1
|
Kristensen JM, Kjøbsted R, Larsen TJ, Carl CS, Hingst JR, Onslev J, Birk JB, Thorup A, Steenberg DE, Knudsen JR, Henriksen NS, Needham EJ, Halling JF, Gudiksen A, Rundsten CF, Hanghøj KE, Stinson SE, Hoier B, Hansen CC, Jensen TE, Hellsten Y, Pilegaard H, Grarup N, Olesen J, Humphrey SJ, James DE, Pedersen ML, Richter EA, Hansen T, Jørgensen ME, Wojtaszewski JFP. Skeletal muscle from TBC1D4 p.Arg684Ter variant carriers is severely insulin resistant but exhibits normal metabolic responses during exercise. Nat Metab 2024:10.1038/s42255-024-01153-1. [PMID: 39482542 DOI: 10.1038/s42255-024-01153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
In the Greenlandic Inuit population, 4% are homozygous carriers of a genetic nonsense TBC1D4 p.Arg684Ter variant leading to loss of the muscle-specific isoform of TBC1D4 and an approximately tenfold increased risk of type 2 diabetes1. Here we show the metabolic consequences of this variant in four female and four male homozygous carriers and matched controls. An extended glucose tolerance test reveals prolonged hyperglycaemia followed by reactive hypoglycaemia in the carriers. Whole-body glucose disposal is impaired during euglycaemic-hyperinsulinaemic clamp conditions and associates with severe insulin resistance in skeletal muscle only. Notably, a marked reduction in muscle glucose transporter GLUT4 and associated proteins is observed. While metabolic regulation during exercise remains normal, the insulin-sensitizing effect of a single exercise bout is compromised. Thus, loss of the muscle-specific isoform of TBC1D4 causes severe skeletal muscle insulin resistance without baseline hyperinsulinaemia. However, physical activity can ameliorate this condition. These observations offer avenues for personalized interventions and targeted preventive strategies.
Collapse
Affiliation(s)
- Jonas M Kristensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Trine J Larsen
- Greenland Center of Health Research, Institute of Institute of Health and Nature, University of Greenland, Nuuk, Greenland
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johan Onslev
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anette Thorup
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dorte E Steenberg
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas R Knudsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai S Henriksen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Jens F Halling
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten F Rundsten
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian E Hanghøj
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sara E Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Hoier
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Camilla C Hansen
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Olesen
- Queen Ingrid Primary Health Care Center, Nuuk, Greenland
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Michael L Pedersen
- Greenland Center of Health Research, Institute of Institute of Health and Nature, University of Greenland, Nuuk, Greenland
- Steno Diabetes Center Greenland, Nuuk, Greenland
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marit E Jørgensen
- Greenland Center of Health Research, Institute of Institute of Health and Nature, University of Greenland, Nuuk, Greenland
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jørgen F P Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Wu N, Jing Z, Lv H, Liu Q, Gu M, Zhong Y, Xing P, Ma R, Jing Y. Expression characteristics of TBC1D4 activating protein molecule and identification of key module genes for preventing thyroid cancer progression. Int J Biol Macromol 2024; 278:134986. [PMID: 39181362 DOI: 10.1016/j.ijbiomac.2024.134986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Endocrine tumors like thyroid carcinoma are becoming more frequent. No clinically informative predictors were found. Thus, effective gene networks and representative biomarkers can illuminate thyroid cancer prevention molecular mechanisms. TBC1D4 is an activating protein molecule that plays an important role in regulating cell metabolism and signal transduction. The aim of this study was to investigate the expression characteristics of TBC1D4 activating protein molecules and identify key module genes that prevent thyroid cancer progression. GSE65144 data were downloaded from GEO. "limma" in R found DEGs with a false discovery rate < 0.05 and a log2 fold change <1. WGCNA builds gene co-expression networks, screens key modules, and filters hub genes. Overlapping genes become hub genes. Hub genes underwent GO and KEGG pathway enrichment analysis. We used Lasso to extract hub gene expression results' distinctive genes. Key genes. GEPIA database determined expression and survival impact. A total of 3220 DEGs. Thyroid cancer was mostly associated with darkred, darkturquoise, and green modules. Venn screened 639 hub genes. Cytokine-cytokine receptor interaction was the primary KEGG enrichment. Hub genes were 14. Finally, ARHGAP6, TBC1D4, and TC2N were important genes. Through gene screening and functional enrichment analysis, we identified a group of genes related to TBC1D4 activating protein and constructed the corresponding protein interaction network.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huina Lv
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Qun Liu
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Yuchen Jing
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
3
|
Sabag A, Patten RK, Moreno-Asso A, Colombo GE, Dafauce Bouzo X, Moran LJ, Harrison C, Kazemi M, Mousa A, Tay CT, Hirschberg AL, Redman LM, Teede HJ. Exercise in the management of polycystic ovary syndrome: A position statement from Exercise and Sports Science Australia. J Sci Med Sport 2024; 27:668-677. [PMID: 38960811 DOI: 10.1016/j.jsams.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition amongst females of reproductive age, leading to lifelong cardiometabolic, reproductive, psychological, and dermatologic symptoms as well as a reduced quality of life. Lifestyle interventions, which can include structured exercise programmes delivered by appropriately trained exercise professionals such as clinical exercise physiologists, are considered first-line strategies in PCOS management due to their therapeutic effects on various health outcomes and quality of life. This position statement builds on the 2023 International Evidence-based Guideline for the Assessment and Management of PCOS and describes the role of the exercise professional in the context of the multidisciplinary care team which includes physicians and allied health professionals. This position statement aims to equip exercise professionals with a broad understanding of the pathophysiology of PCOS, how it is diagnosed and managed in clinical practice, and evidence- and consensus-based recommendations for physical activity and exercise in PCOS management. In line with the physical activity recommendations for the general public, individuals with PCOS should aim to undertake between 150 to 300min of moderate-intensity or 75 to 150min of vigorous-intensity aerobic activity per week, or an equivalent combination of both spread throughout the week. Additionally, muscle-strengthening activities on two non-consecutive days per week are recommended to maintain health and prevent weight gain. For further health benefits and to achieve modest weight loss, individuals with PCOS should aim for a minimum of 250min of moderate-intensity or 150min of vigorous-intensity aerobic activity per week, or an equivalent combination of both spread throughout the week, plus muscle-strengthening activities on two non-consecutive days per week. Adolescents with PCOS should aim for a minimum of 60min moderate- to vigorous-intensity activity each day, incorporating muscle- and bone-strengthening activities three times per week. Finally, exercise professionals should consider the significant psychological burden, including weight stigma, and the high prevalence of comorbidities amongst individuals with PCOS and take appropriate measures to deliver safe and efficacious exercise interventions.
Collapse
Affiliation(s)
- Angelo Sabag
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia.
| | - Rhiannon K Patten
- Institute for Health and Sport (iHeS), Victoria University, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport (iHeS), Victoria University, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Australia
| | - Giorgia E Colombo
- Department of Obstetrics and Gynecology, Ospedale Regionale di Lugano, Switzerland
| | - Xela Dafauce Bouzo
- Centre for Health, Activity and Wellbeing Research (CAWR), School of Sport and Health Sciences, Cardiff Metropolitan University, UK
| | - Lisa J Moran
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Cheryce Harrison
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Maryam Kazemi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, USA
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Chau Tien Tay
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institute, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Sweden
| | | | - Helena J Teede
- Monash Centre for Health Research and Implementation, Monash University, Australia
| |
Collapse
|
4
|
Achter JS, Vega ET, Sorrentino A, Kahnert K, Galsgaard KD, Hernandez-Varas P, Wierer M, Holst JJ, Wojtaszewski JFP, Mills RW, Kjøbsted R, Lundby A. In-depth phosphoproteomic profiling of the insulin signaling response in heart tissue and cardiomyocytes unveils canonical and specialized regulation. Cardiovasc Diabetol 2024; 23:258. [PMID: 39026321 PMCID: PMC11264841 DOI: 10.1186/s12933-024-02338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.
Collapse
Affiliation(s)
- Jonathan Samuel Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Estefania Torres Vega
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Douglas Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Hernandez-Varas
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Frank Pind Wojtaszewski
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Robert William Mills
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Carl CS, Jensen MM, Sjøberg KA, Constantin-Teodosiu D, Hill IR, Kjøbsted R, Greenhaff PL, Wojtaszewski JFP, Richter EA, Fritzen AM, Kiens B. Pharmacological Activation of PDC Flux Reverses Lipid-Induced Inhibition of Insulin Action in Muscle During Recovery From Exercise. Diabetes 2024; 73:1072-1083. [PMID: 38608261 DOI: 10.2337/db23-0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Insulin resistance is a risk factor for type 2 diabetes, and exercise can improve insulin sensitivity. However, following exercise, high circulating fatty acid (FA) levels might counteract this. We hypothesized that such inhibition would be reduced by forcibly increasing carbohydrate oxidation through pharmacological activation of the pyruvate dehydrogenase complex (PDC). Insulin-stimulated glucose uptake was examined with a crossover design in healthy young men (n = 8) in a previously exercised and a rested leg during a hyperinsulinemic-euglycemic clamp 5 h after one-legged exercise with 1) infusion of saline, 2) infusion of intralipid imitating circulating FA levels during recovery from whole-body exercise, and 3) infusion of intralipid + oral PDC activator, dichloroacetate (DCA). Intralipid infusion reduced insulin-stimulated glucose uptake by 19% in the previously exercised leg, which was not observed in the contralateral rested leg. Interestingly, this effect of intralipid in the exercised leg was abolished by DCA, which increased muscle PDC activity (130%) and flux (acetylcarnitine 130%) and decreased inhibitory phosphorylation of PDC on Ser293 (∼40%) and Ser300 (∼80%). Novel insight is provided into the regulatory interaction between glucose and lipid metabolism during exercise recovery. Coupling exercise and PDC flux activation upregulated the capacity for both glucose transport (exercise) and oxidation (DCA), which seems necessary to fully stimulate insulin-stimulated glucose uptake during recovery. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Christian S Carl
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marie M Jensen
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kim A Sjøberg
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dumitru Constantin-Teodosiu
- David Greenfield Human Physiology Laboratory, National Institute for Health and Care Research Nottingham Biomedical Research Centre, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, U.K
| | - Ian R Hill
- David Greenfield Human Physiology Laboratory, National Institute for Health and Care Research Nottingham Biomedical Research Centre, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, U.K
| | - Rasmus Kjøbsted
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Paul L Greenhaff
- David Greenfield Human Physiology Laboratory, National Institute for Health and Care Research Nottingham Biomedical Research Centre, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, U.K
| | - Jørgen F P Wojtaszewski
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Wang H, Kwak SE, Zheng A, Arias EB, Pan X, Duan D, Cartee GD. Phosphorylation of AS160-serine 704 is not essential for exercise-increase in insulin-stimulated glucose uptake by skeletal muscles from female or male rats. Am J Physiol Endocrinol Metab 2024; 326:E807-E818. [PMID: 38656130 PMCID: PMC11376492 DOI: 10.1152/ajpendo.00010.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle from rodents and humans of both sexes. We recently found that concurrent mutation of three key sites to prevent their phosphorylation (Ser588, Thr642, and Ser704) on Akt substrate of 160 kDa (AS160; also known as TBC1D4) reduced the magnitude of the enhancement of postexercise ISGU (PEX-ISGU) by muscle from male, but not female rats. However, we did not test the role of individual phosphorylation sites on PEX-ISGU. Accordingly, our current aim was to test whether AS160 Ser704 phosphorylation (pSer704) is required for elevated PEX-ISGU by muscle. AS160-knockout (AS160-KO) rats (female and male) were studied when either in sedentary or 3 h after acute exercise. Adeno-associated virus (AAV) vectors were used to enable muscle expression of wild-type AS160 (AAV-WT-AS160) or AS160 mutated Ser704 to alanine to prevent phosphorylation (AAV-1P-AS160). Paired epitrochlearis muscles from each rat were injected with AAV-WT-AS160 or AAV-1P-AS160. We discovered that regardless of sex 1) AS160 abundance in AS160-KO rats was similar in paired muscles expressing WT-AS160 versus 1P-AS160; 2) muscles from exercised versus sedentary rats had greater ISGU, and PEX-ISGU was slightly greater for muscles expressing 1P-AS160 versus contralateral muscles expressing WT-AS160; and 3) pAS160Thr642 was lower in muscles expressing 1P-AS160 versus paired muscles expressing WT-AS160. These results indicate that pAS160Ser704 was not essential for elevated PEX-ISGU by skeletal muscle from rats of either sex. Furthermore, elimination of the postexercise increase in pAS160Thr642 did not lessen the postexercise effect on ISGU.NEW & NOTEWORTHY The current study evaluated the role of Akt substrate of 160 kDa (AS160) phosphorylation on Ser704 in increased insulin-stimulated glucose uptake by skeletal muscle after exercise. Adeno-associated virus vectors were engineered to express either wild-type-AS160 or AS160 mutated so that it could not be phosphorylated on Ser704 in paired muscles from AS160-knockout rats. The results demonstrated that AS160 phosphorylation on Ser704 was not essential for exercise-induced elevation in insulin-stimulated glucose uptake by rats of either sex.
Collapse
Affiliation(s)
- Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Seong Eun Kwak
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Amy Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, United States
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, Missouri, United States
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
7
|
Langer HT, Rohm M, Goncalves MD, Sylow L. AMPK as a mediator of tissue preservation: time for a shift in dogma? Nat Rev Endocrinol 2024:10.1038/s41574-024-00992-y. [PMID: 38760482 DOI: 10.1038/s41574-024-00992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Ground-breaking discoveries have established 5'-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK's role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcus DaSilva Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lykke Sylow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Wang H, Zheng A, Thorley D, Arias EB, Cartee GD. Independent and combined effects of calorie restriction and AICAR on glucose uptake and insulin signaling in skeletal muscles from 24-month-old female and male rats. Appl Physiol Nutr Metab 2024; 49:614-625. [PMID: 38181403 DOI: 10.1139/apnm-2023-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
We assessed the effects of two levels of calorie restriction (CR; eating either 15% or 35% less than ad libitum, AL, food intake for 8 weeks) by 24-month-old female and male rats on glucose uptake (GU) and phosphorylation of key signaling proteins (Akt; AMP-activated protein kinase, AMPK; Akt substrate of 160 kDa, AS160) measured in isolated skeletal muscles that underwent four incubation conditions (without either insulin or AICAR, an AMPK activator; with AICAR alone; with insulin alone; or with insulin and AICAR). Regardless of sex: (1) neither CR group versus the AL group had greater GU by insulin-stimulated muscles; (2) phosphorylation of Akt in insulin-stimulated muscles was increased in 35% CR versus AL rats; (3) prior AICAR treatment of muscle resulted in greater GU by insulin-stimulated muscles, regardless of diet; and (4) AICAR caused elevated phosphorylation of acetyl CoA carboxylase, an indicator of AMPK activation, in all diet groups. There was a sexually dimorphic diet effect on AS160 phosphorylation, with 35% CR exceeding AL for insulin-stimulated muscles in male rats, but not in female rats. Our working hypothesis is that the lack of a CR-effect on GU by insulin-stimulated muscles was related to the extended duration of the ex vivo incubation period (290 min compared to 40-50 min that was previously reported to be effective). The observed efficacy of prior treatment of muscles with AICAR to improve glucose uptake in insulin-stimulated muscles supports the strategy of targeting AMPK with the goal of improving insulin sensitivity in older females and males.
Collapse
Affiliation(s)
- Haiyan Wang
- Muscle Biology LaboratorySchool of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Zheng
- Muscle Biology LaboratorySchool of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Dominic Thorley
- Muscle Biology LaboratorySchool of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Edward B Arias
- Muscle Biology LaboratorySchool of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory D Cartee
- Muscle Biology LaboratorySchool of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
10
|
Wang H, Zheng A, Arias EB, Kwak SE, Pan X, Duan D, Cartee GD. AS160 expression, but not AS160 Serine-588, Threonine-642, and Serine-704 phosphorylation, is essential for elevated insulin-stimulated glucose uptake by skeletal muscle from female rats after acute exercise. FASEB J 2023; 37:e23021. [PMID: 37289137 DOI: 10.1096/fj.202300282rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle in both sexes. We recently found that muscle expression and phosphorylation of key sites of Akt substrate of 160 kDa (AS160; also called TBC1D4) are essential for the full-exercise effect on postexercise-ISGU (PEX-ISGU) in male rats. In striking contrast, AS160's role in increased PEX-ISGU has not been rigorously tested in females. Our rationale was to address this major knowledge gap. Wild-type (WT) and AS160-knockout (KO) rats were either sedentary or acutely exercised. Adeno-associated virus (AAV) vectors were engineered to express either WT-AS160 or AS160 mutated on key serine and threonine residues (Ser588, Thr642, and Ser704) to alanine to prevent their phosphorylation. AAV vectors were delivered to the muscle of AS160-KO rats to determine if WT-AS160 or phosphorylation-inactivated AS160 would influence PEX-ISGU. AS160-KO rats have lower skeletal muscle abundance of the GLUT4 glucose transporter protein. This GLUT4 deficit was rescued using AAV delivery of GLUT4 to determine if eliminating muscle GLUT4 deficiency would normalize PEX-ISGU. The novel results were as follows: (1) AS160 expression was required for greater PEX-ISGU; (2) rescuing muscle AS160 expression in AS160-KO rats restored elevated PEX-ISGU; (3) AS160's essential role for the postexercise increase in ISGU was not attributable to reduced muscle GLUT4 content; and (4) AS160 phosphorylation on Ser588, Thr642, and Ser704 was not essential for greater PEX-ISGU. In conclusion, these novel findings revealed that three phosphosites widely proposed to influence PEX-ISGU are not required for this important outcome in female rats.
Collapse
Affiliation(s)
- Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Seong Eun Kwak
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri, USA
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Hingst JR, Onslev JD, Holm S, Kjøbsted R, Frøsig C, Kido K, Steenberg DE, Larsen MR, Kristensen JM, Carl CS, Sjøberg K, Thong FSL, Derave W, Pehmøller C, Brandt N, McConell G, Jensen J, Kiens B, Richter EA, Wojtaszewski JFP. Insulin Sensitization Following a Single Exercise Bout Is Uncoupled to Glycogen in Human Skeletal Muscle: A Meta-analysis of 13 Single-Center Human Studies. Diabetes 2022; 71:2237-2250. [PMID: 36265014 DOI: 10.2337/db22-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022]
Abstract
Exercise profoundly influences glycemic control by enhancing muscle insulin sensitivity, thus promoting glucometabolic health. While prior glycogen breakdown so far has been deemed integral for muscle insulin sensitivity to be potentiated by exercise, the mechanisms underlying this phenomenon remain enigmatic. We have combined original data from 13 of our studies that investigated insulin action in skeletal muscle either under rested conditions or following a bout of one-legged knee extensor exercise in healthy young male individuals (n = 106). Insulin-stimulated glucose uptake was potentiated and occurred substantially faster in the prior contracted muscles. In this otherwise homogenous group of individuals, a remarkable biological diversity in the glucometabolic responses to insulin is apparent both in skeletal muscle and at the whole-body level. In contrast to the prevailing concept, our analyses reveal that insulin-stimulated muscle glucose uptake and the potentiation thereof by exercise are not associated with muscle glycogen synthase activity, muscle glycogen content, or degree of glycogen utilization during the preceding exercise bout. Our data further suggest that the phenomenon of improved insulin sensitivity in prior contracted muscle is not regulated in a homeostatic feedback manner from glycogen. Instead, we put forward the idea that this phenomenon is regulated by cellular allostatic mechanisms that elevate the muscle glycogen storage set point and enhance insulin sensitivity to promote the uptake of glucose toward faster glycogen resynthesis without development of glucose overload/toxicity or feedback inhibition.
Collapse
Affiliation(s)
- Janne R Hingst
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johan D Onslev
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Holm
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Frøsig
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kohei Kido
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dorte E Steenberg
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Magnus R Larsen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas M Kristensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Strini Carl
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sjøberg
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Farah S L Thong
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Wim Derave
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Christian Pehmøller
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nina Brandt
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Glenn McConell
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Jørgen Jensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Bente Kiens
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Addinsall AB, Cacciani N, Backéus A, Hedström Y, Shevchenko G, Bergquist J, Larsson L. Electrical stimulated GLUT4 signalling attenuates critical illness-associated muscle wasting. J Cachexia Sarcopenia Muscle 2022; 13:2162-2174. [PMID: 35502572 PMCID: PMC9397497 DOI: 10.1002/jcsm.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Critical illness myopathy (CIM) is a debilitating condition characterized by the preferential loss of the motor protein myosin. CIM is a by-product of critical care, attributed to impaired recovery, long-term complications, and mortality. CIM pathophysiology is complex, heterogeneous and remains incompletely understood; however, loss of mechanical stimuli contributes to critical illness-associated muscle atrophy and weakness. Passive mechanical loading and electrical stimulation (ES) therapies augment muscle mass and function. While having beneficial outcomes, the mechanistic underpinning of these therapies is less known. Therefore, here we aimed to assess the mechanism by which chronic supramaximal ES ameliorates CIM in a unique experimental rat model of critical care. METHODS Rats were subjected to 8 days of critical care conditions entailing deep sedation, controlled mechanical ventilation, and immobilization with and without direct soleus ES. Muscle size and function were assessed at the single cell level. RNAseq and western blotting were employed to understand the mechanisms driving ES muscle outcomes in CIM. RESULTS Following 8 days of controlled mechanical ventilation and immobilization, soleus muscle mass, myosin : actin ratio, and single muscle fibre maximum force normalized to cross-sectional area (CSA; specific force) were reduced by 40-50% (P < 0.0001). ES significantly reduced the loss of soleus muscle fibre CSA and myosin : actin ratio by approximately 30% (P < 0.05) yet failed to effect specific force. RNAseq pathway analysis revealed downregulation of insulin signalling in the soleus muscle following critical care, and GLUT4 trafficking was reduced by 55% leading to an 85% reduction of muscle glycogen content (P < 0.01). ES promoted phosphofructokinase and insulin signalling pathways to control levels (P < 0.05), consistent with the maintenance of GLUT4 translocation and glycogen levels. AMPK, but not AKT, signalling pathway was stimulated following ES, where the downstream target TBC1D4 increased 3 logFC (P = 0.029) and AMPK-specific P-TBC1D4 levels were increased approximately two-fold (P = 0.06). Reduction of muscle protein degradation rather than increased synthesis promoted soleus CSA, as ES reduced E3 ubiquitin proteins, Atrogin-1 (P = 0.006) and MuRF1 (P = 0.08) by approximately 50%, downstream of AMPK-FoxO3. CONCLUSIONS ES maintained GLUT4 translocation through increased AMPK-TBC1D4 signalling leading to improved muscle glucose homeostasis. Soleus CSA and myosin content was promoted through reduced protein degradation via AMPK-FoxO3 E3 ligases, Atrogin-1 and MuRF1. These results demonstrate chronic supramaximal ES reduces critical care associated muscle wasting, preserved glucose signalling, and reduced muscle protein degradation in CIM.
Collapse
Affiliation(s)
- Alex B. Addinsall
- Basic and Clinical Muscle Biology Group, Department of Physiology and PharmacologyKarolinska InstituteSolnaSweden
| | - Nicola Cacciani
- Basic and Clinical Muscle Biology Group, Department of Physiology and PharmacologyKarolinska InstituteSolnaSweden
- Department of Clinical NeuroscienceKarolinska InstituteSolnaSweden
| | - Anders Backéus
- Basic and Clinical Muscle Biology Group, Department of Physiology and PharmacologyKarolinska InstituteSolnaSweden
| | - Yvette Hedström
- Basic and Clinical Muscle Biology Group, Department of Physiology and PharmacologyKarolinska InstituteSolnaSweden
| | - Ganna Shevchenko
- Department of Chemistry – BMC, Analytical ChemistryUppsala UniversityUppsalaSweden
| | - Jonas Bergquist
- Department of Chemistry – BMC, Analytical ChemistryUppsala UniversityUppsalaSweden
| | - Lars Larsson
- Basic and Clinical Muscle Biology Group, Department of Physiology and PharmacologyKarolinska InstituteSolnaSweden
- Department of Clinical NeuroscienceKarolinska InstituteSolnaSweden
- Viron Molecular Medicine InstituteBostonUSA
| |
Collapse
|
13
|
Stocks B, Zierath JR. Post-translational Modifications: The Signals at the Intersection of Exercise, Glucose Uptake, and Insulin Sensitivity. Endocr Rev 2022; 43:654-677. [PMID: 34730177 PMCID: PMC9277643 DOI: 10.1210/endrev/bnab038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/19/2022]
Abstract
Diabetes is a global epidemic, of which type 2 diabetes makes up the majority of cases. Nonetheless, for some individuals, type 2 diabetes is eminently preventable and treatable via lifestyle interventions. Glucose uptake into skeletal muscle increases during and in recovery from exercise, with exercise effective at controlling glucose homeostasis in individuals with type 2 diabetes. Furthermore, acute and chronic exercise sensitizes skeletal muscle to insulin. A complex network of signals converge and interact to regulate glucose metabolism and insulin sensitivity in response to exercise. Numerous forms of post-translational modifications (eg, phosphorylation, ubiquitination, acetylation, ribosylation, and more) are regulated by exercise. Here we review the current state of the art of the role of post-translational modifications in transducing exercise-induced signals to modulate glucose uptake and insulin sensitivity within skeletal muscle. Furthermore, we consider emerging evidence for noncanonical signaling in the control of glucose homeostasis and the potential for regulation by exercise. While exercise is clearly an effective intervention to reduce glycemia and improve insulin sensitivity, the insulin- and exercise-sensitive signaling networks orchestrating this biology are not fully clarified. Elucidation of the complex proteome-wide interactions between post-translational modifications and the associated functional implications will identify mechanisms by which exercise regulates glucose homeostasis and insulin sensitivity. In doing so, this knowledge should illuminate novel therapeutic targets to enhance insulin sensitivity for the clinical management of type 2 diabetes.
Collapse
Affiliation(s)
- Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Donoso-Barraza C, Borquez JC, Sepúlveda C, Díaz-Castro F, Sepúlveda-Quiñenao C, Rodríguez JM, Porras O, Troncoso R. Hydrogen sulfide disrupts insulin-induced glucose uptake in L6 skeletal muscle cells. Food Chem Toxicol 2022; 165:113083. [PMID: 35577173 DOI: 10.1016/j.fct.2022.113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/11/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2S) has been known for its toxicity. However, recent studies have focused on the mechanisms involved in endogenous production and function. To date, the H2S role in insulin signaling and glucose homeostasis is unclear. This uncertainty is even more evident in skeletal muscle, a physiological niche highly relevant for regulating glycemia in response to insulin. This study aimed to investigate the role of H2S on insulin signaling and glucose uptake in the L6 skeletal muscle cell line. We evaluated the endogenous synthesis with the fluorescent dye, 7-azido-4-methyl coumarin (7-AzMC). Glucose restriction-induced an increase in the endogenous levels of H2S, likely through stimulation of cystathionine γ-lyase activity, as its specific inhibitor, PAG (5 mM) prevented this increase, and mRNA levels of CSE decreased with glucose and amino acid restriction. Exogenous H2S reduced insulin-induced glucose uptake at 0.5 up to 24 h, an effect dissociated from the level of Akt phosphorylation. Our results show that glucose restriction induces endogenous production of H2S via CSE. In addition, H2S disrupts insulin-induced glucose uptake independent of the Akt pathway. These results suggest that H2S antagonism over insulin-induced glucose uptake could help maintain the plasmatic glucose levels in conditions that provoke hypoglycemia, which could serve as an H2S-regulated mechanism for maintaining glucose plasmatic levels through the inhibition of the skeletal muscle insulin-depended glucose uptake.
Collapse
Affiliation(s)
- Camila Donoso-Barraza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de Los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile
| | - Juan Carlos Borquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de Los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile
| | - Carlos Sepúlveda
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de Los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de Los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile
| | - Claudia Sepúlveda-Quiñenao
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de Los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile
| | - Juan Manuel Rodríguez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de Los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile
| | - Omar Porras
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de Los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile.
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de Los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, 8380492, Chile.
| |
Collapse
|
15
|
Larsen JK, Larsen MR, Birk JB, Steenberg DE, Hingst JR, Højlund K, Chadt A, Al-Hasani H, Deshmukh AS, Wojtaszewski JF, Kjøbsted R. Illumination of the Endogenous Insulin-Regulated TBC1D4 Interactome in Human Skeletal Muscle. Diabetes 2022; 71:906-920. [PMID: 35192682 PMCID: PMC9074744 DOI: 10.2337/db21-0855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Insulin-stimulated muscle glucose uptake is a key process in glycemic control. This process depends on the redistribution of glucose transporters to the surface membrane, a process that involves regulatory proteins such as TBC1D1 and TBC1D4. Accordingly, a TBC1D4 loss-of-function mutation in human skeletal muscle is associated with an increased risk of type 2 diabetes, and observations from carriers of a TBC1D1 variant associate this protein to a severe obesity phenotype. Here, we identified interactors of the endogenous TBC1D4 protein in human skeletal muscle by an unbiased proteomics approach. We detected 76 proteins as candidate TBC1D4 interactors. The binding of 12 of these interactors was regulated by insulin, including proteins known to be involved in glucose metabolism (e.g., 14-3-3 proteins and α-actinin-4 [ACTN4]). TBC1D1 also coprecipitated with TBC1D4 and vice versa in both human and mouse skeletal muscle. This interaction was not regulated by insulin or exercise in young, healthy, lean individuals. Similarly, the exercise- and insulin-regulated phosphorylation of the TBC1D1-TBC1D4 complex was intact. In contrast, we observed an altered interaction as well as compromised insulin-stimulated phosphoregulation of the TBC1D1-TBC1D4 complex in muscle of obese individuals with type 2 diabetes. Altogether, we provide a repository of TBC1D4 interactors in human and mouse skeletal muscle that serve as potential regulators of TBC1D4 function and, thus, insulin-stimulated glucose uptake in human skeletal muscle.
Collapse
Affiliation(s)
- Jeppe K. Larsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Magnus R. Larsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B. Birk
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dorte E. Steenberg
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R. Hingst
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Alexandra Chadt
- German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F.P. Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Corresponding authors: Rasmus Kjøbsted, , and Jørgen F.P. Wojtaszewski,
| | - Rasmus Kjøbsted
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Corresponding authors: Rasmus Kjøbsted, , and Jørgen F.P. Wojtaszewski,
| |
Collapse
|
16
|
Kido K, Egawa T, Watanabe S, Kawanaka K, Treebak JT, Hayashi T. Fasting potentiates insulin-mediated glucose uptake in rested and prior-contracted rat skeletal muscle. Am J Physiol Endocrinol Metab 2022; 322:E425-E435. [PMID: 35344394 DOI: 10.1152/ajpendo.00412.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A single bout of exercise can potentiate the effect of insulin on skeletal muscle glucose uptake via activation of the AMPK-TBC1 domain family member 4 (TBC1D4) pathway, which suggests a positive correlation between AMPK activation and insulin sensitization. In addition, prolonged fasting in rodents is known to upregulate and thereby synergistically enhance the effect of exercise on muscle AMPK activation. Therefore, fasting may potentiate the insulin-sensitizing effect of exercise. In the present study, we mimicked exercise by in situ muscle contraction and evaluated the effect of a 36-h fast on muscle contraction-induced insulin sensitization. Male Wistar rats weighing 150-170 g were allocated to either a 36-h fasting or feeding group. The extensor digitorum longus (EDL) muscles were electrically contracted via the common peroneal nerve for 10 min followed by a 3-h recovery period. EDL muscles were dissected and incubated in the presence or absence of submaximal insulin. Our results demonstrated that acute muscle contraction and 36 h of fasting additively upregulated AMPK pathway activation. Insulin-stimulated muscle glucose uptake and site-specific TBC1D4 phosphorylation were enhanced by prior muscle contraction in 36-h-fasted rats, but not in fed rats. Moreover, enhanced insulin-induced muscle glucose uptake and Akt phosphorylation due to 36 h of fasting were associated with a decrease in tribbles homolog 3 (TRB3), a negative regulator of Akt activation. In conclusion, fasting and prior muscle contraction synergistically enhance insulin-stimulated TBC1D4 phosphorylation and glucose uptake, which is associated with augmented AMPK pathway activation in rodents.NEW & NOTEWORTHY In this study, we revealed that 36 h of fasting additively upregulated acute muscle contraction-induced AMPK pathway activation in rats. Besides, fasting and muscle contraction synergistically enhanced insulin-stimulated site-specific TBC1D4 phosphorylation and glucose uptake, which was associated with augmented AMPK pathway activation. These results contribute to understanding the regulation of muscle insulin sensitivity.
Collapse
Affiliation(s)
- Kohei Kido
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Shinya Watanabe
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Kentaro Kawanaka
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Jonas T Treebak
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Raun SH, Knudsen JR, Han X, Jensen TE, Sylow L. Cancer causes dysfunctional insulin signaling and glucose transport in a muscle-type-specific manner. FASEB J 2022; 36:e22211. [PMID: 35195922 DOI: 10.1096/fj.202101759r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
Metabolic dysfunction and insulin resistance are emerging as hallmarks of cancer and cachexia, and impair cancer prognosis. Yet, the molecular mechanisms underlying impaired metabolic regulation are not fully understood. To elucidate the mechanisms behind cancer-induced insulin resistance in muscle, we isolated extensor digitorum longus (EDL) and soleus muscles from Lewis Lung Carcinoma tumor-bearing mice. Three weeks after tumor inoculation, muscles were isolated and stimulated with or without a submaximal dose of insulin (1.5 nM). Glucose transport was measured using 2-[3 H]Deoxy-Glucose and intramyocellular signaling was investigated using immunoblotting. In soleus muscles from tumor-bearing mice, insulin-stimulated glucose transport was abrogated concomitantly with abolished insulin-induced TBC1D4 and GSK3 phosphorylation. In EDL, glucose transport and TBC1D4 phosphorylation were not impaired in muscles from tumor-bearing mice, while AMPK signaling was elevated. Anabolic insulin signaling via phosphorylation of the mTORC1 targets, p70S6K thr389, and ribosomal-S6 ser235, were decreased by cancer in soleus muscle while increased or unaffected in EDL. In contrast, the mTOR substrate, pULK1 ser757, was reduced in both soleus and EDL by cancer. Hence, cancer causes considerable changes in skeletal muscle insulin signaling that is dependent on muscle-type, which could contribute to metabolic dysregulation in cancer. Thus, the skeletal muscle could be a target for managing metabolic dysfunction in cancer.
Collapse
Affiliation(s)
- Steffen H Raun
- Section of Molecular Physiology, Department of nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Roland Knudsen
- Section of Molecular Physiology, Department of nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Xiuqing Han
- Section of Molecular Physiology, Department of nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Section of Molecular Physiology, Department of nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Zheng A, Arias EB, Wang H, Kwak SE, Pan X, Duan D, Cartee GD. Exercise-Induced Improvement in Insulin-Stimulated Glucose Uptake by Rat Skeletal Muscle Is Absent in Male AS160-Knockout Rats, Partially Restored by Muscle Expression of Phosphomutated AS160, and Fully Restored by Muscle Expression of Wild-Type AS160. Diabetes 2022; 71:219-232. [PMID: 34753801 PMCID: PMC8914290 DOI: 10.2337/db21-0601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022]
Abstract
One exercise session can elevate insulin-stimulated glucose uptake (ISGU) in skeletal muscle, but the mechanisms remain elusive. Circumstantial evidence suggests a role for Akt substrate of 160 kDa (AS160 or TBC1D4). We used genetic approaches to rigorously test this idea. The initial experiment evaluated the role of AS160 in postexercise increase in ISGU using muscles from male wild-type (WT) and AS160-knockout (KO) rats. The next experiment used AS160-KO rats with an adeno-associated virus (AAV) approach to determine if rescuing muscle AS160 deficiency could restore the ability of exercise to improve ISGU. The third experiment tested if eliminating the muscle GLUT4 deficit in AS160-KO rats via AAV-delivered GLUT4 would enable postexercise enhancement of ISGU. The final experiment used AS160-KO rats and AAV delivery of AS160 mutated to prevent phosphorylation of Ser588, Thr642, and Ser704 to evaluate their role in postexercise ISGU. We discovered the following: 1) AS160 expression was essential for postexercise increase in ISGU; 2) rescuing muscle AS160 expression of AS160-KO rats restored postexercise enhancement of ISGU; 3) restoring GLUT4 expression in AS160-KO muscle did not rescue the postexercise increase in ISGU; and 4) although AS160 phosphorylation on three key sites was not required for postexercise elevation in ISGU, it was essential for the full exercise effect.
Collapse
Affiliation(s)
- Amy Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Edward B. Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Seong Eun Kwak
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO
| | - Gregory D. Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Institute of Gerontology, University of Michigan, Ann Arbor, MI
- Corresponding author: Gregory D. Cartee,
| |
Collapse
|
19
|
Wang H, Zheng A, Arias EB, Cartee GD. Prior AICAR induces elevated glucose uptake concomitant with greater γ3-AMPK activation and reduced membrane cholesterol in skeletal muscle from 26-month-old rats. Facets (Ott) 2022; 7:774-791. [PMID: 36381195 PMCID: PMC9648397 DOI: 10.1139/facets-2021-0166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Attenuated skeletal muscle glucose uptake (GU) has been observed with advancing age. It is important to elucidate the mechanisms linked to interventions that oppose this detrimental outcome. Earlier research using young rodents and (or) cultured myocytes reported that treatment with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR; an AMP-activated protein kinase (AMPK) activator) can increase γ3-AMPK activity and reduce membrane cholesterol content, each of which has been proposed to elevate GU. However, the effect of AICAR treatment on γ3-AMPK activity and membrane cholesterol in skeletal muscle of aged animals has not been reported. Our purpose was to evaluate the effects of AICAR treatment on these potential mechanisms for enhanced glucose uptake in the skeletal muscle of aged animals. Epitrochlearis muscles from 26-27-month-old male rats were isolated and incubated ± AICAR, followed by 3 h incubation without AICAR, and then incubation with 3-O-methyl-[3 H] glucose (to assess GU ± insulin). Muscles were also analyzed for γ3-AMPK activity and membrane cholesterol content. Prior AICAR treatment led to increased γ3-AMPK activity, reduced membrane cholesterol content, and enhanced glucose uptake in skeletal muscle from aged rats. These observations revealed that two potential mechanisms for greater GU previously observed in younger animals and (or) cell models are also potentially relevant for enhanced GU by muscles from older animals.
Collapse
Affiliation(s)
- Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Edward B. Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory D. Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Ericsson M, Steneberg P, Nyrén R, Edlund H. AMPK activator O304 improves metabolic and cardiac function, and exercise capacity in aged mice. Commun Biol 2021; 4:1306. [PMID: 34795407 PMCID: PMC8602430 DOI: 10.1038/s42003-021-02837-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Age is associated with progressively impaired, metabolic, cardiac and vascular function, as well as reduced work/exercise capacity, mobility, and hence quality of life. Exercise exhibit positive effects on age-related dysfunctions and diseases. However, for a variety of reasons many aged individuals are unable to engage in regular physical activity, making the development of pharmacological treatments that mimics the beneficial effects of exercise highly desirable. Here we show that the pan-AMPK activator O304, which is well tolerated in humans, prevented and reverted age-associated hyperinsulinemia and insulin resistance, and improved cardiac function and exercise capacity in aged mice. These results provide preclinical evidence that O304 mimics the beneficial effects of exercise. Thus, as an exercise mimetic in clinical development, AMPK activator O304 holds great potential to mitigate metabolic dysfunction, and to improve cardiac function and exercise capacity, and hence quality of life in aged individuals.
Collapse
Affiliation(s)
- Madelene Ericsson
- grid.12650.300000 0001 1034 3451Umeå Centre for Molecular Medicine Umeå University, SE-901 87 Umeå, Sweden
| | - Pär Steneberg
- grid.12650.300000 0001 1034 3451Umeå Centre for Molecular Medicine Umeå University, SE-901 87 Umeå, Sweden
| | - Rakel Nyrén
- grid.12650.300000 0001 1034 3451Department of Medical Biosciences, Pathology Umeå University, SE-901 87 Umeå, Sweden
| | - Helena Edlund
- Umeå Centre for Molecular Medicine Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
21
|
Interactions between insulin and exercise. Biochem J 2021; 478:3827-3846. [PMID: 34751700 DOI: 10.1042/bcj20210185] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
The interaction between insulin and exercise is an example of balancing and modifying the effects of two opposing metabolic regulatory forces under varying conditions. While insulin is secreted after food intake and is the primary hormone increasing glucose storage as glycogen and fatty acid storage as triglycerides, exercise is a condition where fuel stores need to be mobilized and oxidized. Thus, during physical activity the fuel storage effects of insulin need to be suppressed. This is done primarily by inhibiting insulin secretion during exercise as well as activating local and systemic fuel mobilizing processes. In contrast, following exercise there is a need for refilling the fuel depots mobilized during exercise, particularly the glycogen stores in muscle. This process is facilitated by an increase in insulin sensitivity of the muscles previously engaged in physical activity which directs glucose to glycogen resynthesis. In physically trained individuals, insulin sensitivity is also higher than in untrained individuals due to adaptations in the vasculature, skeletal muscle and adipose tissue. In this paper, we review the interactions between insulin and exercise during and after exercise, as well as the effects of regular exercise training on insulin action.
Collapse
|
22
|
Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021; 22:ijms22179470. [PMID: 34502375 PMCID: PMC8430797 DOI: 10.3390/ijms22179470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
| | - Henry Cope
- Nottingham Biomedical Research Centre (BRC), School of Computer Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
| | - Eliah G. Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Rachel Gilbert
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Amber M. Paul
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas–CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Sigrid S. Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Candice G. T. Tahimic
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Correspondence:
| |
Collapse
|
23
|
Yang X, Chen Q, Ouyang Q, Rong P, Feng W, Quan C, Li M, Jiang Q, Liang H, Zhao TJ, Wang HY, Chen S. Tissue-Specific Splicing and Dietary Interaction of a Mutant As160 Allele Determine Muscle Metabolic Fitness in Rodents. Diabetes 2021; 70:1826-1842. [PMID: 33980689 DOI: 10.2337/db21-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022]
Abstract
Ethnic groups are physiologically and genetically adapted to their diets. Inuit bear a frequent AS160R684X mutation that causes type 2 diabetes. Whether this mutation evolutionarily confers adaptation in Inuit and how it causes metabolic disorders upon dietary changes are unknown due to limitations in human studies. Here, we develop a genetically modified rat model bearing an orthologous AS160R693X mutation, which mimics human patients exhibiting postprandial hyperglycemia and hyperinsulinemia. Importantly, a sugar-rich diet aggravates metabolic abnormalities in AS160R693X rats. The AS160R693X mutation diminishes a dominant long-variant AS160 without affecting a minor short-variant AS160 in skeletal muscle, which suppresses muscle glucose utilization but induces fatty acid oxidation. This fuel switch suggests a possible adaptation in Inuit who traditionally had lipid-rich hypoglycemic diets. Finally, induction of the short-variant AS160 restores glucose utilization in rat myocytes and a mouse model. Our findings have implications for development of precision treatments for patients bearing the AS160R684X mutation.
Collapse
Affiliation(s)
- Xinyu Yang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, and Model Animal Research Center, School of Medicine, Nanjing University, Nanjing
| | - Qiaoli Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, and Model Animal Research Center, School of Medicine, Nanjing University, Nanjing
| | - Qian Ouyang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, and Model Animal Research Center, School of Medicine, Nanjing University, Nanjing
| | - Ping Rong
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, and Model Animal Research Center, School of Medicine, Nanjing University, Nanjing
| | - Weikuan Feng
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, and Model Animal Research Center, School of Medicine, Nanjing University, Nanjing
| | - Chao Quan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, and Model Animal Research Center, School of Medicine, Nanjing University, Nanjing
| | - Min Li
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, and Model Animal Research Center, School of Medicine, Nanjing University, Nanjing
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, China
| | - Hui Liang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Tong-Jin Zhao
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hong Yu Wang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, and Model Animal Research Center, School of Medicine, Nanjing University, Nanjing
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, and Model Animal Research Center, School of Medicine, Nanjing University, Nanjing
| |
Collapse
|
24
|
Bruhn L, Kjøbsted R, Quist JS, Gram AS, Rosenkilde M, Færch K, Wojtaszewski JF, Stallknecht B, Blond MB. Effect of exercise training on skeletal muscle protein expression in relation to insulin sensitivity: Per-protocol analysis of a randomized controlled trial (GO-ACTIWE). Physiol Rep 2021; 9:e14850. [PMID: 34042297 PMCID: PMC8157763 DOI: 10.14814/phy2.14850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Exercise training improves peripheral insulin sensitivity and leads to molecular adaptations in the skeletal muscle. We investigated changes in the expression of key muscle proteins in the glucose metabolic pathway following active commuting by bike or leisure-time exercise at two different intensities. In addition, potential associations between insulin sensitivity and muscle protein expression were examined. This per-protocol analysis included 72 out of 130 physically inactive, healthy women and men (20-45 years) with overweight/obesity (BMI: 25-35 kg/m2 ) who completed 6 months of no intervention (CON, n = 12), active commuting by bike (BIKE, n = 14), or leisure-time exercise of moderate (MOD, n = 28) or vigorous (VIG, n = 18) intensity. Exercise was prescribed 5 days/week with a weekly exercise energy expenditure of 1,600 kcal for women and 2,100 kcal for men. Insulin sensitivity was determined by a hyperinsulinemic euglycemic clamp and skeletal muscle biopsies were obtained from m. vastus lateralis and analyzed for protein expression at baseline and after 3 and 6 months of intervention. We found an increased expression of pyruvate dehydrogenase (PDH) in the exercise groups compared with the control group following 6 months of training. No differential effects were observed on the protein expression following moderate versus vigorous intensity exercise. In addition, we found a positive association between insulin sensitivity and the expression of glucose transporter type 4 as well as PDH. The positive association and the increase in expression of PDH after exercise training points toward a role for PDH in the training-induced enhancement of insulin sensitivity.
Collapse
Affiliation(s)
- Lea Bruhn
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| | - Rasmus Kjøbsted
- Section of Molecular PhysiologyAugust Krogh ClubDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Jonas Salling Quist
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| | - Anne Sofie Gram
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mads Rosenkilde
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kristine Færch
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| | - Jørgen F.P. Wojtaszewski
- Section of Molecular PhysiologyAugust Krogh ClubDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Bente Stallknecht
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Martin Bæk Blond
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| |
Collapse
|
25
|
Eickelschulte S, Hartwig S, Leiser B, Lehr S, Joschko V, Chokkalingam M, Chadt A, Al-Hasani H. AKT/AMPK-mediated phosphorylation of TBC1D4 disrupts the interaction with insulin-regulated aminopeptidase. J Biol Chem 2021; 296:100637. [PMID: 33872597 PMCID: PMC8131924 DOI: 10.1016/j.jbc.2021.100637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
TBC1D4 is a 160 kDa multidomain Rab GTPase-activating protein (RabGAP) and a downstream target of the insulin- and contraction-activated kinases AKT and AMPK. Phosphorylation of TBC1D4 has been linked to translocation of GLUT4 from storage vesicles (GSVs) to the cell surface. However, its impact on enzymatic activity is not well understood, as previous studies mostly investigated the truncated GAP domain lacking the known phosphorylation sites. In the present study, we expressed and purified recombinant full-length TBC1D4 using a baculovirus system. Size-exclusion chromatography and coimmunoprecipitation experiments revealed that full-length TBC1D4 forms oligomers of ∼600 kDa. Compared with the truncated GAP domain, full-length TBC1D4 displayed similar substrate specificity, but had a markedly higher specific GAP activity toward Rab10. Using high-resolution mass spectrometry, we mapped 19 Ser/Thr phosphorylation sites in TBC1D4. We determined Michaelis–Menten kinetics using in vitro phosphorylation assays with purified kinases and stable isotope-labeled γ-[18O4]-ATP. These data revealed that Ser324 (KM ∼6 μM) and Thr649 (KM ∼25 μM) were preferential sites for phosphorylation by AKT, whereas Ser348, Ser577, Ser595 (KM ∼10 μM), Ser711 (KM ∼79 μM), and Ser764 were found to be preferred targets for AMPK. Phosphorylation of TBC1D4 by AKT or AMPK did not alter the intrinsic RabGAP activity, but did disrupt interaction with insulin-regulated aminopeptidase (IRAP), a resident protein of GSVs implicated in GLUT4 trafficking. These findings provide evidence that insulin and contraction may regulate TBC1D4 function primarily by disrupting the recruitment of the RabGAP to GLUT4 vesicles.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Sonja Hartwig
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Ben Leiser
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Stefan Lehr
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Viola Joschko
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Manopriya Chokkalingam
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexandra Chadt
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
26
|
Abstract
As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.
Collapse
|
27
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
28
|
The acute vs. chronic effect of exercise on insulin sensitivity: nothing lasts forever. Cardiovasc Endocrinol Metab 2020; 10:149-161. [PMID: 34386716 PMCID: PMC8352615 DOI: 10.1097/xce.0000000000000239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Regular exercise causes chronic adaptations in anatomy/physiology that provide first-line defense for disease prevention/treatment (‘exercise is medicine’). However, transient changes in function that occur following each exercise bout (acute effect) are also important to consider. For example, in contrast to chronic adaptations, the effect of exercise on insulin sensitivity is predominantly rooted in a prolonged acute effect (PAE) that can last up to 72 h. Untrained individuals and individuals with lower insulin sensitivity benefit more from this effect and even trained individuals with high insulin sensitivity restore most of a detraining-induced loss following one session of resumed training. Consequently, exercise to combat insulin resistance that begins the pathological journey to cardiometabolic diseases including type 2 diabetes (T2D) should be prescribed with precision to elicit a PAE on insulin sensitivity to serve as a first-line defense prior to pharmaceutical intervention or, when such intervention is necessary, a potential adjunct to it. Video Abstract: http://links.lww.com/CAEN/A27
Collapse
|
29
|
Abstract
The glucose transporter GLUT4 is critical for skeletal muscle glucose uptake in response to insulin and muscle contraction/exercise. Exercise increases GLUT4 translocation to the sarcolemma and t-tubule and, over the longer term, total GLUT4 protein content. Here, we review key aspects of GLUT4 biology in relation to exercise, with a focus on exercise-induced GLUT4 translocation, postexercise metabolism and muscle insulin sensitivity, and exercise effects on GLUT4 expression.
Collapse
Affiliation(s)
- Marcelo Flores-Opazo
- Laboratory of Exercise and Physical Activity Sciences, Department of Physiotherapy, University Finis Terrae, Santiago, Chile
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds
| | - Mark Hargreaves
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
30
|
Larsen MR, Steenberg DE, Birk JB, Sjøberg KA, Kiens B, Richter EA, Wojtaszewski JFP. The insulin‐sensitizing effect of a single exercise bout is similar in type I and type II human muscle fibres. J Physiol 2020; 598:5687-5699. [DOI: 10.1113/jp280475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Magnus R. Larsen
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports Faculty of Science University of Copenhagen Copenhagen Denmark
| | - Dorte E. Steenberg
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports Faculty of Science University of Copenhagen Copenhagen Denmark
| | - Jesper B. Birk
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports Faculty of Science University of Copenhagen Copenhagen Denmark
| | - Kim A. Sjøberg
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports Faculty of Science University of Copenhagen Copenhagen Denmark
| | - Bente Kiens
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports Faculty of Science University of Copenhagen Copenhagen Denmark
| | - Erik A. Richter
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports Faculty of Science University of Copenhagen Copenhagen Denmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports Faculty of Science University of Copenhagen Copenhagen Denmark
| |
Collapse
|
31
|
Deng H, Sun Y, Zeng W, Li H, Guo M, Yang L, Lu B, Yu B, Fan G, Gao Q, Jiang X. New Classification of Macrophages in Plaques: a Revolution. Curr Atheroscler Rep 2020; 22:31. [PMID: 32556603 DOI: 10.1007/s11883-020-00850-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Macrophages play vital roles in the development of atherosclerosis in responding to lipid accumulation and inflammation. Macrophages were classified as inflammatory (M1) and alternatively activated (M2) macrophage types based on results of in vitro experiments. On the other hand, the composition of macrophages in vivo is more complex and remains unresolved. This review summarizes the transcriptional variations of macrophages in atherosclerosis plaques that were discovered by single-cell RNA sequencing (scRNA-seq) to better understand their contribution to atherosclerosis. RECENT FINDINGS ScRNA-seq provides a more detailed transcriptional landscape of macrophages in atherosclerosis, which challenges the traditional view. By mining the data of GSE97310, we discovered the transcriptional variations of macrophages in LDLR-/- mice that were fed with high-fat diet (HFD) for 11 and 20 weeks. Cells were represented in a two-dimensional tSNE plane and clusters were identified and annotated via Seurat and SingleR respectively, which were R toolkits for single-cell genomics. The results showed that in healthy conditions, Trem2hi (high expression of triggering receptors expressed on myeloid cells 2)-positive, inflammatory, and resident-like macrophages make up 68%, 18%, and 6% of total macrophages respectively. When mice were fed with HFD for 11 weeks, Trem2hi, monocytes, and monocyte-derived dendritic cells take possession of 40%, 18%, and 17% of total macrophages respectively. After 20 weeks of HFD feeding, Trem2hi, inflammatory, and resident-like macrophages occupied 12%, 37%, and 35% of total macrophages respectively. The phenotypes of macrophages are very different from the previous studies. In general, Trem2hi macrophages are the most abundant population in healthy mice, while the proportion of monocytes increases after 11 weeks of HFD. Most importantly, inflammatory and resident-like macrophages make up 70% of the macrophage populations after 20 weeks of HFD. These strongly indicate that inflammatory and resident-like macrophages promote the progression of atherosclerosis plaques.
Collapse
Affiliation(s)
- Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingxin Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
32
|
Enhanced skeletal muscle insulin sensitivity after acute resistance-type exercise is upregulated by rapamycin-sensitive mTOR complex 1 inhibition. Sci Rep 2020; 10:8509. [PMID: 32444657 PMCID: PMC7244536 DOI: 10.1038/s41598-020-65397-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/13/2020] [Indexed: 01/07/2023] Open
Abstract
Acute aerobic exercise (AE) increases skeletal muscle insulin sensitivity for several hours, caused by acute activation of AMP-activated protein kinase (AMPK). Acute resistance exercise (RE) also activates AMPK, possibly improving insulin-stimulated glucose uptake. However, RE-induced rapamycin-sensitive mechanistic target of rapamycin complex 1 (mTORC1) activation is higher and has a longer duration than after AE. In molecular studies, mTORC1 was shown to be upstream of insulin receptor substrate 1 (IRS-1) Ser phosphorylation residue, inducing insulin resistance. Therefore, we hypothesised that although RE increases insulin sensitivity through AMPK activation, prolonged mTORC1 activation after RE reduces RE-induced insulin sensitising effect. In this study, we used an electrical stimulation-induced RE model in rats, with rapamycin as an inhibitor of mTORC1 activation. Our results showed that RE increased insulin-stimulated glucose uptake following AMPK signal activation. However, mTORC1 activation and IRS-1 Ser632/635 and Ser612 phosphorylation were elevated 6 h after RE, with concomitant impairment of insulin-stimulated Akt signal activation. By contrast, rapamycin inhibited these prior exercise responses. Furthermore, increases in insulin-stimulated skeletal muscle glucose uptake 6 h after RE were higher in rats with rapamycin treatment than with placebo treatment. Our data suggest that mTORC1/IRS-1 signaling inhibition enhances skeletal muscle insulin-sensitising effect of RE.
Collapse
|
33
|
Knudsen JR, Steenberg DE, Hingst JR, Hodgson LR, Henriquez-Olguin C, Li Z, Kiens B, Richter EA, Wojtaszewski JFP, Verkade P, Jensen TE. Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation. Mol Metab 2020; 39:100998. [PMID: 32305516 PMCID: PMC7240215 DOI: 10.1016/j.molmet.2020.100998] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Exercise is a cornerstone in the management of skeletal muscle insulin-resistance. A well-established benefit of a single bout of exercise is increased insulin sensitivity for hours post-exercise in the previously exercised musculature. Although rodent studies suggest that the insulin-sensitization phenomenon involves enhanced insulin-stimulated GLUT4 cell surface translocation and might involve intramuscular redistribution of GLUT4, the conservation to humans is unknown. Methods Healthy young males underwent an insulin-sensitizing one-legged kicking exercise bout for 1 h followed by fatigue bouts to exhaustion. Muscle biopsies were obtained 4 h post-exercise before and after a 2-hour hyperinsulinemic-euglycemic clamp. Results A detailed microscopy-based analysis of GLUT4 distribution within seven different myocellular compartments revealed that prior exercise increased GLUT4 localization in insulin-responsive storage vesicles and T-tubuli. Furthermore, insulin-stimulated GLUT4 localization was augmented at the sarcolemma and in the endosomal compartments. Conclusions An intracellular redistribution of GLUT4 post-exercise is proposed as a molecular mechanism contributing to the insulin-sensitizing effect of prior exercise in human skeletal muscle. Intramyocellular GLUT4 is redistributed 4 h after exercise in humans. GLUT4 content is increased in GLUT4 storage vesicles and T-tubuli post-exercise. Prior exercise + insulin increases sarcolemmal and endosomal GLUT4. GLUT4 redistribution may thus contribute to post-exercise muscle insulin-sensitization.
Collapse
Affiliation(s)
- Jonas R Knudsen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark; Laboratory of Microsystems 2, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne, Batiment BM, 1015, Lausanne, Switzerland
| | - Dorte E Steenberg
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Janne R Hingst
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Lorna R Hodgson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, United Kingdom
| | - Carlos Henriquez-Olguin
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Zhencheng Li
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Bente Kiens
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Erik A Richter
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Jørgen F P Wojtaszewski
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, United Kingdom
| | - Thomas E Jensen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Oe, Denmark.
| |
Collapse
|
34
|
Steenberg DE, Hingst JR, Birk JB, Thorup A, Kristensen JM, Sjøberg KA, Kiens B, Richter EA, Wojtaszewski JFP. A Single Bout of One-Legged Exercise to Local Exhaustion Decreases Insulin Action in Nonexercised Muscle Leading to Decreased Whole-Body Insulin Action. Diabetes 2020; 69:578-590. [PMID: 31974138 DOI: 10.2337/db19-1010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/14/2020] [Indexed: 11/13/2022]
Abstract
A single bout of exercise enhances insulin action in the exercised muscle. However, not all human studies find that this translates into increased whole-body insulin action, suggesting that insulin action in rested muscle or other organs may be decreased by exercise. To investigate this, eight healthy men underwent a euglycemic-hyperinsulinemic clamp on 2 separate days: one day with prior one-legged knee-extensor exercise to local exhaustion (∼2.5 h) and another day without exercise. Whole-body glucose disposal was ∼18% lower on the exercise day as compared with the resting day due to decreased (∼37%) insulin-stimulated glucose uptake in the nonexercised muscle. Insulin signaling at the level of Akt2 was impaired in the nonexercised muscle on the exercise day, suggesting that decreased insulin action in nonexercised muscle may reduce GLUT4 translocation in response to insulin. Thus, the effect of a single bout of exercise on whole-body insulin action depends on the balance between local effects increasing and systemic effects decreasing insulin action. Physiologically, this mechanism may serve to direct glucose into the muscles in need of glycogen replenishment. For insulin-treated patients, this complex relationship may explain the difficulties in predicting the adequate insulin dose for maintaining glucose homeostasis following physical activity.
Collapse
Affiliation(s)
- Dorte E Steenberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anette Thorup
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jonas M Kristensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Bryant NJ, Gould GW. Insulin stimulated GLUT4 translocation - Size is not everything! Curr Opin Cell Biol 2020; 65:28-34. [PMID: 32182545 DOI: 10.1016/j.ceb.2020.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022]
Abstract
Insulin-regulated trafficking of the facilitative glucose transporter GLUT4 has been studied in many cell types. The translocation of GLUT4 from intracellular membranes to the cell surface is often described as a highly specialised form of membrane traffic restricted to certain cell types such as fat and muscle, which are the major storage depots for insulin-stimulated glucose uptake. Here, we discuss evidence that favours the argument that rather than being restricted to specialised cell types, the machinery through which insulin regulates GLUT4 traffic is present in all cell types. This is an important point as it provides confidence in the use of experimentally tractable model systems to interrogate the trafficking itinerary of GLUT4.
Collapse
Affiliation(s)
- Nia J Bryant
- Department of Biology and York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
36
|
Pataky MW, Arias EB, Wang H, Zheng X, Cartee GD. Exercise effects on γ3-AMPK activity, phosphorylation of Akt2 and AS160, and insulin-stimulated glucose uptake in insulin-resistant rat skeletal muscle. J Appl Physiol (1985) 2020; 128:410-421. [PMID: 31944891 DOI: 10.1152/japplphysiol.00428.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle. Prior research on healthy muscle suggests that enhanced postexercise ISGU depends on elevated γ3-AMPK activity leading to greater phosphorylation of Akt substrate of 160 kDa (pAS160) on an AMPK-phosphomotif (Ser704). Phosphorylation of AS160Ser704, in turn, may favor greater insulin-stimulated pAS160 on an Akt-phosphomotif (Thr642) that regulates ISGU. Accordingly, we tested if exercise-induced increases in γ3-AMPK activity and pAS160 on key regulatory sites accompany improved ISGU at 3 h postexercise (3hPEX) in insulin-resistant muscle. Rats fed a high-fat diet (HFD; 2-wk) that induces insulin resistance either performed acute swim-exercise (2 h) or were sedentary (SED). SED rats fed a low-fat diet (LFD; 2 wk) served as healthy controls. Isolated epitrochlearis muscles from 3hPEX and SED rats were analyzed for ISGU, pAS160, pAkt2 (Akt-isoform that phosphorylates pAS160Thr642), and γ1-AMPK and γ3-AMPK activity. ISGU was lower in HFD-SED muscles versus LFD-SED, but this decrement was eliminated in the HFD-3hPEX group. γ3-AMPK activity, but not γ1-AMPK activity, was elevated in HFD-3hPEX muscles versus both SED controls. Furthermore, insulin-stimulated pAS160Thr642, pAS160Ser704, and pAkt2Ser474 in HFD-3hPEX muscles were elevated above HFD-SED and equal to values in LFD-SED muscles, but insulin-independent pAS160Ser704 was unaltered at 3hPEX. These results demonstrated, for the first time in an insulin-resistant model, that the postexercise increase in ISGU was accompanied by sustained enhancement of γ3-AMPK activation and greater pAkt2Ser474. Our working hypothesis is that these changes along with enhanced insulin-stimulated pAS160 increase ISGU of insulin-resistant muscles to values equaling insulin-sensitive sedentary controls.NEW & NOTEWORTHY Earlier research focusing on signaling events linked to increased insulin sensitivity in muscle has rarely evaluated insulin resistant muscle after exercise. We assessed insulin resistant muscle after an exercise protocol that improved insulin-stimulated glucose uptake. Prior exercise also amplified several signaling steps expected to favor enhanced insulin-stimulated glucose uptake: increased γ3-AMP-activated protein kinase activity, greater insulin-stimulated Akt2 phosphorylation on Ser474, and elevated insulin-stimulated Akt substrate of 160 kDa phosphorylation on Ser588, Thr642, and Ser704.
Collapse
Affiliation(s)
- Mark W Pataky
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Xiaohua Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
37
|
Lundsgaard AM, Fritzen AM, Kiens B. The Importance of Fatty Acids as Nutrients during Post-Exercise Recovery. Nutrients 2020; 12:nu12020280. [PMID: 31973165 PMCID: PMC7070550 DOI: 10.3390/nu12020280] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
It is well recognized that whole-body fatty acid (FA) oxidation remains increased for several hours following aerobic endurance exercise, even despite carbohydrate intake. However, the mechanisms involved herein have hitherto not been subject to a thorough evaluation. In immediate and early recovery (0–4 h), plasma FA availability is high, which seems mainly to be a result of hormonal factors and increased adipose tissue blood flow. The increased circulating availability of adipose-derived FA, coupled with FA from lipoprotein lipase (LPL)-derived very-low density lipoprotein (VLDL)-triacylglycerol (TG) hydrolysis in skeletal muscle capillaries and hydrolysis of TG within the muscle together act as substrates for the increased mitochondrial FA oxidation post-exercise. Within the skeletal muscle cells, increased reliance on FA oxidation likely results from enhanced FA uptake into the mitochondria through the carnitine palmitoyltransferase (CPT) 1 reaction, and concomitant AMP-activated protein kinase (AMPK)-mediated pyruvate dehydrogenase (PDH) inhibition of glucose oxidation. Together this allows glucose taken up by the skeletal muscles to be directed towards the resynthesis of glycogen. Besides being oxidized, FAs also seem to be crucial signaling molecules for peroxisome proliferator-activated receptor (PPAR) signaling post-exercise, and thus for induction of the exercise-induced FA oxidative gene adaptation program in skeletal muscle following exercise. Collectively, a high FA turnover in recovery seems essential to regain whole-body substrate homeostasis.
Collapse
|
38
|
Tobias IS, Lazauskas KK, Siu J, Costa PB, Coburn JW, Galpin AJ. Sex and fiber type independently influence AMPK, TBC1D1, and TBC1D4 at rest and during recovery from high-intensity exercise in humans. J Appl Physiol (1985) 2020; 128:350-361. [PMID: 31895596 DOI: 10.1152/japplphysiol.00704.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Women and men present different metabolic responses to exercise, yet whether this phenomenon results from differences in fiber type (FT) composition or other sex-specific factors remains unclear. Therefore, our aim was to examine the effects of sex and FT independently on AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), Tre-2/BUB2/CDC1 domain family (TBC1D)1, and TBC1D4 in response to acute exercise. Segregated pools of myosin heavy chain (MHC) I and MHC IIa fibers were prepared from vastus lateralis biopsies of young trained men and women at rest and during recovery (0 min, 45 min, 90 min, or 180 min) from high-intensity interval exercise (6 × 1.5 min at 95% maximum oxygen uptake). In resting MHC I vs. IIa fibers, AMPKα2, AMPKγ3, and TBC1D1 were higher and TBC1D4 expression was lower in both sexes, along with higher phospho (p)-TBC1D1Ser660 and lower p-TBC1D4Thr642. Women expressed higher ACC than men in MHC IIa fibers and higher AMPKβ1, AMPKβ2, TBC1D1, and TBC1D4 in both FTs. Immediately after exercise, p-AMPKαThr172 increased only in MHC IIa fibers, whereas p-ACCSer221 increased in both FTs, with no change in p-TBC1D1Ser660 or p-TBC1D4Thr642. During recovery, delayed responses were observed for p-AMPKαThr172 in MHC I (45 min), p-TBC1D4Thr642 in both FTs (45 min), and p-TBC1D1Ser660 (180 min). FT-specific phosphorylation responses to exercise were similar between men and women. Data indicate that sex and FT independently influence expression of AMPK and its substrates. Thus failing to account for sex or FT may reduce accuracy and precision of metabolic protein measurements and conceal key findings.NEW & NOTEWORTHY This investigation is the first to compare muscle fiber type (FT)-specific analysis of proteins between the sexes, providing comprehensive data on AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), Tre-2/BUB2/CDC1 domain family (TBC1D)1, and TBC1D4 before and in the hours following high-intensity interval exercise (HIIT). Expression and phosphorylation of specific AMPK isoforms, ACC, TBC1D1, and TBC1D4 were shown to be FT dependent, sex dependent, or both, and TBC1D1 showed an unexpected delay in FT-dependent phosphorylation in the time period following HIIT.
Collapse
Affiliation(s)
- Irene S Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Kara K Lazauskas
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Jeremy Siu
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Pablo B Costa
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Jared W Coburn
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
39
|
Pataky MW, Van Acker SL, Dhingra R, Freeburg MM, Arias EB, Oki K, Wang H, Treebak JT, Cartee GD. Fiber type-specific effects of acute exercise on insulin-stimulated AS160 phosphorylation in insulin-resistant rat skeletal muscle. Am J Physiol Endocrinol Metab 2019; 317:E984-E998. [PMID: 31573845 PMCID: PMC6957376 DOI: 10.1152/ajpendo.00304.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Muscle is a heterogeneous tissue composed of multiple fiber types. Earlier research revealed fiber type-selective postexercise effects on insulin-stimulated glucose uptake (ISGU) from insulin-resistant rats (increased for type IIA, IIB, IIBX, and IIX, but not type I). In whole muscle from insulin-resistant rats, the exercise increase in ISGU is accompanied by an exercise increase in insulin-stimulated AS160 phosphorylation (pAS160), an ISGU-regulating protein. We hypothesized that, in insulin-resistant muscle, the fiber type-selective exercise effects on ISGU would correspond to the fiber type-selective exercise effects on pAS160. Rats were fed a 2-wk high-fat diet (HFD) and remained sedentary (SED) or exercised before epitrochlearis muscles were dissected either immediately postexercise (IPEX) or at 3 h postexercise (3hPEX) using an exercise protocol that previously revealed fiber type-selective effects on ISGU. 3hPEX muscles and SED controls were incubated ± 100µU/mL insulin. Individual myofibers were isolated and pooled on the basis of myosin heavy chain (MHC) expression, and key phosphoproteins were measured. Myofiber glycogen and MHC expression were evaluated in muscles from other SED, IPEX, and 3hPEX rats. Insulin-stimulated pAktSer473 and pAktThr308 were unaltered by exercise in all fiber types. Insulin-stimulated pAS160 was greater for 3hPEX vs. SED on at least one phosphosite (Ser588, Thr642, and/or Ser704) in type IIA, IIBX, and IIB fibers, but not in type I or IIX fibers. Both IPEX and 3hPEX glycogen were decreased versus SED in all fiber types. These results provided evidence that fiber type-specific pAS160 in insulin-resistant muscle may play a role in the previously reported fiber type-specific elevation in ISGU in some, but not all, fiber types.
Collapse
Affiliation(s)
- Mark W Pataky
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Sydney L Van Acker
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Rhea Dhingra
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Marina M Freeburg
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Kentaro Oki
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|