1
|
Yang JF, Yang S, Gong X, Bakh NA, Zhang G, Wang AB, Cherrington AD, Weiss MA, Strano MS. In Silico Investigation of the Clinical Translatability of Competitive Clearance Glucose-Responsive Insulins. ACS Pharmacol Transl Sci 2023; 6:1382-1395. [PMID: 37854621 PMCID: PMC10580396 DOI: 10.1021/acsptsci.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 10/20/2023]
Abstract
The glucose-responsive insulin (GRI) MK-2640 from Merck was a pioneer in its class to enter the clinical stage, having demonstrated promising responsiveness in in vitro and preclinical studies via a novel competitive clearance mechanism (CCM). The smaller pharmacokinetic response in humans motivates the development of new predictive, computational tools that can improve the design of therapeutics such as GRIs. Herein, we develop and use a new computational model, IM3PACT, based on the intersection of human and animal model glucoregulatory systems, to investigate the clinical translatability of CCM GRIs based on existing preclinical and clinical data of MK-2640 and regular human insulin (RHI). Simulated multi-glycemic clamps not only validated the earlier hypothesis of insufficient glucose-responsive clearance capacity in humans but also uncovered an equally important mismatch between the in vivo competitiveness profile and the physiological glycemic range, which was not observed in animals. Removing the inter-species gap increases the glucose-dependent GRI clearance from 13.0% to beyond 20% for humans and up to 33.3% when both factors were corrected. The intrinsic clearance rate, potency, and distribution volume did not apparently compromise the translation. The analysis also confirms a responsive pharmacokinetics local to the liver. By scanning a large design space for CCM GRIs, we found that the mannose receptor physiology in humans remains limiting even for the most optimally designed candidate. Overall, we show that this computational approach is able to extract quantitative and mechanistic information of value from a posteriori analysis of preclinical and clinical data to assist future therapeutic discovery and development.
Collapse
Affiliation(s)
- Jing Fan Yang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Sungyun Yang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Naveed A. Bakh
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Ge Zhang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Allison B. Wang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Alan D. Cherrington
- Molecular
Physiology and Biophysics, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232, United States
| | - Michael A. Weiss
- Department
of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Michael S. Strano
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Domingo-Lopez DA, Lattanzi G, H. J. Schreiber L, Wallace EJ, Wylie R, O'Sullivan J, Dolan EB, Duffy GP. Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Adv Drug Deliv Rev 2022; 185:114280. [PMID: 35405298 DOI: 10.1016/j.addr.2022.114280] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus refers to a group of metabolic disorders which affect how the body uses glucose impacting approximately 9% of the population worldwide. This review covers the most recent technological advances envisioned to control and/or reverse Type 1 diabetes mellitus (T1DM), many of which will also prove effective in treating the other forms of diabetes mellitus. Current standard therapy for T1DM involves multiple daily glucose measurements and insulin injections. Advances in glucose monitors, hormone delivery systems, and control algorithms generate more autonomous and personalised treatments through hybrid and fully automated closed-loop systems, which significantly reduce hypo- and hyperglycaemic episodes and their subsequent complications. Bi-hormonal systems that co-deliver glucagon or amylin with insulin aim to reduce hypoglycaemic events or increase time spent in target glycaemic range, respectively. Stimuli responsive materials for the controlled delivery of insulin or glucagon are a promising alternative to glucose monitors and insulin pumps. By their self-regulated mechanism, these "smart" drugs modulate their potency, pharmacokinetics and dosing depending on patients' glucose levels. Islet transplantation is a potential cure for T1DM as it restores endogenous insulin and glucagon production, but its use is not yet widespread due to limited islet sources and risks of chronic immunosuppression. New encapsulation strategies that promote angiogenesis and oxygen delivery while protecting islets from recipients' immune response may overcome current limiting factors.
Collapse
|
3
|
Home PD, Mehta R. Insulin therapy development beyond 100 years. Lancet Diabetes Endocrinol 2021; 9:695-707. [PMID: 34480874 DOI: 10.1016/s2213-8587(21)00182-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022]
Abstract
The first insulin preparation capable of consistently lowering blood glucose was developed in 1921. But 100 years later, blood glucose control with insulin in people with diabetes is nearly universally suboptimal, with essentially the same molecule still delivered by the same inappropriate subcutaneous injection route. Bypassing this route with oral administration appears to have become technologically feasible, accelerating over the past 50 years, either with packaged insulin peptides or by chemical insulin mimetics. Some of the problems of prospective unregulated absorption of insulin into the circulation from subcutaneous depots might be overcome with glucose-responsive insulins. Approaches to these problems could be modification of the peptide by adducts, or the use of nanoparticles or insulin patches, which deliver insulin according to glucose concentration. Some attention has been paid to targeting insulin preferentially to different organs, either by molecular engineering of insulin, or with adducts. But all these approaches still have problems in even beginning to match the responsiveness of physiological insulin delivery to metabolic requirements, both prandially and basally. As would be expected, for all these technically complex approaches, many examples of abandoned development can be found. Meanwhile, it is becoming possible to change the duration of action of subcutaneous injected insulin analogues to act even more rapidly for meals, and towards weekly insulin for basal administration. The state of the art of all these approaches, and the barriers to success, are reviewed here.
Collapse
Affiliation(s)
- Philip D Home
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Roopa Mehta
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
4
|
Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol 2021; 9:525-544. [PMID: 34181914 DOI: 10.1016/s2213-8587(21)00113-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Despite the successful development of new therapies for the treatment of type 2 diabetes, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 inhibitors, the search for novel treatment options that can provide better glycaemic control and at reduce complications is a continuous effort. The present Review aims to present an overview of novel targets and mechanisms and focuses on glucose-lowering effects guiding this search and developments. We discuss not only novel developments of insulin therapy (eg, so-called smart insulin preparation with a glucose-dependent mode of action), but also a group of drug classes for which extensive research efforts have not been rewarded with obvious clinical impact. We discuss the potential clinical use of the salutary adipokine adiponectin and the hepatokine fibroblast growth factor (FGF) 21, among others. A GLP-1 peptide receptor agonist (semaglutide) is now available for oral absorption, and small molecules activating GLP-1 receptors appear on the horizon. Bariatric surgery and its accompanying changes in the gut hormonal milieu offer a background for unimolecular peptides interacting with two or more receptors (for GLP-1, glucose-dependent insulinotropic polypeptide, glucagon, and peptide YY) and provide more substantial glycaemic control and bodyweight reduction compared with selective GLP-1 receptor agonists. These and additional approaches will help expand the toolbox of effective medications needed for optimising the treatment of well delineated subgroups of type 2 diabetes or help develop personalised approaches for glucose-lowering drugs based on individual characteristics of our patients.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Abstract
BACKGROUND Hypoglycemia, the condition of low blood sugar, is a common occurance in people with diabetes using insulin therapy. Protecting against hypoglycaemia by engineering an insulin preparation that can auto-adjust its biological activity to fluctuating blood glucose levels has been pursued since the 1970s, but despite numerous publications, no system that works well enough for practical use has reached clinical practise. SCOPE OF REVIEW This review will summarise and scrutinise known approaches for producing glucose-sensitive insulin therapies. Notably, systems described in patent applications will be extensively covered, which has not been the case for earlier reviews of this area. MAJOR CONCLUSIONS The vast majority of published systems are not suitable for product development, but a few glucose-sensitive insulin concepts have recently reached clinical trials, and there is hope that glucose-sensitive insulin will become available to people with diabetes in the near future.
Collapse
Affiliation(s)
- Thomas Hoeg-Jensen
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park H5.S.05, DK-2720 Maaloev, Denmark.
| |
Collapse
|
6
|
Yang JF, Gong X, Bakh NA, Carr K, Phillips NFB, Ismail-Beigi F, Weiss MA, Strano MS. Connecting Rodent and Human Pharmacokinetic Models for the Design and Translation of Glucose-Responsive Insulin. Diabetes 2020; 69:1815-1826. [PMID: 32152206 PMCID: PMC8176262 DOI: 10.2337/db19-0879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
Abstract
Despite considerable progress, development of glucose-responsive insulins (GRIs) still largely depends on empirical knowledge and tedious experimentation-especially on rodents. To assist the rational design and clinical translation of the therapeutic, we present a Pharmacokinetic Algorithm Mapping GRI Efficacies in Rodents and Humans (PAMERAH) built upon our previous human model. PAMERAH constitutes a framework for predicting the therapeutic efficacy of a GRI candidate from its user-specified mechanism of action, kinetics, and dosage, which we show is accurate when checked against data from experiments and literature. Results from simulated glucose clamps also agree quantitatively with recent GRI publications. We demonstrate that the model can be used to explore the vast number of permutations constituting the GRI parameter space and thereby identify the optimal design ranges that yield desired performance. A design guide aside, PAMERAH more importantly can facilitate GRI's clinical translation by connecting each candidate's efficacies in rats, mice, and humans. The resultant mapping helps to find GRIs that appear promising in rodents but underperform in humans (i.e., false positives). Conversely, it also allows for the discovery of optimal human GRI dynamics not captured by experiments on a rodent population (false negatives). We condense such information onto a "translatability grid" as a straightforward, visual guide for GRI development.
Collapse
Affiliation(s)
- Jing Fan Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Naveed A Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Kelley Carr
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
| | | | | | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
7
|
Wang J, Wang Z, Yu J, Kahkoska AR, Buse JB, Gu Z. Glucose-Responsive Insulin and Delivery Systems: Innovation and Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902004. [PMID: 31423670 PMCID: PMC7141789 DOI: 10.1002/adma.201902004] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/09/2019] [Indexed: 05/18/2023]
Abstract
Type 1 and advanced type 2 diabetes treatment involves daily injections or continuous infusion of exogenous insulin aimed at regulating blood glucose levels in the normoglycemic range. However, current options for insulin therapy are limited by the risk of hypoglycemia and are associated with suboptimal glycemic control outcomes. Therefore, a range of glucose-responsive components that can undergo changes in conformation or show alterations in intermolecular binding capability in response to glucose stimulation has been studied for ultimate integration into closed-loop insulin delivery or "smart insulin" systems. Here, an overview of the evolution and recent progress in the development of molecular approaches for glucose-responsive insulin delivery systems, a rapidly growing subfield of precision medicine, is presented. Three central glucose-responsive moieties, including glucose oxidase, phenylboronic acid, and glucose-binding molecules are examined in detail. Future opportunities and challenges regarding translation are also discussed.
Collapse
Affiliation(s)
- Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | | | - Anna R. Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John B. Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Zenomics Inc., Durham, NC 27709, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Visser SAG, Kandala B, Fancourt C, Krug AW, Cho CR. A Model-Informed Drug Discovery and Development Strategy for the Novel Glucose-Responsive Insulin MK-2640 Enabled Rapid Decision Making. Clin Pharmacol Ther 2020; 107:1296-1311. [PMID: 31889297 PMCID: PMC7325312 DOI: 10.1002/cpt.1729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
Abstract
A model‐informed drug discovery and development strategy played a key role in the novel glucose‐responsive insulin MK‐2640’s early clinical development strategy and supported a novel clinical trial paradigm to assess glucose responsiveness. The development and application of in silico modeling approaches by leveraging substantial published clinical insulin pharmacokinetic–pharmacodynamic (PKPD) data and emerging preclinical and clinical data enabled rapid quantitative decision making. Learnings can be applied to define PKPD properties of novel insulins that could become therapeutically meaningful for diabetic patients.
Collapse
Affiliation(s)
- Sandra A G Visser
- Department of Quantitative Pharmacology & Pharmacometrics (QP2) at Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Bhargava Kandala
- Department of Quantitative Pharmacology & Pharmacometrics (QP2) at Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Craig Fancourt
- Department of Quantitative Pharmacology & Pharmacometrics (QP2) at Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Alexander W Krug
- Department of Translational Pharmacology at Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Carolyn R Cho
- Department of Quantitative Pharmacology & Pharmacometrics (QP2) at Merck & Co. Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
9
|
Warshauer JT, Bluestone JA, Anderson MS. New Frontiers in the Treatment of Type 1 Diabetes. Cell Metab 2020; 31:46-61. [PMID: 31839487 PMCID: PMC6986815 DOI: 10.1016/j.cmet.2019.11.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022]
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of pancreatic β cells that results in lifelong absolute insulin deficiency. For nearly a century, insulin replacement has been the only therapy for most people living with this disease. Recent advances in technology and our understanding of β cell development, glucose metabolism, and the underlying immune pathogenesis of the disease have led to innovative therapeutic and preventative approaches. A paradigm shift in immunotherapy development toward the targeting of islet-specific immune pathways involved in tolerance has driven the development of therapies that may allow for the prevention or reversal of this disease while avoiding toxicities associated with historical approaches that were broadly immunosuppressive. In this review, we discuss successes, failures, and emerging pharmacological therapies for type 1 diabetes that are changing how we approach this disease, from improving glycemic control to developing the "holy grail" of disease prevention.
Collapse
Affiliation(s)
- Jeremy T Warshauer
- Endocrine Division, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Mark S Anderson
- Endocrine Division, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
|
11
|
VandenBerg MA, Webber MJ. Biologically Inspired and Chemically Derived Methods for Glucose-Responsive Insulin Therapy. Adv Healthc Mater 2019; 8:e1801466. [PMID: 30605265 DOI: 10.1002/adhm.201801466] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The controlled delivery of therapeutics in a manner responsive to physiological indicators has promise in realizing new therapeutic approaches to combat disease. This approach is especially relevant in the context of diabetes. Natural fluctuations in blood glucose seen in the healthy state, complete with peaks and troughs, are poorly regulated as a result of detrimental production or ineffective signaling of the insulin hormone. While several manifestations of diabetes are treated with regularly administered exogenous insulin, the present standard of care results in suboptimal glycemic management that poorly recreates natural hormone control, leading to long-term instability and a significantly increased risk for secondary health complications. New synthetic technologies that make insulin available only when needed, and at the exact dose required, have been explored under the broad vision of realizing a "fully synthetic pancreas." Yet, many challenges remain to realizing a technology that is appropriately responsive, safe, and well integrated into a manageable routine. Herein, many of the approaches explored thus far to sense physiological blood glucose and elicit response through the release of therapeutic insulin are summarized. The approaches point to a new, autonomous approach to managing diabetes with biomimetic therapy.
Collapse
Affiliation(s)
- Michael A. VandenBerg
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| | - Matthew J. Webber
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| |
Collapse
|
12
|
Daurio NA, Wang Y, Chen Y, Zhou H, Carballo-Jane E, Mane J, Rodriguez CG, Zafian P, Houghton A, Addona G, McLaren DG, Zhang R, Shyong BJ, Bateman K, Downes DP, Webb M, Kelley DE, Previs SF. Spatial and temporal studies of metabolic activity: contrasting biochemical kinetics in tissues and pathways during fasted and fed states. Am J Physiol Endocrinol Metab 2019; 316:E1105-E1117. [PMID: 30912961 DOI: 10.1152/ajpendo.00459.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of nutrient homeostasis, i.e., the ability to transition between fasted and fed states, is fundamental in maintaining health. Since food is typically consumed over limited (anabolic) periods, dietary components must be processed and stored to counterbalance the catabolic stress that occurs between meals. Herein, we contrast tissue- and pathway-specific metabolic activity in fasted and fed states. We demonstrate that knowledge of biochemical kinetics that is obtained from opposite ends of the energetic spectrum can allow mechanism-based differentiation of healthy and disease phenotypes. Rat models of type 1 and type 2 diabetes serve as case studies for probing spatial and temporal patterns of metabolic activity via [2H]water labeling. Experimental designs that capture integrative whole body metabolism, including meal-induced substrate partitioning, can support an array of research surrounding metabolic disease; the relative simplicity of the approach that is discussed here should enable routine applications in preclinical models.
Collapse
Affiliation(s)
- Natalie A Daurio
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Yichen Wang
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Ying Chen
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Haihong Zhou
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Ester Carballo-Jane
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Joel Mane
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Carlos G Rodriguez
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Peter Zafian
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Andrea Houghton
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - George Addona
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - David G McLaren
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Rena Zhang
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Bao Jen Shyong
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Kevin Bateman
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Daniel P Downes
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Maria Webb
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - David E Kelley
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Stephen F Previs
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| |
Collapse
|
13
|
Krug AW, Visser SA, Tsai K, Kandala B, Fancourt C, Thornton B, Morrow L, Kaarsholm NC, Bernstein HS, Stoch SA, Crutchlow M, Kelley DE, Iwamoto M. Clinical Evaluation of
MK
‐2640: An Insulin Analog With Glucose‐Responsive Properties. Clin Pharmacol Ther 2018; 105:417-425. [DOI: 10.1002/cpt.1215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/05/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Harold S. Bernstein
- Merck & Co., Inc. Kenilworth New Jersey USA
- Vertex Pharmaceuticals Boston MA USA
| | | | | | | | | |
Collapse
|