiency exacerbates DSS colitis by evoking aberrant innate immunity. Mucosal Immunol 2016; 9:391-400. [PMID: 26220167 DOI: 10.1038/mi.2015.68] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/23/2015] [Indexed: 02/04/2023]
Abstract
Integrin α4β7 controls lymphocyte trafficking into the gut and has essential roles in inflammatory bowel disease (IBD). The α4β7-blocking antibody vedolizumab is approved for IBD treatment; however, high dose of vedolizumab aggravates colitis in a small percentage of patients. Herein, we show that integrin β7 deficiency results in colonic regulatory T (Treg) cell depletion and exacerbates dextran sulfate sodium (DSS) colitis by evoking aberrant innate immunity. In DSS-treated β7-deficient mice, the loss of colonic Treg cells induces excessive macrophage infiltration in the colon via upregulation of colonic epithelial intercellular adhesion molecule 1 and increases proinflammatory cytokine expression, thereby exacerbating DSS-induced colitis. Moreover, reconstitution of the colonic Treg cell population in β7-deficient mice suppresses aberrant innate immune response in the colon and attenuates DSS colitis. Thus, integrin α4β7 is essential for suppression of DSS colitis as it regulates the colonic Treg cell population and innate immunity.
Collapse
Affiliation(s)
- H L Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y J Zheng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y D Pan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - C Xie
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - H Sun
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y H Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - M Y Yuan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - B L Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, China
| | - J F Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
O'Connell PJ, Yi S. Response to Comment on Yi et al. Adoptive Transfer With In Vitro Expanded Human Regulatory T Cells Protects Against Porcine Islet Xenograft Rejection via Interleukin-10 in Humanized Mice. Diabetes 2012;61:1180-1191. Diabetes 2016; 65:e9-e10. [PMID: 26798132 DOI: 10.2337/dbi15-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Philip John O'Connell
- Centre for Transplant and Renal Research, Westmead Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplant and Renal Research, Westmead Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
38
|
Kenney LL, Shultz LD, Greiner DL, Brehm MA. Humanized Mouse Models for Transplant Immunology. Am J Transplant 2016; 16:389-97. [PMID: 26588186 PMCID: PMC5283075 DOI: 10.1111/ajt.13520] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 01/25/2023]
Abstract
Our understanding of the molecular pathways that control immune responses, particularly immunomodulatory molecules that control the extent and duration of an immune response, have led to new approaches in the field of transplantation immunology to induce allograft survival. These molecular pathways are being defined precisely in murine models and translated into clinical practice; however, many of the newly available drugs are human-specific reagents. Furthermore, many species-specific differences exist between mouse and human immune systems. Recent advances in the development of humanized mice, namely, immunodeficient mice engrafted with functional human immune systems, have led to the availability of a small animal model for the study of human immune responses. Humanized mice represent an important preclinical model system for evaluation of new drugs and identification of the mechanisms underlying human allograft rejection without putting patients at risk. This review highlights recent advances in the development of humanized mice and their use as preclinical models for the study of human allograft responses.
Collapse
Affiliation(s)
- Laurie L Kenney
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605
| | | | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605,Corresponding Author: Dale L. Greiner, PhD, University of Massachusetts Medical School, 368 Plantation Street, AS7-2051, Worcester, MA 01605, Office: 508-856-1911, Fax: 508-856-4093,
| | - Michael A. Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605
| |
Collapse
|
39
|
Ye Q, Zhang P, Wan Q. Comment on Yi et al. Adoptive Transfer With In Vitro Expanded Human Regulatory T Cells Protects Against Porcine Islet Xenograft Rejection via Interleukin-10 in Humanized Mice. Diabetes 2012;61:1180-1191. Diabetes 2016; 65:e8. [PMID: 26798131 DOI: 10.2337/db15-1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Qifa Ye
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China Department of Transplant Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Pengpeng Zhang
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiquan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Xiao F, Ma L, Zhao M, Smith RA, Huang G, Jones PM, Persaud S, Pingitore A, Dorling A, Lechler R, Lombardi G. APT070 (mirococept), a membrane-localizing C3 convertase inhibitor, attenuates early human islet allograft damage in vitro and in vivo in a humanized mouse model. Br J Pharmacol 2016; 173:575-87. [PMID: 26565566 PMCID: PMC4728428 DOI: 10.1111/bph.13388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/03/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose A major obstacle to islet cell transplantation is the early loss of transplanted islets resulting from the instant blood‐mediated inflammation reaction (IBMIR). The activation of complement pathways plays a central role in IBMIR. The aim of this study was to test the inhibitory effect of “painting” human islets with APT070, a membrane‐localizing C3 convertase inhibitor, on inflammation evoked by exposure to human serum in vitro and by transplantation in vivo in a humanized diabetic mouse model. Experimental Approach In vitro, human islets pre‐incubated with APT070 were exposed to allogeneic whole blood. In vivo, similarly treated islets were transplanted underneath the kidney capsule of streptozotocin‐induced diabetic NOD‐SCID IL2rγ−/− mice that had been reconstituted with human CD34+ stem cells. Complement activation and islet hormone content were assayed using enzyme‐linked immunosorbent assays. Supernatants and sera were assayed for cytokines using cytometric beads array. Morphology of the islets incubated with human serum in vitro and in graft‐bearing kidney were evaluated using immunofluorescence staining. Key Results Pre‐incubation with APT070 decreased C‐peptide release and iC3b production in vitro, with diminished deposition of C4d and C5b‐9 in islets embedded in blood clots. In vivo, the APT070‐treated islets maintained intact structure and showed less infiltration of inflammatory cells than untreated islets. The pretreatments also significantly reduced pro‐inflammatory cytokines in supernatants and sera. Conclusions and Implications Pre‐treatment of islets with APT070 could reduce intra‐islet inflammation with accompanying preservation of insulin secretion by beta cells. APT070 could be as a potential therapeutic tool in islet transplantation.
Collapse
Affiliation(s)
- Fang Xiao
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Liang Ma
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Min Zhao
- Department of Diabetes & Endocrinology, King's College London, 2nd Floor, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, UK
| | - Richard A Smith
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Guocai Huang
- Department of Diabetes & Endocrinology, King's College London, 2nd Floor, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, UK
| | - Peter M Jones
- Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Shanta Persaud
- Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Attilio Pingitore
- Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Anthony Dorling
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Robert Lechler
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Giovanna Lombardi
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
41
|
Lee HS, Lee JG, Yeom HJ, Chung YS, Kang B, Hurh S, Cho B, Park H, Hwang JI, Park JB, Ahn C, Kim SJ, Yang J. The Introduction of Human Heme Oxygenase-1 and Soluble Tumor Necrosis Factor-α Receptor Type I With Human IgG1 Fc in Porcine Islets Prolongs Islet Xenograft Survival in Humanized Mice. Am J Transplant 2016; 16:44-57. [PMID: 26430779 DOI: 10.1111/ajt.13467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/05/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023]
Abstract
Apoptosis during engraftment and inflammation induce poor islet xenograft survival. We aimed to determine whether overexpression of human heme oxygenase-1 (HO-1) or soluble tumor necrosis factor-α receptor type I with human IgG1 Fc (sTNF-αR-Fc) in porcine islets could improve islet xenograft survival. Adult porcine islets were transduced with adenovirus containing human HO-1, sTNF-αR-Fc, sTNF-αR-Fc/HO-1 or green fluorescent protein (control). Humanized mice were generated by injecting human cord blood-derived CD34(+) stem cells into NOD-scid-IL-2Rγ(null) mice. Both HO-1 and sTNF-αR-Fc reduced islet apoptosis under in vitro hypoxia or cytokine stimuli and suppressed RANTES induction without compromising insulin secretion. Introduction of either gene into islets prolonged islet xenograft survival in pig-to-humanized mice transplantation. The sTNF-αR-Fc/HO-1 group showed the best glucose tolerance. Target genes were successfully expressed in islet xenografts. Perigraft infiltration of macrophages and T cells was suppressed with decreased expression of RANTES, tumor necrosis factor-α and IL-6 in treatment groups; however, frequency of pig-specific interferon-γ-producing T cells was not decreased, and humoral response was not significant in any group. Early apoptosis of islet cells was suppressed in the treatment groups. In conclusion, overexpression of HO-1 or sTNF-αR-Fc in porcine islets improved islet xenograft survival by suppressing both apoptosis and inflammation. HO-1 or sTNF-αR-Fc transgenic pigs have potential for islet xenotransplantation.
Collapse
Affiliation(s)
- H-S Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - J-G Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H J Yeom
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y S Chung
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - B Kang
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S Hurh
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - B Cho
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J I Hwang
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - J B Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - C Ahn
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - S J Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J Yang
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
42
|
Mehling M, Burgener AV, Brinkmann V, Bantug GR, Dimeloe S, Hoenger G, Kappos L, Hess C. Tissue Distribution Dynamics of Human NK Cells Inferred from Peripheral Blood Depletion Kinetics after Sphingosine-1-Phosphate Receptor Blockade. Scand J Immunol 2015; 82:460-6. [DOI: 10.1111/sji.12347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/29/2015] [Indexed: 01/02/2023]
Affiliation(s)
- M. Mehling
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
- Department of Neurology; University Hospital Basel; Basel Switzerland
| | - A.-V. Burgener
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - V. Brinkmann
- Department of Autoimmunity, Transplantation & Inflammation; Novartis Institutes for BioMedical Research; Basel Switzerland
| | - G. R. Bantug
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - S. Dimeloe
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - G. Hoenger
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - L. Kappos
- Department of Neurology; University Hospital Basel; Basel Switzerland
| | - C. Hess
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| |
Collapse
|
43
|
Interaction of dendritic cells and T lymphocytes for the therapeutic effect of Dangguiliuhuang decoction to autoimmune diabetes. Sci Rep 2015; 5:13982. [PMID: 26358493 PMCID: PMC4566122 DOI: 10.1038/srep13982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022] Open
Abstract
In traditional Chinese medicine (TCM), Dangguiliuhuang decoction (DGLHD) is an effective treatment of autoimmune diabetes. Here, we studied potential anti-diabetic mechanisms of DGLHD in a non-obese diabetic (NOD) mouse model. In vitro, DGLHD and individual active ingredients enhanced glucose uptake in HepG2 cells, inhibited T lymphocyte proliferation, and suppressed dendritic cells (DCs) function. In vivo, DGLHD significantly inhibited insulitis, delayed the onset and development of diabetes, promoted insulin secretion and sensitivity, and balanced partially normalized Th1 and Th2 cytokines in NOD mice. In addition, DGLHD increased α1-antitrypsin (AAT-1), Bcl-2, and CyclinD1, and decreased Bax levels in pancreas, spleen, thymus, DCs, and a NIT-1 cell line, all consistent with protecting and repairing islet β cell. More detailed studies indicated that DGLHD regulated the maturation and function of DCs, decreased the percentage of merocytic dendritic cells (mcDCs) subset, and increased programmed death ligand-1 (PD-L1) expression in DCs. DGLHD also impeded T lymphocyte proliferation and promoted regulatory T cells (Tregs) differentiation in vivo. A JAK2-STAT3-dependent pathway was involved in the suppression by DGLHD of interactions between DCs and T lymphocyte. The experiments implicated five active ingredients in specific anti-diabetic actions of DGLHD. The results demonstrated the reasonable composition of the formula.
Collapse
|
44
|
Guo H, Cheng Y, Shapiro J, McElwee K. The role of lymphocytes in the development and treatment of alopecia areata. Expert Rev Clin Immunol 2015; 11:1335-51. [PMID: 26548356 DOI: 10.1586/1744666x.2015.1085306] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alopecia areata (AA) development is associated with both innate and adaptive immune cell activation, migration to peri- and intra-follicular regions, and hair follicle disruption. Both CD4(+) and CD8(+) lymphocytes are abundant in AA lesions; however, CD8(+) cytotoxic T lymphocytes are more likely to enter inside hair follicles, circumstantially suggesting that they have a significant role to play in AA development. Several rodent models recapitulate important features of the human autoimmune disease and demonstrate that CD8(+) cytotoxic T lymphocytes are fundamentally required for AA induction and perpetuation. However, the initiating events, the self-antigens involved, and the molecular signaling pathways, all need further exploration. Studying CD8(+) cytotoxic T lymphocytes and their fate decisions in AA development may reveal new and improved treatment approaches.
Collapse
Affiliation(s)
- Hongwei Guo
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,b 2 Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Yabin Cheng
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Jerry Shapiro
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,c 3 Department of Dermatology, New York University, Langone Medical Center, New York, USA
| | - Kevin McElwee
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,d 4 Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
45
|
Abstract
During the past decade, the development of humanized mouse models and their general applications in biomedical research greatly accelerated the translation of outcomes obtained from basic research into potential diagnostic and therapeutic strategies in clinic. In this chapter, we firstly present an overview on the history and current progress of diverse humanized mouse models and then focus on those equipped with reconstituted human immune system. The update advancement in the establishment of humanized immune system mice and their applications in the studies of the development of human immune system and the pathogenesis of multiple human immune-related diseases are intensively reviewed here, while the shortcoming and perspective of these potent tools are discussed as well. As a valuable bridge across the gap between bench work and clinical trial, progressive humanized mouse models will undoubtedly continue to play an indispensable role in the wide area of biomedical research.
Collapse
|
46
|
Zhou Y, Wu W, Lindholt JS, Sukhova GK, Libby P, Yu X, Shi GP. Regulatory T cells in human and angiotensin II-induced mouse abdominal aortic aneurysms. Cardiovasc Res 2015; 107:98-107. [PMID: 25824145 PMCID: PMC4560044 DOI: 10.1093/cvr/cvv119] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/07/2015] [Accepted: 03/19/2015] [Indexed: 01/02/2023] Open
Abstract
AIMS Regulatory T cells (Tregs) protect mice from angiotensin II (Ang-II)-induced abdominal aortic aneurysms (AAA). This study tested whether AAA patients are Treg-insufficient and the Treg molecular mechanisms that control AAA pathogenesis. METHODS AND RESULTS ELISA determined the Foxp3 concentration in blood cell lysates from 485 AAA patients and 204 age- and sex-matched controls. AAA patients exhibited lower blood cell Foxp3 expression than controls (P < 0.0001). Pearson's correlation test demonstrated a significant but negative correlation between Foxp3 and AAA annual expansion rate before (r = -0.147, P = 0.007) and after (r = -0.153, P = 0.006) adjustment for AAA risk factors. AAA in apolipoprotein E-deficient (Apoe(-/-)) mice that received different doses of Ang-II exhibited a negative correlation of lesion Foxp3(+) Treg numbers with AAA size (r = -0.883, P < 0.0001). Adoptive transfer of Tregs from wild-type (WT) and IL10-deficient (Il10(-/-)) mice increased AAA lesion Treg content, but only WT mice Tregs reduced AAA size, AAA incidence, blood pressure, lesion macrophage and CD4(+) and CD8(+) T-cell accumulation, and angiogenesis with concurrent increase of lesion collagen content. Both AAA lesion immunostaining and plasma ELISA demonstrated that adoptive transfer of WT Tregs, but not Il10(-/-) Tregs, reduced the expression of MCP-1. In vitro cell culture and aortic ring assay demonstrated that only Tregs from WT mice, but not those from Il10(-/-) mice, reduced macrophage MCP-1 secretion, macrophage and vascular cell protease expression and activity, and aortic ring microvessel formation. CONCLUSION This study supports a protective role of Tregs in human and experimental AAA by releasing IL10 to suppress inflammatory cell chemotaxis, arterial wall remodelling, and angiogenesis.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wenxue Wu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| | - Jes S Lindholt
- Elitary Research Centre of Individualized Medicine in Arterial Diseases, Department of Cardiothoracic and Vascular Surgery, University Hospital of Odense, Odense DK-5000, Denmark
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Xueqing Yu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| |
Collapse
|
47
|
Koboziev I, Jones-Hall Y, Valentine JF, Webb CR, Furr KL, Grisham MB. Use of Humanized Mice to Study the Pathogenesis of Autoimmune and Inflammatory Diseases. Inflamm Bowel Dis 2015; 21:1652-73. [PMID: 26035036 PMCID: PMC4466023 DOI: 10.1097/mib.0000000000000446] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Animal models of disease have been used extensively by the research community for the past several decades to better understand the pathogenesis of different diseases and assess the efficacy and toxicity of different therapeutic agents. Retrospective analyses of numerous preclinical intervention studies using mouse models of acute and chronic inflammatory diseases reveal a generalized failure to translate promising interventions or therapeutics into clinically effective treatments in patients. Although several possible reasons have been suggested to account for this generalized failure to translate therapeutic efficacy from the laboratory bench to the patient's bedside, it is becoming increasingly apparent that the mouse immune system is substantially different from the human. Indeed, it is well known that >80 major differences exist between mouse and human immunology; all of which contribute to significant differences in immune system development, activation, and responses to challenges in innate and adaptive immunity. This inconvenient reality has prompted investigators to attempt to humanize the mouse immune system to address important human-specific questions that are impossible to study in patients. The successful long-term engraftment of human hematolymphoid cells in mice would provide investigators with a relatively inexpensive small animal model to study clinically relevant mechanisms and facilitate the evaluation of human-specific therapies in vivo. The discovery that targeted mutation of the IL-2 receptor common gamma chain in lymphopenic mice allows for the long-term engraftment of functional human immune cells has advanced greatly our ability to humanize the mouse immune system. The objective of this review is to present a brief overview of the recent advances that have been made in the development and use of humanized mice with special emphasis on autoimmune and chronic inflammatory diseases. In addition, we discuss the use of these unique mouse models to define the human-specific immunopathological mechanisms responsible for the induction and perpetuation of chronic gut inflammation.
Collapse
Affiliation(s)
- Iurii Koboziev
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Yava Jones-Hall
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907-2027
| | - John F. Valentine
- Department of Internal Medicine, Gastroenterology, Hepatology and Nutrition, University of Utah, Salt Lake City, UT 84132-2410
| | - Cynthia Reinoso Webb
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Kathryn L. Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW T regulatory cells (Tregs) play a central role in maintaining immune homeostasis and peripheral tolerance to foreign antigens in humans. The immune response to alloantigens and recurrence of autoimmunity contribute to pancreatic islet transplant dysfunction, hence the adoptive transfer of Tregs has the potential to significantly improve islet graft survival. In this review, we provide an in-depth analysis of challenges associated with the application of ex-vivo expanded Tregs therapy in pancreatic islet transplant. RECENT FINDINGS Tregs administered systemically may poorly migrate to the site of transplantation, which is critical for tolerance induction and graft protection. Intraportal administration of pancreatic tissue exerts some limitations on the ability to cotransplant Tregs at the same site of islet transplantation. In order to maximize therapeutic potential of Tregs, islet transplantation protocols may need additional refinement. Further to this, the Tregs may require cryopreservation in order to make them readily available at the same time as islet transplant. SUMMARY On the basis of current experience and technology, the combination of islet and Treg cotransplantation is feasible and has great potential to improve islet graft survival. The possibility to wean off, or withdraw, traditional immunosuppressive agents and improve patient quality of life makes it an interesting avenue to be pursued.
Collapse
|
49
|
Vågesjö E, Christoffersson G, Waldén TB, Carlsson PO, Essand M, Korsgren O, Phillipson M. Immunological Shielding by Induced Recruitment of Regulatory T-Lymphocytes Delays Rejection of Islets Transplanted in Muscle. Cell Transplant 2015; 24:263-76. [DOI: 10.3727/096368914x678535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The only clinically available curative treatment of type 1 diabetes mellitus is replacement of the pancreatic islets by allogeneic transplantation, which requires immunosuppressive therapies. Regimens used today are associated with serious adverse effects and impaired islet engraftment and function. The aim of the current study was to induce local immune privilege by accumulating immune-suppressive regulatory T-lymphocytes (Tregs) at the site of intramuscular islet transplantation to reduce the need of immunosuppressive therapy during engraftment. Islets were cotransplanted with a plasmid encoding the chemokine CCL22 into the muscle of MHC-mismatched mice, after which pCCL22 expression and leukocyte recruitment were studied in parallel with graft functionality. Myocyte pCCL22 expression and secretion resulted in local accumulation of Tregs. When islets were cotransplanted with pCCL22, significantly fewer effector T-lymphocytes were observed in close proximity to the islets, leading to delayed graft rejection. As a result, diabetic recipients cotransplanted with islets and pCCL22 intramuscularly became normoglycemic for 10 consecutive days, while grafts cotransplanted with control plasmid were rejected immediately, leaving recipients severely hyperglycemic. Here we propose a simple method to initially shield MHC-mismatched islets by the recruitment of endogenous Tregs during engraftment in order to improve early islet survival. Using this approach, the very high doses of systemic immunosuppression used initially following transplantation can thereby be avoided.
Collapse
Affiliation(s)
- Evelina Vågesjö
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Tomas B. Waldén
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Jin X, Lu Y, Zhao Y, Yi S. Large-scale in vitro expansion of human regulatory T cells with potent xenoantigen-specific suppression. Cytotechnology 2015; 68:935-45. [PMID: 25605448 DOI: 10.1007/s10616-015-9845-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 01/13/2015] [Indexed: 02/05/2023] Open
Abstract
Xenotransplantation is a potential solution to the organ donor shortage. Immunosuppression is required for successful application of xenotransplantation but may lead to infection and cancer. Thus, strategies for immune tolerance induction need to be developed. Polyclonal regulatory T cells (Treg) play a central role in the induction and maintenance of immune tolerance and have been shown to protect against islet xenograft rejection in vivo. However, global immune suppression may be mediated by polyclonal Treg immunotherapy and a simple method for in vitro expansion of xenoantigen-specific Treg for efficient Treg application becomes necessary. Human Treg isolated from peripheral blood mononuclear cells (PBMCs) were initially cultured with anti-CD3/CD28 beads, rapamycin and IL-2 for 7 days as polyclonal expansion. Expanded Treg were then cocultured with irradiated porcine PBMC as xenoantigen stimulation for three subsequent cycles with 7 days for each cycle in the presence of IL-2 and anti-CD3/CD28 beads. Treg phenotype and suppressive capacity were assessed after each cycle of xenoantigen stimulation. Treg expanded with one cycle of xenoantigen stimulation retained Treg suppressive phenotype but acquired no xenoantigen specificity along with poor expansion efficiency, whereas expansion with two-cycle xenoantigen stimulation resulted in not only more than 800-fold Treg expansion but highly suppressive xenoantigen-specific Treg with effector Treg phenotype. However further increase of stimulation cycles resulted in reduced Treg suppressive potency. This study provides a simple approach to obtain high numbers of xenoantigen-specific Treg for immune tolerance induction in xenotransplantation.
Collapse
Affiliation(s)
- Xi Jin
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Ye Zhao
- Center for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Shounan Yi
- Center for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, 2145, Australia.
- Transplantation Research Center, The 2nd Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|