1
|
Hamaoka T, Leuenberger UA, Drew RC, Murray M, Blaha C, Luck JC, Sinoway LI, Cui J. Glucose metabolism and autonomic function in healthy individuals and patients with type 2 diabetes mellitus at rest and during exercise. Exp Physiol 2024; 109:214-226. [PMID: 38050866 PMCID: PMC10841625 DOI: 10.1113/ep091444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Autonomic dysfunction is a common complication of type 2 diabetes mellitus (T2DM). However, the character of dysfunction varies in different reports. Differences in measurement methodology and complications might have influenced the inconsistent results. We sought to evaluate comprehensively the relationship between abnormal glucose metabolism and autonomic function at rest and the response to exercise in healthy individuals and T2DM patients. We hypothesized that both sympathetic and parasympathetic indices would decrease with the progression of abnormal glucose metabolism in individuals with few complications related to high sympathetic tone. Twenty healthy individuals and 11 T2DM patients without clinically evident cardiovascular disease other than controlled hypertension were examined. Resting muscle sympathetic nerve activity (MSNA), heart rate variability, spontaneous cardiovagal baroreflex sensitivity (CBRS), sympathetic baroreflex sensitivity and the MSNA response to handgrip exercise were measured. Resting MSNA was lower in patients with T2DM than in healthy control subjects (P = 0.011). Resting MSNA was negatively correlated with haemoglobin A1c in all subjects (R = -0.45, P = 0.024). The parasympathetic components of heart rate variability and CBRS were negatively correlated with glycaemic/insulin indices in all subjects and even in the control group only (all, P < 0.05). In all subjects, the MSNA response to exercise was positively correlated with fasting blood glucose (R = 0.69, P < 0.001). Resting sympathetic activity and parasympathetic modulation of heart rate were decreased in relationship to abnormal glucose metabolism. Meanwhile, the sympathetic responses to handgrip were preserved in diabetics. The responses were correlated with glucose/insulin parameters throughout diabetic and control subjects. These results suggest the importance of a comprehensive assessment of autonomic function in T2DM.
Collapse
Affiliation(s)
- Takuto Hamaoka
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Urs A. Leuenberger
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Rachel C. Drew
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of Exercise and Health SciencesUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Matthew Murray
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Cheryl Blaha
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Jonathan Carter Luck
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Lawrence I. Sinoway
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Jian Cui
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| |
Collapse
|
2
|
Samora M, Huo Y, McCuller RK, Chidurala S, Stanhope KL, Havel PJ, Stone AJ, Harrison ML. Spontaneous baroreflex sensitivity is attenuated in male UCD-type 2 diabetes mellitus rats: A link between metabolic and autonomic dysfunction. Auton Neurosci 2023; 249:103117. [PMID: 37657371 PMCID: PMC11613953 DOI: 10.1016/j.autneu.2023.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Patients with type 2 diabetes mellitus (T2DM) have impaired arterial baroreflex function, which may be linked to the co-existence of obesity. However, the role of obesity and its related metabolic impairments on baroreflex dysfunction in T2DM is unknown. This study aimed to investigate the role of visceral fat and adiponectin, the most abundant cytokine produced by adipocytes, on baroreflex dysfunction in T2DM rats. Experiments were performed in adult male UCD-T2DM rats assigned to the following experimental groups (n = 6 in each): prediabetic (Pre), diabetes-onset (T0), 4 weeks after onset (T4), and 12 weeks after onset (T12). Age-matched healthy Sprague-Dawley rats were used as controls. Rats were anesthetized and blood pressure was directly measured on a beat-to-beat basis to assess spontaneous baroreflex sensitivity (BRS) using the sequence technique. Dual-energy X-ray absorptiometry (DEXA) was used to assess body composition. Data are presented as mean ± SD. BRS was significantly lower in T2DM rats compared with controls at T0 (T2D: 3.7 ± 3.2 ms/mmHg vs Healthy: 16.1 ± 8.4 ms/mmHg; P = 0.01), but not at T12 (T2D: 13.4 ± 8.1 ms/mmHg vs Healthy: 9.2 ± 6.0 ms/mmHg; P = 0.16). T2DM rats had higher visceral fat mass, adiponectin, and insulin concentrations compared with control rats (all P < 0.01). Changes in adiponectin and insulin concentrations over the measured time-points mirrored one another and were opposite those of the BRS in T2DM rats. These findings demonstrate that obesity-related metabolic impairments may contribute to an attenuated spontaneous BRS in T2DM, suggesting a link between metabolic and autonomic dysfunction.
Collapse
Affiliation(s)
- Milena Samora
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Richard K McCuller
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Suchit Chidurala
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, CA, United States
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, CA, United States
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Michelle L Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
3
|
Da Silva CD, Catai AM, Abreu RMD, Signini ÉDF, Galdino GAM, Lorevice L, Santos LM, Mendes RG. Cardiorespiratory coupling as an early marker of cardiac autonomic dysfunction in type 2 diabetes mellitus patients. Respir Physiol Neurobiol 2023; 311:104042. [PMID: 36858335 DOI: 10.1016/j.resp.2023.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
The aim of this study was to assess cardiorespiratory coupling (CRC) in type 2 diabetes mellitus patients (T2DM) and apparently healthy individuals, in order to test the hypothesis that this method can provide additional knowledge to the information obtained through the heart rate variability (HRV). A cross-sectional study was conducted in T2DM patients(T2DMG=32) and health controls (CON=32). For CRC analysis, the electrocardiogram, arterial pressure, and thoracic respiratory movement were recorded at rest in supine position and during active standing. Beat-to-beat series of heart period and systolic arterial pressure were analyzed with the respiratory movement signal via a traditional non-causal approach, such as squared coherence function. In this sample of T2DM, no differences in HRV were observed when compared to the CON, but the T2DMG showed a reduction in resting CRC. We conclude that in CRC in T2DM, reflected by the squared coherence may already be compromised even before HRV changes.
Collapse
Affiliation(s)
- Claudio Donisete Da Silva
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Aparecida Maria Catai
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Raphael Martins de Abreu
- LUNEX University, International University of Health, Exercise & Sports S.A. 50, Department of Physiotherapy, Differdange, Luxembourg. 50 Avenue du Parc des Sports, L-4671, Differdange, Luxembourg; LUNEX ASBL Luxembourg Health & Sport Sciences Research Institute, Differdange, Luxembourg. 50 Avenue du Parc des Sports, L-4671, Differdange, Luxembourg
| | - Étore De Favari Signini
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | | | - Laura Lorevice
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Letícia Menegalli Santos
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Renata Gonçalves Mendes
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil.
| |
Collapse
|
4
|
Zaharia OP, Schön M, Löffler L, Strassburger K, Möser C, Yurchenko I, Bódis K, Antoniou S, Karusheva Y, Szendroedi J, Burkart V, Roden M. Metabolic Factors Predict Changes in Endothelial Function During the Early Course of Type 1 and Type 2 Diabetes. J Clin Endocrinol Metab 2022; 107:e4167-e4176. [PMID: 35965389 PMCID: PMC9516081 DOI: 10.1210/clinem/dgac480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Endothelial dysfunction may occur early in the development of cardiovascular and metabolic diseases; however, it remains often underestimated and studies rarely discriminate between diabetes types. We have examined endothelial function and its determinants during the early course of type 1 and type 2 diabetes. METHODS Caucasian participants of the prospective German Diabetes Study (GDS) with known diabetes duration <1 year (n = 398) or without diabetes, but of similar age, body mass index (BMI) and sex distribution (n = 109), underwent measurements of flow-mediated dilation (FMD) and nitroglycerin-mediated dilatation (NMD). Whole-body insulin sensitivity (M-value) was assessed by hyperinsulinemic-euglycemic clamps and physical fitness (VO2max) by spiroergometry. A subset of individuals with type 1 or type 2 diabetes (n = 108) was re-evaluated after 5 years. RESULTS At baseline, neither FMD nor NMD differed between people with diabetes and the matched glucose-tolerant groups. At the 5-year follow-up, decline in FMD (-13.9%, P = .013) of persons with type 2 diabetes was independent of age, sex, and BMI, but associated with baseline adipose tissue insulin resistance and indices of liver fibrosis. The M-value decreased in both type 1 and type 2 diabetes groups by 24% and 15% (both P < .001, respectively) over 5 years. Higher HbA1c, lower M-value, and lower VO2max at baseline was associated with lower FMD in both type 1 and type 2 diabetes. CONCLUSION Endothelial function decreases during the early course of type 2 diabetes. In addition to age and BMI, insulin sensitivity at diagnosis was the best predictor of progressive impairment in endothelial function in type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Luca Löffler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD e. V.), Partner Düsseldorf, Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Clara Möser
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e. V.), Partner Düsseldorf, Neuherberg, Germany
| | - Iryna Yurchenko
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e. V.), Partner Düsseldorf, Neuherberg, Germany
| | - Kálmán Bódis
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e. V.), Partner Düsseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Sofia Antoniou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e. V.), Partner Düsseldorf, Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e. V.), Partner Düsseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e. V.), Partner Düsseldorf, Neuherberg, Germany
| | - Michael Roden
- Correspondence: Michael Roden, Prof, Dr, Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University Düsseldorf, Germany, c/o Auf’m Hennekamp 65, D-40225 Düsseldorf, Germany. E-mail:
| |
Collapse
|
5
|
Baroreflex sensitivity derived from the Valsalva manoeuvre: A physiological protective factor for anxiety induced by breathing CO 2-enriched air. Int J Psychophysiol 2022; 179:101-109. [PMID: 35809687 DOI: 10.1016/j.ijpsycho.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to determine the capacity of baroreflex sensitivity, derived from the Valsalva manoeuvre (BRS_v), to predict state anxiety induced by a biological stressor (CO2 inhalation). Healthy adults (n = 50) breathed 7.5 % CO2-enriched air for 8 min, preceded and followed by breathing medical air for 5 min. State anxiety was evaluated with a visual analogue scale. Anxiety sensitivity (Anxiety Sensitivity Index-3; ASI-3) and trait anxiety (Trait form of the State-Trait Anxiety Inventory; STAI_T) served as cognitive-affective predictors. BRS_v was adopted as a physiological predictor. Multiple regression analysis revealed that BRS_v predicted lower anxiety during CO2 exposure, and attenuated the effect of ASI-3 in increasing anxiety. No significant effects were found for STAI_T. This is the first study to identify baroreflex sensitivity as a strong protective physiological factor for anxiety beyond the effect of anxiety sensitivity.
Collapse
|
6
|
Bönhof GJ, Strom A, Apostolopoulou M, Karusheva Y, Sarabhai T, Pesta D, Roden M, Ziegler D. High-intensity interval training for 12 weeks improves cardiovascular autonomic function but not somatosensory nerve function and structure in overweight men with type 2 diabetes. Diabetologia 2022; 65:1048-1057. [PMID: 35275239 PMCID: PMC9076744 DOI: 10.1007/s00125-022-05674-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS It remains unclear whether and which modality of exercise training as a component of lifestyle intervention may exert favourable effects on somatosensory and autonomic nerve tests in people with type 2 diabetes. METHODS Cardiovascular autonomic and somatosensory nerve function as well as intraepidermal nerve fibre density (IENFD) were assessed in overweight men with type 2 diabetes (type 2 diabetes, n = 20) and male glucose-tolerant individuals (normal glucose tolerance [NGT], n = 23), comparable in age and BMI and serving as a control group, before and after a supervised high-intensity interval training (HIIT) intervention programme over 12 weeks. Study endpoints included clinical scores, nerve conduction studies, quantitative sensory testing, IENFD, heart rate variability, postural change in systolic blood pressure and spontaneous baroreflex sensitivity (BRS). RESULTS After 12 weeks of HIIT, resting heart rate decreased in both groups ([mean ± SD] baseline/12 weeks: NGT: 65.1 ± 8.2/60.2 ± 9.0 beats per min; type 2 diabetes: 68.8 ± 10.1/63.4 ± 7.8 beats per min), while three BRS indices increased (sequence analysis BRS: 8.82 ± 4.89/14.6 ± 11.7 ms2/mmHg; positive sequences BRS: 7.19 ± 5.43/15.4 ± 15.9 ms2/mmHg; negative sequences BRS: 12.8 ± 5.4/14.6 ± 8.7 ms2/mmHg) and postural change in systolic blood pressure decreased (-13.9 ± 11.6/-9.35 ± 9.76 mmHg) in participants with type 2 diabetes, and two heart rate variability indices increased in the NGT group (standard deviation of R-R intervals: 36.1 ± 11.8/55.3 ± 41.3 ms; coefficient of R-R interval variation: 3.84 ± 1.21/5.17 ± 3.28) (all p<0.05). In contrast, BMI, clinical scores, nerve conduction studies, quantitative sensory testing, IENFD and the prevalence rates of diabetic sensorimotor polyneuropathy and cardiovascular autonomic neuropathy remained unchanged in both groups. In the entire cohort, correlations between the changes in two BRS indices and changes in [Formula: see text] over 12 weeks of HIIT (e.g. sequence analysis BRS: r = 0.528, p=0.017) were observed. CONCLUSIONS/INTERPRETATION In male overweight individuals with type 2 diabetes, BRS, resting heart rate and orthostatic blood pressure regulation improved in the absence of weight loss after 12 weeks of supervised HIIT. Since no favourable effects on somatic nerve function and structure were observed, cardiovascular autonomic function appears to be more amenable to this short-term intervention, possibly due to improved cardiorespiratory fitness.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München Neuherberg, Germany
| | - Maria Apostolopoulou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München Neuherberg, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München Neuherberg, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München Neuherberg, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München Neuherberg, Germany.
| |
Collapse
|
7
|
Saatmann N, Zaharia OP, Strassburger K, Pesta DH, Burkart V, Szendroedi J, Gerdes N, Kelm M, Roden M. Physical Fitness and Cardiovascular Risk Factors in Novel Diabetes Subgroups. J Clin Endocrinol Metab 2022; 107:1127-1139. [PMID: 34748634 PMCID: PMC8947222 DOI: 10.1210/clinem/dgab810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Physical inactivity promotes insulin resistance and increases the risk of diabetes and cardiovascular disease. Recently introduced clustering based on simple clinical measures identified diabetes subgroups (clusters) with different risks of diabetes-related comorbidities and complications. OBJECTIVE This study aims to determine differences in physical fitness and cardiovascular risk between diabetes subgroups and a glucose-tolerant control group (CON). We hypothesized that the severe insulin-resistant diabetes (SIRD) subgroup would be associated with lower physical fitness and increased cardiovascular risk. METHODS The physical fitness and cardiovascular risk of 746 participants with recent-onset diabetes (diabetes duration of < 12 months, aged 18-69 years) and 74 CONs of the German Diabetes Study (GDS), a prospective longitudinal cohort study, were analyzed. Main outcome measures included physical fitness (VO2max from spiroerogometry), endothelial function (flow- and nitroglycerin-mediated dilation), and cardiovascular risk scores (Framingham Risk Scores for Coronary Heart Disease [FRS-CHD] and Atherosclerotic CardioVascular Disease [ASCVD] risk score). RESULTS VO2max was lower in SIRD than in CON, severe autoimmune diabetes (SAID) (both P < .001), and mild age-related diabetes (MARD) (P < .01) subgroups, but not different compared to severe insulin-deficient diabetes (SIDD) (P = .98) and moderate obesity-related diabetes (MOD) subgroups (P = .07) after adjustment for age, sex, and body mass index. Endothelial function was similar among all groups, whereas SAID had lower FRS-CHD and ASCVD than SIRD, MOD, and MARD (all P < .001). CONCLUSION Despite comparable endothelial function across all groups, SIRD showed the lowest physical fitness. Of note, SAID had the lowest cardiovascular risk within the first year after diabetes diagnosis compared to the other diabetes subgroups.
Collapse
Affiliation(s)
- Nina Saatmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Düsseldorf, Germany
| | - Dominik Hans Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Norbert Gerdes
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Correspondence: Michael Roden, MD, Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, c/o Auf`m Hennekamp 65, D-40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
The impact of age, type 2 diabetes and hypertension on heart rate variability during rest and exercise at increasing levels of heat stress. Eur J Appl Physiol 2022; 122:1249-1259. [PMID: 35239038 DOI: 10.1007/s00421-022-04916-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE In older adults with type 2 diabetes (T2D) and hypertension (HTN), cardiac autonomic modulation is markedly attenuated during exercise-heat stress. However, the extent to which this impairment is evident under increasing levels of heat stress remains unknown. METHODS We examined heart rate variability (HRV), a surrogate of cardiac autonomic modulation, during incremental exercise-heat stress exposures in young (20-30 years) and middle-aged-to-older individuals (50-70 years) without and with T2D and HTN. Thirteen young and healthy (Young, n = 13) and 37 older men without (Older, n = 14) and with HTN (n = 13) or T2D (n = 10) performed 180-min treadmill walking at a fixed metabolic rate (~ 200 W/m2; ~ 3.5 METs) in a differing wet-bulb globe temperature (WBGT; 16 °C, 24 °C, 28 °C, and 32 °C). Electrocardiogram (ECG) and core temperature measurements were recorded throughout. Data were analysed using 5-min averaged epochs following 60-min exercise, which represented the last common timepoint across groups and conditions. RESULTS Ageing did not significantly reduce HRV during increasing exercise-heat stress (all p > 0.050). However, T2D and HTN modified HRV during exercise-heat stress such that Detrended Fluctuation Analysis (DFA) α1 (p = 0.012) and the cardiac sympathetic index (p = 0.037) were decreased compared to Older in all except the warmest WBGT condition (32 °C). CONCLUSION Our unique observations indicate that, relative to their younger counterparts, HRV in healthy older individuals is not perturbed during exercise heat-stress. However, relative to their age-matched healthy counterparts, HRV is reduced during exercise-heat stress in individuals with age-associated chronic conditions, indicative of cardiac autonomic dysfunction.
Collapse
|
9
|
Bönhof GJ, Sipola G, Strom A, Herder C, Strassburger K, Knebel B, Reule C, Wollmann JC, Icks A, Al-Hasani H, Roden M, Kuss O, Ziegler D. BOND study: a randomised double-blind, placebo-controlled trial over 12 months to assess the effects of benfotiamine on morphometric, neurophysiological and clinical measures in patients with type 2 diabetes with symptomatic polyneuropathy. BMJ Open 2022; 12:e057142. [PMID: 35115359 PMCID: PMC8814806 DOI: 10.1136/bmjopen-2021-057142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diabetic sensorimotor polyneuropathy (DSPN) affects approximately 30% of people with diabetes, while around half of cases are symptomatic. Currently, there are only few pathogenetically oriented pharmacotherapies for DSPN, one of which is benfotiamine, a prodrug of thiamine with a high bioavailability and favourable safety profile. While benfotiamine has shown positive effects in preclinical and short-term clinical studies, no long-term clinical trials are available to demonstrate disease-modifying effects on DSPN using a comprehensive set of disease-related endpoints. METHODS AND ANALYSIS The benfotiamine on morphometric, neurophysiological and clinical measures in patients with type 2 diabetes trial is a randomised double-blind, placebo-controlled parallel group monocentric phase II clinical trial to assess the effects of treatment with benfotiamine compared with placebo in participants with type 2 diabetes and mild to moderate symptomatic DSPN. Sixty participants will be 1:1 randomised to treatment with benfotiamine 300 mg or placebo two times a day over 12 months. The primary endpoint will be the change in corneal nerve fibre length assessed by corneal confocal microscopy (CCM) after 12 months of benfotiamine treatment compared with placebo. Secondary endpoints will include other CCM measures, skin biopsy and function indices, variables from somatic and autonomic nerve function tests, clinical examination and questionnaires, general health, health-related quality of life, cost, safety and blood tests. ETHICS AND DISSEMINATION The trial was approved by the competent authority and the local independent ethics committee. Trial results will be published in peer-reviewed journals, conference abstracts, and via online and print media. TRIAL REGISTRATION NUMBER DRKS00014832.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Gundega Sipola
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Andrea Icks
- Institute for Health Services Research and Health Economics, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Institute for Health Services Research and Health Economics, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf at Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Oliver Kuss
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
Bönhof GJ, Herder C, Ziegler D. Diagnostic Tools, Biomarkers, and Treatments in Diabetic polyneuropathy and Cardiovascular Autonomic Neuropathy. Curr Diabetes Rev 2022; 18:e120421192781. [PMID: 33845748 DOI: 10.2174/1573399817666210412123740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
The various manifestations of diabetic neuropathy, including distal symmetric sensorimotor polyneuropathy (DSPN) and cardiovascular autonomic neuropathy (CAN), are among the most prevalent chronic complications of diabetes. Major clinical complications of diabetic neuropathies, such as neuropathic pain, chronic foot ulcers, and orthostatic hypotension, are associated with considerable morbidity, increased mortality, and diminished quality of life. Despite the substantial individual and socioeconomic burden, the strategies to diagnose and treat diabetic neuropathies remain insufficient. This review provides an overview of the current clinical aspects and recent advances in exploring local and systemic biomarkers of both DSPN and CAN assessed in human studies (such as biomarkers of inflammation and oxidative stress) for better understanding of the underlying pathophysiology and for improving early detection. Current therapeutic options for DSPN are (I) causal treatment, including lifestyle modification, optimal glycemic control, and multifactorial risk intervention, (II) pharmacotherapy derived from pathogenetic concepts, and (III) analgesic treatment against neuropathic pain. Recent advances in each category are discussed, including non-pharmacological approaches, such as electrical stimulation. Finally, the current therapeutic options for cardiovascular autonomic complications are provided. These insights should contribute to a broader understanding of the various manifestations of diabetic neuropathies from both the research and clinical perspectives.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
11
|
Interplay between baroreflex sensitivity, obesity and related cardiometabolic risk factors (Review). Exp Ther Med 2021; 23:67. [PMID: 34934438 PMCID: PMC8649854 DOI: 10.3892/etm.2021.10990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022] Open
Abstract
The baroreflex represents a rapid negative feedback system implicated in blood pressure regulation, which aims to prevent blood pressure variations by regulating peripheral vascular tone and cardiac output. The aim of the present review was to highlight the association between baroreflex sensitivity (BRS) and obesity, including factors associated with obesity, such as metabolic syndrome, hypertension, cardiovascular disease and diabetes. For the present review, a literature search was conducted using the PubMed database until August 21, 2021. The searched terms included ‘baroreflex’, and other terms such as ‘sensitivity’, ‘obesity’, ‘metabolic syndrome’, ‘hypertension’, ‘diabetes’, ‘gender’, ‘aging’, ‘children’, ‘adolescents’, ‘physical activity’, ‘bariatric surgery’, ‘autonomous nervous system’ and ‘cardiometabolic risk factors’. Obesity and its related metabolic disorders can influence baroreflex functionality and decrease BRS, mostly by potentiating sympathetic nervous system activity. Obesity induces inflammation, which can increase sympathetic system activity and lead to a higher incidence of cardiovascular events. Obesity also represents an important risk factor for hypertension through numerous mechanisms; in this setting, dysfunctional baroreceptors are not able to protect against constantly elevated blood pressure. Furthermore, diabetes mellitus and oxidative stress result in deterioration of BRS, whereas aging is also generally related to reduced cardiovagal BRS. Differences in BRS have also been observed between men and women, and overall cardiovagal BRS in healthy women is less intense compared with that in men. BRS appears lower in children with obesity compared with that in children of a healthy weight. Notably, physical exercise can increase BRS in both hypertensive and normotensive subjects, and BRS can also be significantly improved following bariatric surgery and weight loss. In conclusion, obesity and its related metabolic disorders may influence baroreflex functionality and decrease BRS, and baroreceptors cannot protect against the constantly elevated blood pressure in obesity. However, following bariatric surgery and weight loss, BRS can be significantly improved. The present review summarizes the role of obesity and related metabolic risk factors in BRS, providing details on possible mechanisms and shedding light on their interplay leading to autonomic neuropathy.
Collapse
|
12
|
Grotle AK, Kaur J, Stone AJ, Fadel PJ. Neurovascular Dysregulation During Exercise in Type 2 Diabetes. Front Physiol 2021; 12:628840. [PMID: 33927637 PMCID: PMC8076798 DOI: 10.3389/fphys.2021.628840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that type 2 diabetes (T2D) may impair the ability to properly adjust the circulation during exercise with augmented blood pressure (BP) and an attenuated contracting skeletal muscle blood flow (BF) response being reported. This review provides a brief overview of the current understanding of these altered exercise responses in T2D and the potential underlying mechanisms, with an emphasis on the sympathetic nervous system and its regulation during exercise. The research presented support augmented sympathetic activation, heightened BP, reduced skeletal muscle BF, and impairment in the ability to attenuate sympathetically mediated vasoconstriction (i.e., functional sympatholysis) as potential drivers of neurovascular dysregulation during exercise in T2D. Furthermore, emerging evidence supporting a contribution of the exercise pressor reflex and central command is discussed along with proposed future directions for studies in this important area of research.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Paul J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
13
|
Bakkar NMZ, Dwaib HS, Fares S, Eid AH, Al-Dhaheri Y, El-Yazbi AF. Cardiac Autonomic Neuropathy: A Progressive Consequence of Chronic Low-Grade Inflammation in Type 2 Diabetes and Related Metabolic Disorders. Int J Mol Sci 2020; 21:E9005. [PMID: 33260799 PMCID: PMC7730941 DOI: 10.3390/ijms21239005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac autonomic neuropathy (CAN) is one of the earliest complications of type 2 diabetes (T2D), presenting a silent cause of cardiovascular morbidity and mortality. Recent research relates the pathogenesis of cardiovascular disease in T2D to an ensuing chronic, low-grade proinflammatory and pro-oxidative environment, being the hallmark of the metabolic syndrome. Metabolic inflammation emerges as adipose tissue inflammatory changes extending systemically, on the advent of hyperglycemia, to reach central regions of the brain. In light of changes in glucose and insulin homeostasis, dysbiosis or alteration of the gut microbiome (GM) emerges, further contributing to inflammatory processes through increased gut and blood-brain barrier permeability. Interestingly, studies reveal that the determinants of oxidative stress and inflammation progression exist at the crossroad of CAN manifestations, dictating their evolution along the natural course of T2D development. Indeed, sympathetic and parasympathetic deterioration was shown to correlate with markers of adipose, vascular, and systemic inflammation. Additionally, evidence points out that dysbiosis could promote a sympatho-excitatory state through differentially affecting the secretion of hormones and neuromodulators, such as norepinephrine, serotonin, and γ-aminobutyric acid, and acting along the renin-angiotensin-aldosterone axis. Emerging neuronal inflammation and concomitant autophagic defects in brainstem nuclei were described as possible underlying mechanisms of CAN in experimental models of metabolic syndrome and T2D. Drugs with anti-inflammatory characteristics provide potential avenues for targeting pathways involved in CAN initiation and progression. The aim of this review is to delineate the etiology of CAN in the context of a metabolic disorder characterized by elevated oxidative and inflammatory load.
Collapse
Affiliation(s)
- Nour-Mounira Z. Bakkar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
| | - Haneen S. Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
| | - Souha Fares
- Rafic Hariri School of Nursing, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|