1
|
Yu J, Gu X, Guo Y, Gao M, Cheng S, Meng M, Cui X, Zhang Z, Guo W, Yan D, Sheng M, Zhai L, Ji J, Ma X, Li Y, Cao Y, Wu X, Zhao J, Hu Y, Tan M, Lu Y, Xu L, Liu B, Hu C, Ma X. E3 ligase FBXW7 suppresses brown fat expansion and browning of white fat. EMBO Rep 2025; 26:748-767. [PMID: 39747664 PMCID: PMC11811183 DOI: 10.1038/s44319-024-00337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025] Open
Abstract
Thermogenic fat, including brown and beige fat, dissipates heat via thermogenesis and enhances energy expenditure. Thus, its activation represents a therapeutic strategy to combat obesity. Here, we demonstrate that levels of F-box and WD repeat domain-containing 7 (FBXW7), an E3 ubiquitin protein ligase, negatively correlate with thermogenic fat functionality. FBXW7 overexpression in fat suppresses energy expenditure and thermogenesis, thus aggravates obesity and metabolic dysfunctions in mice. Conversely, FBXW7 depletion in fat leads to brown fat expansion and browning of white fat, and protects mice from diet induced obesity, hepatic steatosis, and hyperlipidemia. Mechanistically, FBXW7 binds to S6K1 and promotes its ubiquitination and proteasomal degradation, which in turn impacts glycolysis and brown preadipocyte proliferation via lactate. Besides, the beneficial metabolic effects of FBXW7 depletion in fat are attenuated by fat-specific knockdown of S6K1 in vivo. In summary, we provide evidence that adipose FBXW7 acts as a major regulator for thermogenic fat biology and energy homeostasis and serves as potential therapeutic target for obesity and metabolic diseases.
Collapse
Grants
- 32325024,82300979,32222024,32271224,32071148,22225702,82000802 MOST | National Natural Science Foundation of China (NSFC)
- 2023YFA1800400,2019YFA09004500 MOST | National Key Research and Development Program of China (NKPs)
- 22ZR1421200,21140904300 Science and Technology Commission of Shanghai Municipality (STCSM)
- CSTB2022NSCQ-JQX0033 Natural Science Foundation of Chongqing, China
- 2021C03069 Key Research and Development Project of Zhejiang Province, China
- LY20H070003 Zhejiang Provincial Natural Science Foundation of China
- SHSMU-ZDCX20212700 Innovation research team of high-level local universities in Shanghai
- 2022ZZ01002 Shanghai Research Center for Endocrine and Metabolic Diseases
- 2023M741184 China Postdoctoral Science Foundation(China Postdoctoral Foundation Project)
Collapse
Affiliation(s)
- Jian Yu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201400, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yingying Guo
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shimiao Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dandan Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinhui Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiejie Zhao
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yepeng Hu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan Lu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Institute for Aging, East China Normal University, Shanghai, 200241, China.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Cheng Hu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201400, China.
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China.
| | - Xinran Ma
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201400, China.
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China.
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Institute for Aging, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
2
|
Xie F, Liu B, Qiao W, He JZ, Cheng J, Wang ZY, Hou YM, Zhang X, Xu BH, Zhang Y, Chen YG, Zhang MX. Smooth muscle NF90 deficiency ameliorates diabetic atherosclerotic calcification in male mice via FBXW7-AGER1-AGEs axis. Nat Commun 2024; 15:4985. [PMID: 38862515 PMCID: PMC11166998 DOI: 10.1038/s41467-024-49315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Hyperglycemia accelerates calcification of atherosclerotic plaques in diabetic patients, and the accumulation of advanced glycation end products (AGEs) is closely related to the atherosclerotic calcification. Here, we show that hyperglycemia-mediated AGEs markedly increase vascular smooth muscle cells (VSMCs) NF90/110 activation in male diabetic patients with atherosclerotic calcified samples. VSMC-specific NF90/110 knockout in male mice decreases obviously AGEs-induced atherosclerotic calcification, along with the inhibitions of VSMC phenotypic changes to osteoblast-like cells, apoptosis, and matrix vesicle release. Mechanistically, AGEs increase the activity of NF90, which then enhances ubiquitination and degradation of AGE receptor 1 (AGER1) by stabilizing the mRNA of E3 ubiquitin ligase FBXW7, thus causing the accumulation of more AGEs and atherosclerotic calcification. Collectively, our study demonstrates the effects of VSMC NF90 in mediating the metabolic imbalance of AGEs to accelerate diabetic atherosclerotic calcification. Therefore, inhibition of VSMC NF90 may be a potential therapeutic target for diabetic atherosclerotic calcification.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Glycation End Products, Advanced/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Knockout
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Humans
- F-Box-WD Repeat-Containing Protein 7/metabolism
- F-Box-WD Repeat-Containing Protein 7/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Nuclear Factor 90 Proteins/metabolism
- Nuclear Factor 90 Proteins/genetics
- Receptor for Advanced Glycation End Products/metabolism
- Receptor for Advanced Glycation End Products/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Mice, Inbred C57BL
- Ubiquitination
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Hyperglycemia/metabolism
- Hyperglycemia/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/genetics
- Apoptosis
Collapse
Affiliation(s)
- Fei Xie
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Liu
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Qiao
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Zhen He
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Cheng
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhao-Yang Wang
- Department of Cardiology of Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Ya-Min Hou
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xu Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo-Han Xu
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Yu-Guo Chen
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China.
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Ma M, Cao R, Tian Y, Fu X. Ubiquitination and Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:47-79. [PMID: 39546135 DOI: 10.1007/978-981-97-7288-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The increasing incidence of metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD), in the past decade is a serious concern worldwide. Disruption of cellular protein homeostasis has been considered as a crucial contributor to the pathogenesis of metabolic diseases. To maintain protein homeostasis, cells have evolved multiple dynamic and self-regulating quality control processes to adapt new environmental conditions and prevent prolonged damage. Among them, the ubiquitin proteasome system (UPS), the primary proteolytic pathway for degradation of aberrant proteins via ubiquitination, has an essential role in maintaining cellular homeostasis in response to intracellular stress. Correspondingly, accumulating evidences have shown that dysregulation of ubiquitination can aggravate various metabolic derangements in many tissues, including the liver, skeletal muscle, pancreas, and adipose tissue, and is involved in the initiation and progression of diverse metabolic diseases. In this part, we will summarize the role of ubiquitination in the pathogenesis of metabolic diseases, including obesity, T2DM and NAFLD, and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meilin Ma
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Rong Cao
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan Tian
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Stefan N, Schick F, Birkenfeld AL, Häring HU, White MF. The role of hepatokines in NAFLD. Cell Metab 2023; 35:236-252. [PMID: 36754018 PMCID: PMC10157895 DOI: 10.1016/j.cmet.2023.01.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is not only a consequence of insulin resistance, but it is also an important cause of insulin resistance and major non-communicable diseases (NCDs). The close relationship of NAFLD with visceral obesity obscures the role of fatty liver from visceral adiposity as the main pathomechanism of insulin resistance and NCDs. To overcome this limitation, in analogy to the concept of adipokines, in 2008 we introduced the term hepatokines to describe the role of fetuin-A in metabolism. Since then, several other hepatokines were tested for their effects on metabolism. Here we address the dysregulation of hepatokines in people with NAFLD. Then, we discuss pathophysiological mechanisms of cardiometabolic diseases specifically related to NAFLD by focusing on hepatokine-related organ crosstalk. Finally, we propose how the determination of major hepatokines and adipokines can be used for pathomechanism-based clustering of insulin resistance in NAFLD and visceral obesity to better implement precision medicine in clinical practice.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Fritz Schick
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section of Experimental Radiology, Department of Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Xiong X, Li X. Type 2 diabetes originated from non-alcoholic fatty liver disease. LIFE METABOLISM 2023; 2:load007. [PMID: 39872510 PMCID: PMC11749538 DOI: 10.1093/lifemeta/load007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 01/03/2025]
Abstract
Both non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are highly prevalent metabolic liver diseases. Accumulating epidemiological evidence now indicates that NAFLD and T2DM are strongly associated, yet the causative relationship remains to be elucidated. Liver serves as a hub for nutrient and energy metabolism in the body. Here we demonstrated the pathogenesis linking NAFLD to T2DM through a series of studies and the attenuation of T2DM progression after NALFD improvement in cohort study. We proposed the urgent necessity of NAFLD management and NAFLD drug development, which might be novel therapeutic avenues for T2DM.
Collapse
Affiliation(s)
- Xuelian Xiong
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Li S, Deng J, Sun D, Chen S, Yao X, Wang N, Zhang J, Gu Q, Zhang S, Wang J, Zhu S, Zhu H, Li H, Xu X, Wei F. FBXW7 alleviates hyperglycemia-induced endothelial oxidative stress injury via ROS and PARP inhibition. Redox Biol 2022; 58:102530. [PMID: 36427396 PMCID: PMC9692029 DOI: 10.1016/j.redox.2022.102530] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy (DR) and other diabetic vascular complications are the leading cause of death and disability in patients with suboptimum glycemic control. In the pathogenesis of diabetic vascular diseases, hyperglycemia-induced oxidative stress, DNA damage, and poly-ADP-ribose-polymerase (PARP) hyperactivation play important roles in endothelial cell impairment. Adipose differentiation-related protein FBXW7 was reported to regulate PGC-1α stability and mitochondrial homeostasis. Here, we investigated the role and mechanism of FBXW7 in repairing endothelial oxidative stress injuries under hyperglycemic conditions. FBXW7 promoted the hampered activity of homologous recombination and non-homologues end joining pathway for repairing DNA double-strand breaks damage, an initiating factor for PARP hyperactivation and diabetic vascular complications. The abundant mobilization of DNA damage repair mediated by FBXW7 suppressed PARP activation, leading to downregulation of PARP expression and activity in both human endothelial cells and diabetic rat retinas. This provided a new method for PARP inhibition, superior to PARP inhibitors for treating diabetic vascular complication. Furthermore, FBXW7 rescued downregulated NAD+ levels and ameliorated mitochondrial dysfunction, thereby reducing superoxide production under hyperglycemic conditions. These effects reversed oxidative injury and vascular leakage in diabetic rat retina, providing a potential future treatment strategy.
Collapse
Affiliation(s)
- Shenping Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China
| | - Junjie Deng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China
| | - Xieyi Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China
| | - Ning Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, 200080, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, 200080, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, 200080, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China
| | - Jing Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China
| | - Shaopin Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
| | - Huiming Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, 200080, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai, 200080, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200080, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
| |
Collapse
|
7
|
Vomhof-DeKrey EE, Singhal S, Singhal SK, Stover AD, Rajpathy O, Preszler E, Garcia L, Basson MD. RNA Sequencing of Intestinal Enterocytes Pre- and Post-Roux-en-Y Gastric Bypass Reveals Alteration in Gene Expression Related to Enterocyte Differentiation, Restitution, and Obesity with Regulation by Schlafen 12. Cells 2022; 11:3283. [PMID: 36291149 PMCID: PMC9601224 DOI: 10.3390/cells11203283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The intestinal lining renews itself in a programmed fashion that can be affected by adaptation to surgical procedures such as gastric bypass. METHODS To assess adaptive mechanisms in the human intestine after Roux-en-Y gastric bypass (RYGB), we biopsied proximal jejunum at the anastomotic site during surgery to establish a baseline and endoscopically re-biopsied the same area 6-9 months after bypass for comparison. Laser microdissection was performed on pre- and post-RYGB biopsies to isolate enterocytes for RNA sequencing. RESULTS RNA sequencing suggested significant decreases in gene expression associated with G2/M DNA damage checkpoint regulation of the cell cycle pathway, and significant increases in gene expression associated with the CDP-diacylglycerol biosynthesis pathway TCA cycle II pathway, and pyrimidine ribonucleotide salvage pathway after RYGB. Since Schlafen 12 (SLFN12) is reported to influence enterocytic differentiation, we stained mucosa for SLFN12 and observed increased SLFN12 immunoreactivity. We investigated SLFN12 overexpression in HIEC-6 and FHs 74 Int intestinal epithelial cells and observed similar increased expression of the following genes that were also increased after RYGB: HES2, CARD9, SLC19A2, FBXW7, STXBP4, SPARCL1, and UTS. CONCLUSIONS Our data suggest that RYGB promotes SLFN12 protein expression, cellular mechanism and replication pathways, and genes associated with differentiation and restitution (HES2, CARD9, SLC19A2), as well as obesity-related genes (FBXW7, STXBP4, SPARCL1, UTS).
Collapse
Affiliation(s)
- Emilie E. Vomhof-DeKrey
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sonalika Singhal
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sandeep K. Singhal
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Allie D. Stover
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Odele Rajpathy
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Elizabeth Preszler
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Luis Garcia
- Sanford Health Clinic, Sioux Falls, ND 57117, USA
| | - Marc D. Basson
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
8
|
Wang D, Wu M, Zhang X, Li L, Lin M, Shi X, Zhao Y, Huang C, Li X. Hepatokine Fetuin B expression is regulated by leptin-STAT3 signalling and associated with leptin in obesity. Sci Rep 2022; 12:12869. [PMID: 35896788 PMCID: PMC9329397 DOI: 10.1038/s41598-022-17000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity is an expanding global public health problem and a leading cause of metabolic disorders. The hepatokine Fetuin B participates in regulating insulin resistance, glucose metabolism and liver steatosis. However, the mechanism underlying Fetuin B activation remains unclear. Our previous population-based study demonstrated a significant association between serum Fetuin B and body fat mass in an obese population, which indicates its potential in mediating obesity-related metabolic disorders. In the present study, we further revealed a significant correlation between Fetuin B and leptin, the classic adipokine released by expanding adipose tissue, in this obese population. Consistently, elevated Fetuin B and leptin levels were confirmed in diet-induced obese mice. Furthermore, an in vitro study demonstrated that the leptin signalling pathway directly activated the transcription and expression of Fetuin B in primary hepatocytes and AML12 cells in a STAT3-dependent manner. STAT3 binds to the response elements on FetuB promoter to directly activate FetuB transcription. Finally, the mediating effect of Fetuin B in insulin resistance induced by leptin was confirmed according to mediation analysis in this obese population. Therefore, our study identifies leptin-STAT3 as an upstream signalling pathway that activates Fetuin B and provides new insights into the pathogenic mechanisms of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023, China
| | - Menghua Wu
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Xiaofang Zhang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Long Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Mingzhu Lin
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Xiulin Shi
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yan Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Caoxin Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Xuejun Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
9
|
Ferrer-Bonsoms JA, Gimeno M, Olaverri D, Sacristan P, Lobato C, Castilla C, Carazo F, Rubio A. EventPointer 3.0: flexible and accurate splicing analysis that includes studying the differential usage of protein-domains. NAR Genom Bioinform 2022; 4:lqac067. [PMID: 36128425 PMCID: PMC9477077 DOI: 10.1093/nargab/lqac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 12/05/2022] Open
Abstract
Alternative splicing (AS) plays a key role in cancer: all its hallmarks have been associated with different mechanisms of abnormal AS. The improvement of the human transcriptome annotation and the availability of fast and accurate software to estimate isoform concentrations has boosted the analysis of transcriptome profiling from RNA-seq. The statistical analysis of AS is a challenging problem not yet fully solved. We have included in EventPointer (EP), a Bioconductor package, a novel statistical method that can use the bootstrap of the pseudoaligners. We compared it with other state-of-the-art algorithms to analyze AS. Its performance is outstanding for shallow sequencing conditions. The statistical framework is very flexible since it is based on design and contrast matrices. EP now includes a convenient tool to find the primers to validate the discoveries using PCR. We also added a statistical module to study alteration in protein domain related to AS. Applying it to 9514 patients from TCGA and TARGET in 19 different tumor types resulted in two conclusions: i) aberrant alternative splicing alters the relative presence of Protein domains and, ii) the number of enriched domains is strongly correlated with the age of the patients.
Collapse
Affiliation(s)
- Juan A Ferrer-Bonsoms
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Marian Gimeno
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Danel Olaverri
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Pablo Sacristan
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - César Lobato
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Carlos Castilla
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Fernando Carazo
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| | - Angel Rubio
- Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra , San Sebastián , Spain
| |
Collapse
|
10
|
Kim JH, Jung WJ, Kim MS, Ko CS, Yoon JS, Hong MJ, Shin HJ, Seo YW. Molecular characterization of wheat floret development-related F-box protein (TaF-box2): Possible involvement in regulation of Arabidopsis flowering. PHYSIOLOGIA PLANTARUM 2022; 174:e13677. [PMID: 35316541 DOI: 10.1111/ppl.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In wheat (Triticum aestivum L.), the floret development stage is an important step in determining grain yield per spike; however, the molecular mechanisms underlying floret development remain unclear. In this study, we elucidated the role of TaF-box2, a member of the F-box-containing E3 ubiquitin protein ligases, which is involved in floret development and anthesis of wheat. TaF-box2 was transiently expressed in the plasma membrane and cytoplasm of both tobacco and wheat. We also found that the SCFF-box2 (Skp1-Cul1-Rbx1-TaF-box2) ubiquitin ligase complex mediated self-ubiquitination activity. Transgenic Arabidopsis plants that constitutively overexpressed TaF-box2 showed markedly greater hypocotyl and root length than wild-type plants, and produced early flowering phenotypes. Flowering-related genes were significantly upregulated in TaF-box2-overexpressing Arabidopsis plants. Further protein interaction analyses such as yeast two-hybrid, in vitro pull-down, and bimolecular fluorescence complementation assays confirmed that TaF-box2 physically interacted with TaCYCL1 (Triticum aestivum cyclin-L1-1). Ubiquitination and degradation assays demonstrated that TaCYCL1 was ubiquitinated by SCFF-box2 and degraded through the 26S proteasome complex. The physiological functions of the TaF-box2 protein remain unclear; however, we discuss several potential routes of involvement in various physiological mechanisms which counteract flowering in transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Woo Joo Jung
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Moon Seok Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Chan Seop Ko
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jin Seok Yoon
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Hyo Jeong Shin
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Yang Z, Hu N, Wang W, Hu W, Zhou S, Shi J, Li M, Jing Z, Chen C, Zhang X, Yang R, Fu X, Wang X. Loss of FBXW7 Correlates with Increased IDH1 Expression in Glioma and Enhances IDH1-Mutant Cancer Cell Sensitivity to Radiation. Cancer Res 2022; 82:497-509. [PMID: 34737211 DOI: 10.1158/0008-5472.can-21-0384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
F-box and WD repeat domain containing 7 (FBXW7) is a substrate receptor of the ubiquitin ligase SKP1-Cullin1-F-box complex and a potent tumor suppressor that prevents unregulated cell growth and tumorigenesis. However, little is known about FBXW7-mediated control of cell metabolism and related functions in cancer therapy. Here, we report that FBXW7 expression inversely correlates with the expression levels of the key metabolic enzyme isocitrate dehydrogenase 1 (IDH1) in patients with glioma and public glioma datasets. Deletion of FBXW7 significantly increased both wild-type (WT) and mutant IDH1 expression, which was mediated by blocking degradation of sterol regulatory element binding protein 1 (SREBP1). The upregulation of neomorphic mutant IDH1 by FBXW7 deletion stimulated production of the oncometabolite 2-hydroxyglutarate at the expense of increasing pentose phosphate pathway activity and NADPH consumption, limiting the buffering ability against radiation-induced oxidative stress. In addition, FBXW7 knockout and IDH1 mutations induced nonhomologous end joining and homologous recombination defects, respectively. In vitro and in vivo, loss of FBXW7 dramatically enhanced the efficacy of radiation treatment in IDH1-mutant cancer cells. Taken together, this work identifies FBXW7 deficiency as a potential biomarker representing both DNA repair and metabolic vulnerabilities that sensitizes IDH1-mutant cancers to radiotherapy. SIGNIFICANCE: Deficiency of FBXW7 causes defects in DNA repair and disrupts NADPH homeostasis in IDH1-mutant glioma cells, conferring high sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Zhuo Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Nan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Jianxiang Shi
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P.R. China
| | - Minghe Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Zhou Jing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Xuyang Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Ruyi Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| |
Collapse
|
12
|
Al-Hakeim HK, Hadi HH, Jawad GA, Maes M. Intersections between Copper, β-Arrestin-1, Calcium, FBXW7, CD17, Insulin Resistance and Atherogenicity Mediate Depression and Anxiety Due to Type 2 Diabetes Mellitus: A Nomothetic Network Approach. J Pers Med 2022; 12:jpm12010023. [PMID: 35055338 PMCID: PMC8779500 DOI: 10.3390/jpm12010023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is frequently accompanied by affective disorders with a prevalence of comorbid depression of around 25%. Nevertheless, the biomarkers of affective symptoms including depression and anxiety due to T2DM are not well established. The present study delineated the effects of serum levels of copper, zinc, β-arrestin-1, FBXW7, lactosylceramide (LacCer), serotonin, calcium, magnesium on severity of depression and anxiety in 58 men with T2DM and 30 healthy male controls beyond the effects of insulin resistance (IR) and atherogenicity. Severity of affective symptoms was assessed using the Hamilton Depression and Anxiety rating scales. We found that 61.7% of the variance in affective symptoms was explained by the multivariate regression on copper, β-arrestin-1, calcium, and IR coupled with atherogenicity. Copper and LacCer (positive) and calcium and BXW7 (inverse) had significant specific indirect effects on affective symptoms, which were mediated by IR and atherogenicity. Copper, β-arrestin-1, and calcium were associated with affective symptoms above and beyond the effects of IR and atherogenicity. T2DM and affective symptoms share common pathways, namely increased atherogenicity, IR, copper, and β-arrestin-1, and lowered calcium, whereas copper, β-arrestin-1, calcium, LacCer, and FBXW7 may modulate depression and anxiety symptoms by affecting T2DM.
Collapse
Affiliation(s)
- Hussein Kadhem Al-Hakeim
- Department of Chemistry, College of Science, University of Kufa, Najaf 54001, Iraq; (H.K.A.-H.); (H.H.H.); (G.A.J.)
| | - Hadi Hasan Hadi
- Department of Chemistry, College of Science, University of Kufa, Najaf 54001, Iraq; (H.K.A.-H.); (H.H.H.); (G.A.J.)
| | - Ghoufran Akeel Jawad
- Department of Chemistry, College of Science, University of Kufa, Najaf 54001, Iraq; (H.K.A.-H.); (H.H.H.); (G.A.J.)
| | - Michael Maes
- Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 281, Geelong, VIC 3220, Australia
- Correspondence:
| |
Collapse
|
13
|
Jia Y, Liu W, Bai D, Zhang Y, Li Y, Liu Y, Yin J, Chen Q, Ye M, Zhao Y, Kou X, Wang H, Gao S, Li K, Chen M. Melatonin supplementation in the culture medium rescues impaired glucose metabolism in IVF mice offspring. J Pineal Res 2022; 72:e12778. [PMID: 34726796 DOI: 10.1111/jpi.12778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/29/2022]
Abstract
Increasing evidence suggests that in vitro fertilization (IVF) may be associated with an increased risk of developing obesity and metabolic diseases later in life in the offspring. Notably, the addition of melatonin to culture medium may improve embryo development and prevent cardiovascular dysfunction in IVF adult mice. This study aimed to determine if melatonin supplementation in the culture medium can reverse impaired glucose metabolism in IVF mice offspring and the underlying mechanisms. Blastocysts used for transfer were generated by natural mating (control group) or IVF with or without melatonin (10-6 M) supplementation (mIVF and IVF group, respectively) in clinical-grade culture media. Here, we first report that IVF decreased hepatic expression of Fbxl7, which was associated with impaired glucose metabolism in mice offspring. Melatonin addition reversed the phenotype by up-regulating the expression of hepatic Fbxl7. In vitro experiments showed that Fbxl7 enhanced the insulin signaling pathway by degrading RhoA through ubiquitination and was up-regulated by transcription factor Foxa2. Specific knockout of Fbxl7 in the liver of adult mice, through tail intravenous injection of recombinant adeno-associated virus, impaired glucose tolerance, while overexpression of hepatic Fbxl7 significantly improved glucose tolerance in adult IVF mice. Thus, the data suggest that Fbxl7 plays an important role in maintaining glucose metabolism of mice, and melatonin supplementation in the culture medium may rescue the long-term risk of metabolic diseases in IVF offspring.
Collapse
Affiliation(s)
- Yanping Jia
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dandan Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yalin Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanhe Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingdong Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qiaoyu Chen
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingming Ye
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kunming Li
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Tremblay PG, Fortin C, Sirard MA. Gene cascade analysis in human granulosa tumor cells (KGN) following exposure to high levels of free fatty acids and insulin. J Ovarian Res 2021; 14:178. [PMID: 34930403 PMCID: PMC8690403 DOI: 10.1186/s13048-021-00934-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal metabolic disorders such as obesity and diabetes are detrimental factors that compromise fertility and the success rates of medically assisted procreation procedures. During metabolic stress, adipose tissue is more likely to release free fatty acids (FFA) in the serum resulting in an increase of FFA levels not only in blood, but also in follicular fluid (FF). In humans, high concentrations of palmitic acid and stearic acid reduced granulosa cell survival and were associated with poor cumulus-oocyte complex (COC) morphology. Obesity and high levels of circulating FFA were also causatively linked to hampered insulin sensitivity in cells and compensatory hyperinsulinemia. To provide a global picture of the principal upstream signaling pathways and genomic mechanisms involved in this metabolic context, human granulosa-like tumor cells (KGN) were treated with a combination of palmitic acid, oleic acid, and stearic acid at the higher physiological concentrations found in the follicular fluid of women with a higher body mass index (BMI) (≥ 30.0 kg/m2). We also tested a high concentration of insulin alone and in combination with high concentrations of fatty acids. Transcription analysis by RNA-seq with a cut off for fold change of 1.5 and p-value 0.05 resulted in thousands of differentially expressed genes for each treatment. Using analysis software such as Ingenuity Pathway Analysis (IPA), we were able to establish that high concentrations of FFA affected the expression of genes mainly related to glucose and insulin homoeostasis, fatty acid metabolism, as well as steroidogenesis and granulosa cell differentiation processes. The combination of insulin and high concentrations of FFA affected signaling pathways related to apoptosis, inflammation, and oxidative stress. Taken together, our results provided new information on the mechanisms that might be involved in human granulosa cells exposed to high concentrations of FFA and insulin in the contexts of metabolism disorders.
Collapse
Affiliation(s)
- Patricia G Tremblay
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Chloé Fortin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
15
|
Suppressive role of E3 ubiquitin ligase FBW7 in type I diabetes in non-obese diabetic mice through mediation of ubiquitination of EZH2. Cell Death Dis 2021; 7:361. [PMID: 34802056 PMCID: PMC8606006 DOI: 10.1038/s41420-021-00605-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022]
Abstract
The current study tried to uncover the molecular mechanism of E3 ubiquitin ligase F-box and WD repeat domain-containing 7 (FBW7) in a heritable autoimmune disease, type I diabetes (T1D). After streptozotocin-induced T1D model establishment in non-obese diabetic (NOD) mouse, the protein expression of FBW7, enhancer of zeste homolog 2 (EZH2), and Zinc finger and BTB domain containing 16 (ZBTB16) was quantified. Next, splenocytes and pancreatic beta cells were isolated to measure the production of pro-inflammatory cytokines in splenocytes, as well as islet beta-cell apoptosis. Additionally, the stability of EZH2 induced by FBW7 was analyzed by cycloheximide chase assay. The binding affinity of FBW7 and EZH2 and the consequence of ubiquitination were monitored by co-immunoprecipitation assay. Last, a chromatin immunoprecipitation assay was employed to analyze the accumulation of EZH2 and H3K27me3 at the ZBTB16 promoter region. Our study demonstrated downregulated FBW7 and ZBTB16 and upregulated EZH2 in diabetic NOD mice. Overexpression of FBW7 in the NOD mice inhibited pro-inflammatory cytokine release in the splenocytes and the apoptosis of islets beta cells. FBW7 destabilized EZH2 and accelerated ubiquitin-dependent degradation. EZH2 and H3K27me3 downregulated the ZBTB16 expression by accumulating in the ZBTB16 promoter and methylation. FBW7 upregulates the expression of ZBTB16 by targeting histone methyltransferase EZH2 thus reducing the occurrence of T1D.
Collapse
|
16
|
Lan H, Sun Y. Tumor Suppressor FBXW7 and Its Regulation of DNA Damage Response and Repair. Front Cell Dev Biol 2021; 9:751574. [PMID: 34760892 PMCID: PMC8573206 DOI: 10.3389/fcell.2021.751574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
The proper DNA damage response (DDR) and repair are the central molecular mechanisms for the maintenance of cellular homeostasis and genomic integrity. The abnormality in this process is frequently observed in human cancers, and is an important contributing factor to cancer development. FBXW7 is an F-box protein serving as the substrate recognition component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase. By selectively targeting many oncoproteins for proteasome-mediated degradation, FBXW7 acts as a typical tumor suppressor. Recent studies have demonstrated that FBXW7 also plays critical roles in the process of DDR and repair. In this review, we first briefly introduce the processes of protein ubiquitylation by SCFFBXW7 and DDR/repair, then provide an overview of the molecular characteristics of FBXW7. We next discuss how FBXW7 regulates the process of DDR and repair, and its translational implication. Finally, we propose few future perspectives to further elucidate the role of FBXW7 in regulation of a variety of biological processes and tumorigenesis, and to design a number of approaches for FBXW7 reactivation in a subset of human cancers for potential anticancer therapy.
Collapse
Affiliation(s)
- Huiyin Lan
- Department of Thoracic Radiation Oncology, Zhejiang Cancer Hospital, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Li Y, Jin L, Jiang F, Yan J, Lu Y, Yang Q, Zhang Y, Zhang H, Yu H, Zhang Y, He Z, Zhang R, Yang J, Hu C. Mutations of NRG4 Contribute to the Pathogenesis of Nonalcoholic Fatty Liver Disease and Related Metabolic Disorders. Diabetes 2021; 70:2213-2224. [PMID: 34261740 DOI: 10.2337/db21-0064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022]
Abstract
Neuregulin 4 (Nrg4), an adipose tissue-enriched endocrine factor, participates in adipocyte-to-hepatocyte communication, eliciting beneficial metabolic effects in nonalcoholic fatty liver disease (NAFLD). We evaluate the physiological roles of NRG4 in humans and unravel the role of NRG4 variants in the pathogenesis of NAFLD and related metabolic disorders. We identified two rare missense mutations-p.R44H and p.E47Q-in the NRG4 EGF-like domain by whole-exome sequencing in 224 severely obese subjects and exome genotyping in 2,388 subjects from the Shanghai Obesity Study. The overexpression animal models showed that wild-type (WT) Nrg4 could attenuate high-fat diet-induced hepatic lipogenesis and improve energy metabolism. Nrg4 E47Q enhanced the protective effect, whereas Nrg4 R44H lost this function. Unlike Nrg4 R44H, Nrg4 E47Q activated the phosphorylation of ErbB4 and negatively regulated de novo lipogenesis through the ErbB4-STAT5-SREBP-1C pathway. The surface plasmon resonance experiments revealed a higher affinity of E47Q Nrg4 than WT to bind ErbB4, while R44H showed no binding. In conclusion, the study suggests that genetic variations in NRG4 could produce mutant proteins with aberrant functions and that impaired or enhanced Nrg4 function could be either a risk factor or a protective factor for NAFLD and associated metabolic disorders.
Collapse
Affiliation(s)
- Yangyang Li
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Jin
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yan Lu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Yang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hairong Yu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuemei Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhen He
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianjun Yang
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| |
Collapse
|
18
|
Liu S, Wang L, Wu X, Wu J, Liu D, Yu H. Overexpression of hsa_circ_0022742 suppressed hyperglycemia-induced endothelial dysfunction by targeting the miR-503-5p/FBXW7 axis. Microvasc Res 2021; 139:104249. [PMID: 34516983 DOI: 10.1016/j.mvr.2021.104249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/11/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Type I and II diabetes adversely affect the microvasculature of several organs, although the regulatory mechanisms remain unclear. Previous studies have found that differentially expressed circRNAs associated with hyperglycemia (HG) induce endothelial dysfunction. In the present study, high-throughput sequencing was employed to assess abnormal circRNA expression in human umbilical vein endothelial cells (HUVECs) after HG treatment. Then, bioinformatics analysis, luciferase reporting analysis, angiogenic differentiation analysis, flow cytometry, and qRT-PCR analysis were performed to investigate the underlying regulatory mechanism and targets. The results demonstrate that hsa_circ_0022742 expression in HUVECs was decreased by HG treatment and overexpression of hsa_circ_0022742 suppressed HG-induced endothelial dysfunction. Luciferase analysis showed that miR-503-5p and FBXW7 were downstream targets of hsa_circ_0022742. Both overexpression of FBXW7 and inhibition of miR-503-5p reversed the protective effect of hsa_circ_0022742 against HG-induced endothelial dysfunction, including apoptosis, abnormal vascular differentiation, and secretion of inflammatory factors, indicating that hsa_circ_0022742 enhanced FBXW7 expression by sponging miR-503-5p. Taken together, these findings demonstrate that overexpression of hsa_circ_0022742 suppressed HG-induced endothelial dysfunction by targeting the miR-503-5p/FBXW7 axis.
Collapse
Affiliation(s)
- Siyang Liu
- Chengde Central Hospital, Chengde, Hebei 067000, China
| | - Liyun Wang
- Chengde Central Hospital, Chengde, Hebei 067000, China
| | - Xueyan Wu
- Department of Human Anatomy, Chengde Medical College, China
| | - Jianlong Wu
- Chengde Central Hospital, Chengde, Hebei 067000, China
| | - Dawei Liu
- Chengde Central Hospital, Chengde, Hebei 067000, China
| | - Hongbin Yu
- Chengde Central Hospital, Chengde, Hebei 067000, China.
| |
Collapse
|
19
|
Yan SQ, Adi D, Liu C, Wang MM, Abuzhalihana J, Wu Y, Fu ZY, Yang YN, Li XM, Xie X, Liu F, Chen BD, Ma YT. FBXW7 gene polymorphism is associated with type 2 diabetes in the Uygur population in Xinjiang, China. Hereditas 2021; 158:27. [PMID: 34372947 PMCID: PMC8351158 DOI: 10.1186/s41065-021-00191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
Background FBXW7 gene expression is positively correlated with glycolipid metabolism and is associated with diabetes in animal models. In the current study, we focused on exploring whether genetic variants of the FBXW7 gene were associated with type 2 diabetes (T2DM) and the risk factors for T2DM in Uygur people in Xinjiang, China. Methods A total of 2164 Chinese Uygur subjects (673 T2DM patients and 1491 controls) were recruited for our case–control study, and four SNPs (rs10033601, rs2255137, rs2292743 and rs35311955) of the FBXW7 gene were genotyped using the improved multiplex ligation detection reaction (iMLDR) technique. Results Our study showed that the genotypes using the overdominant model (GA vs AA + GG) of rs10033601 and using the overdominant model (TA vs TT + AA) of rs2292743 were significantly different between T2DM patients and the controls (P = 0.005 and P = 0.012, respectively). After multivariate adjustments for confounders, the rs10033601 and rs2292743 SNPs were still independent risk factors for T2DM [GA vs AA + GG: odds ratio = 1.35, 95% confidence interval (CI) = 1.12–1.64, P = 0.002; TA vs TT + AA: OR = 1.28, 95% CI = 1.06–1.55, P = 0.011]. Participants within the Chinese Uygur populations and who with the GA genotype of rs10033601 and the TA genotype of rs2292743 were associated with significantly elevated glucose levels. Conclusions Our study revealed that both rs10033601 and rs2292743 of the FBXW7 gene were associated with T2DM in the Uygur populations in Xinjiang.
Collapse
Affiliation(s)
- Shi-Qi Yan
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Cheng Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Meng-Meng Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Jialin Abuzhalihana
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Yun Wu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China.
| |
Collapse
|
20
|
Sardana O, Goyal R, Bedi O. Molecular and pathobiological involvement of fetuin-A in the pathogenesis of NAFLD. Inflammopharmacology 2021; 29:1061-1074. [PMID: 34185201 DOI: 10.1007/s10787-021-00837-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The liver acts as a manufacturing unit for the production of fetuin-A, which is essential for various physiological characteristics. Scientific research has shown that a moderate upward push in fetuin-A serum levels is associated with a confirmed non-alcoholic fatty liver disease (NAFLD) diagnosis. Fetuin-A modulation is associated with a number of pathophysiological variables that cause liver problems, including insulin receptor signaling deficiencies, adipocyte dysfunction, hepatic inflammation, fibrosis, triacylglycerol production, macrophage invasion, and TLR4 activation. The focus of the present review is on the various molecular pathways, and genetic relevance of mRNA expression of fetuin-A which is correlated with progression of NAFLD. The other major area of exploration in the present review is based on the new targets for the modulation of fetuin-A, like calorie restriction and novel pharmacological agents, such as rosuvastatin, metformin, and pioglitazone which are successfully implicated in the management of various liver-related complications.
Collapse
Affiliation(s)
- Ojus Sardana
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ravi Goyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
21
|
Zhang Q, Long J, Li N, Ma X, Zheng L. Circ_CLASP2 Regulates High Glucose-Induced Dysfunction of Human Endothelial Cells Through Targeting miR-140-5p/FBXW7 Axis. Front Pharmacol 2021; 12:594793. [PMID: 33776760 PMCID: PMC7990784 DOI: 10.3389/fphar.2021.594793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/18/2021] [Indexed: 01/10/2023] Open
Abstract
Hyperglycemia exposure results in the dysfunction of endothelial cells (ECs) and the development of diabetic complications. Circular RNAs (circRNAs) have been demonstrated to play critical roles in EC dysfunction. The current study aimed to explore the role and mechanism of circRNA CLIP–associating protein 2 (circ_CLASP2, hsa_circ_0064772) on HG-induced dysfunction in human umbilical vein endothelial cells (HUVECs). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess the levels of circ_CLASP2, miR-140-5p and F-box, and WD repeat domain-containing 7 (FBXW7). The stability of circ_CLASP2 was identified by the actinomycin D and ribonuclease (RNase) R assays. Cell colony formation, proliferation, and apoptosis were measured by a standard colony formation assay, colorimetric 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay, and flow cytometry, respectively. Western blot analysis was performed to determine the expression of related proteins. Targeted correlations among circ_CLASP2, miR-140-5p, and FBXW7 were confirmed by dual-luciferase reporter assay. High glucose (HG) exposure downregulated the expression of circ_CLASP2 in HUVECs. Circ_CLASP2 overexpression or miR-140-5p knockdown promoted proliferation and inhibited apoptosis of HUVECs under HG conditions. Circ_CLASP2 directly interacted with miR-140-5p via pairing to miR-140-5p. The regulation of circ_CLASP2 overexpression on HG-induced HUVEC dysfunction was mediated by miR-140-5p. Moreover, FBXW7 was a direct target of miR-140-5p, and miR-140-5p regulated HG-induced HUVEC dysfunction via FBXW7. Furthermore, circ_CLASP2 mediated FBXW7 expression through sponging miR-140-5p. Our current study suggested that the overexpression of circ_CLASP2 protected HUVEC from HG-induced dysfunction at least partly through the regulation of the miR-140-5p/FBXW7 axis, highlighting a novel therapeutic approach for the treatment of diabetic-associated vascular injury.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Cardiovascular, Dongying People's Hospital, Dongying, China
| | - Jing Long
- Department of Critical Care Medicine, Dongying People's Hospital, Dongying, China
| | - Nannan Li
- Department of Cardiovascular, Dongying People's Hospital, Dongying, China
| | - Xuelian Ma
- Department of Clinical Laboratory, Dongying People's Hospital, Dongying, China
| | - Lisheng Zheng
- Department of Cardiovascular, Dongying People's Hospital, Dongying, China
| |
Collapse
|
22
|
Li L, Yang J, Li F, Gao F, Zhu L, Hao J. FBXW7 mediates high glucose‑induced SREBP‑1 expression in renal tubular cells of diabetic nephropathy under PI3K/Akt pathway regulation. Mol Med Rep 2021; 23:233. [PMID: 33537812 PMCID: PMC7893693 DOI: 10.3892/mmr.2021.11872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and lipid metabolism abnormality serves a key role in the pathogenesis of DN. Sterol regulatory element-binding protein 1 (SREBP-1) overexpression mediates aberrant lipid accumulation in renal tubular cells of DN. However, the exact mechanism involved in increased SREBP-1 has not been fully elucidated. The aim of the present study was to explore the mechanism involved in SREBP-1 upregulation. Diabetic mice and high glucose-cultured HKC cells were chosen to detect the expression of FBXW7 and SREBP-1 using immunohistochemistry, western blotting and PCR. The present study demonstrated that F-box and WD repeat domain containing 7 (FBXW7) expression was decreased in renal tubular cells of diabetic mice. Moreover, the co-expression of FBXW7 and SREBP-1 was observed in renal tubular cells, but not in the glomeruli. High glucose-induced the downregulation of FBXW7 expression in in vitro cultured HKC cells, which was accompanied by SREBP-1 upregulation. In addition, overexpression of FBXW7 in HKC cells led to SREBP-1 downregulation. By contrast, knockdown of FBXW7 caused SREBP-1 upregulation in HKC cells. It was found that the PI3K/Akt signaling pathway was activated in high glucose-stimulated HKC cells, and inhibition of PI3K/Akt pathway using LY294002 increased FBXW7 expression and decreased SREBP-1 expression. Taken together, the present results suggested that FBXW7 mediated high glucose-induced SREBP-1 expression in renal tubular cells of DN, under the regulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Lisha Li
- Department of Pathology, Cangzhou Hospital of Integrated TCM‑WM, Cangzhou, Hebei 061001, P.R. China
| | - Juxiang Yang
- The Office of Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Fan Gao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
23
|
A case-control study to determination FBXW7 and Fetuin-A levels in patients with type 2 diabetes in Iraq. J Diabetes Metab Disord 2021; 20:237-243. [PMID: 34222065 DOI: 10.1007/s40200-021-00738-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/10/2021] [Indexed: 01/13/2023]
Abstract
Background diabetes mellitus (type 2) is a chronic disease characterized by hyperglycemia resulting either from a deficiency of insulin, or decrease insulin action or both. This study focused on determining the new marker F- box and WD repeat domain containing protein 7 (FBXW7) as well as Fetuin -A and their correlation with other parameters in Diabetes mellitus type 2. Methods Sixty diabetes type2 patients were recruited from (National diabetes Center for treatment and Research) at Al Mustansriya University in Iraq during the period (from November 2018-March 2019) with an age range (37-69) years. The patient group was subdivided into two groups: group I (30) newly diagnosed T2DM and group II (30) T2DM (on metformin monotherapy), for comparison, 30 healthy individuals were included as a control. The protein levels (FBXW7, and Fetuin-A) were estimated using quantitative enzyme-linked immunesorbent assay (ELISA). Biochemical parameters; fasting serum glucose (FSG), and lipid profile were measured through spectrophotometrically. Insulin was determined using ELISA kit finally, HbA1c was determined using HPLC. Result Serum levels of FBXW7 protein were significantly higher (p-value = 0.01), whereas, there was no significant difference (p ˃ 0.05) in the level of Fetuin-A in group I as compared to control group. There was no significant difference (p ˃ 0.05) in the levels of both proteins who group II was compared with the control group. On the other hand, FBXW7 level were significantly lower in group II as compared to group I. Fasting blood sugar FSG, glycated hemoglobin HbA1c, body mass index BMI, waist- to-height ratio WHtR, and lipid profile were significantly elevated, except for high density lipoproteins, HDL was decreased in Group I as compared to control group, whereas insulin appeared non-significant (P > 0.05). FBXW7 Protein was negatively correlated to Fetuin -A, HOMA-IR, Insulin concentration, and BMI, whereas positive correlate to FSG, HbA1c, lipid profile, and atherogenic index. According to ROC analysis, the optimal cutoff value for FBXW7 protein was (1.455) ng/ml. Conclusions Levels of FBXW7 and Fetuin-A proteins in sera of Diabetic patients were elevated. FBXW7 was significantly correlated with newly diagnosed patients. Metformin reduces FBXW7 and Fetuin-A levels.
Collapse
|
24
|
Hepatokines as a Molecular Transducer of Exercise. J Clin Med 2021; 10:jcm10030385. [PMID: 33498410 PMCID: PMC7864203 DOI: 10.3390/jcm10030385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023] Open
Abstract
Exercise has health benefits and prevents a range of chronic diseases caused by physiological and biological changes in the whole body. Generally, the metabolic regulation of skeletal muscle through exercise is known to have a protective effect on the pathogenesis of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and cardiovascular disease (CVD). Besides this, the importance of the liver as an endocrine organ is a hot research topic. Hepatocytes also secrete many hepatokines in response to nutritional conditions and/or physical activity. In particular, certain hepatokines play a major role in the regulation of whole-body metabolic homeostasis. In this review, we summarize the recent research findings on the exercise-mediated regulation of hepatokines, including fibroblast growth factor 21, fetuin-A, angiopoietin-like protein 4, and follistatin. These hepatokines serve as molecular transducers of the metabolic benefits of physical activity in chronic metabolic diseases, including NAFLD, T2D, and CVDs, in various tissues.
Collapse
|
25
|
Myeloid FBW7 deficiency disrupts redox homeostasis and aggravates dietary-induced insulin resistance. Redox Biol 2020; 37:101688. [PMID: 32853822 PMCID: PMC7451763 DOI: 10.1016/j.redox.2020.101688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
The E3 ubiquitin ligase FBW7 plays critical roles in multiple pathological and physiological processes. Here, we report that after high-fat diet (HFD) feeding for 16 weeks, myeloid-specific FBW7-deficient mice demonstrate increased redox stress, inflammatory responses and insulin resistance. Macrophages activation under FBW7 deficiency decreases substrate flux through the pentose phosphate pathway (PPP) to produce less equivalents (NADPH and GSH) and aggravate the generation of intracellular reactive oxygen species (ROS) in macrophages, thereby over-activating proinflammatory reaction. Mechanistically, we identify that pyruvate kinase muscle isozyme M2 (PKM2) is a new bona fide ubiquitin substrate of SCFFBW7. While challenged with HFD stress, pharmacological inhibition of PKM2 protects FBW7-deficient macrophages against production of ROS, proinflammatory reaction and insulin resistance. Intriguingly, we further find an inverse correlation between FBW7 level and relative higher H2O2 level and the severity of obesity-related diabetes. Overall, the results suggest that FBW7 can play a crucial role in modulating inflammatory response through maintaining the intracellular redox homeostasis during HFD insults. Myeloid FBW7 deficiency aggravates HFD-induced oxidative stress, inflammation and insulin resistance. PKM2 is a new bona fide ubiquitin substrate of SCFFBW7. FBW7 divert glycolysis to combat oxidative stress via PKM2 in macrophages. FBW7 expression inversely correlates with ROS level to govern obesity-related metabolic disorder.
Collapse
|
26
|
Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 2020; 67:1-15. [PMID: 32113998 DOI: 10.1016/j.semcancer.2020.02.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
FBXW7 (also known as Fbw7, Sel10, hCDC4, or hAgo) is a tumor suppressor and the most frequently mutated member of the F-box protein family in human cancers. FBXW7 functions as the substrate recognition component of an SCF-type E3 ubiquitin ligase. It specifically controls the proteasome-mediated degradation of many oncoproteins such as c-MYC, NOTCH, KLF5, cyclin E, c-JUN, and MCL1. In this review, we summarize the molecular and biological features of FBXW7 and its substrates as well as the impact of mutations of FBXW7 on cancer development. We also address the clinical potential of anticancer therapy targeting FBXW7.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
27
|
Zhang W, Bai Y, Chen Z, Li X, Fu S, Huang L, Lin S, Du H. Comprehensive analysis of long non-coding RNAs and mRNAs in skeletal muscle of diabetic Goto-Kakizaki rats during the early stage of type 2 diabetes. PeerJ 2020; 8:e8548. [PMID: 32095365 PMCID: PMC7023842 DOI: 10.7717/peerj.8548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/12/2020] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle long non-coding RNAs (lncRNAs) were reported to be involved in the development of type 2 diabetes (T2D). However, little is known about the mechanism of skeletal muscle lncRNAs on hyperglycemia of diabetic Goto-Kakizaki (GK) rats at the age of 3 and 4 weeks. To elucidate this, we used RNA-sequencing to profile the skeletal muscle transcriptomes including lncRNAs and mRNAs, in diabetic GK and control Wistar rats at the age of 3 and 4 weeks. In total, there were 438 differentially expressed mRNAs (DEGs) and 401 differentially expressed lncRNAs (DELs) in skeletal muscle of 3-week-old GK rats compared with age-matched Wistar rats, and 1000 DEGs and 726 DELs between GK rats and Wistar rats at 4 weeks of age. The protein–protein interaction analysis of overlapping DEGs between 3 and 4 weeks, the correlation analysis of DELs and DEGs, as well as the prediction of target DEGs of DELs showed that these DEGs (Pdk4, Stc2, Il15, Fbxw7 and Ucp3) might play key roles in hyperglycemia, glucose intolerance, and increased fatty acid oxidation. Considering the corresponding co-expressed DELs with high correlation coefficients or targeted DELs of these DEGs, our study indicated that these dysregulated lncRNA-mRNA pairs (NONRATG017315.2-Pdk4, NONRATG003318.2-Stc2, NONRATG011882.2-Il15, NONRATG013497.2-Fbxw7, MSTRG.1662-Ucp3) might be related to above biological processes in GK rats at the age of 3 and 4 weeks. Our study could provide more comprehensive knowledge of mRNAs and lncRNAs in skeletal muscle of GK rats at 3 and 4 weeks of age. And our study may provide deeper understanding of the underlying mechanism in T2D of GK rats at the age of 3 and 4 weeks.
Collapse
Affiliation(s)
- Wenlu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yunmeng Bai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xingsong Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shudai Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
28
|
Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance. Endocr Rev 2019; 40:1367-1393. [PMID: 31098621 DOI: 10.1210/er.2019-00034] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The liver is a dynamic organ that plays critical roles in many physiological processes, including the regulation of systemic glucose and lipid metabolism. Dysfunctional hepatic lipid metabolism is a cause of nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disorder worldwide, and is closely associated with insulin resistance and type 2 diabetes. Through the use of advanced mass spectrometry "omics" approaches and detailed experimentation in cells, mice, and humans, we now understand that the liver secretes a wide array of proteins, metabolites, and noncoding RNAs (miRNAs) and that many of these secreted factors exert powerful effects on metabolic processes both in the liver and in peripheral tissues. In this review, we summarize the rapidly evolving field of "hepatokine" biology with a particular focus on delineating previously unappreciated communication between the liver and other tissues in the body. We describe the NAFLD-induced changes in secretion of liver proteins, lipids, other metabolites, and miRNAs, and how these molecules alter metabolism in liver, muscle, adipose tissue, and pancreas to induce insulin resistance. We also synthesize the limited information that indicates that extracellular vesicles, and in particular exosomes, may be an important mechanism for intertissue communication in normal physiology and in promoting metabolic dysregulation in NAFLD.
Collapse
Affiliation(s)
- Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paula M Miotto
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
29
|
Ren G, Kim T, Papizan JB, Okerberg CK, Kothari VM, Zaid H, Bilan PJ, Araya-Ramirez F, Littlefield LA, Bowers RL, Mahurin AJ, Nickles MM, Ludvigsen R, He X, Grandjean PW, Mathews ST. Phosphorylation status of fetuin-A is critical for inhibition of insulin action and is correlated with obesity and insulin resistance. Am J Physiol Endocrinol Metab 2019; 317:E250-E260. [PMID: 31084489 DOI: 10.1152/ajpendo.00089.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fetuin-A (Fet-A), a hepatokine associated with insulin resistance, obesity, and incident type 2 diabetes, is shown to exist in both phosphorylated and dephosphorylated forms in circulation. However, studies on fetuin-A phosphorylation status in insulin-resistant conditions and its functional significance are limited. We demonstrate that serum phosphofetuin-A (Ser312) levels were significantly elevated in high-fat diet-induced obese mice, insulin-resistant Zucker diabetic fatty rats, and in individuals with obesity who are insulin resistant. Unlike serum total fetuin-A, serum phosphofetuin-A was associated with body weight, insulin, and markers of insulin resistance. To characterize potential mechanisms, fetuin-A was purified from Hep3B human hepatoma cells. Hep3B Fet-A was phosphorylated (Ser312) and inhibited insulin-stimulated glucose uptake and glycogen synthesis in L6GLUT4 myoblasts. Furthermore, single (Ser312Ala) and double (Ser312Ala + Ser120Ala) phosphorylation-defective Fet-A mutants were without effect on glucose uptake and glycogen synthesis in L6GLUT4 myoblasts. Together, our studies demonstrate that phosphorylation status of Fet-A (Ser312) is associated with obesity and insulin resistance and raise the possibility that Fet-A phosphorylation may play a role in regulation of insulin action.
Collapse
Affiliation(s)
- Guang Ren
- Department of Nutrition and Dietetics, Auburn University , Auburn, Alabama
| | - Teayoun Kim
- Department of Nutrition and Dietetics, Auburn University , Auburn, Alabama
| | - James B Papizan
- Department of Nutrition and Dietetics, Auburn University , Auburn, Alabama
| | - Carl K Okerberg
- Department of Nutrition and Dietetics, Auburn University , Auburn, Alabama
| | - Vishal M Kothari
- Department of Nutrition and Dietetics, Auburn University , Auburn, Alabama
| | - Hilal Zaid
- Cell Biology Program, The Hospital for Sick Children , Toronto , Canada
| | - Phillip J Bilan
- Cell Biology Program, The Hospital for Sick Children , Toronto , Canada
| | | | | | | | - A Jack Mahurin
- School of Kinesiology, Auburn University , Auburn, Alabama
| | - Mary M Nickles
- Department of Nutrition and Dietetics, Samford University , Birmingham, Alabama
| | - Rebecca Ludvigsen
- Department of Nutrition and Dietetics, Auburn University , Auburn, Alabama
| | - Xiaoming He
- Department of Nutrition and Dietetics, Auburn University , Auburn, Alabama
| | | | - Suresh T Mathews
- Department of Nutrition and Dietetics, Auburn University , Auburn, Alabama
- Department of Nutrition and Dietetics, Samford University , Birmingham, Alabama
| |
Collapse
|
30
|
Abstract
The health-promoting effects of physical activity to prevent and treat metabolic disorders are numerous. However, the underlying molecular mechanisms are not yet completely deciphered. In recent years, studies have referred to the liver as an endocrine organ, since it releases specific proteins called hepatokines. Some of these hepatokines are involved in whole body metabolic homeostasis and are theorized to participate in the development of metabolic disease. In this regard, the present review describes the role of Fibroblast Growth Factor 21, Fetuin-A, Angiopoietin-like protein 4, and Follistatin in metabolic disease and their production in response to acute exercise. Also, we discuss the potential role of hepatokines in mediating the beneficial effects of regular exercise and the future challenges to the discovery of new exercise-induced hepatokines.
Collapse
Affiliation(s)
- Gaël Ennequin
- PEPITE EA4267, EPSI, Université de Bourgogne Franche-Comté , Besançon , France
| | - Pascal Sirvent
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (AME2P), CRNH Auvergne, Clermont-Ferrand , France
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| |
Collapse
|
31
|
FBXW7 suppresses HMGB1-mediated innate immune signaling to attenuate hepatic inflammation and insulin resistance in a mouse model of nonalcoholic fatty liver disease. Mol Med 2019; 25:29. [PMID: 31215394 PMCID: PMC6582600 DOI: 10.1186/s10020-019-0099-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Background Innate immune dysfunction contributes to the development and progression of nonalcoholic fatty liver disease (NAFLD), however, its pathogenesis is still incompletely understood. Identifying the key innate immune component responsible for the pathogenesis of NAFLD and clarifying the underlying mechanisms may provide therapeutic targets for NAFLD. Recently, F-box- and WD repeat domain-containing 7 (FBXW7) exhibits a regulatory role in hepatic glucose and lipid metabolism. This study aims to investigate whether FBXW7 controls high-mobility group box 1 protein (HMGB1)-mediated innate immune signaling to improve NAFLD and the mechanism underlying this action. Methods Mice were fed a high-fat diet (HFD) for 12 or 20 weeks to establish NAFLD model. Hepatic overexpression or knockdown of FBXW7 was induced by tail-vein injection of recombinant adenovirus. Some Ad-FBXW7-injected mice fed a HFD were injected intraperitoneally with recombinant mouse HMGB1 to confirm the protective role of FBXW7 in NAFLD via inhibition of HMGB1. Results FBXW7 improves NAFLD and related metabolic parameters without remarkable influence of body weight and food intake. Moreover, FBXW7 markedly ameliorated hepatic inflammation and insulin resistance in the HFD-fed mice. Furthermore, FBXW7 dramatically attenuated the expression and release of HMGB1 in the livers of HFD-fed mice, which is associated with inhibition of protein kinase R (PKR) signaling. Thereby, FBXW7 restrains Toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE) signaling in HFD-fed mouse livers. In addition, exogenous HMGB1 treatment abolished FBXW7-mediated inhibition of hepatic inflammation and insulin resistance in HFD-fed mouse livers. Conclusions Our results demonstrate a protective role of FBXW7 in NAFLD by abating HMGB1-mediated innate immune signaling to suppress inflammation and consequent insulin resistance, suggesting that FBXW7 is a potential target for therapeutic intervention in NAFLD development. Electronic supplementary material The online version of this article (10.1186/s10020-019-0099-9) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Iacono G, Massoni-Badosa R, Heyn H. Single-cell transcriptomics unveils gene regulatory network plasticity. Genome Biol 2019; 20:110. [PMID: 31159854 PMCID: PMC6547541 DOI: 10.1186/s13059-019-1713-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) plays a pivotal role in our understanding of cellular heterogeneity. Current analytical workflows are driven by categorizing principles that consider cells as individual entities and classify them into complex taxonomies. RESULTS We devise a conceptually different computational framework based on a holistic view, where single-cell datasets are used to infer global, large-scale regulatory networks. We develop correlation metrics that are specifically tailored to single-cell data, and then generate, validate, and interpret single-cell-derived regulatory networks from organs and perturbed systems, such as diabetes and Alzheimer's disease. Using tools from graph theory, we compute an unbiased quantification of a gene's biological relevance and accurately pinpoint key players in organ function and drivers of diseases. CONCLUSIONS Our approach detects multiple latent regulatory changes that are invisible to single-cell workflows based on clustering or differential expression analysis, significantly broadening the biological insights that can be obtained with this leading technology.
Collapse
Affiliation(s)
- Giovanni Iacono
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028, Barcelona, Spain.
| | - Ramon Massoni-Badosa
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
33
|
Song Y, Wu L, Li M, Xiong X, Fang Z, Zhou J, Yan G, Chen X, Yang J, Li Y. Down-regulation of MicroRNA-592 in obesity contributes to hyperglycemia and insulin resistance. EBioMedicine 2019; 42:494-503. [PMID: 30948354 PMCID: PMC6491650 DOI: 10.1016/j.ebiom.2019.03.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background Many studies have demonstrated that microRNAs, a class of small and non-coding RNA molecules, play an important role in the regulation of glucose and lipid homeostasis. In the present study, we sought to investigate the function of miR-592 in the development of obesity-associated metabolic disorders, including hyperglycemia andinsulin resistance. Methods The expression levels of miR-592 were measured in the liver of obese mice and humans by quantitative reverse transcription PCR. Loss- and gain-of function experiments were employed to explore the metabolic function of miR-592 using locked nucleic acids and adenovirus in lean and obese mice, respectively. The molecular target of miR-592 was determined by western blotting and luciferase reporter assays. Findings We found a significant decreased expression of miR-592 in the liver of obese mice and humans. Inhibition of miR-592 led to elevated blood glucose levels, enhanced gluconeogenesis and reduced insulin sensitivity in lean mice. In contrast, adenovirus-mediated overexpression of hepatic miR-592 improved metabolic disorders in obese mice. Mechanistically, we found that the transcription factor forkhead box O1 (FOXO1) is a direct target gene of miR-592 to mediate its metabolic functions. miR-592 was able to inhibit the mRNA and protein expression of FOXO1 by binding to its 3′-untranslated region. Interpretations Our findings demonstrate that obesity-associated down-regulation of miR-592 plays an important role in the progression of metabolic diseases. Restoration of hepatic miR-592 could improve glucose and lipid metabolism in obese mice. Fund This work is supported by the National Key Research and Development Program of China (No. 2016YFC1304805 to Dr. Chen), Natural Science Foundation of China (No. 81771574 to Dr. Wu), Shanghai Science Foundation (No. 18ZR1437800 to Dr. Li), Science and Technology Commission of Shanghai Municipality (Nos.18dz2304400 and 15,411,970,700 to Dr. Yang).
Collapse
Affiliation(s)
- Yuping Song
- Department of Endocrinology and Metabolism, Minhang Branch, Zhongshan Hospital, Central Hospital of Minhang District, Shanghai Minhang Hospital, Fudan University, Shanghai, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Menghui Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuelian Xiong
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute of Metabolic Diseases, Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Fudan University, Shanghai, China
| | - Zhenfu Fang
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhou
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guofeng Yan
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Yang
- Department of Endocrinology and Metabolism, Minhang Branch, Zhongshan Hospital, Central Hospital of Minhang District, Shanghai Minhang Hospital, Fudan University, Shanghai, China.
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Xiong X, Wang Q, Wang S, Zhang J, Liu T, Guo L, Yu Y, Lin JD. Mapping the molecular signatures of diet-induced NASH and its regulation by the hepatokine Tsukushi. Mol Metab 2019; 20:128-137. [PMID: 30595550 PMCID: PMC6358550 DOI: 10.1016/j.molmet.2018.12.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Nonalcoholic steatohepatitis (NASH) is closely associated with metabolic syndrome and increases the risk for end-stage liver disease, such as cirrhosis and hepatocellular carcinoma. Despite this, the molecular events that influence NASH pathogenesis remain poorly understood. The objectives of the current study are to delineate the transcriptomic and proteomic signatures of NASH liver, to identify potential pathogenic pathways and factors, and to critically assess their role in NASH pathogenesis. METHODS We performed RNA sequencing and quantitative proteomic analyses on the livers from healthy and diet-induced NASH mice. We examined the association between plasma levels of TSK, a newly discovered hepatokine, and NASH pathologies and reversal in response to dietary switch in mice. Using TSK knockout mouse model, we determined how TSK deficiency modulates key aspects of NASH pathogenesis. RESULTS RNA sequencing and quantitative proteomic analyses revealed that diet-induced NASH triggers concordant reprogramming of the liver transcriptome and proteome in mice. NASH pathogenesis is linked to elevated plasma levels of the hepatokine TSK, whereas dietary switch reverses NASH pathologies and reduces circulating TSK concentrations. Finally, TSK inactivation protects mice from diet-induced NASH and liver transcriptome remodeling. CONCLUSIONS Global transcriptomic and proteomic profiling of healthy and NASH livers revealed the molecular signatures of diet-induced NASH and dysregulation of the liver secretome. Our study illustrates a novel pathogenic mechanism through which elevated TSK in circulation promotes NASH pathologies, thereby revealing a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Xuelian Xiong
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Qiuyu Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Shuai Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jinglong Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Liang Guo
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
35
|
Marunaka Y. The Proposal of Molecular Mechanisms of Weak Organic Acids Intake-Induced Improvement of Insulin Resistance in Diabetes Mellitus via Elevation of Interstitial Fluid pH. Int J Mol Sci 2018; 19:ijms19103244. [PMID: 30347717 PMCID: PMC6214001 DOI: 10.3390/ijms19103244] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Blood contains powerful pH-buffering molecules such as hemoglobin (Hb) and albumin, while interstitial fluids have little pH-buffering molecules. Thus, even under metabolic disorder conditions except severe cases, arterial blood pH is kept constant within the normal range (7.35~7.45), but the interstitial fluid pH under metabolic disorder conditions becomes lower than the normal level. Insulin resistance is one of the most important key factors in pathogenesis of diabetes mellitus, nevertheless the molecular mechanism of insulin resistance occurrence is still unclear. Our studies indicate that lowered interstitial fluid pH occurs in diabetes mellitus, causing insulin resistance via reduction of the binding affinity of insulin to its receptor. Therefore, the key point for improvement of insulin resistance occurring in diabetes mellitus is development of methods or techniques elevating the lowered interstitial fluid pH. Intake of weak organic acids is found to improve the insulin resistance by elevating the lowered interstitial fluid pH in diabetes mellitus. One of the molecular mechanisms of the pH elevation is that: (1) the carboxyl group (R-COO−) but not H+ composing weak organic acids in foods is absorbed into the body, and (2) the absorbed the carboxyl group (R-COO−) behaves as a pH buffer material, elevating the interstitial fluid pH. On the other hand, high salt intake has been suggested to cause diabetes mellitus; however, the molecular mechanism is unclear. A possible mechanism of high salt intake-caused diabetes mellitus is proposed from a viewpoint of regulation of the interstitial fluid pH: high salt intake lowers the interstitial fluid pH via high production of H+ associated with ATP synthesis required for the Na+,K+-ATPase to extrude the high leveled intracellular Na+ caused by high salt intake. This review article introduces the molecular mechanism causing the lowered interstitial fluid pH and insulin resistance in diabetes mellitus, the improvement of insulin resistance via intake of weak organic acid-containing foods, and a proposal mechanism of high salt intake-caused diabetes mellitus.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan.
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan.
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
- Japan Institute for Food Education and Health, St. Agnes' University, Kyoto 602-8013, Japan.
| |
Collapse
|