1
|
Zheng H, López-Ferreras L, Krieger JP, Fasul S, Cea Salazar V, Valderrama Pena N, Skibicka KP, Rinaman L. A Cre-driver rat model for anatomical and functional analysis of glucagon (Gcg)-expressing cells in the brain and periphery. Mol Metab 2022; 66:101631. [PMID: 36368622 PMCID: PMC9677222 DOI: 10.1016/j.molmet.2022.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The glucagon gene (Gcg) encodes preproglucagon, which is cleaved to form glucagon-like peptide 1 (GLP1) and other mature signaling molecules implicated in metabolic functions. To date there are no transgenic rat models available for precise manipulation of GLP1-expressing cells in the brain and periphery. METHODS To visualize and manipulate Gcg-expressing cells in rats, CRISPR/Cas9 was used to express iCre under control of the Gcg promoter. Gcg-Cre rats were bred with tdTomato reporter rats to tag Gcg-expressing cells. Cre-dependent AAVs and RNAscope in situ hybridization were used to evaluate the specificity of iCre expression by GLP1 neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt), and by intestinal and pancreatic secretory cells. Food intake was assessed in heterozygous (Het) Gcg-Cre rats after chemogenetic stimulation of cNTS GLP1 neurons expressing an excitatory DREADD. RESULTS While genotype has minimal effect on body weight or composition in chow-fed Gcg-Cre rats, homozygous (Homo) rats have lower plasma glucose levels. In neonatal and adult Gcg-Cre/tdTom rats, reporter-labeled cells are present in the cNTS and IRt, and in additional brain regions (e.g., basolateral amygdala, piriform cortex) that lack detectable Gcg mRNA in adults but display transient developmental or persistently low Gcg expression. Compared to wildtype (WT) rats, hindbrain Gcg mRNA and GLP1 protein in brain and plasma are markedly reduced in Homo Gcg-Cre rats. Chemogenetic stimulation of cNTS GLP1 neurons reduced overnight chow intake in males but not females, the effect in males was blocked by antagonism of central GLP1 receptors, and hypophagia was enhanced when combined with a subthreshold dose of cholecystokinin-8 to stimulate gastrointestinal vagal afferents. CONCLUSIONS Gcg-Cre rats are a novel and valuable experimental tool for analyzing the development, anatomy, and function of Gcg-expressing cells in the brain and periphery. In addition, Homo Gcg-Cre rats are a unique model for assessing the role of Gcg-encoded proteins in glucose homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lorena López-Ferreras
- Institute of Neuroscience and Physiology, Department of Physiology/Metabolic Physiology, The Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Jean-Phillipe Krieger
- Institute of Neuroscience and Physiology, Department of Physiology/Metabolic Physiology, The Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Stephen Fasul
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Valentina Cea Salazar
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Natalia Valderrama Pena
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Karolina P. Skibicka
- Department of Nutritional Sciences, College of Health and Human Development, Huck Institute, The Pennsylvania State University, University Park, PA, USA,Institute of Neuroscience and Physiology, Department of Physiology/Metabolic Physiology, The Sahlgrenska Academy at University of Gothenburg, Sweden,Corresponding author. Department of Nutritional Sciences, Pennsylvania State University, 204 Chandlee Lab, University Park, PA 16802, USA
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA,Corresponding author. Department of Psychology, Program in Neuroscience, Florida State University, 1107 W. Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
2
|
Qiao L, Saget S, Lu C, Zang T, Dzyuba B, Hay WW, Shao J. The Essential Role of Pancreatic α-Cells in Maternal Metabolic Adaptation to Pregnancy. Diabetes 2022; 71:978-988. [PMID: 35147704 PMCID: PMC9044124 DOI: 10.2337/db21-0923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022]
Abstract
Pancreatic α-cells are important in maintaining metabolic homeostasis, but their role in regulating maternal metabolic adaptations to pregnancy has not been studied. The objective of this study was to determine whether pancreatic α-cells respond to pregnancy and their contribution to maternal metabolic adaptation. With use of C57BL/6 mice, the findings of our study showed that pregnancy induced a significant increase of α-cell mass by promoting α-cell proliferation that was associated with a transitory increase of maternal serum glucagon concentration in early pregnancy. Maternal pancreatic GLP-1 content also was significantly increased during pregnancy. Using the inducible Cre/loxp technique, we ablated the α-cells (α-null) before and during pregnancy while maintaining enteroendocrine L-cells and serum GLP-1 in the normal range. In contrast to an improved glucose tolerance test (GTT) before pregnancy, significantly impaired GTT and remarkably higher serum glucose concentrations in the fed state were observed in α-null dams. Glucagon receptor antagonism treatment, however, did not affect measures of maternal glucose metabolism, indicating a dispensable role of glucagon receptor signaling in maternal glucose homeostasis. However, the GLP-1 receptor agonist improved insulin production and glucose metabolism of α-null dams. Furthermore, GLP-1 receptor antagonist Exendin (9-39) attenuated pregnancy-enhanced insulin secretion and GLP-1 restored glucose-induced insulin secretion of cultured islets from α-null dams. Together, these results demonstrate that α-cells play an essential role in controlling maternal metabolic adaptation to pregnancy by enhancing insulin secretion.
Collapse
Affiliation(s)
- Liping Qiao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Sarah Saget
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Cindy Lu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Tianyi Zang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Brianna Dzyuba
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | | | - Jianhua Shao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Corresponding author: Jianhua Shao,
| |
Collapse
|
3
|
Cabrera O, Ficorilli J, Shaw J, Echeverri F, Schwede F, Chepurny OG, Leech CA, Holz GG. Intra-islet glucagon confers β-cell glucose competence for first-phase insulin secretion and favors GLP-1R stimulation by exogenous glucagon. J Biol Chem 2022; 298:101484. [PMID: 34896391 PMCID: PMC8789663 DOI: 10.1016/j.jbc.2021.101484] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
We report that intra-islet glucagon secreted from α-cells signals through β-cell glucagon and GLP-1 receptors (GcgR and GLP-1R), thereby conferring to rat islets their competence to exhibit first-phase glucose-stimulated insulin secretion (GSIS). Thus, in islets not treated with exogenous glucagon or GLP-1, first-phase GSIS is abolished by a GcgR antagonist (LY2786890) or a GLP-1R antagonist (Ex[9-39]). Mechanistically, glucose competence in response to intra-islet glucagon is conditional on β-cell cAMP signaling because it is blocked by the cAMP antagonist prodrug Rp-8-Br-cAMPS-pAB. In its role as a paracrine hormone, intra-islet glucagon binds with high affinity to the GcgR, while also exerting a "spillover" effect to bind with low affinity to the GLP-1R. This produces a right shift of the concentration-response relationship for the potentiation of GSIS by exogenous glucagon. Thus, 0.3 nM glucagon fails to potentiate GSIS, as expected if similar concentrations of intra-islet glucagon already occupy the GcgR. However, 10 to 30 nM glucagon effectively engages the β-cell GLP-1R to potentiate GSIS, an action blocked by Ex[9-39] but not LY2786890. Finally, we report that the action of intra-islet glucagon to support insulin secretion requires a step-wise increase of glucose concentration to trigger first-phase GSIS. It is not measurable when GSIS is stimulated by a gradient of increasing glucose concentrations, as occurs during an oral glucose tolerance test in vivo. Collectively, such findings are understandable if defective intra-islet glucagon action contributes to the characteristic loss of first-phase GSIS in an intravenous glucose tolerance test that is diagnostic of type 2 diabetes in the clinical setting.
Collapse
Affiliation(s)
- Over Cabrera
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA.
| | - James Ficorilli
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Janice Shaw
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Frank Schwede
- Biolog Life Science Institute GmbH & Co KG, Bremen, Germany
| | - Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - George G Holz
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA; Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
4
|
Wagner R, Eckstein SS, Fritsche L, Prystupa K, Hörber S, Häring HU, Birkenfeld AL, Peter A, Fritsche A, Heni M. Postprandial Dynamics of Proglucagon Cleavage Products and Their Relation to Metabolic Health. Front Endocrinol (Lausanne) 2022; 13:892677. [PMID: 35872982 PMCID: PMC9297683 DOI: 10.3389/fendo.2022.892677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION While oral glucose ingestion typically leads to a decrease in circulating glucagon levels, a substantial number of persons display stable or rising glucagon concentrations when assessed by radioimmunoassay (RIA). However, these assays show cross-reactivity to other proglucagon cleavage products. Recently, more specific assays became available, therefore we systematically assessed glucagon and other proglucagon cleavage products and their relation to metabolic health. RESEARCH DESIGN AND METHODS We used samples from 52 oral glucose tolerance tests (OGTT) that were randomly selected from persons with different categories of glucose tolerance in an extensively phenotyped study cohort. RESULTS Glucagon concentrations quantified with RIA were non-suppressed at 2 hours of the OGTT in 36% of the samples. Non-suppressors showed lower fasting glucagon levels compared to suppressors (p=0.011). Similar to RIA measurements, ELISA-derived fasting glucagon was lower in non-suppressors (p<0.001). Glucagon 1-61 as well as glicentin and GLP-1 kinetics were significantly different between suppressors and non-suppressors (p=0.004, p=0.002, p=0.008 respectively) with higher concentrations of all three hormones in non-suppressors. Levels of insulin, C-peptide, and free fatty acids were comparable between groups. Non-suppressors were leaner and had lower plasma glucose concentrations (p=0.03 and p=0.047, respectively). Despite comparable liver fat content and insulin sensitivity (p≥0.3), they had lower 2-hour post-challenge glucose (p=0.01). CONCLUSIONS Glucagon 1-61, glicentin and GLP-1 partially account for RIA-derived glucagon measurements due to cross-reactivity of the assay. However, this contribution is small, since the investigated proglucagon cleavage products contribute less than 10% to the variation in RIA measured glucagon. Altered glucagon levels and higher post-challenge incretins are associated with a healthier metabolic phenotype.
Collapse
Affiliation(s)
- Robert Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Sabine S. Eckstein
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Katsiaryna Prystupa
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas L. Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
- *Correspondence: Martin Heni,
| |
Collapse
|
5
|
Liu L, Dattaroy D, Simpson KF, Barella LF, Cui Y, Xiong Y, Jin J, König GM, Kostenis E, Roman JC, Kaestner KH, Doliba NM, Wess J. α-cell Gq signaling is critical for maintaining euglycemia. JCI Insight 2021; 6:152852. [PMID: 34752420 PMCID: PMC8783673 DOI: 10.1172/jci.insight.152852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Glucagon, a hormone released from pancreatic α cells, plays a key role in maintaining euglycemia. New insights into the signaling pathways that control glucagon secretion may stimulate the development of novel therapeutic agents. In this study, we investigated the potential regulation of α cell function by G proteins of the Gq family. The use of a chemogenetic strategy allowed us to selectively activate Gq signaling in mouse α cells in vitro and in vivo. Acute stimulation of α cell Gq signaling led to elevated plasma glucagon levels, accompanied by increased insulin release and improved glucose tolerance. Moreover, chronic activation of this pathway greatly improved glucose tolerance in obese mice. We also identified an endogenous Gq-coupled receptor (vasopressin 1b receptor; V1bR) that was enriched in mouse and human α cells. Agonist-induced activation of the V1bR strongly stimulated glucagon release in a Gq-dependent fashion. In vivo studies indicated that V1bR-mediated glucagon release played a key role in the counterregulatory hyperglucagonemia under hypoglycemic and glucopenic conditions. These data indicate that α cell Gq signaling represents an important regulator of glucagon secretion, resulting in multiple beneficial metabolic effects. Thus, drugs that target α cell–enriched Gq-coupled receptors may prove useful to restore euglycemia in various pathophysiological conditions.
Collapse
Affiliation(s)
- Liu Liu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| | - Diptadip Dattaroy
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| | - Katherine F Simpson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| | - Luiz F Barella
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| | - Yinghong Cui
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| | - Yan Xiong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Jefferey C Roman
- Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, Philadelphia, United States of America
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadeplhia, United States of America
| | - Nicolai M Doliba
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadeplhia, United States of America
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| |
Collapse
|
6
|
Marinho TDS, Martins FF, Cardoso LEDM, Aguila MB, Mandarim-de-Lacerda CA. Pancreatic islet cells disarray, apoptosis, and proliferation in obese mice. The role of Semaglutide treatment. Biochimie 2021; 193:126-136. [PMID: 34742857 DOI: 10.1016/j.biochi.2021.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022]
Abstract
There are significant injuries of pancreatic islets due to obesity and insulin resistance. Therefore, GLP-1 receptor agonists like Semaglutide might benefit the islet structural remodeling and its endocrine function in diet-induced obese mice. One-month-old male C57BL/6 mice were allotted into two dietary groups (n = 60/group) and fed for 16 weeks a control diet (C) or a high‒fat diet (HF). Then, for an additional four weeks, the main groups were resampled to include treatment (Semaglutide, S, 40 μg/kg), or paired feed with the treated group (PF), totaling six groups (n = 20/group): C, CS, CPF, HF, HFS, HFPF. Biochemistry, stereology, immunohistochemistry/immunofluorescence, confocal microscopy, and RT-qPCR were used in the study. The mouse model reproduced metabolism and bodily changes due to diet-induced obesity. Pancreatic islet hypertrophy was observed with alpha- and beta-cell remodeling, cell disarray, and apoptosis. Semaglutide increased islet cell proliferation and recovered islet size and alpha- and beta-cell masses. The changes include recovery of glucose and hormone levels, reduction of pro-inflammatory markers, improvement of pancreatic duodenal homeobox 1 (PDX-1), glucose transporter 2 (GLUT-2), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MAF-A), and peroxisome proliferator-activated receptors (PPAR) -gamma. In conclusion, damage to the pancreatic islet caused by insulin resistance and the attempt to adapt the islet of obese mice involved different pathways, especially the pro-inflammatory pathway, PDX1, and PPAR-alpha and gamma. Semaglutide showed beneficial effects on these pathways, reducing the lesion on the islet. However, the weight loss influence of Semaglutide was of little relevance in the pancreatic islet.
Collapse
Affiliation(s)
- Thatiany de Souza Marinho
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fabiane Ferreira Martins
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Eduardo de Macedo Cardoso
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Biomedical Center, Institute of Biology, Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases. the University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Wieland FC, Sthijns MMJPE, Geuens T, van Blitterswijk CA, LaPointe VLS. The Role of Pancreatic Alpha Cells and Endothelial Cells in the Reduction of Oxidative Stress in Pseudoislets. Front Bioeng Biotechnol 2021; 9:729057. [PMID: 34568302 PMCID: PMC8458707 DOI: 10.3389/fbioe.2021.729057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
Pancreatic beta cells have inadequate levels of antioxidant enzymes, and the damage induced by oxidative stress poses a challenge for their use in a therapy for patients with type 1 diabetes. It is known that the interaction of the pancreatic endocrine cells with support cells can improve their survival and lead to less vulnerability to oxidative stress. Here we investigated alpha (alpha TC-1), beta (INS1E) and endothelial (HUVEC) cells assembled into aggregates known as pseudoislets as a model of the pancreatic islets of Langerhans. We hypothesised that the coculture of alpha, beta and endothelial cells would be protective against oxidative stress. First, we showed that adding endothelial cells decreased the percentage of oxidative stress-positive cells. We then asked if the number of endothelial cells or the size (number of cells) of the pseudoislet could increase the protection against oxidative stress. However, no additional benefit was observed by those changes. On the other hand, we identified a potential supportive effect of the alpha cells in reducing oxidative stress in beta and endothelial cells. We were able to link this to the incretin glucagon-like peptide-1 (GLP-1) by showing that the absence of alpha cells in the pseudoislet caused increased oxidative stress, but the addition of GLP-1 could restore this. Together, these results provide important insights into the roles of alpha and endothelial cells in protecting against oxidative stress.
Collapse
Affiliation(s)
- Fredrik C Wieland
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Mireille M J P E Sthijns
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.,Centre for Healthy Eating and Food Innovation, Maastricht University, Maastricht, Netherlands
| | - Thomas Geuens
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Clemens A van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
8
|
Morettini M, Burattini L, Göbl C, Pacini G, Ahrén B, Tura A. Mathematical Model of Glucagon Kinetics for the Assessment of Insulin-Mediated Glucagon Inhibition During an Oral Glucose Tolerance Test. Front Endocrinol (Lausanne) 2021; 12:611147. [PMID: 33828527 PMCID: PMC8020816 DOI: 10.3389/fendo.2021.611147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/26/2021] [Indexed: 01/29/2023] Open
Abstract
Glucagon is secreted from the pancreatic alpha cells and plays an important role in the maintenance of glucose homeostasis, by interacting with insulin. The plasma glucose levels determine whether glucagon secretion or insulin secretion is activated or inhibited. Despite its relevance, some aspects of glucagon secretion and kinetics remain unclear. To gain insight into this, we aimed to develop a mathematical model of the glucagon kinetics during an oral glucose tolerance test, which is sufficiently simple to be used in the clinical practice. The proposed model included two first-order differential equations -one describing glucagon and the other describing C-peptide in a compartment remote from plasma - and yielded a parameter of possible clinical relevance (i.e., SGLUCA(t), glucagon-inhibition sensitivity to glucose-induced insulin secretion). Model was validated on mean glucagon data derived from the scientific literature, yielding values for SGLUCA(t) ranging from -15.03 to 2.75 (ng of glucagon·nmol of C-peptide-1). A further validation on a total of 100 virtual subjects provided reliable results (mean residuals between -1.5 and 1.5 ng·L-1) and a negative significant linear correlation (r = -0.74, p < 0.0001, 95% CI: -0.82 - -0.64) between SGLUCA(t) and the ratio between the areas under the curve of suprabasal remote C-peptide and glucagon. Model reliability was also proven by the ability to capture different patterns in glucagon kinetics. In conclusion, the proposed model reliably reproduces glucagon kinetics and is characterized by sufficient simplicity to be possibly used in the clinical practice, for the estimation in the single individual of some glucagon-related parameters.
Collapse
Affiliation(s)
- Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
- *Correspondence: Micaela Morettini,
| | - Laura Burattini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Christian Göbl
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Giovanni Pacini
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| | - Bo Ahrén
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Andrea Tura
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|