1
|
Grasset E, Briand F, Virgilio N, Schön C, Wilhelm M, Cudennec B, Ravallec R, Aboubacar H, Vleminckx S, Prawitt J, Sulpice T, Gevaert E. A Specific Collagen Hydrolysate Improves Postprandial Glucose Tolerance in Normoglycemic and Prediabetic Mice and in a First Proof of Concept Study in Healthy, Normoglycemic and Prediabetic Humans. Food Sci Nutr 2024; 12:9607-9620. [PMID: 39619994 PMCID: PMC11606891 DOI: 10.1002/fsn3.4538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 01/03/2025] Open
Abstract
In response to nutrients, intestinal L- and K-cells naturally secrete glucagon-like peptide 1 (GLP-1). GLP-1 regulates postprandial blood glucose by increasing insulin secretion, slowing down gastric emptying and inducing satiety. A selection of specifically developed collagen hydrolysates was screened for their ability to enhance natural GLP-1 production in vitro. The best performing hydrolysate, H80 (Nextida GC), was orally administered at different doses to lean, normoglycemic mice and overweight, prediabetic mice. Lean mice were acutely challenged 45 min before an oral glucose load. While daily supplemented for 6 weeks, prediabetic mice were acutely challenged at day 21 and 34. Oral glucose tolerance, plasma insulin and GLP-1 levels were assessed, and a gastric emptying assay performed in prediabetic mice. H80 significantly lowered the blood glucose response in lean and prediabetic mice, at a 4 g/kg dose (-25% and -36%, respectively), compared to vehicle. In chronically supplemented, prediabetic mice, acute H80 administration slowed down gastric emptying (-60%) after 21 days and increased plasma insulin (+166%) after 35 days of supplementation. H80 increased plasma active GLP-1 in lean (+217%) and prediabetic (+860%) mice. Overall, the data indicate that the specific collagen hydrolysate, H80, has significant GLP-1-mediated effects on oral glucose tolerance in lean and prediabetic mice. Furthermore, effects on postprandial glucose tolerance were evaluated in a small, human, proof of concept study. H80 reduced the postprandial glucose response at a 5 g dose in healthy, normoglycemic and prediabetic participants. Oral supplementation with H80 might thus be a promising strategy to maintain normal glucose tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Manfred Wilhelm
- Department of Mathematics, Natural and Economic SciencesUlm University of Applied SciencesUlmGermany
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Shibib L, Al-Qaisi M, Guess N, Miras AD, Greenwald SE, Pelling M, Ahmed A. Manipulation of Post-Prandial Hyperglycaemia in Type 2 Diabetes: An Update for Practitioners. Diabetes Metab Syndr Obes 2024; 17:3111-3130. [PMID: 39206417 PMCID: PMC11350065 DOI: 10.2147/dmso.s458894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
This review paper explores post-prandial glycemia in type 2 diabetes. Post-prandial glycemia is defined as the period of blood glucose excursion from immediately after the ingestion of food or drink to 4 to 6 hours after the end of the meal. Post-prandial hyperglycemia is an independent risk factor for cardiovascular disease with glucose "excursions" being more strongly associated with markers of oxidative stress than the fasting or pre-prandial glucose level. High blood glucose is a major promoter of enhanced free radical production and is associated with the onset and progression of type 2 diabetes. Oxidative stress impairs insulin action creating a vicious cycle where repeated post-prandial glucose spikes are key drivers in the pathogenesis of the vascular complications of type 2 diabetes, both microvascular and macrovascular. Some authors suggest post-prandial hyperglycemia is the major cause of death in type 2 diabetes. Proper management of post-prandial hyperglycemia could yield up to a 35% cut in overall cardiovascular events, and a 64% cut in myocardial infarction. The benefits of managing post-prandial hyperglycemia are similar in magnitude to those seen in type 2 diabetes patients receiving secondary prevention with statins - prevention which today is regarded as fundamental by all practitioners. Given all the evidence surrounding the impact of post-prandial glycemia on overall outcome, it is imperative that any considered strategy for the management of type 2 diabetes should include optimum dietary, pharma, and lifestyle interventions that address glucose excursion. Achieving a low post-prandial glucose response is key to prevention and progression of type 2 diabetes and cardiometabolic diseases. Further, such therapeutic interventions should be sustainable and must benefit patients in the short and long term with the minimum of intrusion and side effects. This paper reviews the current literature around dietary manipulation of post-prandial hyperglycemia, including novel approaches. A great deal of further work is required to optimize and standardize the dietary management of post-prandial glycemia in type 2 diabetes, including consideration of novel approaches that show great promise.
Collapse
Affiliation(s)
- Lina Shibib
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mo Al-Qaisi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nicola Guess
- Nuffield Department of Primary Care Health Sciences, Oxford University, Oxford, UK
| | | | - Steve E Greenwald
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marc Pelling
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ahmed Ahmed
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
3
|
Xiang C, Sun Y, Luo Y, Xie C, Huang W, Jones KL, Horowitz M, Sun Z, Rayner CK, Ma J, Wu T. Gastric emptying is slower in women than men with type 2 diabetes and impacts on postprandial glycaemia. Diabetes Obes Metab 2024; 26:3119-3127. [PMID: 38698649 DOI: 10.1111/dom.15635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
AIM To evaluate sex differences in gastric emptying and the glycaemic response to a glucose drink and a high carbohydrate meal in type 2 diabetes (T2D). METHODS In cohort 1, 70 newly diagnosed, treatment-naïve Chinese patients with T2D (44 men) recruited from a diabetes outpatient clinic ingested a 75-g glucose drink containing 150 mg 13C-acetate. In cohort 2, 101 Australian patients with T2D (67 male) recruited from the community, managed by diet and/or metformin monotherapy, ingested a semi-solid mashed potato meal, labelled with 100 μl 13C-octanoic acid. Breath samples were collected over 3 and 4 h, respectively, for assessment of gastric emptying, and venous blood was sampled for evaluation of glycaemia (with and without adjustment for each participant's estimated total blood volume). RESULTS Gastric emptying was slower in female than male subjects in both cohorts (both p < .01). Multiple linear regression analyses revealed that gastric emptying was independently associated with sex (both p < .05). Without adjustment for blood volume, the glycaemic responses to oral glucose and the mixed meal were greater in female subjects (both p < .001). However, after adjustment for blood volume, the glycaemic responses were greater in men (both p < .05). CONCLUSIONS Gastric emptying is slower in women than men with T2D, associated with a reduced blood volume-adjusted glycaemic response to oral glucose and a mixed meal in women. These observations highlight the sex difference in postprandial glucose handling, which is relevant to the personalized management of postprandial glycaemia in T2D.
Collapse
Affiliation(s)
- Chunjie Xiang
- Institute of Diabetes, Southeast University, Nanjing, China
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Yixuan Sun
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Yong Luo
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Weikun Huang
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Zilin Sun
- Institute of Diabetes, Southeast University, Nanjing, China
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tongzhi Wu
- Institute of Diabetes, Southeast University, Nanjing, China
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Wang D, Liao X, Zhang H, Wang Y, Zhang M, Ren F, Ma X, Sheng J, Jin P, Yu D, Xie H, Wang X. A syrup containing L-arabinose and D-xylose appears superior to PEG-4000 as a bowel cleansing agent. AMB Express 2024; 14:63. [PMID: 38824272 PMCID: PMC11144180 DOI: 10.1186/s13568-024-01715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 06/03/2024] Open
Abstract
Adequate bowel cleansing is crucial for endoscopic diagnosis and treatment, and the recovery of gut microbiota after intestinal cleansing is also important. A hypertonic syrup predominantly comprising L-arabinose and D-xylose (20% xylo-oligosaccharides) can be extracted from the hemicellulose of corn husks and cobs. L-Arabinose and xylo-oligosaccharides have been reported to relieve constipation and improve the gut microbial environment. This study evaluated the bowel cleansing effect of the aforementioned syrup and its influence on the organism and intestinal microbiota after cleansing in comparison with polyethylene glycol-4000 (PEG-4000) in mice. Bowel cleansing was performed using syrup or PEG-4000 in C57BL/6J mice, and the effect of intestinal preparation and its influence on serum electrolytes and gut microbiota after bowel cleansing were evaluated. The volume of intestinal residual feces in the syrup group was significantly lower than that in the PEG-4000 group. Additionally, syrup disturbed serum electrolytes more mildly than PEG-4000. Alpha diversity in the gut microbiota was significantly higher in the syrup group than in the PEG-4000 group on the first day after bowel cleansing. However, no difference in beta diversity was observed between the two groups. Syrup increased the abundance of Bifidobacteria and Christensenella and decreased the abundance of Akkermansia in comparison with PEG-4000 on the first day after bowel cleansing. Thus, this syrup has potential clinical use as a bowel cleansing agent given the above effects, its benefits and safety, and better taste and acceptability.
Collapse
Affiliation(s)
- Dezhi Wang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, #5 Nanmencang, Dongcheng District, Beijing, 100700, China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xingchen Liao
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, #5 Nanmencang, Dongcheng District, Beijing, 100700, China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Heng Zhang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, #5 Nanmencang, Dongcheng District, Beijing, 100700, China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yilin Wang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, #5 Nanmencang, Dongcheng District, Beijing, 100700, China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mingjie Zhang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, #5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xianzong Ma
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, #5 Nanmencang, Dongcheng District, Beijing, 100700, China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, #5 Nanmencang, Dongcheng District, Beijing, 100700, China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Jin
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, #5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Dongliang Yu
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, #5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Hui Xie
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, #5 Nanmencang, Dongcheng District, Beijing, 100700, China.
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, #5 Nanmencang, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
5
|
Hu J, Wu Y, Kang L, Liu Y, Ye H, Wang R, Zhao J, Zhang G, Li X, Wang J, Han D. Dietary D-xylose promotes intestinal health by inducing phage production in Escherichia coli. NPJ Biofilms Microbiomes 2023; 9:79. [PMID: 37821428 PMCID: PMC10567762 DOI: 10.1038/s41522-023-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Elimination of specific enteropathogenic microorganisms is critical to gut health. However, the complexity of the gut community makes it challenging to target specific bacterial organisms. Accumulating evidence suggests that various foods can change the abundance of intestinal bacteria by modulating prophage induction. By using pathogenic Escherichia coli (E. coli) ATCC 25922 as a model in this research, we explored the potential of dietary modulation of prophage induction and subsequent bacterial survival. Among a panel of sugars tested in vitro, D-xylose was shown to efficiently induce prophages in E. coli ATCC 25922, which depends, in part, upon the production of D-lactic acid. In an enteric mouse model, prophage induction was found to be further enhanced in response to propionic acid. Dietary D-xylose increased the proportion of Clostridia which converted D-lactic acid to propionic acid. Intestinal propionic acid levels were diminished, following either oral gavage with the dehydrogenase gene (ldhA)-deficient E. coli ATCC 25922 or depletion of intestinal Clostridia by administration of streptomycin. D-Xylose metabolism and exposure to propionic acid triggered E. coli ATCC 25922 SOS response that promoted prophage induction. E. coli ATCC 25922 mutant of RecA, a key component of SOS system, exhibited decreased phage production. These findings suggest the potential of using dietary components that can induce prophages as antimicrobial alternatives for disease control and prevention by targeted elimination of harmful gut bacteria.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yifan Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Luyuan Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Ye
- Department of Animal Sciences, Wageningen University & Research, NL-6700, AH, Wageningen, the Netherlands
| | - Ran Wang
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Xie C, Huang W, Sun Y, Xiang C, Trahair L, Jones KL, Horowitz M, Rayner CK, Wu T. Disparities in the Glycemic and Incretin Responses to Intraduodenal Glucose Infusion Between Healthy Young Men and Women. J Clin Endocrinol Metab 2023; 108:e712-e719. [PMID: 36987568 PMCID: PMC10438868 DOI: 10.1210/clinem/dgad176] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
CONTEXT Premenopausal women are at a lower risk of type 2 diabetes (T2D) compared to men, but the underlying mechanism(s) remain elusive. The secretion of the incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), from the small intestine is a major determinant of glucose homeostasis and may be influenced by sex. OBJECTIVES This study compared blood glucose and plasma insulin and incretin responses to intraduodenal glucose infusions in healthy young males and females. DESIGN In Study 1, 9 women and 20 men received an intraduodenal glucose infusion at 2 kcal/min for 60 minutes. In Study 2, 10 women and 26 men received an intraduodenal glucose at 3 kcal/min for 60 minutes. Venous blood was sampled every 15 minutes for measurements of blood glucose and plasma insulin, GLP-1 and GIP. RESULTS In response to intraduodenal glucose at 2 kcal/min, the incremental area under the curve between t = 0-60 minutes (iAUC0-60min) for blood glucose and plasma GIP did not differ between the 2 groups. However, iAUC0-60min for plasma GLP-1 (P = 0.016) and insulin (P = 0.011) were ∼2-fold higher in women than men. In response to intraduodenal glucose at 3 kcal/min, iAUC0-60min for blood glucose, plasma GIP, and insulin did not differ between women and men, but GLP-1 iAUC0-60min was 2.5-fold higher in women (P = 0.012). CONCLUSION Healthy young women exhibit comparable GIP but a markedly greater GLP-1 response to intraduodenal glucose than men. This disparity warrants further investigations to delineate the underlying mechanisms and may be of relevance to the reduced risk of diabetes in premenopausal women when compared to men.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Weikun Huang
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
| | - Yixuan Sun
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
| | - Chunjie Xiang
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Laurence Trahair
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
7
|
Knutsson L, Xu X, van Zijl PCM, Chan KWY. Imaging of sugar-based contrast agents using their hydroxyl proton exchange properties. NMR IN BIOMEDICINE 2023; 36:e4784. [PMID: 35665547 PMCID: PMC9719573 DOI: 10.1002/nbm.4784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 05/13/2023]
Abstract
The ability of CEST MRI to detect the presence of millimolar concentrations of non-metallic contrast agents has made it possible to study, non-invasively, important biological molecules such as proteins and sugars, as well as drugs already approved for clinical use. Here, we review efforts to use sugar and sugar polymers as exogenous contrast agents, which is possible based on the exchange of their hydroxyl protons with water protons. While this capability has raised early enthusiasm, for instance about the possibility of imaging D-glucose metabolism with MRI in a way analogous to PET, experience over the past decade has shown that this is not trivial. On the other hand, many studies have confirmed the possibility of imaging a large variety of sugar analogues, each with potentially interesting applications to assess tissue physiology. Some promising applications are the study of (i) sugar delivery and transport to assess blood-brain barrier integrity and (ii) sugar uptake by cells for their characterization (e.g., cancer versus healthy), as well as (iii) clearance of sugars to assess tissue drainage-for instance, through the glymphatic system. To judge these opportunities and their challenges, especially in the clinic, it is necessary to understand the technical aspects of detecting the presence of rapidly exchanging protons through the water signal in MRI, especially as a function of magnetic field strength. We expect that novel approaches in terms of MRI detection (both saturation transfer and relaxation based), MRI data analysis, and sugar design will push this young field forward in the next decade.
Collapse
Affiliation(s)
- Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter CM van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Kannie WY Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong
- City University of Hong Kong Shenzhen Institute, Shenzhen, China
| |
Collapse
|
8
|
Xie C, Jalleh RJ, Watson LE, Huang W, Sun Y, Jones KL, Horowitz M, Rayner CK, Wu T. Determinants of blood glucose concentrations following a high carbohydrate meal in type 2 diabetes: A multiple linear regression analysis. Diabetes Res Clin Pract 2023; 198:110606. [PMID: 36893852 DOI: 10.1016/j.diabres.2023.110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
This study showed that in relatively well-controlled type 2 diabetes blood glucose levels after a high carbohydrate meal were associated positively with fasting blood glucose, but also positively with gastric emptying in the first hour and negatively with the increments in plasma glucagon-like peptide-1 (GLP-1) in the later postprandial phase.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Ryan J Jalleh
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Linda E Watson
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Weikun Huang
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Yixuan Sun
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
9
|
Cheudjeu A. The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites. Molecules 2022; 27:molecules27061947. [PMID: 35335311 PMCID: PMC8954261 DOI: 10.3390/molecules27061947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
This article discusses the importance of D-xylose for fighting viruses (especially SARS-CoV-2) that use core proteins as receptors at the cell surface, by providing additional supporting facts that these viruses probably bind at HS/CS attachment sites (i.e., the hydroxyl groups of Ser/Thr residues of the core proteins intended to receive the D-xylose molecules to initiate the HS/CS chains). Essentially, the additional supporting facts, are: some anterior studies on the binding sites of exogenous heparin and soluble HS on the core proteins, the inhibition of the viral entry by pre-incubation of cells with heparin, and additionally, corroborating studies about the mechanism leading to type 2 diabetes during viral infection. We then discuss the mechanism by which serine protease inhibitors inhibit SARS-CoV-2 entry. The biosynthesis of heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (Hep) is initiated not only by D-xylose derived from uridine diphosphate (UDP)-xylose, but also bioactive D-xylose molecules, even in situations where cells were previously treated with GAG inhibitors. This property of D-xylose shown by previous anterior studies helped in the explanation of the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This explanation is completed here by a preliminary estimation of xyloside GAGs (HS/CS/DS/Hep) in the body, and with other previous studies helping to corroborate the mechanism by which the D-xylose exhibits its antiglycaemic properties and the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This paper also discusses the confirmatory studies of regarding the correlation between D-xylose and COVID-19 severity.
Collapse
|
10
|
Wölnerhanssen BK, Drewe J, Verbeure W, le Roux CW, Dellatorre‐Teixeira L, Rehfeld JF, Holst JJ, Hartmann B, Tack J, Peterli R, Beglinger C, Meyer‐Gerspach AC. Gastric emptying of solutions containing the natural sweetener erythritol and effects on gut hormone secretion in humans: A pilot dose-ranging study. Diabetes Obes Metab 2021; 23:1311-1321. [PMID: 33565706 PMCID: PMC8247993 DOI: 10.1111/dom.14342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/25/2022]
Abstract
AIM To determine whether a dose-dependent effect in the stimulation of gut hormone release (plasma cholecystokinin [CCK], active glucagon-like peptide-1 [aGLP-1] and peptide tyrosine tyrosine [PYY]) is found for the natural sweetener erythritol. MATERIALS AND METHODS Twelve healthy, lean volunteers received solutions with 10, 25 or 50 g erythritol, or tap water enriched with 13 C-sodium acetate on four study days via a nasogastric tube in this randomized (active treatments), placebo-controlled, double-blind, cross-over trial. Blood samples and breath samples (13 C-sodium acetate method for measurement of gastric emptying [GE]) were taken at regular intervals, and sensations of appetite and gastrointestinal symptoms were rated. RESULTS We found (a) a dose-dependent stimulation of CCK, aGLP-1 and PYY, and slowing of GE, (b) no effect on blood glucose, insulin, motilin, glucagon or glucose-dependent insulinotropic polypeptide, (c) no effect on blood lipids and uric acid, and (d) no abdominal pain, nausea or vomiting. CONCLUSIONS Solutions with 10 and 50 g of erythritol stimulated gut hormone release. Emptying of erythritol-containing solutions from the stomach was slower compared with placebo. There was no effect on plasma glucose, insulin, glucagon, blood lipids or uric acid. All doses were well tolerated.
Collapse
Affiliation(s)
| | - Jürgen Drewe
- Department of Clinical Pharmacology and ToxicologyUniversity Hospital of BaselBaselSwitzerland
| | - Wout Verbeure
- Translational Research Center for Gastrointestinal DisordersCatholic University of LeuvenLeuvenBelgium
| | - Carel W. le Roux
- Diabetes Complications Research CentreConway Institute University College DublinDublinIreland
| | | | - Jens F. Rehfeld
- Department of Clinical Biochemistry, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Jens J. Holst
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jan Tack
- Translational Research Center for Gastrointestinal DisordersCatholic University of LeuvenLeuvenBelgium
| | - Ralph Peterli
- Clarunis, Department of Surgery, St. ClaraspitalBaselSwitzerland
| | - Christoph Beglinger
- St. Clara Research Ltd at St. ClaraspitalBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Anne C. Meyer‐Gerspach
- St. Clara Research Ltd at St. ClaraspitalBaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
11
|
Ohbayashi K, Oyama Y, Yamaguchi C, Asano T, Yada T, Iwasaki Y. Gastrointestinal Distension by Pectin-Containing Carbonated Solution Suppresses Food Intake and Enhances Glucose Tolerance via GLP-1 Secretion and Vagal Afferent Activation. Front Endocrinol (Lausanne) 2021; 12:676869. [PMID: 34168616 PMCID: PMC8217665 DOI: 10.3389/fendo.2021.676869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Diet-induced gastrointestinal distension is known to evoke satiation and suppress postprandial hyperglycemia; however, the underlying mechanisms remain poorly understood. This study explored how gastrointestinal distension regulates energy homeostasis by using inflating stomach formulation (ISF), the carbonated solution containing pectin that forms stable gel bubbles under acidic condition in the stomach. Here we show that, in mice, oral administration of ISF induced distension of stomach and proximal intestine temporarily, stimulated intestinal glucagon-like peptide-1 (GLP-1) secretion, and activated vagal afferents and brainstem. ISF suppressed food intake and improved glucose tolerance via enhancing insulin sensitivity. The anorexigenic effect was partially inhibited, and the beneficial glycemic effect was blunted by pharmacological GLP-1 receptor blockade and chemical denervation of capsaicin-sensitive sensory nerves. In HFD-fed obese mice showing arrhythmic feeding and obesity, subchronic ISF treatment at the light period (LP) onset for 10 days attenuated LP hyperphagia and visceral fat accumulation. These results demonstrate that gastrointestinal distension by ISF stimulates GLP-1 secretion and the vagal afferent signaling to the brain, thereby regulating feeding behavior and glucose tolerance. Furthermore, subchronic ISF treatment ameliorates HFD-induced visceral obesity. We propose the diet that induces gastrointestinal distension as a novel treatment of hyperphagic obesity and diabetes.
Collapse
Affiliation(s)
- Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yukiko Oyama
- Self-Medication R&D Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Chiharu Yamaguchi
- Self-Medication R&D Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Toshiki Asano
- Self-Medication R&D Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Kansai Electric Power Medical Research Institute, Kobe, Japan
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- *Correspondence: Yusaku Iwasaki,
| |
Collapse
|
12
|
Wu T, Rayner CK, Jones KL, Xie C, Marathe C, Horowitz M. Role of intestinal glucose absorption in glucose tolerance. Curr Opin Pharmacol 2020; 55:116-124. [PMID: 33227625 DOI: 10.1016/j.coph.2020.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Intestinal glucose absorption is integral to postprandial glucose homeostasis. Glucose absorption is dependent on a number of factors, including the exposure of carbohydrate to the mucosa of the upper gastrointestinal tract (determined particularly by the rates of gastric emptying and small intestinal transit), the digestion of complex carbohydrate into monosaccharides, and glucose sensing and transport by the intestinal mucosa. The absorption of glucose in the small intestine is not only a determinant of the appearance of exogenous glucose in the peripheral circulation, but is also coupled to the release of gastrointestinal hormones that in turn influence postprandial glucose metabolism through modulating gastrointestinal motor function, insulin and glucagon secretion, and subsequent energy intake. This review describes the physiology and pathophysiology of intestinal glucose absorption in health and type 2 diabetes, including its relevance to glucose tolerance and the management of postprandial hyperglycaemia.
Collapse
Affiliation(s)
- Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia; Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China.
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Chinmay Marathe
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
13
|
Wang J, Fukuda M, Chung JJ, Wang P, Jin T. Chemical exchange sensitive MRI of glucose uptake using xylose as a contrast agent. Magn Reson Med 2020; 85:1953-1961. [PMID: 33107108 DOI: 10.1002/mrm.28557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Glucose and its analogs can be detected by CEST and chemical exchange spin-lock (CESL) MRI techniques, but sensitivity is still a bottleneck for human applications. Here, CESL and CEST sensitivity and the effect of injection on baseline physiology were evaluated for a glucose analog, xylose. METHODS The CEST and CESL sensitivity were evaluated at 9.4 T in phantoms and by in vivo rat experiments with 0.5 and 1 g/kg xylose injections. Arterial blood glucose level was sampled before and after 1 g/kg xylose injection. The effect of injection on baseline neuronal activity was measured by electrophysiology data during injections of saline, xylose, and 2-deoxy-D-glucose. RESULTS In phantoms, xylose shows similar chemical exchange sensitivity and pH-dependence with that of glucose. In rat experiments with a bolus injection, CESL shows higher sensitivity in the detection of xylose than CEST, and the sensitivity of xylose is much higher than glucose. Injection of xylose does not significantly affect blood glucose level and baseline neural activity for 1-g/kg and 0.6-g/kg doses, respectively. CONCLUSION Due to its relatively high sensitivity and safety, xylose is a promising contrast agent for the study of glucose uptake.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julius Juhyun Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ping Wang
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
1-Kestose supplementation mitigates the progressive deterioration of glucose metabolism in type 2 diabetes OLETF rats. Sci Rep 2020; 10:15674. [PMID: 32973311 PMCID: PMC7515885 DOI: 10.1038/s41598-020-72773-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The fructooligosaccharide 1-kestose cannot be hydrolyzed by gastrointestinal enzymes, and is instead fermented by the gut microbiota. Previous studies suggest that 1-kestose promotes increases in butyrate concentrations in vitro and in the ceca of rats. Low levels of butyrate-producing microbiota are frequently observed in the gut of patients and experimental animals with type 2 diabetes (T2D). However, little is known about the role of 1-kestose in increasing the butyrate-producing microbiota and improving the metabolic conditions in type 2 diabetic animals. Here, we demonstrate that supplementation with 1-kestose suppressed the development of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, possibly through improved glucose tolerance. We showed that the cecal contents of rats fed 1-kestose were high in butyrate and harbored a higher proportion of the butyrate-producing genus Anaerostipes compared to rats fed a control diet. These findings illustrate how 1-kestose modifications to the gut microbiota impact glucose metabolism of T2D, and provide a potential preventative strategy to control glucose metabolism associated with dysregulated insulin secretion.
Collapse
|
15
|
Enteroendocrine Hormone Secretion and Metabolic Control: Importance of the Region of the Gut Stimulation. Pharmaceutics 2020; 12:pharmaceutics12090790. [PMID: 32825608 PMCID: PMC7559385 DOI: 10.3390/pharmaceutics12090790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is now widely appreciated that gastrointestinal function is central to the regulation of metabolic homeostasis. Following meal ingestion, the delivery of nutrients from the stomach into the small intestine (i.e., gastric emptying) is tightly controlled to optimise their subsequent digestion and absorption. The complex interaction of intraluminal nutrients (and other bioactive compounds, such as bile acids) with the small and large intestine induces the release of an array of gastrointestinal hormones from specialised enteroendocrine cells (EECs) distributed in various regions of the gut, which in turn to regulate gastric emptying, appetite and postprandial glucose metabolism. Stimulation of gastrointestinal hormone secretion, therefore, represents a promising strategy for the management of metabolic disorders, particularly obesity and type 2 diabetes mellitus (T2DM). That EECs are distributed distinctively between the proximal and distal gut suggests that the region of the gut exposed to intraluminal stimuli is of major relevance to the secretion profile of gastrointestinal hormones and associated metabolic responses. This review discusses the process of intestinal digestion and absorption and their impacts on the release of gastrointestinal hormones and the regulation of postprandial metabolism, with an emphasis on the differences between the proximal and distal gut, and implications for the management of obesity and T2DM.
Collapse
|
16
|
Xie C, Wang X, Jones KL, Horowitz M, Sun Z, Little TJ, Rayner CK, Wu T. Role of endogenous glucagon-like peptide-1 enhanced by vildagliptin in the glycaemic and energy expenditure responses to intraduodenal fat infusion in type 2 diabetes. Diabetes Obes Metab 2020; 22:383-392. [PMID: 31693275 DOI: 10.1111/dom.13906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
AIM To evaluate the effects of the dipeptidyl peptidase-4 (DPP-4) inhibitor vildagliptin on glycaemic and energy expenditure responses during intraduodenal fat infusion, as well as the contribution of endogenous glucagon-like peptide-1 (GLP-1) signalling, in people with type 2 diabetes (T2DM). METHODS A total of 15 people with T2DM managed by diet and/or metformin (glycated haemoglobin 49.3 ± 2.1 mmol/mol) were studied on three occasions (two with vildagliptin and one with placebo) in a double-blind, randomized, crossover fashion. On each day, vildagliptin 50 mg or placebo was given orally, followed by intravenous exendin (9-39) 600 pmol/kg/min, on one of the two vildagliptin treatment days, or 0.9% saline over 180 minutes. At between 0 and 120 minutes, a fat emulsion was infused intraduodenally at 2 kcal/min. Energy expenditure, plasma glucose and glucose-regulatory hormones were evaluated. RESULTS Intraduodenal fat increased plasma GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon, and energy expenditure, and decreased plasma glucose (all P < 0.05). On the two intravenous saline days, plasma glucose and glucagon were lower, plasma intact GLP-1 was higher (all P < 0.05), and energy expenditure tended to be lower after vildagliptin (P = 0.08) than placebo. On the two vildagliptin days, plasma glucose, glucagon and GLP-1 (both total and intact), and energy expenditure were higher during intravenous exendin (9-39) than saline (all P < 0.05). CONCLUSIONS In well-controlled T2DM during intraduodenal fat infusion, vildagliptin lowered plasma glucose and glucagon, and tended to decrease energy expenditure, effects that were mediated by endogenous GLP-1.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Xuyi Wang
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Tanya J Little
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Stevens JE, Buttfield M, Wu T, Hatzinikolas S, Pham H, Lange K, Rayner CK, Horowitz M, Jones KL. Effects of sitagliptin on gastric emptying of, and the glycaemic and blood pressure responses to, a carbohydrate meal in type 2 diabetes. Diabetes Obes Metab 2020; 22:51-58. [PMID: 31468664 DOI: 10.1111/dom.13864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 02/05/2023]
Abstract
AIMS To determine the effects of the dipeptidyl peptidase-4 inhibitor, sitagliptin, on gastric emptying (GE) of a high-carbohydrate meal and associated glycaemic and blood pressure (BP) responses in type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Fourteen patients with T2DM (nine men, five women; age 67.8 ± 1.5 years; body mass index 31.2 ± 0.9 kg/m2 ; T2DM duration: 4.2 ± 0.9 years; glycated haemoglobin: 46 ± 1.8 mmol/mol [6.4% ± 0.2%]), managed by diet and/or metformin, underwent concurrent measurements of GE, BP and plasma glucose for 240 minutes after ingestion of a radiolabelled mashed potato meal after receiving sitagliptin (100 mg) or placebo in randomized, double-blind, crossover fashion on 2 consecutive days. RESULTS Sitagliptin reduced postprandial plasma glucose (P < .005) without affecting GE (P = .88). The magnitude of the glucose-lowering effect (change in incremental area under the curve0-240 min from placebo to sitagliptin) was related to GE (kcal/min) on placebo (r = 0.68, P = .008) There was a comparable fall in systolic BP (P = .80) following the meal, with no difference between the 2 days. CONCLUSIONS In T2DM, while sitagliptin has no effect on either GE or postprandial BP, its ability to lower postprandial glucose are dependent on the basal rate of GE.
Collapse
Affiliation(s)
- Julie E Stevens
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Madeline Buttfield
- Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Tongzhi Wu
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Seva Hatzinikolas
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hung Pham
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie Lange
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher K Rayner
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Karen L Jones
- Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Wang X, Xie C, Marathe CS, Malbert CH, Horowitz M, Jones KL, Rayner CK, Sun Z, Wu T. Disparities in gastric emptying and postprandial glycaemia between Han Chinese and Caucasians with type 2 diabetes. Diabetes Res Clin Pract 2020; 159:107951. [PMID: 31790715 DOI: 10.1016/j.diabres.2019.107951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
AIMS Gastric emptying is a major determinant of postprandial glycaemia in both health and type 2 diabetes (T2DM); the potential impact of ethnicity on gastric emptying is unclear. We compared the rate of gastric emptying of a standardised meal and the associated glycaemic response in Han Chinese and Caucasian patients with T2DM. METHODS 14 Han Chinese and 14 Caucasian T2DM patients, managed by diet and/or metformin monotherapy, underwent concurrent measurements of gastric emptying and blood glucose for 240 min after a 99mTc-calcium phytate-labelled mashed potato meal. RESULTS Han Chinese patients were slightly younger (P < 0.05), and had a lower BMI (P < 0.05), than Caucasians. There were no differences in either HbA1c or fasting blood glucose between them. Gastric half-emptying time (T50) was shorter (P < 0.05) and the postprandial blood glucose increment greater (P < 0.05) in Han Chinese than Caucasian patients. Both the increment in blood glucose from baseline at 60 min and peak blood glucose were related inversely to T50 (P < 0.05 each). CONCLUSIONS Han Chinese with relatively well-controlled T2DM have more rapid gastric emptying compared to Caucasians, which is associated with a greater postprandial glycaemic excursion. These differences may inform the choice of management, e.g. Han Chinese may particularly benefit from therapies that slow gastric emptying.
Collapse
Affiliation(s)
- Xuyi Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China; Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Chinmay S Marathe
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | | | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China.
| | - Tongzhi Wu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China; Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Gastroparesis is an important complication of diabetes that may have a major impact on the quality of life as a result of upper gastrointestinal symptoms and impaired glycaemic control. Current management strategies include optimising blood glucose control, dietary modifications and supportive nutrition. Pharmacologic approaches with drugs that have prokinetic and/or antiemetic effects are also used widely; however, current available treatments have major limitations. There is increasing recognition that the rate of gastric emptying (GE) is a key determinant of the glycaemic response to a meal. RECENT FINDINGS There is ongoing uncertainty regarding the impact of longstanding hyperglycaemia on GE, which requires clarification. New diagnostic techniques have been developed to better characterise the mechanisms underlying gastroparesis in individual patients, and these have the potential to lead to more personalised therapy. Management of gastroparesis is complex and suboptimal; novel approaches are desirable. This review summarises recent advances in the understanding of diabetic gastroparesis, with an emphasis on the current therapies that influence GE, and the bidirectional relationship between glycaemic control and GE.
Collapse
Affiliation(s)
- Ryan Jalleh
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| | - Chinmay S Marathe
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher K Rayner
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Karen L Jones
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The consumption of foods and beverages containing non-nutritive sweeteners (NNS) has increased worldwide over the last three decades. Consumers' choice of NNS rather than sugar or other nutritive sweeteners may be attributable to their potential to reduce weight gain. RECENT FINDINGS It is not clear what the effects of NNS consumption are on glycaemic control and the incidence of type 2 diabetes. This review aims to examine this question in epidemiological, human intervention and animal studies. It is not clear that NNS consumption has an effect on the incidence of type 2 diabetes or on glycaemic control even though there is some evidence for the modification of the microbiome and for interaction with sweet taste receptors in the oral cavity and the intestines' modification of secretion of glucagon-like peptide-1 (GLP-1), peptide YY (PYY), ghrelin and glucose-dependent insulinotropic polypeptide (GIP), which may affect glycaemia following consumption of NNS. In conclusion, long-term studies of NNS consumption are required to draw a firm conclusion about the role of NNS consumption on glycaemic control.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition, College of Natural Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jennifer B Keogh
- Division of Health Sciences, School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA, 5000, Australia
| | - Peter M Clifton
- Division of Health Sciences, School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA, 5000, Australia.
| |
Collapse
|
21
|
Chern C, Tan SY. Energy Expenditure, Carbohydrate Oxidation and Appetitive Responses to Sucrose or Sucralose in Humans: A Pilot Study. Nutrients 2019; 11:nu11081782. [PMID: 31374985 PMCID: PMC6723924 DOI: 10.3390/nu11081782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 01/22/2023] Open
Abstract
Background: In light of obesity, replacing sugar with non-nutritive sweeteners is commonly used to reduce sugar content of food products. This study aimed to compare human energy expenditure (EE), carbohydrate oxidation and food intake after the ingestion of test foods sweetened with sucrose or a non-nutritive sweetener. Methods: This was an acute crossover feeding study that entailed consumption of three test foods: jelly sweetened with 50 g sucrose (SUCROSE), with 120 mg of sucralose only (NNS), or 120 mg sucralose but matched in carbohydrate with 50 g maltodextrin (MALT). On test days, participants arrived at the research facility after an overnight fast. Resting energy expenditure (indirect calorimeter) was measured for 30 min followed by jelly consumption. Participants’ EE and substrate oxidation were measured for 90 min subsequently. After EE assessment, participants completed a meal challenge before leaving the research facility, and recorded food intake for the remaining day. Subjective appetite ratings were assessed before and after test foods and meal challenge. Results: Eleven participants completed the study. EE was higher in SUCROSE and MALT than NNS, but not statistically significant. Carbohydrate oxidation was SUCROSE > MALT > NNS (p < 0.001). Earlier and bigger rise in carbohydrate oxidation was observed in SUCROSE than MALT, although both were carbohydrate-matched. NNS did not promote energy expenditure, carbohydrate oxidation or stimulate appetite. Conclusions: Foods sweetened with sucrose or non-nutritive sweeteners but matched in carbohydrate content have different effects on human EE and carbohydrate oxidation. Sucralose alone did not affect EE, but lower energy in the test food from sugar replacement was eventually fully compensated. Findings from this pilot study should be verified with bigger clinical studies in the future to establish clinical relevance.
Collapse
Affiliation(s)
- Christine Chern
- School of Pharmacy and Medical sciences, University of South Australia, SA 5001, Australia
| | - Sze-Yen Tan
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia.
| |
Collapse
|
22
|
Watson LE, Xie C, Wang X, Li Z, Phillips LK, Sun Z, Jones KL, Horowitz M, Rayner CK, Wu T. Gastric Emptying in Patients With Well-Controlled Type 2 Diabetes Compared With Young and Older Control Subjects Without Diabetes. J Clin Endocrinol Metab 2019; 104:3311-3319. [PMID: 30933282 DOI: 10.1210/jc.2018-02736] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT Gastric emptying is a major determinant of postprandial glycemia and is often delayed in long-standing, complicated type 2 diabetes mellitus (T2DM). However, there is little information about gastric emptying in well-controlled T2DM. OBJECTIVE To evaluate the rate of gastric emptying in community-based patients with relatively well-controlled T2DM compared with young and older control subjects without diabetes. PARTICIPANTS AND DESIGN A total of 111 patients with T2DM managed by diet (n = 52) or metformin monotherapy (n = 59) (HbA1c 6.6 ± 0.1%/49.0 ± 0.9 mmol/mol), 18 age- and body mass index (BMI)-matched older subjects without diabetes, and 15 young healthy subjects consumed a standardized mashed potato meal (368.5 kcal) containing 100 μL 13C-octanoic acid. Gastric emptying (by breath test) and blood glucose were evaluated over 240 minutes. RESULTS Gastric emptying was slower in the older than in the young subjects without diabetes (2.3 ± 0.1 vs 3.0 ± 0.1 kcal/min, P = 0.0008). However, relative to the age- and BMI-matched subjects without diabetes, gastric emptying (2.8 ± 0.1 kcal/min) was faster in patients with T2DM (P = 0.0005). Furthermore, gastric emptying was faster in the metformin-treated (3.0 ± 0.1 kcal/min) than in the diet-controlled (2.7 ± 0.1 kcal/min) patients with T2DM (P = 0.011), although there were no differences in age, BMI, HbA1c, or the duration of known diabetes. The increments in blood glucose (at t = 30 and 60 minutes and the incremental area under the curve during t = 0 to 120 minutes) after the meal were related directly to the rate of gastric emptying in the subjects with T2DM regardless of treatment with or without metformin (P < 0.05 each). CONCLUSIONS Gastric emptying is slowed with aging but otherwise is relatively more rapid in patients with well-controlled T2DM. This provides a strong rationale for slowing gastric emptying to improve postprandial glycemic control in these patients.
Collapse
Affiliation(s)
- Linda E Watson
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Xuyi Wang
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Ziyi Li
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Liza K Phillips
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
23
|
Fujiwara Y, Eguchi S, Murayama H, Takahashi Y, Toda M, Imai K, Tsuda K. Relationship between diet/exercise and pharmacotherapy to enhance the GLP-1 levels in type 2 diabetes. Endocrinol Diabetes Metab 2019; 2:e00068. [PMID: 31294084 PMCID: PMC6613229 DOI: 10.1002/edm2.68] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
The rapid rise in the prevalence of type 2 diabetes mellitus (T2DM) poses a huge healthcare burden across the world. Although there are several antihyperglycaemic agents (AHAs) available including addition of new drug classes to the treatment algorithm, more than 50% of patients with T2DM do not achieve glycaemic targets, suggesting an urgent need for treatment strategies focusing on prevention and progression of T2DM and its long-term complications. Lifestyle changes including implementation of healthy diet and physical activity are cornerstones for the management of T2DM. The positive effects of diet and exercise on incretin hormones such as glucagon-like peptide-1 (GLP-1) have been reported. We hypothesize an IDEP concept (Interaction between Diet/Exercise and Pharmacotherapy) aimed at modifying the diet and lifestyle, along with pharmacotherapy to enhance the GLP-1 levels, would result in good glycaemic control in patients with T2DM. Consuming protein-rich food, avoiding saturated fatty acids and making small changes in eating habits such as eating slowly with longer mastication time can have a positive impact on the GLP-1 secretion and insulin levels. Further the type of physical activity (aerobic/resistance training), intensity of exercise, duration, time and frequency of exercise have shown to improve GLP-1 levels. Apart from AHAs, a few antihypertensive drugs and lipid-lowering drugs have also shown to increase endogenous GLP-1 levels, however, due to quick degradation of GLP-1 by dipeptidyl peptidase-4 (DPP-4) enzyme, treatment with DPP-4 inhibitors would protect GLP-1 from degradation and prolong its activity. Thus, IDEP concept can be a promising treatment strategy, which positively influences the GLP-1 levels and provide additive benefits in terms of improving metabolic parameters in patients with T2DM and slowing the progression of T2DM and its associated complications.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Shunsuke Eguchi
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Hiroki Murayama
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Yuri Takahashi
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Mitsutoshi Toda
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Kota Imai
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Kinsuke Tsuda
- Faculty of Human SciencesTezukayama Gakuin UniversityOsakaJapan
| |
Collapse
|
24
|
Xie C, Wang X, Young RL, Horowitz M, Rayner CK, Wu T. Role of Intestinal Bitter Sensing in Enteroendocrine Hormone Secretion and Metabolic Control. Front Endocrinol (Lausanne) 2018; 9:576. [PMID: 30319553 PMCID: PMC6171477 DOI: 10.3389/fendo.2018.00576] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 02/05/2023] Open
Abstract
The gastrointestinal tract stores ingested nutrients in the stomach which are then delivered to the small intestine at a controlled rate to optimize their digestion and absorption. The interaction of nutrients with the small and large intestine generates feedback that slows gastric emptying, induces satiation, and reduces postprandial glycemic excursions. The mechanisms underlying these nutrient-gut interactions are complex; it has only recently been appreciated that the gut has the capacity to detect intraluminal contents in much the same way as the tongue, via activation of specific G-protein-coupled receptors, and that ensuing signaling mechanisms modulate the release of an array of gut hormones that influence gastrointestinal motility, appetite and glycemia. Interestingly, evidence from preclinical models supports a functional link between intestinal bitter taste receptor (BTRs) and gastrointestinal hormone secretion, and the outcomes of recent studies indicate that stimulation of intestinal BTRs may be used to modulate gastrointestinal function, to diminish energy intake and limit postprandial blood glucose excursions in humans. This review summarizes current evidence about the expression and function of intestinal BTRs in relation to enteroendocrine hormone release and discusses the clinical implications of this pathway for the management of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Cong Xie
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Xuyi Wang
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Richard L. Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Michael Horowitz
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher K. Rayner
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Tongzhi Wu
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Glycemic impact of non-nutritive sweeteners: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 2018; 72:796-804. [PMID: 29760482 DOI: 10.1038/s41430-018-0170-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Nonnutritive sweeteners (NNSs) are zero- or low-calorie alternatives to nutritive sweeteners, such as table sugars. A systematic review and meta-analysis of randomized controlled trials was conducted to quantitatively synthesize existing scientific evidence on the glycemic impact of NNSs. SUBJECTS/METHODS PubMed and Web of Science databases were searched. Two authors screened the titles and abstracts of candidate publications. The third author was consulted to resolve discrepancies. Twenty-nine randomized controlled trials, with a total of 741 participants, were included and their quality assessed. NNSs under examination included aspartame, saccharin, steviosides, and sucralose. The review followed the PRISMA guidelines. RESULTS Meta-analysis was performed to estimate and track the trajectory of blood glucose concentrations over time after NNS consumption, and to test differential effects by type of NNS and participants' age, weight, and disease status. In comparison with the baseline, NNS consumption was not found to increase blood glucose level, and its concentration gradually declined over the course of observation following NNS consumption. The glycemic impact of NNS consumption did not differ by type of NNS but to some extent varied by participants' age, body weight, and diabetic status. CONCLUSIONS NNS consumption was not found to elevate blood glucose level. Future studies are warranted to assess the health implications of frequent and chronic NNS consumption and elucidate the underlying biological mechanisms.
Collapse
|
26
|
Geyer MC, Rayner CK, Horowitz M, Couper JJ. Targeting postprandial glycaemia in children with diabetes: Opportunities and challenges. Diabetes Obes Metab 2018; 20:766-774. [PMID: 29072820 DOI: 10.1111/dom.13141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/02/2017] [Accepted: 10/21/2017] [Indexed: 02/05/2023]
Abstract
Postprandial glycaemia makes a substantial contribution to overall glycaemic control in diabetes, particularly in patients whose preprandial glycaemia is relatively well controlled and glycated haemoglobin (HbA1c) only modestly elevated. Our review addresses the determinants of postprandial glycaemia and how it may be targeted therapeutically in children with diabetes. Postprandial glycaemia is influenced by preprandial glycaemia, macronutrients and their absorption, insulin delivery and sensitivity, the action of the enteroendocrine system, and the rate of gastric emptying. Contemporary continuous glucose monitoring systems reveal patterns of post prandial glycaemia and allow management to be guided more precisely. Delays in blood glucose determination, insulin delivery and its absorption remain challenges in the rapidly evolving closed loop continuous subcutaneous insulin and glucagon delivery systems developed for children with type 1 diabetes. Augmentation of the incretin system through nutritional preloads or incretin mimetics targets postprandial glycaemia by slowing gastric emptying as well as insulinotropic and glucagonostatic effects. These treatments are of particular relevance to children with type 2 diabetes. Following the development of targeted therapies in adults, postprandial blood glucose control will now be increasingly targeted in the treatment of diabetes in children.
Collapse
Affiliation(s)
- Myfanwy C Geyer
- Discipline of Paediatrics, University of Adelaide, Adelaide, Australia
- Department of Endocrinology and Diabetes, Women's and Children's Hospital, Adelaide, Australia
| | - Christopher K Rayner
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Jennifer J Couper
- Department of Endocrinology and Diabetes, Women's and Children's Hospital, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| |
Collapse
|
27
|
Huntley NF, Patience JF. Xylose: absorption, fermentation, and post-absorptive metabolism in the pig. J Anim Sci Biotechnol 2018; 9:4. [PMID: 29340150 PMCID: PMC5759861 DOI: 10.1186/s40104-017-0226-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Xylose, as β-1,4-linked xylan, makes up much of the hemicellulose in cell walls of cereal carbohydrates fed to pigs. As inclusion of fibrous ingredients in swine diets continues to increase, supplementation of carbohydrases, such as xylanase, is of interest. However, much progress is warranted to achieve consistent enzyme efficacy, including an improved understanding of the utilization and energetic contribution of xylanase hydrolysis product (i.e. xylooligosaccharides or monomeric xylose). This review examines reports on xylose absorption and metabolism in the pig and identifies gaps in this knowledge that are essential to understanding the value of carbohydrase hydrolysis products in the nutrition of the pig. Xylose research in pigs was first reported in 1954, with only sporadic contributions since. Therefore, this review also discusses relevant xylose research in other monogastric species, including humans. In both pigs and poultry, increasing purified D-xylose inclusion generally results in linear decreases in performance, efficiency, and diet digestibility. However, supplementation levels studied thus far have ranged from 5% to 40%, while theoretical xylose release due to xylanase supplementation would be less than 4%. More than 95% of ingested D-xylose disappears before the terminal ileum but mechanisms of absorption have yet to be fully elucidated. Some data support the hypothesis that mechanisms exist to handle low xylose concentrations but become overwhelmed as luminal concentrations increase. Very little is known about xylose metabolic utilization in vertebrates but it is well recognized that a large proportion of dietary xylose appears in the urine and significantly decreases the metabolizable energy available from the diet. Nevertheless, evidence of labeled D-xylose-1-14C appearing as expired 14CO2 in both humans and guinea pigs suggests that there is potential, although small, for xylose oxidation. It is yet to be determined if pigs develop increased xylose metabolic capacity with increased adaptation time to diets supplemented with xylose or xylanase. Overall, xylose appears to be poorly utilized by the pig, but it is important to consider that only one study has been reported which supplemented D-xylose dietary concentrations lower than 5%. Thus, more comprehensive studies testing xylose metabolic effects at dietary concentrations more relevant to swine nutrition are warranted.
Collapse
Affiliation(s)
- Nichole F Huntley
- Department of Animal Science, 213 Kildee Hall, Iowa State University, Ames, 50011 IA USA
| | - John F Patience
- Department of Animal Science, 201B Kildee Hall, Iowa State University, Ames, 50011 IA USA
| |
Collapse
|
28
|
Do non-nutritive sweeteners influence acute glucose homeostasis in humans? A systematic review. Physiol Behav 2017; 182:17-26. [PMID: 28939430 DOI: 10.1016/j.physbeh.2017.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/17/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
Abstract
The human body associates sensory cues with metabolic consequences. Exposure to sweet-tasting sugars - even in the absence of ingestion - triggers physiological responses that are associated with carbohydrate digestion, absorption and metabolism. These responses include the release of insulin and incretin hormones, which work to reduce blood glucose. For this reason, non-nutritive sweeteners (NNS) have been posited to trigger similar physiological responses and reduce postprandial blood glucose concentrations. The first part of this review presents a brief overview of sweet taste receptor activation in the oral cavity and gastrointestinal tract and the ensuing physiological responses related to glucose homeostasis. The second part of this review contains a systematic literature review that tested the hypothesis that NNS use improves glucose regulation postprandially. Studies were grouped based on sweet taste receptor stimulation paradigms, including pre-ingestive stimulation, ingestion of NNS alone, co-ingestion of NNS with foods, and using NNS as preloads to influence subsequent blood glucose excursions. In summary, the review found that NNS triggered physiological responses, albeit inconsistently, yet failed to significantly lower blood glucose levels in almost all studies.
Collapse
|
29
|
Critical review of the current literature on the safety of sucralose. Food Chem Toxicol 2017; 106:324-355. [DOI: 10.1016/j.fct.2017.05.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/06/2017] [Accepted: 05/22/2017] [Indexed: 01/24/2023]
|
30
|
Grotz VL, Pi-Sunyer X, Porte D, Roberts A, Richard Trout J. A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regul Toxicol Pharmacol 2017; 88:22-33. [PMID: 28502831 DOI: 10.1016/j.yrtph.2017.05.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
The discovery of gut sweet taste receptors has led to speculations that non-nutritive sweeteners, including sucralose, may affect glucose control. A double-blind, parallel, randomized clinical trial, reported here and previously submitted to regulatory agencies, helps to clarify the role of sucralose in this regard. This was primarily an out-patient study, with 4-week screening, 12-week test, and 4-week follow-up phases. Normoglycemic male volunteers (47) consumed ∼333.3 mg encapsulated sucralose or placebo 3x/day at mealtimes. HbA1c, fasting glucose, insulin, and C-peptide were measured weekly. OGTTs were conducted in-clinic overnight, following overnight fasting twice during screening phase, twice during test phase, and once at follow-up. Throughout the study, glucose, insulin, C-peptide and HbA1c levels were within normal range. No statistically significant differences between sucralose and placebo groups in change from baseline for fasting glucose, insulin, C-peptide and HbA1c, no clinically meaningful differences in time to peak levels or return towards basal levels in OGTTs, and no treatment group differences in mean glucose, insulin, or C-peptide AUC change from baseline were observed. The results of other relevant clinical trials and studies of gastrointestinal sweet taste receptors are compared to these findings. The collective evidence supports that sucralose has no effect on glycemic control.
Collapse
Affiliation(s)
- V Lee Grotz
- McNeil Nutritionals, Fort Washington, PA 19034, United States.
| | - Xavier Pi-Sunyer
- Department of Medicine, Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, NY 10025, United States.
| | - Daniel Porte
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, San Diego, CA, United States; Department of Medicine, Endocrinology, Diabetes and Metabolism Section, VA San Diego Health Care System, San Diego, CA, United States.
| | - Ashley Roberts
- Food & Nutrition Group, Intertek Scientific & Regulatory Consultancy, Mississauga, Ontario, Canada.
| | | |
Collapse
|
31
|
Wu T, Zhang X, Trahair LG, Bound MJ, Little TJ, Deacon CF, Horowitz M, Jones KL, Rayner CK. Small Intestinal Glucose Delivery Affects the Lowering of Blood Glucose by Acute Vildagliptin in Type 2 Diabetes. J Clin Endocrinol Metab 2016; 101:4769-4778. [PMID: 27598511 DOI: 10.1210/jc.2016-2813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT The rate of gastric emptying is an important determinant of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) secretion and may influence the magnitude of glucose lowering by dipeptidyl peptidase-4 (DPP-4) inhibitors. OBJECTIVE To evaluate the effects of the DPP-4 inhibitor, vildagliptin (VILD), during intraduodenal (ID) glucose infusion at 2 different rates within the physiological range of gastric emptying, in type 2 diabetes. PARTICIPANTS AND DESIGN A total of 16 diet-controlled type 2 diabetic patients were studied on 4 separate days in double-blind, randomized, fashion. On each day, either 5-mg VILD or placebo (PLBO) was given 60 minutes before a 120-minute ID glucose infusion at 2 or 4 kcal/min (ID2 or ID4). Plasma glucose and hormones were measured frequently. RESULTS Plasma glucose, insulin, C-peptide, glucagon, total GIP, and total and intact GLP-1 concentrations were higher during ID4 than ID2 (P < .01 for each). Compared with PLBO, VILD was associated with higher intact GLP-1, insulin, and C-peptide and lower glucose and total GIP and GLP-1 (P < .01 for each), without affecting glucagon. There were significant interactions between the rate of ID glucose and VILD treatment on plasma glucose, intact and total GLP-1, and GIP (P < .05 for each) but not insulin, C-peptide, or glucagon. The reduction in glucose and the increment in intact GLP-1 after VILD vs PLBO were 3.3- and 3.8-fold greater, respectively, during ID4 compared with ID2. CONCLUSIONS/INTERPRETATION These observations warrant further study to clarify whether type 2 diabetic patients with relatively more rapid gastric emptying have greater glucose lowering during treatment with DPP-4 inhibitors.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; and Department of Biomedical Science (C.F.D.), University of Copenhagen, Copenhagen, Denmark
| | - Xiang Zhang
- Discipline of Medicine (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; and Department of Biomedical Science (C.F.D.), University of Copenhagen, Copenhagen, Denmark
| | - Laurence G Trahair
- Discipline of Medicine (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; and Department of Biomedical Science (C.F.D.), University of Copenhagen, Copenhagen, Denmark
| | - Michelle J Bound
- Discipline of Medicine (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; and Department of Biomedical Science (C.F.D.), University of Copenhagen, Copenhagen, Denmark
| | - Tanya J Little
- Discipline of Medicine (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; and Department of Biomedical Science (C.F.D.), University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Discipline of Medicine (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; and Department of Biomedical Science (C.F.D.), University of Copenhagen, Copenhagen, Denmark
| | - Michael Horowitz
- Discipline of Medicine (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; and Department of Biomedical Science (C.F.D.), University of Copenhagen, Copenhagen, Denmark
| | - Karen L Jones
- Discipline of Medicine (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; and Department of Biomedical Science (C.F.D.), University of Copenhagen, Copenhagen, Denmark
| | - Christopher K Rayner
- Discipline of Medicine (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health (T.W., X.Z., L.G.T., M.J.B., T.J.L., M.H., K.L.J., C.K.R.), The University of Adelaide, Adelaide, Australia; and Department of Biomedical Science (C.F.D.), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Wu T, Rayner CK, Horowitz M. Inter-regulation of gastric emptying and incretin hormone secretion: implications for postprandial glycemic control. Biomark Med 2016; 10:1167-1179. [PMID: 27734721 DOI: 10.2217/bmm-2016-0164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The GI tract is central to the regulation of postprandial glycemia, with the rate of gastric emptying and the secretion of the incretin hormones, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, being key determinants. Gastric emptying exhibits a large interindividual variation; the latter not only accounts for differences in postprandial glycemia but also determines postprandial incretin profiles. Accordingly, the rate of gastric emptying may affect the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors. In contrast, glucagon-like peptide-1 receptor agonists lower postprandial glycemia predominantly by their action to slow gastric emptying. This review discusses the inter-relationship between gastric emptying and the incretin axis in the context of changes in blood glucose, with an emphasis on the relevant clinical implications.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine & Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia
| | - Christopher K Rayner
- Discipline of Medicine & Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia
| | - Michael Horowitz
- Discipline of Medicine & Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|
33
|
Margolskee A, Darwich AS, Pepin X, Pathak SM, Bolger MB, Aarons L, Rostami-Hodjegan A, Angstenberger J, Graf F, Laplanche L, Müller T, Carlert S, Daga P, Murphy D, Tannergren C, Yasin M, Greschat-Schade S, Mück W, Muenster U, van der Mey D, Frank KJ, Lloyd R, Adriaenssen L, Bevernage J, De Zwart L, Swerts D, Tistaert C, Van Den Bergh A, Van Peer A, Beato S, Nguyen-Trung AT, Bennett J, McAllister M, Wong M, Zane P, Ollier C, Vicat P, Kolhmann M, Marker A, Brun P, Mazuir F, Beilles S, Venczel M, Boulenc X, Loos P, Lennernäs H, Abrahamsson B. IMI - oral biopharmaceutics tools project - evaluation of bottom-up PBPK prediction success part 1: Characterisation of the OrBiTo database of compounds. Eur J Pharm Sci 2016; 96:598-609. [PMID: 27671970 DOI: 10.1016/j.ejps.2016.09.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/12/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022]
Abstract
Predicting oral bioavailability (Foral) is of importance for estimating systemic exposure of orally administered drugs. Physiologically-based pharmacokinetic (PBPK) modelling and simulation have been applied extensively in biopharmaceutics recently. The Oral Biopharmaceutical Tools (OrBiTo) project (Innovative Medicines Initiative) aims to develop and improve upon biopharmaceutical tools, including PBPK absorption models. A large-scale evaluation of PBPK models may be considered the first step. Here we characterise the OrBiTo active pharmaceutical ingredient (API) database for use in a large-scale simulation study. The OrBiTo database comprised 83 APIs and 1475 study arms. The database displayed a median logP of 3.60 (2.40-4.58), human blood-to-plasma ratio of 0.62 (0.57-0.71), and fraction unbound in plasma of 0.05 (0.01-0.17). The database mainly consisted of basic compounds (48.19%) and Biopharmaceutics Classification System class II compounds (55.81%). Median human intravenous clearance was 16.9L/h (interquartile range: 11.6-43.6L/h; n=23), volume of distribution was 80.8L (54.5-239L; n=23). The majority of oral formulations were immediate release (IR: 87.6%). Human Foral displayed a median of 0.415 (0.203-0.724; n=22) for IR formulations. The OrBiTo database was found to be largely representative of previously published datasets. 43 of the APIs were found to satisfy the minimum inclusion criteria for the simulation exercise, and many of these have significant gaps of other key parameters, which could potentially impact the interpretability of the simulation outcome. However, the OrBiTo simulation exercise represents a unique opportunity to perform a large-scale evaluation of the PBPK approach to predicting oral biopharmaceutics.
Collapse
|
34
|
Li L, Xu J, Zhu W, Fan R, Bai Q, Huang C, Liu J, Li Z, Sederholm M, Norstedt G, Wang J. Effect of a macronutrient preload on blood glucose level and pregnancy outcome in gestational diabetes. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2016; 5:36-41. [PMID: 29067233 PMCID: PMC5644440 DOI: 10.1016/j.jcte.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/21/2016] [Accepted: 04/08/2016] [Indexed: 01/14/2023]
Abstract
Gestational diabetes (GDM) is associated with risks for both the mother and the child. A food composition, macro-nutrient preload, was given half an hour before each meal. Thirty-three GDM patients were given macro-nutrient preload and 33 a control comparator. A two-month macro-nutrient preload treatment of GDM improved post-prandial glycemia. Macro-nutrient preload treatment is of a potential value for future management of GDM.
Aim To investigate the effect of a macro-nutrient preload (Inzone Vitality) on blood glucose levels and pregnancy outcomes of gestational diabetes. The preload method involves the ingestion of a smaller amount of a macronutrient composition half an hour before regular meals. The hypothesis was that preload treatment will reduce postprandial glycemia in gestational diabetes. Methods Sixty-six diagnosed cases of gestational diabetes were randomly selected from gynecology and obstetrics outpatient clinic at Xinqiao Hospital in Chongqing. The patients were divided into an intervention group (33 cases) and a control group (33 cases), according to odd–even numbers of the random cases. The intervention group was treated with a macro-nutrient preload given 0.5 h before regular meals and the control group was given a comparative treatment consisting of a milk powder with similar energy content. The two groups were studied until delivery and the measured parameters included fasting blood glucose (FBG), 2-hour postprandial blood glucose (2h-PBG), delivery mode and neonatal birth weight. Results The two groups showed no differences in FBG or 2h-PBG before the nutritional intervention. FBG and 2h-PBG after intervention and before delivery were significantly lower in the intervention group, treated with the macro nutrient preload compared to the control group (P < 0.01). Changes in FBG and 2h-PBG before and after the intervention were investigated and the difference in the intervention group was significantly greater than corresponding values in the control group (P < 0.05, P < 0.01). The neonatal birth weight and delivery mode was not significantly different (P > 0.05). Conclusion A macro-nutrient composition, used as a preload, is effective in controlling FBG and PBG of gestational diabetes.
Collapse
Affiliation(s)
- Li Li
- Department of Nutrition, Xinqiao Hospital, Chongqing 400037, China
| | - Jing Xu
- Department of Endocrinology, Xinqiao Hospital, Chongqing 400037, China
| | - Wenyi Zhu
- Department of Nutrition, Xinqiao Hospital, Chongqing 400037, China
| | - Rong Fan
- Department of Nutrition, Xinqiao Hospital, Chongqing 400037, China
| | - Qian Bai
- Department of Nutrition, Xinqiao Hospital, Chongqing 400037, China
| | - Chen Huang
- Department of Nutrition, Xinqiao Hospital, Chongqing 400037, China
| | - Jun Liu
- Department of Nutrition, Xinqiao Hospital, Chongqing 400037, China
| | - Zhen Li
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Chongqing 400037, China
| | - Magnus Sederholm
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Norstedt
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jian Wang
- Department of Nutrition, Xinqiao Hospital, Chongqing 400037, China
| |
Collapse
|
35
|
Ahrén B, Foley JE. Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: focus on alpha and beta cell function and lipid metabolism. Diabetologia 2016; 59:907-17. [PMID: 26894277 DOI: 10.1007/s00125-016-3899-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/22/2016] [Indexed: 12/19/2022]
Abstract
Inhibition of dipeptidyl peptidase-4 (DPP-4) is an established glucose-lowering strategy for the management of type 2 diabetes mellitus. DPP-4 inhibitors reduce both fasting and postprandial plasma glucose levels, resulting in reduced HbA1c with low risk for hypoglycaemia and weight gain. They act primarily by preventing inactivation of the incretin hormones glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, thereby prolonging the enhanced endogenous levels of these hormones after meal ingestion. This in turn causes islet and extrapancreatic effects, including increased glucose sensing in islet alpha and beta cells. These effects result in increased insulin secretion and decreased glucagon secretion being more effective in hyperglycaemic states and reduced insulin secretion and increased glucagon secretion being more effective during hypoglycaemia. Other secondary pharmacological actions of DPP-4 inhibitors include mobilisation and burning of fat during meals, decrease in fat extraction from the gut, reduction of fasting lipolysis and liver fat and increase in LDL particle size. These actions contribute to the clinical effects of DPP-4 inhibition, and the reduced demand for insulin could also lead to a durability benefit. This review summarises the current knowledge of the secondary pharmacological actions of DPP-4 inhibitors that lead to improved glucose regulation in patients with type 2 diabetes, focusing on alpha and beta cell function and lipid metabolism.
Collapse
Affiliation(s)
- Bo Ahrén
- Faculty of Medicine, Department of Clinical Sciences Lund, Lund University, B11 BMC, Sölvegatan 19, 22184, Lund, Sweden.
| | - James E Foley
- World Wide Medical Affairs, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
36
|
Wu T, Little TJ, Bound MJ, Borg M, Zhang X, Deacon CF, Horowitz M, Jones KL, Rayner CK. A Protein Preload Enhances the Glucose-Lowering Efficacy of Vildagliptin in Type 2 Diabetes. Diabetes Care 2016; 39:511-7. [PMID: 26786576 DOI: 10.2337/dc15-2298] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/24/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Nutrient "preloads" given before meals can attenuate postprandial glycemic excursions, at least partly by slowing gastric emptying and stimulating secretion of the incretins (i.e., glucagon-like peptide-1 [GLP-1] and glucose-dependent insulinotropic polypeptide [GIP]). This study was designed to evaluate whether a protein preload could improve the efficacy of the dipeptidyl peptidase-4 (DPP-4) inhibitor vildagliptin to increase incretin concentrations, slow gastric emptying, and lower postprandial glycemia in type 2 diabetes. RESEARCH DESIGN AND METHODS Twenty-two patients with type 2 diabetes treated with metformin were studied on four occasions, receiving either 50 mg vildagliptin (VILD) or placebo (PLBO) on both the evening before and the morning of each study day. The latter dose was followed after 60 min by a preload drink containing either 25 g whey protein (WHEY) or control flavoring (CTRL), and after another 30 min by a (13)C-octanoate-labeled mashed potato meal. Plasma glucose and hormones, and gastric emptying, were evaluated. RESULTS Compared with PLBO/CTRL, PLBO/WHEY reduced postprandial peak glycemia, increased plasma insulin, glucagon, and incretin hormones (total and intact), and slowed gastric emptying, whereas VILD/CTRL reduced both the peak and area under the curve for glucose, increased plasma intact incretins, and slowed gastric emptying but suppressed plasma glucagon and total incretins (P < 0.05 each). Compared with both PLBO/WHEY and VILD/CTRL, VILD/WHEY was associated with higher plasma intact GLP-1 and GIP, slower gastric emptying, and lower postprandial glycemia (P < 0.05 each). CONCLUSIONS In metformin-treated type 2 diabetes, a protein preload has the capacity to enhance the efficacy of vildagliptin to slow gastric emptying, increase plasma intact incretins, and reduce postprandial glycemia.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Tanya J Little
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michelle J Bound
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Malcolm Borg
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia
| | - Xiang Zhang
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Carolyn F Deacon
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Michael Horowitz
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Christopher K Rayner
- Discipline of Medicine, The University of Adelaide, Adelaide, Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
37
|
Asrani VM, Yoon HD, Megill RD, Windsor JA, Petrov MS. Interventions That Affect Gastrointestinal Motility in Hospitalized Adult Patients: A Systematic Review and Meta-Analysis of Double-Blind Placebo-Controlled Randomized Trials. Medicine (Baltimore) 2016; 95:e2463. [PMID: 26844455 PMCID: PMC4748872 DOI: 10.1097/md.0000000000002463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal (GI) dysmotility is a common complication in acute, critically ill, postoperative, and chronic patients that may lead to impaired nutrient delivery, poor clinical, and patient-reported outcomes. Several pharmacological and nonpharmacological interventions to treat GI dysmotility were investigated in dozens of clinical studies. However, they often yielded conflicting results, at least in part, because various (nonstandardized) definitions of GI dysmotility were used and methodological quality of studies was poor. While a universally accepted definition of GI dysmotility is yet to be developed, a systematic analysis of data derived from double-blind placebo-controlled randomized trials may provide robust data on absolute and relative effectiveness of various interventions as the study outcome (GI motility) was assessed in the least biased manner.To systematically review data from double-blind placebo-controlled randomized trials to determine and compare the effectiveness of interventions that affect GI motility.Three electronic databases (MEDLINE, SCOPUS, and EMBASE) were searched. A random effects model was used for meta-analysis. The summary estimates were reported as mean difference (MD) with the corresponding 95% confidence interval (CI).A total of 38 double-blind placebo-controlled randomized trials involving 2371 patients were eligible for inclusion in the systematic review. These studies investigated a total of 20 different interventions, of which 6 interventions were meta-analyzed. Of them, the use of dopamine receptor antagonists (MD, -8.99; 95% CI, -17.72 to -0.27; P = 0.04) and macrolides (MD, -26.04; 95% CI, -51.25 to -0.82; P = 0.04) significantly improved GI motility compared with the placebo group. The use of botulism toxin significantly impaired GI motility compared with the placebo group (MD, 5.31; 95% CI, -0.04 to 10.67; P = 0.05). Other interventions (dietary factors, probiotics, hormones) did not affect GI motility.Based on the best available data and taking into account the safety profile of each class of intervention, dopamine receptor antagonists and macrolides significantly improve GI motility and are medications of choice in treating GI dysmotility.
Collapse
Affiliation(s)
- Varsha M Asrani
- From the Department of Surgery, University of Auckland (VMA, HDY, RDM, JAW, MSP); and Nutrition and Dietetics, Auckland City Hospital, Auckland, New Zealand (VMA)
| | | | | | | | | |
Collapse
|
38
|
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the known incretin hormones in humans, released predominantly from the enteroendocrine K and L cells within the gut. Their secretion is regulated by a complex of integrated mechanisms involving direct contact for the activation of different chemo-sensors on the brush boarder of K and L cells and several indirect neuro-immuno-hormonal loops. The biological actions of GIP and GLP-1 are fundamental determinants of islet function and blood glucose homeostasis in health and type 2 diabetes. Moreover, there is increasing recognition that GIP and GLP-1 also exert pleiotropic extra-glycaemic actions, which may represent therapeutic targets for human diseases. In this review, we summarise current knowledge of the biology of incretin hormones in health and metabolic disorders and highlight the therapeutic potential of incretin hormones in metabolic regulation.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Christopher K Rayner
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
- Centre of Research Excellence in Translating Nutritional Science into Good Health, The University of Adelaide, Adelaide, Australia.
| | - Michael Horowitz
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
- Centre of Research Excellence in Translating Nutritional Science into Good Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
39
|
Mignone LE, Wu T, Horowitz M, Rayner CK. Whey protein: The “whey” forward for treatment of type 2 diabetes? World J Diabetes 2015; 6:1274-1284. [PMID: 26516411 PMCID: PMC4620107 DOI: 10.4239/wjd.v6.i14.1274] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 10/19/2015] [Indexed: 02/05/2023] Open
Abstract
A cost-effective nutritional approach to improve postprandial glycaemia is attractive considering the rising burden of diabetes throughout the world. Whey protein, a by-product of the cheese-making process, can be used to manipulate gut function in order to slow gastric emptying and stimulate incretin hormone secretion, thereby attenuating postprandial glycaemic excursions. The function of the gastrointestinal tract plays a pivotal role in glucose homeostasis, particularly during the postprandial period, and this review will discuss the mechanisms by which whey protein slows gastric emptying and stimulates release of gut peptides, including the incretins. Whey protein is also a rich source of amino acids, and these can directly stimulate beta cells to secrete insulin, which contributes to the reduction in postprandial glycaemia. Appetite is suppressed with consumption of whey, due to its effects on the gut-brain axis and the hypothalamus. These properties of whey protein suggest its potential in the management of type 2 diabetes. However, the optimal dose and timing of whey protein ingestion are yet to be defined, and studies are required to examine the long-term benefits of whey consumption for overall glycaemic control.
Collapse
|
40
|
Postprandial insulin and glucose levels are reduced in healthy subjects when a standardised breakfast meal is supplemented with a filtered sugarcane molasses concentrate. Eur J Nutr 2015; 55:2365-2376. [DOI: 10.1007/s00394-015-1043-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 01/17/2023]
|
41
|
Lim E, Lim JY, Shin JH, Seok PR, Jung S, Yoo SH, Kim Y. d-Xylose suppresses adipogenesis and regulates lipid metabolism genes in high-fat diet–induced obese mice. Nutr Res 2015; 35:626-36. [DOI: 10.1016/j.nutres.2015.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 01/06/2023]
|
42
|
Phillips LK, Deane AM, Jones KL, Rayner CK, Horowitz M. Gastric emptying and glycaemia in health and diabetes mellitus. Nat Rev Endocrinol 2015; 11:112-28. [PMID: 25421372 DOI: 10.1038/nrendo.2014.202] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rate of gastric emptying is a critical determinant of postprandial glycaemia and, accordingly, is fundamental to maintaining blood glucose homeostasis. Disordered gastric emptying occurs frequently in patients with longstanding type 1 diabetes mellitus and type 2 diabetes mellitus (T2DM). A complex bidirectional relationship exists between gastric emptying and glycaemia--gastric emptying accounts for ∼35% of the variance in peak postprandial blood glucose concentrations in healthy individuals and in patients with diabetes mellitus, and the rate of emptying is itself modulated by acute changes in glycaemia. Clinical implementation of incretin-based therapies for the management of T2DM, which diminish postprandial glycaemia, in part by slowing gastric emptying, is widespread. Other therapies for patients with T2DM, which specifically target gastric emptying include pramlintide and dietary-based treatment approaches. A weak association exists between upper gastrointestinal symptoms and the rate of gastric emptying. In patients with severe diabetic gastroparesis, pathological changes are highly variable and are characterized by loss of interstitial cells of Cajal and an immune infiltrate. Management options for patients with symptomatic gastroparesis remain limited in their efficacy, which probably reflects the heterogeneous nature of the underlying pathophysiology.
Collapse
Affiliation(s)
- Liza K Phillips
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Discipline of Medicine, The University of Adelaide, Level 6 Eleanor Harrald Building, Royal Adelaide Hospital, Frome Road, Adelaide, SA 5005, Australia
| | - Adam M Deane
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Discipline of Medicine, The University of Adelaide, Level 6 Eleanor Harrald Building, Royal Adelaide Hospital, Frome Road, Adelaide, SA 5005, Australia
| | - Karen L Jones
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Discipline of Medicine, The University of Adelaide, Level 6 Eleanor Harrald Building, Royal Adelaide Hospital, Frome Road, Adelaide, SA 5005, Australia
| | - Chris K Rayner
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Discipline of Medicine, The University of Adelaide, Level 6 Eleanor Harrald Building, Royal Adelaide Hospital, Frome Road, Adelaide, SA 5005, Australia
| | - Michael Horowitz
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Discipline of Medicine, The University of Adelaide, Level 6 Eleanor Harrald Building, Royal Adelaide Hospital, Frome Road, Adelaide, SA 5005, Australia
| |
Collapse
|
43
|
Rayner CK, Ma J, Jones KL, Clifton PM, Horowitz M. Protein 'pre-loads' in type 2 diabetes: what do we know and what do we need to find out? Diabetologia 2014; 57:2603-4. [PMID: 25312814 DOI: 10.1007/s00125-014-3410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/19/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher K Rayner
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia,
| | | | | | | | | |
Collapse
|
44
|
Heruc GA, Horowitz M, Deacon CF, Feinle-Bisset C, Rayner CK, Luscombe-Marsh N, Little TJ. Effects of dipeptidyl peptidase IV inhibition on glycemic, gut hormone, triglyceride, energy expenditure, and energy intake responses to fat in healthy males. Am J Physiol Endocrinol Metab 2014; 307:E830-7. [PMID: 25231186 DOI: 10.1152/ajpendo.00370.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fat is the most potent stimulus for glucagon-like peptide-1 (GLP-1) secretion. The aims of this study were to determine whether dipeptidyl peptidase IV (DPP-IV) inhibition would enhance plasma active incretin [glucose-dependent insulinotropic polypeptide (GIP), GLP-1] concentrations and modulate the glycemic, gut hormone, triglyceride, energy expenditure, and energy intake responses to intraduodenal fat infusion. In a double-blind, randomized, placebo-controlled crossover design, 16 healthy lean males received 50 mg vildagliptin (V), or matched placebo (P), before intraduodenal fat infusion (2 kcal/min, 120 min). Blood glucose, plasma insulin, glucagon, active GLP-1, and GIP and peptide YY (PYY)-(3-36) concentrations; resting energy expenditure; and energy intake at a subsequent buffet meal (time = 120-150 min) were quantified. Data are presented as areas under the curve (0-120 min, means ± SE). Vildagliptin decreased glycemia (P: 598 ± 8 vs. V: 573 ± 9 mmol·l⁻¹·min⁻¹, P < 0.05) during intraduodenal lipid. This was associated with increased insulin (P: 15,964 ± 1,193 vs. V: 18,243 ± 1,257 pmol·l⁻¹·min⁻¹, P < 0.05), reduced glucagon (P: 1,008 ± 52 vs. V: 902 ± 46 pmol·l⁻¹·min⁻¹, P < 0.05), enhanced active GLP-1 (P: 294 ± 40 vs. V: 694 ± 78 pmol·l⁻¹·min⁻¹) and GIP (P: 2,748 ± 77 vs. V: 4,256 ± 157 pmol·l⁻¹·min⁻¹), and reduced PYY-(3-36) (P: 9,527 ± 754 vs. V: 4,469 ± 431 pM/min) concentrations compared with placebo (P < 0.05, for all). Vildagliptin increased resting energy expenditure (P: 1,821 ± 54 vs. V: 1,896 ± 65 kcal/day, P < 0.05) without effecting energy intake. Vildagliptin 1) modulates the effects of intraduodenal fat to enhance active GLP-1 and GIP, stimulate insulin, and suppress glucagon, thereby reducing glycemia and 2) increases energy expenditure. These observations suggest that the fat content of a meal, by enhancing GLP-1 and GIP secretion, may contribute to the response to DPP-IV inhibition.
Collapse
Affiliation(s)
- Gabriella A Heruc
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| | - Carolyn F Deacon
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| | - Christopher K Rayner
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| | - Natalie Luscombe-Marsh
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| | - Tanya J Little
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| |
Collapse
|
45
|
Clifton PM, Galbraith C, Coles L. Effect of a low dose whey/guar preload on glycemic control in people with type 2 diabetes--a randomised controlled trial. Nutr J 2014; 13:103. [PMID: 25343850 PMCID: PMC4216833 DOI: 10.1186/1475-2891-13-103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/15/2014] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Large preloads of protein and fat have been shown to lower glucose after a carbohydrate-rich meal in people with type 2 diabetes but add a considerable energy burden. Low calorie preloads [<5% of daily energy intake] have been tested in this study in people with prediabetes and with type 2 diabetes. RESEARCH DESIGN AND METHODS This was an unblinded randomised crossover study with two placebo days and two active treatment days. Glucose was measured for 3 hours with fingerprick samples as well as continuous glucose monitoring [CGMS]. Twenty-four subjects with pre-diabetes or moderately controlled type 2 diabetes [fasting glucose < 10 and HbA1c < 8.5%] were recruited. The preload contained 17 g whey protein plus 3 g lactose and 5 g guar, and 1 g flavour material [including sucralose] dissolved in 150 ml cold water or 150 ml cold water with no additives. The breakfast test meal consisted of 2 slices of bread, margarine and jam [3 slices for men] with the test drink 15 minutes beforehand. RESULTS Peak fingerprick glucose was reduced by 2.1 mmol/L at 45 min [p < 0.0001]. Average fingerprick glucose over 3 hours was reduced by 0.8 mmol/L [p = 0.0003]. There was no difference between those with diabetes or prediabetes or those on medication or not on medication. CONCLUSIONS An 80 kcal whey protein/fibre preload can lower average glucose over 3 hours by 0.8 mmol/L. If used long term before at least two carbohydrate-rich meals/day this preload could lower HbA1c by up to 1%. TRIAL REGISTRATION The trial was registered with the Australian New Zealand Clinical Trials Registry number ACTRN12612001251819.
Collapse
Affiliation(s)
- Peter M Clifton
- University of South Australia, North Terrace, GPO Box 2471, Adelaide, SA 5001, Australia.
| | | | | |
Collapse
|
46
|
Wu T, Ma J, Bound MJ, Checklin H, Deacon CF, Jones KL, Horowitz M, Rayner CK. Effects of sitagliptin on glycemia, incretin hormones, and antropyloroduodenal motility in response to intraduodenal glucose infusion in healthy lean and obese humans and patients with type 2 diabetes treated with or without metformin. Diabetes 2014; 63:2776-87. [PMID: 24647737 DOI: 10.2337/db13-1627] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The impact of variations in gastric emptying, which influence the magnitude of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) secretion, on glucose lowering by dipeptidyl peptidase-4 (DPP-4) inhibitors is unclear. We evaluated responses to intraduodenal glucose infusion (60 g over 120 min [i.e., 2 kcal/min], a rate that predominantly stimulates GIP but not GLP-1) after sitagliptin versus control in 12 healthy lean, 12 obese, and 12 type 2 diabetic subjects taking metformin 850 mg b.i.d. versus placebo. As expected, sitagliptin augmented plasma-intact GIP substantially and intact GLP-1 modestly. Sitagliptin attenuated glycemic excursions in healthy lean and obese but not type 2 diabetic subjects, without affecting glucagon or energy intake. In contrast, metformin reduced fasting and glucose-stimulated glycemia, suppressed energy intake, and augmented total and intact GLP-1, total GIP, and glucagon in type 2 diabetic subjects, with no additional glucose lowering when combined with sitagliptin. These observations indicate that in type 2 diabetes, 1) the capacity of endogenous GIP to lower blood glucose is impaired; 2) the effect of DPP-4 inhibition on glycemia is likely to depend on adequate endogenous GLP-1 release, requiring gastric emptying >2 kcal/min; and 3) the action of metformin to lower blood glucose is not predominantly by way of the incretin axis.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine, University of Adelaide, Adelaide, SA, AustraliaCentre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Jing Ma
- Discipline of Medicine, University of Adelaide, Adelaide, SA, AustraliaCentre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Michelle J Bound
- Discipline of Medicine, University of Adelaide, Adelaide, SA, AustraliaCentre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Helen Checklin
- Discipline of Medicine, University of Adelaide, Adelaide, SA, AustraliaCentre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Carolyn F Deacon
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Karen L Jones
- Discipline of Medicine, University of Adelaide, Adelaide, SA, AustraliaCentre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Michael Horowitz
- Discipline of Medicine, University of Adelaide, Adelaide, SA, AustraliaCentre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Christopher K Rayner
- Discipline of Medicine, University of Adelaide, Adelaide, SA, AustraliaCentre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
47
|
Wu T, Rayner CK, Young RL, Horowitz M. Gut motility and enteroendocrine secretion. Curr Opin Pharmacol 2013; 13:928-34. [PMID: 24060702 DOI: 10.1016/j.coph.2013.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/16/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Abstract
The motility of the gastrointestinal (GI) tract is modulated by complex neural and hormonal networks; the latter include gut peptides released from enteroendocrine cells during both the interdigestive and postprandial periods. Conversely, it is increasingly recognised that GI motility is an important determinant of gut hormone secretion, in that the transit of luminal contents influences the degree of nutrient stimulation of enteroendocrine cells in different gut regions, as well as the overall length of gut exposed to nutrient. Of particular interest is the relationship between gallbladder emptying and enteroendocrine secretion. The inter-relationships between GI motility and enteroendocrine secretion are central to blood glucose homeostasis, where an understanding is fundamental to the development of novel strategies for the management of diabetes mellitus.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Australia
| | | | | | | |
Collapse
|