1
|
Chen W, Liao D, Deng Y, Hu J. Development of a transformer-based deep learning algorithm for diabetic peripheral neuropathy classification using corneal confocal microscopy images. Front Cell Dev Biol 2024; 12:1484329. [PMID: 39469112 PMCID: PMC11513358 DOI: 10.3389/fcell.2024.1484329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Background Diabetic peripheral neuropathy (DPN) is common and can go unnoticed until it is firmly developed. This study aims to establish a transformer-based deep learning algorithm (DLA) to classify corneal confocal microscopy (CCM) images, identifying DPN in diabetic patients. Methods Our classification model differs from traditional convolutional neural networks (CNNs) using a Swin transformer network with a hierarchical architecture backbone. Participants included those with (DPN+, n = 57) or without (DPN-, n = 37) DPN as determined by the updated Toronto consensus criteria. The CCM image dataset (consisting of 570 DPN+ and 370 DPN- images, with five images selected from each participant's left and right eyes) was randomly divided into training, validation, and test subsets at a 7:1:2 ratio, considering individual participants. The effectiveness of the algorithm was assessed using diagnostic accuracy measures, such as sensitivity, specificity, and accuracy, in conjunction with Grad-CAM visualization techniques to interpret the model's decisions. Results In the DPN + group (n = 12), the transformer model successfully predicted all participants, while in the DPN- group (n = 7), one participant was misclassified as DPN+, with an area under the curve (AUC) of 0.9405 (95% CI 0.8166, 1.0000). Among the DPN + images (n = 120), 117 were correctly classified, and among the DPN- images (n = 70), 49 were correctly classified, with an AUC of 0.8996 (95% CI 0.8502, 0.9491). For single-image predictions, the transformer model achieved a superior AUC relative to the ResNet50 model (0.8761, 95% CI 0.8155, 0.9366), the Inception_v3 model (0.8802, 95% CI 0.8231, 0.9374), and the DenseNet121 model (0.8965, 95% CI 0.8438, 0.9491). Conclusion Transformer-based networks outperform CNN-based networks in rapid binary DPN classification. Transformer-based DLAs have clinical DPN screening potential.
Collapse
Affiliation(s)
| | | | | | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|
2
|
Badian RA, Lagali N. The inferocentral whorl region and its directional patterns in the corneal sub-basal nerve plexus: A review. Exp Eye Res 2024; 244:109926. [PMID: 38754688 DOI: 10.1016/j.exer.2024.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
There has been a growing application of in vivo confocal microscopy (IVCM) in the examination of corneal microstructure, including different corneal layers and corneal nerve fibers in health and in pathological conditions. Corneal nerves forming the sub-basal nerve plexus (SBNP) beneath the corneal basal epithelial cell layer in particular have been intensively researched in health and disease as a marker for corneal neurophysioanatomical and degenerative changes. One intriguing feature in the SBNP that is found inferior to the corneal apex, is a whorl-like pattern (or vortex) of nerves, which represents an anatomical landmark. Evidence has indicated that the architecture of this 'whorl region' is dynamic, changing with time in healthy individuals but also in disease conditions such as in diabetic neuropathy and keratoconus. This review summarizes the known information regarding the characteristics and significance of the whorl region of nerves in the corneal SBNP, as a potential area of high relevance for future disease monitoring and diagnostics.
Collapse
Affiliation(s)
- Reza A Badian
- Department of Medical Biochemistry, Unit of Regenerative Medicine, Oslo University Hospital, Oslo, Norway.
| | - Neil Lagali
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway; Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
3
|
Wu PJ, Tseng HC, Chao CC, Liao YH, Yen CT, Lin WY, Hsieh ST, Sun WZ, Sun CK. Discontinuity third harmonic generation microscopy for label-free imaging and quantification of intraepidermal nerve fibers. CELL REPORTS METHODS 2024; 4:100735. [PMID: 38503290 PMCID: PMC10985268 DOI: 10.1016/j.crmeth.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Label-free imaging methodologies for nerve fibers rely on spatial signal continuity to identify fibers and fail to image free intraepidermal nerve endings (FINEs). Here, we present an imaging methodology-called discontinuity third harmonic generation (THG) microscopy (dTHGM)-that detects three-dimensional discontinuities in THG signals as the contrast. We describe the mechanism and design of dTHGM and apply it to reveal the bead-string characteristics of unmyelinated FINEs. We confirmed the label-free capability of dTHGM through a comparison study with the PGP9.5 immunohistochemical staining slides and a longitudinal spared nerve injury study. An intraepidermal nerve fiber (IENF) index based on a discontinuous-dot-connecting algorithm was developed to facilitate clinical applications of dTHGM. A preliminary clinical study confirmed that the IENF index was highly correlated with skin-biopsy-based IENF density (Pearson's correlation coefficient R = 0.98) and could achieve differential identification of small-fiber neuropathy (p = 0.0102) in patients with diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Pei-Jhe Wu
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiao-Chieh Tseng
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital, and National Taiwan University College of Medicine Taipei 100225, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Ying Lin
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; Department of Anesthesiology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan.
| | - Wei-Zen Sun
- Department of Anesthesiology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan.
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
4
|
Marshall A, Rapteas L, Burgess J, Riley D, Anson M, Matsumoto K, Bennett A, Kaye S, Marshall A, Dunham J, Fallon N, Zhao SS, Pritchard A, Goodson N, Malik RA, Goebel A, Frank B, Alam U. Small fibre pathology, small fibre symptoms and pain in fibromyalgia syndrome. Sci Rep 2024; 14:3947. [PMID: 38365860 PMCID: PMC10873371 DOI: 10.1038/s41598-024-54365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
A proportion of people with fibromyalgia demonstrate small fibre pathology (SFP). However, it is unclear how SFP directly relates to pain phenomenology. Thirty-three individuals with FMS and ten healthy volunteers underwent assessment of SFP and sensory phenotyping using corneal confocal microscopy, validated questionnaires and quantitative sensory testing (QST). Corneal nerve fibre length was used to stratify participants with fibromyalgia into with SFP [SFP+] and without SFP [SFP-]. SFP was detected in 50% of the fibromyalgia cohort. Current pain score and QST parameters did not differ between SFP+ and SFP-. Mechanical pain sensitivity (MPS) demonstrated a significant gain-of-function in the SFP- cohort compared to healthy-volunteers (p = 0.014, F = 4.806, η2 = 0.22). Further stratification revealed a cohort without structural SFP but with symptoms compatible with small fibre neuropathy symptoms and a significant gain in function in MPS (p = 0.020 Chi-square). Additionally, this cohort reported higher scores for both depression (p = 0.039, H = 8.483, η2 = 0.312) and anxiety (p = 0.022, F = 3.587, η2 = 0.293). This study confirms that SFP is present in a proportion of people with fibromyalgia. We also show that in a proportion of people with fibromyalgia, small fibre neuropathy symptoms are present in the absence of structural SFP. Greater mechanical pain sensitivity, depression and anxiety are seen in these individuals.
Collapse
Affiliation(s)
- Anne Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| | - Leandros Rapteas
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Jamie Burgess
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - David Riley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK
| | - Matthew Anson
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK
| | - Kohei Matsumoto
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK
| | - Amanda Bennett
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK
| | - Stephen Kaye
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - James Dunham
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Nicholas Fallon
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Sizheng S Zhao
- Faculty of Biological Medicine and Health, Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester, UK
| | - Anne Pritchard
- Fibromates, North West Fibromyalgia Support Group, Liverpool, UK
| | - Nicola Goodson
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Rayaz A Malik
- Research Division, Weill Cornell Medicine-Qatar, Qatar Foundation, 24144, Doha, Qatar
| | - Andreas Goebel
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Bernhard Frank
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Uazman Alam
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK.
| |
Collapse
|
5
|
Lu X, Chen Z, Lu J, Watsky MA. Effects of 1,25-Vitamin D3 and 24,25-Vitamin D3 on Corneal Nerve Regeneration in Diabetic Mice. Biomolecules 2023; 13:1754. [PMID: 38136625 PMCID: PMC10742127 DOI: 10.3390/biom13121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Corneal nerve homeostasis is essential for the functional integrity of the ocular surface. Vitamin D deficiency (VDD) and vitamin D receptor knockout (VDR KO) have been found to reduce corneal nerve density in diabetic mice. This is the first study to comprehensively examine the influence of vitamin D on nerve regeneration following corneal epithelial injury in diabetic mice. Corneal nerve regeneration was significantly retarded by diabetes, VDR KO, and VDD, and it was accelerated following topical 1,25 Vit D and 24,25 Vit D administration. Furthermore, topical 1,25 Vit D and 24,25 Vit D increased nerve growth factor, glial cell line-derived neurotropic factor, and neurotropin-3 protein expression, and it increased secretion of GDNF protein from human corneal epithelial cells. CD45+ cells and macrophage numbers were significantly decreased, and vitamin D increased CD45+ cell and macrophage recruitment in these wounded diabetic mouse corneas. The accelerated nerve regeneration observed in these corneas following topical 1,25 Vit D and 24,25 Vit D administration may be related to the vitamin D-stimulated expression, secretion of neurotrophic factors, and recruitment of immune cells.
Collapse
Affiliation(s)
- Xiaowen Lu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, CB-2901, Augusta, GA 30912, USA
| | | | | | - Mitchell A. Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, CB-2901, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Chan K, Badanes Z, Ledbetter EC. Decreased corneal subbasal nerve fiber length and density in diabetic dogs with cataracts using in vivo confocal microscopy. Vet Ophthalmol 2023; 26:524-531. [PMID: 36854901 DOI: 10.1111/vop.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To determine whether there is a difference in corneal sensitivity and corneal subbasal nerve plexus (CSNP) morphology in cataractous dogs with diabetes mellitus (DM) versus without DM. ANIMALS STUDIED Twenty six domestic dogs with cataracts of various breeds presented for phacoemulsification, 13 with DM and 13 without DM. PROCEDURE The inclusion criteria for the study were dogs with bilateral cataracts and no clinical evidence of corneal disease. The diabetic group had documented hyperglycemia and was currently treated with insulin. The non-diabetic group had no evidence of DM on examination and bloodwork. Complete ophthalmic examination, corneal esthesiometry, and in vivo confocal microscopy of the CSNP was performed for both eyes of each dog. The CSNP was evaluated using a semi-automated program and statistically analyzed. RESULTS The mean (±SD) CSNP fiber length was significantly decreased in diabetic (3.8 ± 3.0 mm/mm2 ) versus non-diabetic (6.7 ± 1.9 mm/mm2 ) dogs. Likewise, the mean (±SD) fiber density was significantly decreased in diabetic (8.3 ± 3.1 fibers/mm2 ) versus non-diabetic (15.5 ± 4.9 fibers/mm2 ) dogs. The corneal touch threshold was significantly reduced in diabetic (2.1 ± 0.8 cm) versus non-diabetic (2.8 ± 0.4 cm) dogs. There was a non-significant trend towards subclinical keratitis in diabetic (9/13) versus non-diabetic (4/13) dogs. CONCLUSIONS Morphological and functional abnormalities of the CSNP were present in dogs with DM, including decreased fiber length, fiber density, and corneal sensitivity. These findings are consistent with diabetic neuropathy and could contribute to clinically significant corneal complications after cataract surgery.
Collapse
Affiliation(s)
- Kore Chan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Zachary Badanes
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Eric C Ledbetter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Mokhtar SBA, van der Heide FCT, Oyaert KAM, van der Kallen CJH, Berendschot TTJM, Scarpa F, Colonna A, de Galan BE, van Greevenbroek MMJ, Dagnelie PC, Schalkwijk CG, Nuijts RMMA, Schaper NC, Kroon AA, Schram MT, Webers CAB, Stehouwer CDA. (Pre)diabetes and a higher level of glycaemic measures are continuously associated with corneal neurodegeneration assessed by corneal confocal microscopy: the Maastricht Study. Diabetologia 2023; 66:2030-2041. [PMID: 37589735 PMCID: PMC10541833 DOI: 10.1007/s00125-023-05986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 08/18/2023]
Abstract
AIMS/HYPOTHESIS To assess the associations between glucose metabolism status and a range of continuous measures of glycaemia with corneal nerve fibre measures, as assessed using corneal confocal microscopy. METHODS We used population-based observational cross-sectional data from the Maastricht Study of N=3471 participants (mean age 59.4 years, 48.4% men, 14.7% with prediabetes, 21.0% with type 2 diabetes) to study the associations, after adjustment for demographic, cardiovascular risk and lifestyle factors, between glucose metabolism status (prediabetes and type 2 diabetes vs normal glucose metabolism) plus measures of glycaemia (fasting plasma glucose, 2 h post-load glucose, HbA1c, skin autofluorescence [SAF] and duration of diabetes) and composite Z-scores of corneal nerve fibre measures or individual corneal nerve fibre measures (corneal nerve bifurcation density, corneal nerve density, corneal nerve length and fractal dimension). We used linear regression analysis, and, for glucose metabolism status, performed a linear trend analysis. RESULTS After full adjustment, a more adverse glucose metabolism status was associated with a lower composite Z-score for corneal nerve fibre measures (β coefficients [95% CI], prediabetes vs normal glucose metabolism -0.08 [-0.17, 0.03], type 2 diabetes vs normal glucose metabolism -0.14 [-0.25, -0.04]; linear trend analysis showed a p value of 0.001), and higher levels of measures of glycaemia (fasting plasma glucose, 2 h post-load glucose, HbA1c, SAF and duration of diabetes) were all significantly associated with a lower composite Z-score for corneal nerve fibre measures (per SD: -0.09 [-0.13, -0.05], -0.07 [-0.11, -0.03], -0.08 [-0.11, -0.04], -0.05 [-0.08, -0.01], -0.09 [-0.17, -0.001], respectively). In general, directionally similar associations were observed for individual corneal nerve fibre measures. CONCLUSIONS/INTERPRETATION To our knowledge, this is the first population-based study to show that a more adverse glucose metabolism status and higher levels of glycaemic measures were all linearly associated with corneal neurodegeneration after adjustment for an extensive set of potential confounders. Our results indicate that glycaemia-associated corneal neurodegeneration is a continuous process that starts before the onset of type 2 diabetes. Further research is needed to investigate whether early reduction of hyperglycaemia can prevent corneal neurodegeneration.
Collapse
Grants
- the Cardiovascular Center (CVC, Maastricht, the Netherlands)
- Sanofi-Aventis Netherlands B.V. (Gouda, the Netherlands)
- Perimed (Järfälla, Sweden)
- Janssen-Cilag B.V. (Tilburg, the Netherlands)
- CARIM School for Cardiovascular Diseases (Maastricht, the Netherlands)
- MHeNS School of Mental Health and Neuroscience (Maastricht, the Netherlands)
- CAPHRI School for Public Health and Primary Care (Maastricht, the Netherlands)
- Stichting De Weijerhorst (Maastricht, the Netherlands)
- Health Foundation Limburg (Maastricht, the Netherlands)
- uropean Regional Development Fund via OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- Stichting Annadal (Maastricht, the Netherlands)
- Novo Nordisk Farma B.V. (Alphen aan den Rijn, the Netherlands)
- NUTRIM School for Nutrition and Translational Research in Metabolism (Maastricht, the Netherlands)
- the Pearl String Initiative Diabetes (Amsterdam, the Netherlands)
Collapse
Affiliation(s)
- Sara B A Mokhtar
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Frank C T van der Heide
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Karel A M Oyaert
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Carla J H van der Kallen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tos T J M Berendschot
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Fabio Scarpa
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alessia Colonna
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Bastiaan E de Galan
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marleen M J van Greevenbroek
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Pieter C Dagnelie
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Nicolaas C Schaper
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center, Maastricht, the Netherlands
- Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Abraham A Kroon
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Heart and Vascular Center, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Miranda T Schram
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Heart and Vascular Center, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
8
|
Sierra-Silvestre E, Andrade RJ, Colorado LH, Edwards K, Coppieters MW. Occurrence of corneal sub-epithelial microneuromas and axonal swelling in people with diabetes with and without (painful) diabetic neuropathy. Diabetologia 2023; 66:1719-1734. [PMID: 37301795 PMCID: PMC10257488 DOI: 10.1007/s00125-023-05945-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/04/2023] [Indexed: 06/12/2023]
Abstract
AIMS/HYPOTHESIS Non-invasive in vivo corneal confocal microscopy is gaining ground as an alternative to skin punch biopsy to evaluate small-diameter nerve fibre characteristics. This study aimed to further explore corneal nerve fibre pathology in diabetic neuropathy. METHODS This cross-sectional study quantified and compared corneal nerve morphology and microneuromas in participants without diabetes (n=27), participants with diabetes but without distal symmetrical polyneuropathy (DSPN; n=33), participants with non-painful DSPN (n=25) and participants with painful DSPN (n=18). Clinical and electrodiagnostic criteria were used to diagnose DSPN. ANCOVA was used to compare nerve fibre morphology in the central cornea and inferior whorl, and the number of corneal sub-epithelial microneuromas between groups. Fisher's exact tests were used to compare the type and presence of corneal sub-epithelial microneuromas and axonal swelling between groups. RESULTS Various corneal nerve morphology metrics, such as corneal nerve fibre length and density, showed a progressive decline across the groups (p<0.001). In addition, axonal swelling was present more frequently (p=0.018) and in higher numbers (p=0.03) in participants with painful compared with non-painful DSPN. The frequency of axonal distension, a type of microneuroma, was increased in participants with painful and non-painful DSPN compared to participants with diabetes but without DSPN and participants without diabetes (all p≤0.042). The combined presence of all microneuromas and axonal swelling was increased in participants with painful DSPN compared with all other groups (p≤0.026). CONCLUSIONS/INTERPRETATION Microneuromas and axonal swelling in the cornea increase in prevalence from participants with diabetes to participants with non-painful DSPN and participants with painful DSPN.
Collapse
Affiliation(s)
- Eva Sierra-Silvestre
- Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia
- Amsterdam Movement Sciences - Musculoskeletal Health Program, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ricardo J Andrade
- Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
- Movement - Interactions - Performance (MIP), Nantes University, Nantes, France
| | - Luisa H Colorado
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Katie Edwards
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Michel W Coppieters
- Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia.
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia.
- Amsterdam Movement Sciences - Musculoskeletal Health Program, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Asiedu K, Alotaibi S, Krishnan AV, Kwai N, Poynten A, Markoulli M, Dhanapalaratnam R. Chronic Kidney Disease Has No Impact on Tear Film Substance P Concentration in Type 2 Diabetes. Biomedicines 2023; 11:2368. [PMID: 37760810 PMCID: PMC10525867 DOI: 10.3390/biomedicines11092368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE The study aimed to ascertain the potential effects of chronic kidney disease (CKD) on substance P concentration in the tear film of people with type 2 diabetes. METHODS Participants were classified into two groups: type 2 diabetes with concurrent chronic kidney disease (T2DM-CKD (n = 25)) and type 2 diabetes without chronic kidney disease (T2DM-no CKD (n = 25)). Ocular surface discomfort assessment, flush tear collection, in-vivo corneal confocal microscopy, and peripheral neuropathy assessment were conducted. Enzyme-linked immunosorbent assays were utilized to ascertain the levels of tear film substance P in collected flush tears. Correlation analysis, hierarchical multiple linear regression analysis, and t-tests or Mann-Whitney U tests were used in the analysis of data for two-group comparisons. RESULTS There was no substantial difference between the T2DM-CKD and T2DM-no CKD groups for tear film substance P concentration (4.4 (0.2-50.4) and 5.9 (0.2-47.2) ng/mL, respectively; p = 0.54). No difference was observed in tear film substance P concentration between the low-severity peripheral neuropathy and high-severity peripheral neuropathy groups (4.4 (0.2-50.4) and 3.3 (0.3-40.7) ng/mL, respectively; p = 0.80). Corneal nerve fiber length (9.8 ± 4.6 and 12.4 ± 3.8 mm/mm2, respectively; p = 0.04) and corneal nerve fiber density (14.7 ± 8.5 and 21.1 ± 7.0 no/mm2, respectively; p < 0.01) were reduced significantly in the T2DM-CKD group compared to the T2DM-no CKD group. There were significant differences in corneal nerve fiber density (21.0 ± 8.1 and 15.8 ± 7.7 no/mm2, respectively; p = 0.04) and corneal nerve fiber length (12.9 ± 4.2 and 9.7 ± 3.8 mm/mm2, respectively; p = 0.03) between the low- and high-severity peripheral neuropathy groups. CONCLUSION In conclusion, no significant difference in tear film substance P concentration was observed between type 2 diabetes with and without CKD. Corneal nerve loss, however, was more significant in type 2 diabetes with chronic kidney disease compared to type 2 diabetes alone, indicating that corneal nerve morphological measures could serve greater utility as a tool to detect neuropathy and nephropathy-related corneal nerve changes.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sultan Alotaibi
- School of Optometry & Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11421, Saudi Arabia
| | - Arun V. Krishnan
- School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Natalie Kwai
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ann Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Maria Markoulli
- School of Optometry & Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
10
|
Gulkas S, Aydin FO, Turhan SA, Toker AE. In vivo corneal confocal microscopy as a non-invasive test to assess obesity induced small fibre nerve damage and inflammation. Eye (Lond) 2023; 37:2226-2232. [PMID: 36443498 PMCID: PMC10366092 DOI: 10.1038/s41433-022-02321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To investigate small nerve fibre damage and inflammation at the level of the sub-basal nerve plexus (SNP) of severe obese patients and compare the results with those of healthy subjects. METHODS This cross-sectional, observational study investigated the data of 28 patients (14 out of 28 prediabetic or diabetic) with severe obesity (Body Mass Index; BMI ≥ 40) and 20 healthy subjects. Corneal nerve fibre density (CNFD), branch density (CNBD), fibre length (CNFL), nerve fibre area (CNFA), nerve fibre width (CNFW), and nerve fractal dimension (CNFrD) and dendritic cell (DC) density were evaluated using in vivo confocal microscopy (IVCM, Heidelberg Retinal Tomograph III Rostock Cornea Module). Automatic CCMetrics software (University of Manchester, UK) was used for quantitative analysis of SNP. RESULTS Mean age was 48.4±7.4 and 45.1 ± 5.8 in the control and obese group, respectively (p = 0.09). Mean BMI were 49.1 ± 7.8 vs. 23.3 ± 1.4 in obese vs. control group, respectively (p < 0.001). Mean CNFD, CNBD, CNFL, CNFA, CNFW were significantly reduced in obese group compared with those in the control group (always p < 0.05, respectively). There were no significant differences in any ACCMetrics parameters between prediabetic/diabetic and non-diabetic obese patients. Increased DC densities were detected in obese group compared with those in control group (p < 0.0001). There were significant correlations between BMI scores and SNP parameters. CONCLUSION Imaging with IVCM is a feasible, non-invasive method to detect and quantify occult corneal nerve damage and increased inflammation in patients with obesity. This study suggests that obesity may be a separate risk factor for peripheral neuropathy regardless of DM.
Collapse
Affiliation(s)
- Samet Gulkas
- Department of Ophthalmology, Abdulkadir Yuksel State Hospital, Gaziantep, Turkey.
| | - Fahri Onur Aydin
- Department of Ophthalmology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Semra Akkaya Turhan
- Department of Ophthalmology, Marmara University School of Medicine, Pendik Training and Research Hospital, Istanbul, Turkey
| | - Ayse Ebru Toker
- Department of Ophthalmology and Visual Sciences, West Virginia University Eye Institute, Morgantown, WV, USA
| |
Collapse
|
11
|
Khan A, Kamal M, Alhothi A, Gad H, Adan MA, Ponirakis G, Petropoulos IN, Malik RA. Corneal confocal microscopy demonstrates sensory nerve loss in children with autism spectrum disorder. PLoS One 2023; 18:e0288399. [PMID: 37437060 DOI: 10.1371/journal.pone.0288399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by difficulty in communication and interaction with others. Postmortem studies have shown cerebral neuronal loss and neuroimaging studies show neuronal loss in the amygdala, cerebellum and inter-hemispheric regions of the brain. Recent studies have shown altered tactile discrimination and allodynia on the face, mouth, hands and feet and intraepidermal nerve fiber loss in the legs of subjects with ASD. Fifteen children with ASD (age: 12.00 ± 3.55 years) and twenty age-matched healthy controls (age: 12.83 ± 1.91 years) underwent corneal confocal microscopy (CCM) and quantification of corneal nerve fiber morphology. Corneal nerve fibre density (fibers/mm2) (28.61 ± 5.74 vs. 40.42 ± 8.95, p = 0.000), corneal nerve fibre length (mm/mm2) (16.61 ± 3.26 vs. 21.44 ± 4.44, p = 0.001), corneal nerve branch density (branches/mm2) (43.68 ± 22.71 vs. 62.39 ± 21.58, p = 0.018) and corneal nerve fibre tortuosity (0.037 ± 0.023 vs. 0.074 ± 0.017, p = 0.000) were significantly lower and inferior whorl length (mm/mm2) (21.06 ± 6.12 vs. 23.43 ± 3.95, p = 0.255) was comparable in children with ASD compared to controls. CCM identifies central corneal nerve fiber loss in children with ASD. These findings, urge the need for larger longitudinal studies to determine the utility of CCM as an imaging biomarker for neuronal loss in different subtypes of ASD and in relation to disease progression.
Collapse
Affiliation(s)
- Adnan Khan
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
- Faculty of Health Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Madeeha Kamal
- Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Abdula Alhothi
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | - Hoda Gad
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Marian A Adan
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | | | | | - Rayaz A Malik
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
12
|
Guldiken YC, Petropoulos IN, Malik A, Malik RA, Yüksel R, Budak F, Selekler HM. Corneal confocal microscopy identifies corneal nerve fiber loss in patients with migraine. Cephalalgia 2023; 43:3331024231170810. [PMID: 37177828 DOI: 10.1177/03331024231170810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND/HYPOTHESIS Migraine affects >1 billion people but its pathophysiology remains poorly understood. Alterations in the trigeminovascular system play an important role. We have compared corneal nerve morphology in patients with migraine to healthy controls. METHODS Sixty patients with episodic (n = 32) or chronic (n = 28) migraine and 20 age-matched healthy control subjects were studied cross-sectionally. Their migraine characteristics and signs and symptoms of dry eyes were assessed. Manual and automated quantification of corneal nerves was undertaken by corneal confocal microscopy. RESULTS In patients with migraine compared to controls, manual corneal nerve fiber density (P < 0.001), branch density (P = 0.015) and length (P < 0.001); and automated corneal nerve fiber density (P < 0.001), branch density (P < 0.001), length (P < 0.001), total branch density (P < 0.001), nerve fiber area (P < 0.001), nerve fiber width (P = 0.045) and fractal dimension (P < 0.001) were lower. Automated corneal nerve fiber density was higher in patients with episodic migraine and aura (P = 0.010); and fractal dimension (P = 0.029) was lower in patients with more headache days in the last three months. Automated corneal nerve fiber density predicted a significant amount of the observed variance in pain intensity (adjusted r2 = 0.14, partial r = -0.37, P = 0.004) in patients with migraine. CONCLUSIONS Corneal confocal microscopy reveals corneal nerve loss in patients with migraine. It may serve as an objective imaging biomarker of neurodegeneration in migraine.
Collapse
Affiliation(s)
- Yigit Can Guldiken
- Department of Neurology, Kocaeli University Research and Application Hospital, İzmit/Kocaeli, Turkey
| | | | - Ayesha Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Refref Yüksel
- Department of Ophthalmology, Kocaeli University Research and Application Hospital, İzmit/Kocaeli, Turkey
| | - Faik Budak
- Department of Neurology, Kocaeli University Research and Application Hospital, İzmit/Kocaeli, Turkey
| | - Hamit Macit Selekler
- Department of Neurology, Kocaeli University Research and Application Hospital, İzmit/Kocaeli, Turkey
| |
Collapse
|
13
|
Petropoulos IN, Al-Shibani F, Bitirgen G, Ponirakis G, Khan A, Gad H, Mahfoud ZR, Altarawneh H, Rehman MH, John K, Al-Merekhi D, George P, Uca AU, Ozkagnici A, Ibrahim F, Francis R, Canibano B, Deleu D, El-Sotouhy A, Vattoth S, Own A, Shuaib A, Akhtar N, Kamran S, Malik RA. Corneal axonal loss as an imaging biomarker of neurodegeneration in multiple sclerosis: a longitudinal study. Ther Adv Neurol Disord 2023; 16:17562864221118731. [PMID: 36776530 PMCID: PMC9909084 DOI: 10.1177/17562864221118731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/23/2022] [Indexed: 02/09/2023] Open
Abstract
Background Resourceful endpoints of axonal loss are needed to predict the course of multiple sclerosis (MS). Corneal confocal microscopy (CCM) can detect axonal loss in patients with clinically isolated syndrome and established MS, which relates to neurological disability. Objective To assess corneal axonal loss over time in relation to retinal atrophy, and neurological and radiological abnormalities in MS. Methods Patients with relapsing-remitting (RRMS) (n = 68) or secondary progressive MS (SPMS) (n = 15) underwent CCM and optical coherence tomography. Corneal nerve fibre density (CNFD-fibres/mm2), corneal nerve branch density (CNBD-branches/mm2), corneal nerve fibre length (CNFL-mm/mm2) and retinal nerve fibre layer (RNFL-μm) thickness were quantified along with neurological and radiological assessments at baseline and after 2 years of follow-up. Age-matched, healthy controls (n = 20) were also assessed. Results In patients with RRMS compared with controls at baseline, CNFD (p = 0.004) and RNFL thickness (p < 0.001) were lower, and CNBD (p = 0.003) was higher. In patients with SPMS compared with controls, CNFD (p < 0.001), CNFL (p = 0.04) and RNFL thickness (p < 0.001) were lower. For identifying RRMS, CNBD had the highest area under the receiver operating characteristic (AUROC) curve (0.99); and for SPMS, CNFD had the highest AUROC (0.95). At follow-up, there was a further significant decrease in CNFD (p = 0.04), CNBD (p = 0.001), CNFL (p = 0.008) and RNFL (p = 0.002) in RRMS; in CNFD (p = 0.04) and CNBD (p = 0.002) in SPMS; and in CNBD (p = 0.01) in SPMS compared with RRMS. Follow-up corneal nerve loss was greater in patients with new enhancing lesions and optic neuritis history. Conclusion Progressive corneal and retinal axonal loss was identified in patients with MS, especially those with more active disease. CCM may serve as an imaging biomarker of axonal loss in MS.
Collapse
Affiliation(s)
| | - Fatima Al-Shibani
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Gulfidan Bitirgen
- Department of Ophthalmology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Georgios Ponirakis
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Adnan Khan
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Hoda Gad
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Ziyad R. Mahfoud
- Division of Medical Education, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar,Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Heba Altarawneh
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | | | - Karen John
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Dhabia Al-Merekhi
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Pooja George
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ali Ulvi Uca
- Department of Neurology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ahmet Ozkagnici
- Department of Neurology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Faiza Ibrahim
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Reny Francis
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Dirk Deleu
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Surjith Vattoth
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Own
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Naveed Akhtar
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | | |
Collapse
|
14
|
Diabetic Retinopathy: Soluble and Imaging Ocular Biomarkers. J Clin Med 2023; 12:jcm12030912. [PMID: 36769560 PMCID: PMC9917666 DOI: 10.3390/jcm12030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular complication of diabetes mellitus, represents the leading cause of acquired blindness in the working-age population. Due to the potential absence of symptoms in the early stages of the disease, the identification of clinical biomarkers can have a crucial role in the early diagnosis of DR as well as for the detection of prognostic factors. In particular, imaging techniques are fundamental tools for screening, diagnosis, classification, monitoring, treatment planning and prognostic assessment in DR. In this context, the identification of ocular and systemic biomarkers is crucial to facilitate the risk stratification of diabetic patients; moreover, reliable biomarkers could provide prognostic information on disease progression as well as assist in predicting a patient's response to therapy. In this context, this review aimed to provide an updated and comprehensive overview of the soluble and anatomical biomarkers associated with DR.
Collapse
|
15
|
Lytvyn Y, Albakr R, Bjornstad P, Lovblom LE, Liu H, Lovshin JA, Boulet G, Farooqi MA, Weisman A, Keenan HA, Brent MH, Paul N, Bril V, Perkins BA, Cherney DZI. Renal hemodynamic dysfunction and neuropathy in longstanding type 1 diabetes: Results from the Canadian study of longevity in type 1 diabetes. J Diabetes Complications 2022; 36:108320. [PMID: 36201892 PMCID: PMC10187942 DOI: 10.1016/j.jdiacomp.2022.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Abstract
AIMS To determine the relationship between renal hemodynamic function and neuropathy in adults with ≥50-years of type 1 diabetes (T1D) compared to nondiabetic controls. METHODS Glomerular filtration rate (GFR, inulin), effective renal plasma flow (ERPF, p-aminohippurate), modified Toronto Clinical Neuropathy Score (mTCNS), corneal confocal microscopy, nerve conduction, and heart rate variability (autonomic function) were measured; afferent (RA) and efferent (RE) arteriolar resistances were estimated using the Gomez equations in 74 participants with T1D and in 75 controls. Diabetic kidney disease (DKD) non-resistors were defined by eGFRMDRD < 60 ml/min/1.73 m2 or 24-h urine albumin excretion >30 mg/day. Linear regression was applied to examine the relationships between renal function (dependent variable) and neuropathy measures (independent variable), adjusted for age, sex, HbA1c, systolic blood pressure, low density lipoprotein cholesterol, and 24-h urine albumin to creatinine ratio. RESULTS Higher mTCNS associated with lower renal blood flow (β ± SE:-9.29 ± 4.20, p = 0.03) and greater RE (β ± SE:32.97 ± 15.43, p = 0.04) in participants with T1D, but not in controls. DKD non-resistors had a higher mTCNS and worse measures of corneal nerve morphology compared to those without DKD. Renal hemodynamic parameters did not associate with autonomic nerve function. CONCLUSIONS Although neurological dysfunction in the presence of diabetes may contribute to impaired renal blood flow resulting in ischemic injury in patients with T1D, early autonomic dysfunction does not appear to be associated with kidney function changes.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rehab Albakr
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Petter Bjornstad
- Department of Pediatrics, Division of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Leif Erik Lovblom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Hongyan Liu
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Julie A Lovshin
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Genevieve Boulet
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed A Farooqi
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Alanna Weisman
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael H Brent
- Department of Ophthalmology and Vision Sciences, Department of Medicine, University of Toronto, Ontario, Canada
| | - Narinder Paul
- Joint Department of Medical Imaging, Division of Cardiothoracic Radiology, University Health Network, Toronto, Ontario, Canada
| | - Vera Bril
- Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada
| | - Bruce A Perkins
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Impact of Peripheral and Corneal Neuropathy on Markers of Ocular Surface Discomfort in Diabetic Chronic Kidney Disease. Optom Vis Sci 2022; 99:807-816. [PMID: 36287139 DOI: 10.1097/opx.0000000000001955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
SIGNIFICANCE There is a reduction in corneal nerve fiber density and length in type 2 diabetes mellitus with chronic kidney disease compared with type 2 diabetes mellitus alone; however, this difference does not result in worse ocular surface discomfort or dry eye disease. PURPOSE This study aimed to determine the clinical impact of corneal nerve loss on ocular surface discomfort and markers of ocular surface homeostasis in people with type 2 diabetes mellitus without chronic kidney disease (T2DM-no CKD) and those with type 2 diabetes mellitus with concurrent chronic kidney disease (T2DM-CKD). METHODS Participants were classified based on estimated glomerular filtration rates into two groups: T2DM-CKD (n = 27) and T2DM-no CKD (n = 28). RESULTS There was a significant difference between the T2DM-CKD and T2DM-no CKD groups in corneal nerve fiber density (14.9 ± 8.6 and 21.1 ± 7.1 no./mm 2 , respectively; P = .005) and corneal nerve fiber length (10.0 ± 4.6 and 12.3 ± 3.7 mm/mm 2 , respectively; P = .04). Fluorescein tear breakup time was significantly reduced in T2DM-CKD compared with T2DM-no CKD (8.1 ± 4.4 and 10.7 ± 3.8 seconds, respectively; P = .01), whereas ocular surface staining was not significantly different (3.5 ± 1.7 and 2.7 ± 2.3 scores, respectively; P = .12). In terms of ocular surface discomfort, there were no significant differences in the ocular discomfort score scores (12.5 ± 11.1 and 13.6 ± 12.1, respectively; P = .81) and Ocular Pain Assessment Survey scores (3.3 ± 5.4 and 4.3 ± 6.1, respectively; P = .37) between the T2DM-CKD and T2DM-no CKD. CONCLUSIONS The current study demonstrated that corneal nerve loss is greater in T2DM-CKD than in T2DM-no CKD. However, these changes do not impact ocular surface discomfort or markers of ocular surface homeostasis.
Collapse
|
17
|
Matuszewska-Iwanicka A, Stratmann B, Stachs O, Allgeier S, Bartschat A, Winter K, Guthoff R, Tschoepe D, Hettlich HJ. Mosaic vs. Single Image Analysis with Confocal Microscopy of the Corneal Nerve Plexus for Diagnosis of Early Diabetic Peripheral Neuropathy. Ophthalmol Ther 2022; 11:2211-2223. [PMID: 36184730 DOI: 10.1007/s40123-022-00574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The assessment of the corneal nerve fibre plexus with corneal confocal microscopy (CCM) is an upcoming but still experimental method in the diagnosis of early stage diabetic peripheral neuropathy (DPN). Using an innovative imaging technique-Heidelberg Retina Tomograph equipped with the Rostock Cornea Module (HRT-RCM) and EyeGuidance module (EG)-we were able to look at greater areas of subbasal nerve plexus (SNP) in order to increase the diagnostic accuracy. The aim of our study was to evaluate the usefulness of EG instead of single image analysis in diagnosis of early stage DPN. METHODS This prospective study was performed on 60 patients with type 2 diabetes mellitus, classified equally into two subgroups based on neuropathy deficient score (NDS): patients without DPN (group 1) or with mild DPN (group 2). The following parameters were analysed in the two subgroups: corneal nerve fibre length (CNFL; mm/mm2), corneal nerve fibre density (CNFD; no./mm2), corneal nerve branch density (CNBD; no./mm2). Furthermore, we compared the data calculated with the novel mosaic, EG-based method with those received from single image analysis using different quantification tools. RESULTS Using EG we did not find a significant difference between group 1 and group 2: CNFL (16.81 ± 5.87 mm/mm2 vs. 17.19 ± 7.19 mm/mm2, p = 0.895), CNFD (254.05 ± 115.36 no./mm2 vs. 265.91 ± 161.63 no./mm2, p = 0.732) and CNBD (102.68 ± 62.28 no./mm2 vs. 115.38 ± 96.91 no./mm2, p = 0.541). No significant difference between the EG method of analysing the SNP and the single image analysis of 10 images per patient was detected. CONCLUSION On the basis of our results it was not possible to differentiate between early stages of large nerve fibre DPN in patients with type 2 diabetes mellitus via SNP analysis. To improve sensitivity and specificity of this method newer technologies are under current evaluation. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT05326958.
Collapse
Affiliation(s)
- Aleksandra Matuszewska-Iwanicka
- Eye Clinic Johannes Wesling Hospital, Ruhr Universität Bochum, Augen-Praxisklinik Minden, Königstraße 120, 32427, Minden, Germany.
| | - Bernd Stratmann
- Herz- und Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, Bad Oeynhausen, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Stephan Allgeier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Andreas Bartschat
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Karsten Winter
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Rudolf Guthoff
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Diethelm Tschoepe
- Herz- und Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, Bad Oeynhausen, Germany
- Stiftung DHD (Der herzkranke Diabetiker) Stiftung in der Deutschen Diabetes-Stiftung, Bad Oeynhausen, Germany
| | - Hans-Joachim Hettlich
- Eye Clinic Johannes Wesling Hospital, Ruhr Universität Bochum, Augen-Praxisklinik Minden, Königstraße 120, 32427, Minden, Germany
| |
Collapse
|
18
|
So WZ, Qi Wong NS, Tan HC, Yu Lin MT, Yu Lee IX, Mehta JS, Liu YC. Diabetic corneal neuropathy as a surrogate marker for diabetic peripheral neuropathy. Neural Regen Res 2022; 17:2172-2178. [PMID: 35259825 PMCID: PMC9083173 DOI: 10.4103/1673-5374.327364] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic neuropathy is a prevalent microvascular complication of diabetes mellitus, affecting nerves in all parts of the body including corneal nerves and peripheral nervous system, leading to diabetic corneal neuropathy and diabetic peripheral neuropathy, respectively. Diabetic peripheral neuropathy is diagnosed in clinical practice using electrophysiological nerve conduction studies, clinical scoring, and skin biopsies. However, these diagnostic methods have limited sensitivity in detecting small-fiber disease, hence they do not accurately reflect the status of diabetic neuropathy. More recently, analysis of alterations in the corneal nerves has emerged as a promising surrogate marker for diabetic peripheral neuropathy. In this review, we will discuss the relationship between diabetic corneal neuropathy and diabetic peripheral neuropathy, elaborating on the foundational aspects of each: pathogenesis, clinical presentation, evaluation, and management. We will further discuss the relevance of diabetic corneal neuropathy in detecting the presence of diabetic peripheral neuropathy, particularly early diabetic peripheral neuropathy; the correlation between the severity of diabetic corneal neuropathy and that of diabetic peripheral neuropathy; and the role of diabetic corneal neuropathy in the stratification of complications of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Wei Zheng So
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore
| | - Natalie Shi Qi Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore
| | - Hong Chang Tan
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | | | | | - Jodhbir S Mehta
- Singapore Eye Research Institute; Department of Cornea and External Eye Disease, Singapore National Eye Centre; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yu-Chi Liu
- Singapore Eye Research Institute; Department of Cornea and External Eye Disease, Singapore National Eye Centre; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
19
|
Klisser J, Tummanapalli SS, Kim J, Chiang JCB, Khou V, Issar T, Naduvilath T, Poynten AM, Markoulli M, Krishnan AV. Automated analysis of corneal nerve tortuosity in diabetes: implications for neuropathy detection. Clin Exp Optom 2022; 105:487-493. [DOI: 10.1080/08164622.2021.1940875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Jacob Klisser
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | | | - Juno Kim
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | | | - Vincent Khou
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
- Centre for Eye Health, University of New South Wales, Sydney, Australia
| | - Tushar Issar
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Thomas Naduvilath
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | - Ann M Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, Australia
| | - Maria Markoulli
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
20
|
Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q, Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res 2022; 89:101039. [PMID: 34991965 PMCID: PMC9250553 DOI: 10.1016/j.preteyeres.2021.101039] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Patrick S Y Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Alexander V Ljubimov
- Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ellen Yang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
21
|
Setu MAK, Schmidt S, Musial G, Stern ME, Steven P. Segmentation and Evaluation of Corneal Nerves and Dendritic Cells From In Vivo Confocal Microscopy Images Using Deep Learning. Transl Vis Sci Technol 2022; 11:24. [PMID: 35762938 PMCID: PMC9251793 DOI: 10.1167/tvst.11.6.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose Segmentation and evaluation of in vivo confocal microscopy (IVCM) images requires manual intervention, which is time consuming, laborious, and non-reproducible. The aim of this research was to develop and validate deep learning–based methods that could automatically segment and evaluate corneal nerve fibers (CNFs) and dendritic cells (DCs) in IVCM images, thereby reducing processing time to analyze larger volumes of clinical images. Methods CNF and DC segmentation models were developed based on U-Net and Mask R-CNN architectures, respectively; 10-fold cross-validation was used to evaluate both models. The CNF model was trained and tested using 1097 and 122 images, and the DC model was trained and tested using 679 and 75 images, respectively, at each fold. The CNF morphology, number of nerves, number of branching points, nerve length, and tortuosity were analyzed; for DCs, number, size, and immature–mature cells were analyzed. Python-based software was written for model training, testing, and automatic morphometric parameters evaluation. Results The CNF model achieved on average 86.1% sensitivity and 90.1% specificity, and the DC model achieved on average 89.37% precision, 94.43% recall, and 91.83% F1 score. The interclass correlation coefficient (ICC) between manual annotation and automatic segmentation were 0.85, 0.87, 0.95, and 0.88 for CNF number, length, branching points, and tortuosity, respectively, and the ICC for DC number and size were 0.95 and 0.92, respectively. Conclusions Our proposed methods demonstrated reliable consistency between manual annotation and automatic segmentation of CNF and DC with rapid speed. The results showed that these approaches have the potential to be implemented into clinical practice in IVCM images. Translational Relevance The deep learning–based automatic segmentation and quantification algorithm significantly increases the efficiency of evaluating IVCM images, thereby supporting and potentially improving the diagnosis and treatment of ocular surface disease associated with corneal nerves and dendritic cells.
Collapse
Affiliation(s)
- Md Asif Khan Setu
- Department of Ophthalmology, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.,Division of Dry Eye and Ocular GvHD, University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Gwen Musial
- Department of Ophthalmology, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.,Division of Dry Eye and Ocular GvHD, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael E Stern
- Department of Ophthalmology, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.,Division of Dry Eye and Ocular GvHD, University Hospital Cologne, University of Cologne, Cologne, Germany.,ImmunEyez LLC, Irvine, CA, USA
| | - Philipp Steven
- Department of Ophthalmology, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.,Division of Dry Eye and Ocular GvHD, University Hospital Cologne, University of Cologne, Cologne, Germany.,Cluster of Excellence: Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Segars KL, Azzari NA, Gomez S, Machen C, Rich CB, Trinkaus-Randall V. Age Dependent Changes in Corneal Epithelial Cell Signaling. Front Cell Dev Biol 2022; 10:886721. [PMID: 35602595 PMCID: PMC9117764 DOI: 10.3389/fcell.2022.886721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
The cornea is exposed daily to a number of mechanical stresses including shear stress from tear film and blinking. Over time, these stressors can lead to changes in the extracellular matrix that alter corneal stiffness, cell-substrate structures, and the integrity of cell-cell junctions. We hypothesized that changes in tissue stiffness of the cornea with age may alter calcium signaling between cells after injury, and the downstream effects of this signaling on cellular motility and wound healing. Nanoindentation studies revealed that there were significant differences in the stiffness of the corneal epithelium and stroma between corneas of 9- and 27-week mice. These changes corresponded to differences in the timeline of wound healing and in cell signaling. Corneas from 9-week mice were fully healed within 24 h. However, the wounds on corneas from 27-week mice remained incompletely healed. Furthermore, in the 27-week cohort there was no detectable calcium signaling at the wound in either apical or basal corneal epithelial cells. This is in contrast to the young cohort, where there was elevated basal cell activity relative to background levels. Cell culture experiments were performed to assess the roles of P2Y2, P2X7, and pannexin-1 in cellular motility during wound healing. Inhibition of P2Y2, P2X7, or pannexin-1 all significantly reduce wound closure. However, the inhibitors all have different effects on the trajectories of individual migrating cells. Together, these findings suggest that there are several significant differences in the stiffness and signaling that underlie the decreased wound healing efficacy of the cornea in older mice.
Collapse
Affiliation(s)
- Kristen L. Segars
- Department of Pharmacology, School of Medicine, Boston University, Boston, MA, United States
| | - Nicholas A. Azzari
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Stephanie Gomez
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Cody Machen
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Celeste B. Rich
- Department of Ophthalmology, School of Medicine, School of Medicine, Boston, MA, United States
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
- Department of Ophthalmology, School of Medicine, School of Medicine, Boston, MA, United States
- *Correspondence: Vickery Trinkaus-Randall,
| |
Collapse
|
23
|
Bu Y, Shih KC, Tong L. The ocular surface and diabetes, the other 21st Century epidemic. Exp Eye Res 2022; 220:109099. [DOI: 10.1016/j.exer.2022.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
24
|
Fang W, Lin ZX, Yang HQ, Zhao L, Liu DC, Pan ZQ. Changes in corneal nerve morphology and function in patients with dry eyes having type 2 diabetes. World J Clin Cases 2022; 10:3014-3026. [PMID: 35647133 PMCID: PMC9082719 DOI: 10.12998/wjcc.v10.i10.3014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/24/2021] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dry eye syndrome (DES) is a common disease with various clinical manifestations. DES had a significant association with diabetes. Blink reflex (BR) is also known as trigeminal nerve facial reflex. The stimulation of corneal nerves is one of the origins of BR stimulation. The parasympathetic fibers sent out through the facial nerve are the outlet of tear reflexes. BR can be used to assess the function of the corneal nerve closed-loop; however, whether the BR changes in these patients is unclear. AIM To understand the morphology and function of the corneal nerve in patients with dry eyes having diabetes or not. METHODS This study enrolled 131 patients who visited the inpatient and outpatient services of ophthalmology and endocrinology departments between January 2019 to August 2020 with subjective symptoms of dry eyes and non-dry eye reasons, as well as volunteers such as colleagues. The patients were divided into four groups: DEwDM, with dry eyes having type 2 diabetes mellitus (T2DM); DMnDE, with T2DM not having dry eyes; DEnDM, with dry eyes not having diabetes; and nDMnDE, with neither dry eyes nor diabetes. The tear film break-up time, Schirmer I test, in vivo confocal microscopy, and BR were performed. RESULTS The DEwDM, DMnDE, DEnDM, and nDMnDE groups included 56, 22, 33, and 20 patients, respectively. Sex and age were not statistically different among the four groups. The nerve fiber length (NFL) of patients in the DEwDM, DEnDM, and DMnDE groups reduced (P < 0.001, P = 0.014, and P = 0.001, respectively). No significant difference in corneal nerve fiber density (NFD) (P = 0.083) and corneal nerve branch density (NBD) (P = 0.195) was found among the four groups. The R1 Latency of blink reflexes increased only in the DEwDM group (P = 0.008, P = 0.001, P < 0.001, compared with the DMnDE, DEnDM, and nDMnDE groups, respectively). The NBD and R1 Latency were different between DEwDM and DEnDM groups in patients with moderate and severe dry eyes. CONCLUSION The corneal nerve morphology changed in patients with dry eyes or diabetes, or with both, while the function of corneal nerve closed-loop reduced only in those with dry eyes and diabetes.
Collapse
Affiliation(s)
- Wei Fang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, Beijing, China
| | - Zhong-Xi Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hui-Qing Yang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lei Zhao
- Department of Endocrinology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Da-Chuan Liu
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhi-Qiang Pan
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, Beijing, China
| |
Collapse
|
25
|
Ponirakis G, Hamad HA, Khan A, Petropoulos IN, Gad H, Chandran M, Elsotouhy A, Ramadan M, Gawhale PV, Elorrabi M, Gadelseed M, Tosino R, Arasn A, Manikoth P, Abdelrahim YH, Refaee MA, Thodi N, Vattoth S, Almuhannadi H, Mahfoud ZR, Bhat H, Own A, Shuaib A, Malik RA. Loss of corneal nerves and brain volume in mild cognitive impairment and dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12269. [PMID: 35415208 PMCID: PMC8983001 DOI: 10.1002/trc2.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Abstract
Introduction This study compared the capability of corneal confocal microscopy (CCM) with magnetic resonance imaging (MRI) brain volumetry for the diagnosis of mild cognitive impairment (MCI) and dementia. Methods In this cross-sectional study, participants with no cognitive impairment (NCI), MCI, and dementia underwent assessment of Montreal Cognitive Assessment (MoCA), MRI brain volumetry, and CCM. Results Two hundred eight participants with NCI (n = 42), MCI (n = 98), and dementia (n = 68) of comparable age and gender were studied. For MCI, the area under the curve (AUC) of CCM (76% to 81%), was higher than brain volumetry (52% to 70%). For dementia, the AUC of CCM (77% to 85%), was comparable to brain volumetry (69% to 93%). Corneal nerve fiber density, length, branch density, whole brain, hippocampus, cortical gray matter, thalamus, amygdala, and ventricle volumes were associated with cognitive impairment after adjustment for confounders (All P's < .01). Discussion The diagnostic capability of CCM compared to brain volumetry is higher for identifying MCI and comparable for dementia, and abnormalities in both modalities are associated with cognitive impairment.
Collapse
Affiliation(s)
- Georgios Ponirakis
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | - Hanadi Al Hamad
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Adnan Khan
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | | | - Hoda Gad
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | - Mani Chandran
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Ahmed Elsotouhy
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
- NeuroradiologyHamad General HospitalHamad Medical CorporationDohaQatar
| | - Marwan Ramadan
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Priya V. Gawhale
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Marwa Elorrabi
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Masharig Gadelseed
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Rhia Tosino
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Anjum Arasn
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Pravija Manikoth
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | | | - Mahmoud A Refaee
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Noushad Thodi
- MRI UnitRumailah HospitalHamad Medical CorporationDohaQatar
| | - Surjith Vattoth
- RadiologyUniversity of Arkansas for Medical SciencesArkansasUSA
| | - Hamad Almuhannadi
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | - Ziyad R. Mahfoud
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | - Harun Bhat
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | - Ahmed Own
- NeuroradiologyHamad General HospitalHamad Medical CorporationDohaQatar
| | - Ashfaq Shuaib
- Department of MedicineUniversity of AlbertaAlbertaCanada
| | - Rayaz A. Malik
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
- Faculty of BiologyMedicine and HealthUniversity of ManchesterManchesterUK
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
26
|
Bustamante-Arias A, Ruiz Lozano RE, Rodriguez-Garcia A. Dry eye disease, a prominent manifestation of systemic autoimmune disorders. Eur J Ophthalmol 2022; 32:3142-3162. [PMID: 35300528 DOI: 10.1177/11206721221088259] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Dry eye disease (DED) is arguably the most frequent ocular disease encountered in ophthalmic clinical practice. DED is frequently an underestimated condition causing a significant impact on visual function and quality of life. Many systemic autoimmune diseases (SAIDs) are related to moderate to severe DED. The main objective of this review is to enhance the awareness among ophthalmologists of the potential association of an underlying SAID in a high-risk patient with DED. METHODS An exhaustive literature search was performed in the National Library of Medicine's Pubmed, Scopus, Web of Science, and Google Scholar databases for all English language articles published until November 2021. The main keywords included "dry eye disease" associated with autoimmune, connective tissue, endocrine, gastrointestinal, hematopoietic, vascular, and pulmonary diseases. Case reports, series, letters to the editor, reviews, and original articles were included. RESULTS Although DED is frequently associated with SAIDs, its diagnosis is commonly delayed or missed, producing significant complications, including corneal ulceration, melting, scleritis, uveitis, and optic neuritis resulting in severe complications detrimental to visual function and quality of life. SAID should be suspected in a woman, 30 to 60 years old with a family history of autoimmunity, presenting with DED symptoms and extraocular manifestations including arthralgias, dry mouth, unexplained weight and hair loss, chronic fatigue, heat or cold intolerance, insomnia, and mood disorders. CONCLUSIONS Establishing the correct diagnosis and treatment of DED associated with SAIDs is crucial to avoid its significant burden and severe ocular complications.
Collapse
Affiliation(s)
- Andres Bustamante-Arias
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Raul E Ruiz Lozano
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Alejandro Rodriguez-Garcia
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| |
Collapse
|
27
|
Al-Bazz DY, Nelson AJ, Burgess J, Petropoulos IN, Nizza J, Marshall A, Brown E, Cuthbertson DJ, Marshall AG, Malik RA, Alam U. Is Nerve Electrophysiology a Robust Primary Endpoint in Clinical Trials of Treatments for Diabetic Peripheral Neuropathy? Diagnostics (Basel) 2022; 12:731. [PMID: 35328284 PMCID: PMC8947384 DOI: 10.3390/diagnostics12030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022] Open
Abstract
There is currently no FDA-approved disease-modifying therapy for diabetic peripheral neuropathy (DPN). Nerve conduction velocity (NCV) is an established primary endpoint of disease-modifying therapies in DPN and clinical trials have been powered with an assumed decline of 0.5 m/s/year. This paper sought to establish the time-dependent change in NCV associated with a placebo, compared to that observed in the active intervention group. A literature search identified twenty-one double-blind, randomised controlled trials in DPN of ≥1 year duration conducted between 1971 and 2021. We evaluated changes in neurophysiology, with a focus on peroneal motor and sural sensory NCV and amplitude in the placebo and treatment groups. There was significant variability in the change and direction of change (reduction/increase) in NCV in the placebo arm, as well as variability influenced by the anatomical site of neurophysiological measurement within a given clinical trial. A critical re-evaluation of efficacy trials should consider placebo-adjusted effects and present the placebo-subtracted change in NCV rather than assume a universal annual decline of 0.5 m/s/year. Importantly, endpoints such as corneal confocal microscopy (CCM) have demonstrated early nerve repair, whilst symptoms and NCV have not changed, and should thus be considered as a viable alternative.
Collapse
Affiliation(s)
- Dalal Y. Al-Bazz
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
| | - Andrew J. Nelson
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
| | - Jamie Burgess
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
| | - Ioannis N. Petropoulos
- Research Division, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha 24144, Qatar; (I.N.P.); (R.A.M.)
| | - Jael Nizza
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
| | - Anne Marshall
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
| | - Emily Brown
- Obesity and Endocrinology Research Group, Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (E.B.); (D.J.C.)
| | - Daniel J. Cuthbertson
- Obesity and Endocrinology Research Group, Institute of Life Course and Medical Sciences, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (E.B.); (D.J.C.)
| | - Andrew G. Marshall
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
- Institute of Cardiovascular Sciences, Cardiac Centre, Faculty of Medical and Human Sciences, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester M13 9WL, UK
| | - Rayaz A. Malik
- Research Division, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha 24144, Qatar; (I.N.P.); (R.A.M.)
- Institute of Cardiovascular Sciences, Cardiac Centre, Faculty of Medical and Human Sciences, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester M13 9WL, UK
| | - Uazman Alam
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool L9 7AL, UK; (A.J.N.); (J.B.); (J.N.); (A.M.); (A.G.M.)
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
28
|
Khan A, Pasquier J, Ramachandran V, Ponirakis G, Petropoulos IN, Chidiac O, Thomas B, Robay A, Jayyousi A, Al Suwaidi J, Rafii A, Menzies RA, Talal TK, Najafi-Shoushtari SH, Abi Khalil C, Malik RA. Altered Circulating microRNAs in Patients with Diabetic Neuropathy and Corneal Nerve Loss: A Pilot Study. J Clin Med 2022; 11:jcm11061632. [PMID: 35329958 PMCID: PMC8956033 DOI: 10.3390/jcm11061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
An alteration in circulating miRNAs may have important diagnostic and therapeutic relevance in diabetic neuropathy. Patients with type 2 diabetes mellitus (T2DM) underwent an assessment of neuropathic symptoms using Douleur Neuropathique 4 (DN4), the vibration perception threshold (VPT) using a Neurothesiometer, sudomotor function using the Sudoscan, corneal nerve morphology using corneal confocal microscopy (CCM) and circulating miRNAs using high-throughput miRNA expression profiling. Patients with T2DM, with (n = 9) and without (n = 7) significant corneal nerve loss were comparable in age, gender, diabetes duration, BMI, HbA1c, eGFR, blood pressure, and lipid profile. The VPT was significantly higher (p < 0.05), and electrochemical skin conductance (p < 0.05), corneal nerve fiber density (p = 0.001), corneal nerve branch density (p = 0.013), and corneal nerve fiber length (p < 0.001) were significantly lower in T2DM patients with corneal nerve loss compared to those without corneal nerve loss. Following a q-PCR-based analysis of total plasma microRNAs, we found that miR-92b-3p (p = 0.008) was significantly downregulated, while miR-22-3p (p = 0.0001) was significantly upregulated in T2DM patients with corneal nerve loss. A network analysis revealed that these miRNAs regulate axonal guidance and neuroinflammation genes. These data support the need for more extensive studies to better understand the role of dysregulated miRNAs’ in diabetic neuropathy.
Collapse
Affiliation(s)
- Adnan Khan
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Faculty of Health Sciences, Khyber Medical University, Peshawar P.O. Box 25100, Pakistan
| | - Jennifer Pasquier
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Vimal Ramachandran
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Ioannis N. Petropoulos
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Omar Chidiac
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Binitha Thomas
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amal Robay
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amin Jayyousi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Jassim Al Suwaidi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Arash Rafii
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Robert A. Menzies
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Talal K. Talal
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Seyed Hani Najafi-Shoushtari
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| |
Collapse
|
29
|
Preston FG, Meng Y, Burgess J, Ferdousi M, Azmi S, Petropoulos IN, Kaye S, Malik RA, Zheng Y, Alam U. Artificial intelligence utilising corneal confocal microscopy for the diagnosis of peripheral neuropathy in diabetes mellitus and prediabetes. Diabetologia 2022; 65:457-466. [PMID: 34806115 PMCID: PMC8803718 DOI: 10.1007/s00125-021-05617-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/07/2021] [Indexed: 01/03/2023]
Abstract
AIMS/HYPOTHESIS We aimed to develop an artificial intelligence (AI)-based deep learning algorithm (DLA) applying attribution methods without image segmentation to corneal confocal microscopy images and to accurately classify peripheral neuropathy (or lack of). METHODS The AI-based DLA utilised convolutional neural networks with data augmentation to increase the algorithm's generalisability. The algorithm was trained using a high-end graphics processor for 300 epochs on 329 corneal nerve images and tested on 40 images (1 image/participant). Participants consisted of healthy volunteer (HV) participants (n = 90) and participants with type 1 diabetes (n = 88), type 2 diabetes (n = 141) and prediabetes (n = 50) (defined as impaired fasting glucose, impaired glucose tolerance or a combination of both), and were classified into HV, those without neuropathy (PN-) (n = 149) and those with neuropathy (PN+) (n = 130). For the AI-based DLA, a modified residual neural network called ResNet-50 was developed and used to extract features from images and perform classification. The algorithm was tested on 40 participants (15 HV, 13 PN-, 12 PN+). Attribution methods gradient-weighted class activation mapping (Grad-CAM), Guided Grad-CAM and occlusion sensitivity displayed the areas within the image that had the greatest impact on the decision of the algorithm. RESULTS The results were as follows: HV: recall of 1.0 (95% CI 1.0, 1.0), precision of 0.83 (95% CI 0.65, 1.0), F1-score of 0.91 (95% CI 0.79, 1.0); PN-: recall of 0.85 (95% CI 0.62, 1.0), precision of 0.92 (95% CI 0.73, 1.0), F1-score of 0.88 (95% CI 0.71, 1.0); PN+: recall of 0.83 (95% CI 0.58, 1.0), precision of 1.0 (95% CI 1.0, 1.0), F1-score of 0.91 (95% CI 0.74, 1.0). The features displayed by the attribution methods demonstrated more corneal nerves in HV, a reduction in corneal nerves for PN- and an absence of corneal nerves for PN+ images. CONCLUSIONS/INTERPRETATION We demonstrate promising results in the rapid classification of peripheral neuropathy using a single corneal image. A large-scale multicentre validation study is required to assess the utility of AI-based DLA in screening and diagnostic programmes for diabetic neuropathy.
Collapse
Affiliation(s)
- Frank G Preston
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Yanda Meng
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Jamie Burgess
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| | - Maryam Ferdousi
- Institute of Cardiovascular Science, University of Manchester and Manchester Diabetes Centre, Manchester Foundation Trust, Manchester, UK
| | - Shazli Azmi
- Institute of Cardiovascular Science, University of Manchester and Manchester Diabetes Centre, Manchester Foundation Trust, Manchester, UK
| | | | - Stephen Kaye
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Yalin Zheng
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK.
| | - Uazman Alam
- Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, UK.
| |
Collapse
|
30
|
Zhou Q, Yang L, Wang Q, Li Y, Wei C, Xie L. Mechanistic investigations of diabetic ocular surface diseases. Front Endocrinol (Lausanne) 2022; 13:1079541. [PMID: 36589805 PMCID: PMC9800783 DOI: 10.3389/fendo.2022.1079541] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
With the global prevalence of diabetes mellitus over recent decades, more patients suffered from various diabetic complications, including diabetic ocular surface diseases that may seriously affect the quality of life and even vision sight. The major diabetic ocular surface diseases include diabetic keratopathy and dry eye. Diabetic keratopathy is characterized with the delayed corneal epithelial wound healing, reduced corneal nerve density, decreased corneal sensation and feeling of burning or dryness. Diabetic dry eye is manifested as the reduction of tear secretion accompanied with the ocular discomfort. The early clinical symptoms include dry eye and corneal nerve degeneration, suggesting the early diagnosis should be focused on the examination of confocal microscopy and dry eye symptoms. The pathogenesis of diabetic keratopathy involves the accumulation of advanced glycation end-products, impaired neurotrophic innervations and limbal stem cell function, and dysregulated growth factor signaling, and inflammation alterations. Diabetic dry eye may be associated with the abnormal mitochondrial metabolism of lacrimal gland caused by the overactivation of sympathetic nervous system. Considering the important roles of the dense innervations in the homeostatic maintenance of cornea and lacrimal gland, further studies on the neuroepithelial and neuroimmune interactions will reveal the predominant pathogenic mechanisms and develop the targeting intervention strategies of diabetic ocular surface complications.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
31
|
Gad H, Petropoulos IN, Khan A, Ponirakis G, MacDonald R, Alam U, Malik RA. Corneal confocal microscopy for the diagnosis of diabetic peripheral neuropathy: A systematic review and meta-analysis. J Diabetes Investig 2022; 13:134-147. [PMID: 34351711 PMCID: PMC8756328 DOI: 10.1111/jdi.13643] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that identifies corneal nerve fiber damage. Small studies suggest that CCM could be used to assess patients with diabetic peripheral neuropathy (DPN). AIM To undertake a systematic review and meta-analysis assessing the diagnostic utility of CCM for sub-clinical DPN (DPN- ) and established DPN (DPN+ ). DATA SOURCES Databases (PubMed, Embase, Central, ProQuest) were searched for studies using CCM in patients with diabetes up to April 2020. STUDY SELECTION Studies were included if they reported on at least one CCM parameter in patients with diabetes. DATA EXTRACTION Corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL), and inferior whorl length (IWL) were compared between patients with diabetes with and without DPN and controls. Meta-analysis was undertaken using RevMan V.5.3. DATA SYNTHESIS Thirty-eight studies including ~4,000 participants were included in this meta-analysis. There were significant reductions in CNFD, CNBD, CNFL, and IWL in DPN- vs controls (P < 0.00001), DPN+ vs controls (P < 0.00001), and DPN+ vs DPN- (P < 0.00001). CONCLUSION This systematic review and meta-analysis shows that CCM detects small nerve fiber loss in subclinical and clinical DPN and concludes that CCM has good diagnostic utility in DPN.
Collapse
Affiliation(s)
- Hoda Gad
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
| | | | - Adnan Khan
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
| | | | | | - Uazman Alam
- Diabetes and Neuropathy ResearchDepartment of Eye and Vision Sciences and Pain Research InstituteInstitute of Ageing and Chronic DiseaseUniversity of Liverpool and Aintree University Hospital NHS Foundation TrustLiverpoolUK
- Department of Diabetes and EndocrinologyRoyal Liverpool and Broadgreen University NHS Hospital TrustLiverpoolUK
- Division of Endocrinology, Diabetes and GastroenterologyUniversity of ManchesterManchesterUK
| | - Rayaz A Malik
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
- Institute of Cardiovascular MedicineUniversity of ManchesterManchesterUK
| |
Collapse
|
32
|
Galosi E, Hu X, Michael N, Nyengaard JR, Truini A, Karlsson P. Redefining distal symmetrical polyneuropathy features in type 1 diabetes: a systematic review. Acta Diabetol 2022; 59:1-19. [PMID: 34213655 PMCID: PMC8758619 DOI: 10.1007/s00592-021-01767-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Diabetic neuropathy is among the most frequent complications of both type 1 (T1DM) and type 2 diabetes (T2DM) and commonly manifests as a distal symmetrical polyneuropathy (DSPN). Despite evidence that T1DM- and T2DM-related DSPN are separate entities, most of our knowledge on diabetic DSPN derives from studies focused on type 2 diabetes. This systematic review provides an overview of current evidence on DSPN in T1DM, including its epidemiological, pathophysiological and clinical features, along with principal diagnostic tests findings. This review included 182 clinical and preclinical studies. The results indicate that DSPN is a less frequent complication in T1DM compared with T2DM and that distinctive pathophysiological mechanisms underlie T1DM-related DSPN development, with hyperglycemia as a major determinant. T1DM-related DSPN more frequently manifests with non-painful than painful symptoms, with lower neuropathic pain prevalence compared with T2DM-associated DSPN. The overt clinical picture seems characterized by a higher prevalence of large fiber-related clinical signs (e.g., ankle reflexes reduction and vibration hypoesthesia) and to a lesser extent small fiber damage (e.g., thermal or pinprick hypoesthesia). These findings as a whole suggest that large fibers impairment plays a dominant role in the clinical picture of symptomatic T1DM-related DSPN. Nevertheless, small fiber diagnostic testing shows high diagnostic accuracy in detecting early nerve damage and may be an appropriate diagnostic tool for disease monitoring and screening.
Collapse
Affiliation(s)
- Eleonora Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| | - Xiaoli Hu
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
| | - Nivatha Michael
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Páll Karlsson
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
33
|
Verdugo RJ, Matamala JM, Inui K, Kakigi R, Valls-Solé J, Hansson P, Bernhard Nilsen K, Lombardi R, Lauria G, Petropoulos IN, Malik RA, Treede RD, Baumgärtner U, Jara PA, Campero M. Review of techniques useful for the assessment of sensory small fiber neuropathies: Report from an IFCN expert group. Clin Neurophysiol 2022; 136:13-38. [DOI: 10.1016/j.clinph.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/09/2023]
|
34
|
Burgess J, Petropoulos I, Gad H, Nevitt SJ, Ponirakis G, Ferdousi M, Kalteniece A, Azmi S, Kaye S, Malik RA, Alam U. Corneal confocal microscopy for the diagnosis of diabetic sensorimotor polyneuropathy in people with type 1 and 2 diabetes mellitus. Hippokratia 2021. [DOI: 10.1002/14651858.cd014675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jamie Burgess
- Department of Cardiovascular & Metabolic Medicine and the Pain Research Institute, Institute of Life Course and Medical Sciences; University of Liverpool and Liverpool University Hospital NHS Trust; Liverpool UK
| | - Ioannis Petropoulos
- Weill Cornell Medicine-Qatar, Research Division; Qatar Foundation, Education City; Doha Qatar
| | - Hoda Gad
- Weill Cornell Medicine-Qatar, Research Division; Qatar Foundation, Education City; Doha Qatar
| | - Sarah J Nevitt
- Department of Health Data Science; University of Liverpool; Liverpool UK
| | - Georgios Ponirakis
- Weill Cornell Medicine-Qatar, Research Division; Qatar Foundation, Education City; Doha Qatar
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health; The University of Manchester; Manchester UK
| | - Alise Kalteniece
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health; The University of Manchester; Manchester UK
| | - Shazli Azmi
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health; The University of Manchester; Manchester UK
| | - Stephen Kaye
- Department of Ophthalmology; Royal Liverpool University Hospital Trust and University of Liverpool; Liverpool UK
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Research Division; Qatar Foundation, Education City; Doha Qatar
- Institute of Cardiovascular Sciences; University of Manchester; Manchester UK
| | - Uazman Alam
- Department of Ophthalmology; Royal Liverpool University Hospital Trust and University of Liverpool; Liverpool UK
- Division of Endocrinology, Diabetes and Gastroenterology; University of Manchester; Manchester UK
| |
Collapse
|
35
|
Wide-field mosaics of the corneal subbasal nerve plexus in Parkinson's disease using in vivo confocal microscopy. Sci Data 2021; 8:306. [PMID: 34836991 PMCID: PMC8626466 DOI: 10.1038/s41597-021-01087-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
In vivo confocal microscopy (IVCM) is a non-invasive imaging technique facilitating real-time acquisition of images from the live cornea and its layers with high resolution (1-2 µm) and high magnification (600 to 800-fold). IVCM is extensively used to examine the cornea at a cellular level, including the subbasal nerve plexus (SBNP). IVCM of the cornea has thus gained intense interest for probing ophthalmic and systemic diseases affecting peripheral nerves. One of the main drawbacks, however, is the small field of view of IVCM, preventing an overview of SBNP architecture and necessitating subjective image sampling of small areas of the SBNP for analysis. Here, we provide a high-quality dataset of the corneal SBNP reconstructed by automated mosaicking, with an average mosaic image size corresponding to 48 individual IVCM fields of view. The mosaic dataset represents a group of 42 individuals with Parkinson's disease (PD) with and without concurrent restless leg syndrome. Additionally, mosaics from a control group (n = 13) without PD are also provided, along with clinical data for all included participants.
Collapse
|
36
|
Ponirakis G, Abdul‐Ghani MA, Jayyousi A, Zirie MA, Al‐Mohannadi S, Almuhannadi H, Petropoulos IN, Khan A, Gad H, Migahid O, Megahed A, Qazi M, AlMarri F, Al‐Khayat F, Mahfoud Z, DeFronzo R, Malik RA. Insulin resistance limits corneal nerve regeneration in patients with type 2 diabetes undergoing intensive glycemic control. J Diabetes Investig 2021; 12:2002-2009. [PMID: 34002953 PMCID: PMC8565403 DOI: 10.1111/jdi.13582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023] Open
Abstract
AIMS/INTRODUCTION This study aimed to investigate whether insulin resistance (IR) in individuals with type 2 diabetes undergoing intensive glycemic control determines the extent of improvement in neuropathy. MATERIALS AND METHODS This was an exploratory substudy of an open-label, randomized controlled trial of individuals with poorly controlled type 2 diabetes treated with exenatide and pioglitazone or insulin to achieve a glycated hemoglobin <7.0% (<53 mmol/mol). Baseline IR was defined using homeostasis model assessment of IR, and change in neuropathy was assessed using corneal confocal microscopy. RESULTS A total of 38 individuals with type 2 diabetes aged 50.2 ± 8.5 years with (n = 25, 66%) and without (n = 13, 34%) IR were studied. There was a significant decrease in glycated hemoglobin (P < 0.0001), diastolic blood pressure (P < 0.0001), total cholesterol (P < 0.01) and low-density lipoprotein (P = 0.05), and an increase in bodyweight (P < 0.0001) with treatment. Individuals with homeostasis model assessment of IR <1.9 showed a significant increase in corneal nerve fiber density (P ≤ 0.01), length (P ≤ 0.01) and branch density (P ≤ 0.01), whereas individuals with homeostasis model assessment of IR ≥1.9 showed no change. IR was negatively associated with change in corneal nerve fiber density after adjusting for change in bodyweight (P < 0.05). CONCLUSIONS Nerve regeneration might be limited in individuals with type 2 diabetes and IR undergoing treatment with pioglitazone plus exenatide or insulin to improve glycemic control.
Collapse
Affiliation(s)
- Georgios Ponirakis
- Weill Cornell Medicine in QatarQatar FoundationEducation City, DohaQatar
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Muhammad A Abdul‐Ghani
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
- Division of DiabetesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Amin Jayyousi
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
| | - Mahmoud A Zirie
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
| | - Salma Al‐Mohannadi
- Weill Cornell Medicine in QatarQatar FoundationEducation City, DohaQatar
| | - Hamad Almuhannadi
- Weill Cornell Medicine in QatarQatar FoundationEducation City, DohaQatar
| | | | - Adnan Khan
- Weill Cornell Medicine in QatarQatar FoundationEducation City, DohaQatar
| | - Hoda Gad
- Weill Cornell Medicine in QatarQatar FoundationEducation City, DohaQatar
| | - Osama Migahid
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
- Division of DiabetesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Ayman Megahed
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
| | - Murtaza Qazi
- Weill Cornell Medicine in QatarQatar FoundationEducation City, DohaQatar
| | - Fatema AlMarri
- Weill Cornell Medicine in QatarQatar FoundationEducation City, DohaQatar
| | - Fatima Al‐Khayat
- Weill Cornell Medicine in QatarQatar FoundationEducation City, DohaQatar
| | - Ziyad Mahfoud
- Weill Cornell Medicine in QatarQatar FoundationEducation City, DohaQatar
| | - Ralph DeFronzo
- Division of DiabetesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Rayaz A Malik
- Weill Cornell Medicine in QatarQatar FoundationEducation City, DohaQatar
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
- Institute of Cardiovascular ScienceUniversity of ManchesterManchesterUK
| |
Collapse
|
37
|
Al-Janahi E, Ponirakis G, Al Hamad H, Vattoth S, Elsotouhy A, Petropoulos IN, Khan A, Gad H, Chandran M, Sankaranarayanan A, Ramadan M, Elorrabi M, Gadelseed M, Tosino R, Gawhale PV, Arasn A, Alobaidi M, Khan S, Manikoth P, Hamdi Y, Osman S, Nadukkandiyil N, AlSulaiti E, Thodi N, Almuhannadi H, Mahfoud ZR, Own A, Shuaib A, Malik RA. Corneal Nerve and Brain Imaging in Mild Cognitive Impairment and Dementia. J Alzheimers Dis 2021; 77:1533-1543. [PMID: 32925064 PMCID: PMC7683060 DOI: 10.3233/jad-200678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Visual rating of medial temporal lobe atrophy (MTA) is an accepted structural neuroimaging marker of Alzheimer’s disease. Corneal confocal microscopy (CCM) is a non-invasive ophthalmic technique that detects neuronal loss in peripheral and central neurodegenerative disorders. Objective: To determine the diagnostic accuracy of CCM for mild cognitive impairment (MCI) and dementia compared to medial temporal lobe atrophy (MTA) rating on MRI. Methods: Subjects aged 60–85 with no cognitive impairment (NCI), MCI, and dementia based on the ICD-10 criteria were recruited. Subjects underwent cognitive screening, CCM, and MTA rating on MRI. Results: 182 subjects with NCI (n = 36), MCI (n = 80), and dementia (n = 66), including AD (n = 19, 28.8%), VaD (n = 13, 19.7%), and mixed AD (n = 34, 51.5%) were studied. CCM showed a progressive reduction in corneal nerve fiber density (CNFD, fibers/mm2) (32.0±7.5 versus 24.5±9.6 and 20.8±9.3, p < 0.0001), branch density (CNBD, branches/mm2) (90.9±46.5 versus 59.3±35.7 and 53.9±38.7, p < 0.0001), and fiber length (CNFL, mm/mm2) (22.9±6.1 versus 17.2±6.5 and 15.8±7.4, p < 0.0001) in subjects with MCI and dementia compared to NCI. The area under the ROC curve (95% CI) for the diagnostic accuracy of CNFD, CNBD, CNFL compared to MTA-right and MTA-left for MCI was 78% (67–90%), 82% (72–92%), 86% (77–95%) versus 53% (36–69%) and 40% (25–55%), respectively, and for dementia it was 85% (76–94%), 84% (75–93%), 85% (76–94%) versus 86% (76–96%) and 82% (72–92%), respectively. Conclusion: The diagnostic accuracy of CCM, a non-invasive ophthalmic biomarker of neurodegeneration, was high and comparable with MTA rating for dementia but was superior to MTA rating for MCI.
Collapse
Affiliation(s)
- Eiman Al-Janahi
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Georgios Ponirakis
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar.,Manchester Metropolitan University, Faculty of Science and Engineering, Manchester, UK
| | - Hanadi Al Hamad
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Surjith Vattoth
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar.,Neuroradiology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Elsotouhy
- Neuroradiology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Adnan Khan
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Hoda Gad
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Mani Chandran
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Marwan Ramadan
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Marwa Elorrabi
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Masharig Gadelseed
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Rhia Tosino
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Priya V Gawhale
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Anjum Arasn
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Maryam Alobaidi
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Shafi Khan
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Pravija Manikoth
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Yasmin Hamdi
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Susan Osman
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Navas Nadukkandiyil
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Essa AlSulaiti
- Geriatric & Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Noushad Thodi
- MRI Unit, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Hamad Almuhannadi
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Ziyad R Mahfoud
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Ahmed Own
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Ashfaq Shuaib
- Department of Medicine, University of Alberta, Alberta, Canada
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar.,Manchester Metropolitan University, Faculty of Science and Engineering, Manchester, UK.,Institute of Cardiovascular Science, University of Manchester, Manchester, UK
| |
Collapse
|
38
|
Ponirakis G, Abdul‐Ghani MA, Jayyousi A, Zirie MA, Qazi M, Almuhannadi H, Petropoulos IN, Khan A, Gad H, Migahid O, Megahed A, Al‐Mohannadi S, AlMarri F, Al‐Khayat F, Mahfoud Z, Al Hamad H, Ramadan M, DeFronzo R, Malik RA. Painful diabetic neuropathy is associated with increased nerve regeneration in patients with type 2 diabetes undergoing intensive glycemic control. J Diabetes Investig 2021; 12:1642-1650. [PMID: 33714226 PMCID: PMC8409832 DOI: 10.1111/jdi.13544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS/INTRODUCTION Painful diabetic peripheral neuropathy (pDPN) is associated with small nerve fiber degeneration and regeneration. This study investigated whether the presence of pDPN might influence nerve regeneration in patients with type 2 diabetes undergoing intensive glycemic control. MATERIALS AND METHODS This exploratory substudy of an open-label randomized controlled trial undertook the Douleur Neuropathique en 4 questionnaire and assessment of electrochemical skin conductance, vibration perception threshold and corneal nerve morphology using corneal confocal microscopy in participants with and without pDPN treated with exenatide and pioglitazone or basal-bolus insulin at baseline and 1-year follow up, and 18 controls at baseline only. RESULTS Participants with type 2 diabetes, with (n = 13) and without (n = 28) pDPN had comparable corneal nerve fiber measures, electrochemical skin conductance and vibration perception threshold at baseline, and pDPN was not associated with the severity of DPN. There was a significant glycated hemoglobin reduction (P < 0.0001) and weight gain (P < 0.005), irrespective of therapy. Participants with pDPN showed a significant increase in corneal nerve fiber density (P < 0.05), length (P < 0.0001) and branch density (P < 0.005), and a decrease in the Douleur Neuropathique en 4 score (P < 0.01), but no change in electrochemical skin conductance or vibration perception threshold. Participants without pDPN showed a significant increase in corneal nerve branch density (P < 0.01) and no change in any other neuropathy measures. A change in the severity of painful symptoms was not associated with corneal nerve regeneration and medication for pain. CONCLUSIONS This study showed that intensive glycemic control is associated with greater corneal nerve regeneration and an improvement in the severity of pain in patients with painful diabetic neuropathy.
Collapse
Affiliation(s)
- Georgios Ponirakis
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Muhammad A Abdul‐Ghani
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
- Division of DiabetesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Amin Jayyousi
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
| | - Mahmoud A Zirie
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
| | - Murtaza Qazi
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | | | | | - Adnan Khan
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | - Hoda Gad
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | - Osama Migahid
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
- Division of DiabetesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Ayman Megahed
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
| | | | - Fatema AlMarri
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | - Fatima Al‐Khayat
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | - Ziyad Mahfoud
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
| | | | | | - Ralph DeFronzo
- Division of DiabetesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Rayaz A Malik
- Weill Cornell Medicine‐QatarQatar FoundationEducation CityDohaQatar
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
- National Diabetes CenterHamad General HospitalHamad Medical CorporationDohaQatar
- Institute of Cardiovascular ScienceUniversity of ManchesterManchesterUK
| |
Collapse
|
39
|
Badian RA, Andréasson M, Svenningsson P, Utheim TP, Lagali N. The pattern of the inferocentral whorl region of the corneal subbasal nerve plexus is altered with age. Ocul Surf 2021; 22:204-212. [PMID: 34450219 DOI: 10.1016/j.jtos.2021.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE To describe the pattern of the nerves in the inferocentral whorl region of the human corneal subbasal nerve plexus (SBNP) in health and diseases known to affect the subbasal nerves. METHODS Laser-scanning in vivo confocal microscopy (IVCM) was used to image the SBNP bilaterally in 91 healthy subjects, 39 subjects with type 2 diabetes mellitus (T2DM), and 43 subjects with Parkinson's disease (PD). Whorl regions were classified according to nerve orientation relative to age and health/disease status. RESULTS Of 346 examined eyes, 300 (86.7%) had an identifiable whorl pattern. In healthy subjects, a clockwise nerve orientation of the whorl was most common (67.9%), followed by non-rotatory or 'seam' morphology (21.4%), and counterclockwise (10.7%). The clockwise orientation was more prevalent in healthy subjects than in T2DM or PD (P < 0.001). Healthy individuals below 50 years of age had a predominantly clockwise orientation (93.8%) which was reduced to 51.9% in those over 50 years (P < 0.001). Age but not disease status explained whorl orientation in T2DM and PD groups. Moreover, whorl orientation is bilaterally clockwise in the young, but adopts other orientations and becomes asymmetric across eyes with age. Finally, we report reflective 'dot-like' features confined to the whorl region of the subbasal plexus, sometimes appearing in close association with subbasal nerves and present in 84-93% of examined eyes regardless of disease status, eye or sex. CONCLUSION Subbasal nerves in the inferocentral whorl region are predominantly clockwise in young, healthy corneas. With aging and conditions of T2DM and PD, counterclockwise and non-rotatory configurations increase in prevalence, and bilateral symmetry is lost. Mechanisms regulating these changes warrant further investigation.
Collapse
Affiliation(s)
- Reza A Badian
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.
| | - Mattias Andréasson
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tor Paaske Utheim
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Neil Lagali
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway; Department of Ophthalmology, Institute for Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
40
|
Salahouddin T, Petropoulos IN, Ferdousi M, Ponirakis G, Asghar O, Alam U, Kamran S, Mahfoud ZR, Efron N, Malik RA, Qidwai UA. Artificial Intelligence-Based Classification of Diabetic Peripheral Neuropathy From Corneal Confocal Microscopy Images. Diabetes Care 2021; 44:e151-e153. [PMID: 34083322 PMCID: PMC8323170 DOI: 10.2337/dc20-2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/25/2021] [Indexed: 02/03/2023]
Affiliation(s)
| | | | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, U.K
| | | | - Omar Asghar
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, U.K
| | - Uazman Alam
- Pain Research Institute and Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, U.K.,Department of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, U.K.,Liverpool University Hospital NHS Foundation Trust, Liverpool, U.K
| | - Saadat Kamran
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ziyad R Mahfoud
- Division of Medical Education, Weill Cornell Medicine, Doha, Qatar.,Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Nathan Efron
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Rayaz A Malik
- Division of Research, Weill Cornell Medicine, Doha, Qatar .,Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, U.K
| | | |
Collapse
|
41
|
Chiang JCB, Goldstein D, Park SB, Krishnan AV, Markoulli M. Corneal nerve changes following treatment with neurotoxic anticancer drugs. Ocul Surf 2021; 21:221-237. [PMID: 34144206 DOI: 10.1016/j.jtos.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Survival rates of cancer has improved with the development of anticancer drugs including systemic chemotherapeutic agents. However, long-lasting side effects could impact treated patients. Neurotoxic anticancer drugs are specific agents which cause chemotherapy-induced peripheral neuropathy (CIPN), a debilitating condition that severely deteriorates quality of life of cancer patients and survivors. The ocular surface is also prone to neurotoxicity but investigation into the effects of neurotoxic chemotherapy on the ocular surface has been more limited compared to other systemic etiologies such as diabetes. There is also no standardized protocol for CIPN diagnosis with an absence of a reliable, objective method of observing nerve damage structurally. As the cornea is the most densely innervated region of the body, researchers have started to focus on corneal neuropathic changes that are associated with neurotoxic chemotherapy treatment. In-vivo corneal confocal microscopy enables rapid and objective structural imaging of ocular surface microscopic structures such as corneal nerves, while esthesiometers provide means of functional assessment by examining corneal sensitivity. The current article explores the current guidelines and gaps in our knowledge of CIPN diagnosis and the potential role of in-vivo corneal confocal microscopy as a diagnostic or prognostic tool. Corneal neuropathic changes with neurotoxic anticancer drugs from animal research progressing through to human clinical studies are also discussed, with a focus on how these data inform our understanding of CIPN.
Collapse
Affiliation(s)
- Jeremy Chung Bo Chiang
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia; Department of Medical Oncology, Prince of Wales Hospital, Sydney, Australia
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Maria Markoulli
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
42
|
Ferdousi M, Azmi S, Kalteniece A, Khan SU, Petropoulos IN, Ponirakis G, Alam U, Asghar O, Marshall A, Soran H, Boulton AJM, Augustine T, Malik RA. No evidence of improvement in neuropathy after renal transplantation in patients with end stage kidney disease. J Peripher Nerv Syst 2021; 26:269-275. [PMID: 34085731 DOI: 10.1111/jns.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
To assess the impact of renal transplantation on peripheral nerve damage in patients with chronic kidney disease (CKD). Fifteen patients with CKD (eGFR <15 mL/min/1.73 m2 ) underwent longitudinal assessment after renal transplantation (age: 56.88 ± 2.53 years, eGFR: 46.82 ± 4.86) and were compared with 15 age-matched controls (age: 58.25 ± 2.18 years, eGFR: 86.0 ± 2.0). The neuropathy symptom profile (NSP), neuropathy disability score (NDS), vibration perception threshold (VPT), cold and warm sensation threshold (CST and WST), cold and heat induced pain (CIP and HIP), deep breathing heart rate variability (DB-HRV), nerve conduction studies and corneal confocal microscopy (CCM) to quantify small nerve fibre pathology, were undertaken within 1-month of renal transplantation (baseline) and at 6, 12 and 24 months of follow up. There was no significant difference in NSP (P = .1), NDS (P = .3), VPT (P = .6), CST (P = .2), CIP (P = .08), HIP (P = .1), DB-HRV (P = .9) and sural (P = .4) and peroneal (P = .1) nerve amplitude between patients with CKD and controls at baseline. However, sural (P = .04), peroneal (P = .002) and tibial (P = .007) nerve conduction velocity and tibial nerve amplitude (P = .03) were significantly lower, WST (P = .02) was significantly higher and corneal nerve fibre density (P = .004) was significantly lower in patients with CKD compared with controls. There was no significant change in NSP, NDS, quantitative sensory testing, DB-HRV, nerve conduction or CCM parameters 24 months after renal transplantation. There is evidence of small and large fibre neuropathy in patients with CKD, but no change up to 24 months after successful renal transplantation.
Collapse
Affiliation(s)
- Maryam Ferdousi
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Shazli Azmi
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Alise Kalteniece
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Saif Ullah Khan
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | | | - Georgios Ponirakis
- Weill Cornell Medicine-Qatar, Research Division, Qatar Foundation, Doha, Qatar
| | - Uazman Alam
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Omar Asghar
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Andrew Marshall
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Handrean Soran
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Andrew J M Boulton
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Titus Augustine
- Department of Transplant and Endocrine Surgery, Central Manchester University Hospital NHS Foundation Trust, Manchester, UK
| | - Rayaz A Malik
- Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK.,Weill Cornell Medicine-Qatar, Research Division, Qatar Foundation, Doha, Qatar
| |
Collapse
|
43
|
Petropoulos IN, Ponirakis G, Ferdousi M, Azmi S, Kalteniece A, Khan A, Gad H, Bashir B, Marshall A, Boulton AJM, Soran H, Malik RA. Corneal Confocal Microscopy: A Biomarker for Diabetic Peripheral Neuropathy. Clin Ther 2021; 43:1457-1475. [PMID: 33965237 DOI: 10.1016/j.clinthera.2021.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Diagnosing early diabetic peripheral neuropathy remains a challenge due to deficiencies in currently advocated end points. The cornea is densely innervated with small sensory fibers, which are structurally and functionally comparable to intraepidermal nerve fibers. Corneal confocal microscopy is a method for rapid, noninvasive scanning of the living cornea with high resolution and magnification. METHODS This narrative review presents the framework for the development of biomarkers and the literature on the use and adoption of corneal confocal microscopy as an objective, diagnostic biomarker in experimental and clinical studies of diabetic peripheral neuropathy. A search was performed on PubMed and Google Scholar based on the terms "corneal confocal microscopy," "diabetic neuropathy," "corneal sensitivity," and "clinical trials." FINDINGS A substantial body of evidence underpins the thesis that corneal nerve loss predicts incident neuropathy and progresses with the severity of diabetic peripheral neuropathy. Corneal confocal microscopy also identifies early corneal nerve regeneration, strongly arguing for its inclusion as a surrogate end point in clinical trials of disease-modifying therapies. IMPLICATIONS There are sufficient diagnostic and prospective validation studies to fulfill the US Food and Drug Administration criteria for a biomarker to support the inclusion of corneal confocal microscopy as a primary end point in clinical trials of disease-modifying therapies in diabetic neuropathy.
Collapse
Affiliation(s)
| | | | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Shazli Azmi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Adnan Khan
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hoda Gad
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Bilal Bashir
- Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Clinical Neurophysiology, The Walton Centre, Liverpool, United Kingdom; Division of Neuroscience and Experimental Psychology, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew J M Boulton
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Rayaz A Malik
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar; Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
44
|
Takhar JS, Joye AS, Lopez SE, Marneris AG, Tsui E, Seitzman GD, Keenan JD, Gonzales JA. Validation of a Novel Confocal Microscopy Imaging Protocol With Assessment of Reproducibility and Comparison of Nerve Metrics in Dry Eye Disease Compared With Controls. Cornea 2021; 40:603-612. [PMID: 33038151 PMCID: PMC9830965 DOI: 10.1097/ico.0000000000002549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/15/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE The purposes of this study were to assess the reproducibility of a novel standardized technique for capturing corneal subbasal nerve plexus images with in vivo corneal confocal microscopy and to compare nerve metrics captured with this method in participants with dry eye and control participants. METHODS Cases and controls were recruited based on their International Statistical Classification of Diseases and Related Health Problems (ICD-10) diagnoses. Participants completed the following 3 ocular symptom questionnaires: the Ocular Surface Disease Index, Neuropathic Pain Symptom Inventory, and Dry Eye Questionnaire 5. A novel eye fixation-grid system was used to capture 30 standardized confocal microscopy images of the central cornea. Each participant was imaged twice by different operators. Seven quantitative nerve metrics were analyzed using automated software (ACCmetrics, Manchester, United Kingdom) for all 30 images and a 6-image subset. RESULTS Forty-seven participants were recruited (25 classified as dry eye and 22 controls). The most reproducible nerve metrics were corneal nerve fiber length [intraclass correlation (ICC) = 0.86], corneal nerve fiber area (ICC = 0.86), and fractal dimension (ICC = 0.90). Although differences were not statistically significant, all mean nerve metrics were lower in those with dry eye compared with controls. Questionnaire scores did not significantly correlate with nerve metrics. Reproducibility of nerve metrics was similar when comparing the entire 30-image montage to a central 6-image subset. CONCLUSIONS A standardized confocal imaging technique coupled with quantitative assessment of corneal nerves produced reproducible corneal nerve metrics even with different operators. No statistically significant differences in in vivo corneal confocal microscopy nerve metrics were observed between participants with dry eye and control participants.
Collapse
Affiliation(s)
- Jaskirat S. Takhar
- Francis I. Proctor Foundation, University of California, San Francisco, CA
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI
| | - Ashlin S. Joye
- Francis I. Proctor Foundation, University of California, San Francisco, CA
- Touro University College of Osteopathic Medicine, Vallejo, CA
| | - Sarah E. Lopez
- Francis I. Proctor Foundation, University of California, San Francisco, CA
- Department of Ophthalmology, University of California, San Francisco, CA
| | - Athanasios G. Marneris
- Francis I. Proctor Foundation, University of California, San Francisco, CA
- Department of Ophthalmology, University of California, San Francisco, CA
| | - Edmund Tsui
- Francis I. Proctor Foundation, University of California, San Francisco, CA
- Department of Ophthalmology, University of California, San Francisco, CA
| | - Gerami D. Seitzman
- Francis I. Proctor Foundation, University of California, San Francisco, CA
- Department of Ophthalmology, University of California, San Francisco, CA
| | - Jeremy D. Keenan
- Francis I. Proctor Foundation, University of California, San Francisco, CA
- Department of Ophthalmology, University of California, San Francisco, CA
| | - John A. Gonzales
- Francis I. Proctor Foundation, University of California, San Francisco, CA
- Department of Ophthalmology, University of California, San Francisco, CA
| |
Collapse
|
45
|
The Relationship between Corneal Nerve Morphology and Inflammatory Mediators and Neuropeptides in Healthy Individuals. Optom Vis Sci 2021; 97:145-153. [PMID: 32168236 DOI: 10.1097/opx.0000000000001484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SIGNIFICANCE This study set out to explore the relationship between the ocular surface immune and nervous systems by exploring corneal nerve structure and the presence of inflammatory mediators and neuropeptides in the tear film. PURPOSE The purpose of this study was to determine the association between corneal nerve morphology and tear film inflammatory mediators and a neuropeptide in healthy individuals. METHODS Flush tears were collected from both eyes of 21 healthy participants aged 39.7 ± 9.9 years (10 females, 11 males) and analyzed for substance P, matrix metalloproteinase-9, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), tumor necrosis factor α, and interleukin 6. In vivo central corneal confocal microscopy was performed on the right eye, and eight images were captured. Variables measured were corneal nerve fiber length (CNFL), corneal nerve density (CNFD), corneal nerve branch density, fiber total branch density, corneal nerve fiber area, corneal nerve fiber width (CNFW), and corneal nerve fractal dimension (CNFrac). For each eye, the average across the images and the maximum and minimum values were determined for each variable. Pearson correlation analysis was performed to test for associations. RESULTS Substance P correlated with CNFrac (max) (r = -0.48, P = .03) and CNFW (min) (r = -0.52, P = .02). TIMP-1 correlated with CNFD (average) (r = -0.53, P = .03), CNFL (average) (r = -0.49, P = .05), CNFrac (max) (r = -0.49, P = .05), and CNFD (min) (r = -0.55, P = .02). Interleukin 6 correlated with CNFW (average) (r = -0.49, P = .05), the standard deviation of CNFL (r = -0.51, P = .04), CNFL (max) (r = -0.50, P = .04), CNFrac (max) (r = -0.50, P = .04), and CNFW (min) (r = -0.55, P = .02). Tumor necrosis factor α, matrix metalloproteinase-9, and its ratio with TIMP-1 did not correlate with any corneal nerve parameters. CONCLUSIONS Both inflammatory mediators and neuropeptides correlated with measures of corneal nerve morphology, supporting the link between the inflammatory and nervous systems.
Collapse
|
46
|
Jensen TS, Karlsson P, Gylfadottir SS, Andersen ST, Bennett DL, Tankisi H, Finnerup NB, Terkelsen AJ, Khan K, Themistocleous AC, Kristensen AG, Itani M, Sindrup SH, Andersen H, Charles M, Feldman EL, Callaghan BC. Painful and non-painful diabetic neuropathy, diagnostic challenges and implications for future management. Brain 2021; 144:1632-1645. [PMID: 33711103 DOI: 10.1093/brain/awab079] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathy is one of the most common complications of both type 1 and type 2 diabetes. Up to half of patients with diabetes develop neuropathy during the course of their disease, which is accompanied by neuropathic pain in 30-40% of cases. Peripheral nerve injury in diabetes can manifest as progressive distal symmetric polyneuropathy, autonomic neuropathy, radiculo-plexopathies, and mononeuropathies. The most common diabetic neuropathy is distal symmetric polyneuropathy, which we will refer to as DN, with its characteristic glove and stocking like presentation of distal sensory or motor function loss. DN or its painful counterpart, painful DN, are associated with increased mortality and morbidity; thus, early recognition and preventive measures are essential. Nevertheless, it is not easy to diagnose DN or painful DN, particularly in patients with early and mild neuropathy, and there is currently no single established diagnostic gold standard. The most common diagnostic approach in research is a hierarchical system, which combines symptoms, signs, and a series of confirmatory tests. The general lack of long-term prospective studies has limited the evaluation of the sensitivity and specificity of new morphometric and neurophysiological techniques. Thus, the best paradigm for screening DN and painful DN both in research and in clinical practice remains uncertain. Herein, we review the diagnostic challenges from both clinical and research perspectives and their implications for managing patients with DN. There is no established DN treatment, apart from improved glycaemic control, which is more effective in type 1 than in type 2 diabetes, and only symptomatic management is available for painful DN. Currently, less than one-third of patients with painful DN derive sufficient pain relief with existing pharmacotherapies. A more precise and distinct sensory profile from patients with DN and painful DN may help identify responsive patients to one treatment versus another. Detailed sensory profiles will lead to tailored treatment for patient subgroups with painful DN by matching to novel or established DN pathomechanisms and also for improved clinical trials stratification. Large randomized clinical trials are needed to identify the interventions, i.e. pharmacological, physical, cognitive, educational, etc., which lead to the best therapeutic outcomes.
Collapse
Affiliation(s)
- Troels S Jensen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Pall Karlsson
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Sandra S Gylfadottir
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Signe T Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Department of Public Health, Aarhus University, Aarhus, Denmark
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Hatice Tankisi
- Department of Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Astrid J Terkelsen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Karolina Khan
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Mustapha Itani
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Søren H Sindrup
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Charles
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
47
|
Ferdousi M, Azmi S, Kalteniece A, Petropoulos IN, Ponirakis G, Asghar O, Alam U, Marshall A, Boulton AJM, Efron N, Soran H, Jeziorska M, Malik RA. Greater small nerve fibre damage in the skin and cornea of type 1 diabetic patients with painful compared to painless diabetic neuropathy. Eur J Neurol 2021; 28:1745-1751. [PMID: 33523534 DOI: 10.1111/ene.14757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIM Damage to small nociceptive fibres may contribute to painful diabetic neuropathy. We aimed to compare large and small nerve fibre measurements together with skin biopsy and corneal confocal microscopy in patients with type 1 diabetes and painful or painless diabetic neuropathy. METHODS We have assessed the McGill pain questionnaire, neuropathy disability score, vibration perception threshold, warm and cold sensation thresholds, electrophysiology, corneal confocal microscopy and skin biopsy in participants with type 1 diabetes and painful (n = 41) or painless (n = 50) diabetic neuropathy and control subjects (n = 50). RESULTS The duration of diabetes, body mass index, glycated haemoglobin (HbA1c), blood pressure and lipid profile did not differ between subjects with painful and painless neuropathy. Neuropathy disability score and vibration perception threshold were higher and sural nerve conduction velocity was lower, but sural nerve amplitude, peroneal nerve amplitude and conduction velocity and cold and warm sensation thresholds did not differ between patients with painful compared to painless diabetic neuropathy. However, intraepidermal nerve fibre density, corneal nerve fibre density, corneal nerve branch density and corneal nerve fibre length were significantly lower in subjects with painful compared to painless diabetic neuropathy. CONCLUSIONS There is evidence of more severe neuropathy, particularly small fibre damage in the skin and cornea, of patients with painful compared to painless diabetic neuropathy.
Collapse
Affiliation(s)
- Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Shazli Azmi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Alise Kalteniece
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | | | | | - Omar Asghar
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Uazman Alam
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Andrew J M Boulton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Handrean Soran
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Maria Jeziorska
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Rayaz A Malik
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK.,Division of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
48
|
Adam S, Azmi S, Ho JH, Liu Y, Ferdousi M, Siahmansur T, Kalteniece A, Marshall A, Dhage SS, Iqbal Z, D'Souza Y, Natha S, Kalra PA, Donn R, Ammori BJ, Syed AA, Durrington PN, Malik RA, Soran H. Improvements in Diabetic Neuropathy and Nephropathy After Bariatric Surgery: a Prospective Cohort Study. Obes Surg 2021; 31:554-563. [PMID: 33104989 PMCID: PMC7847862 DOI: 10.1007/s11695-020-05052-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE There are limited data on the impact of bariatric surgery on microvascular complications of type 2 diabetes (T2D), particularly diabetic neuropathy. We assessed microvascular complications (especially neuropathy) in obese patients with T2D before and 12 months after bariatric surgery. MATERIALS AND METHODS This was a prospective observational cohort study. Measurements of neuropathy symptom profile (NSP), neuropathy disability score (NDS), vibration (VPT), cold (CPT) and warm (WPT) perception thresholds, nerve conduction studies (NCS) and corneal confocal microscopy (CCM) to quantify corneal nerve fibre density (CNFD), branch density (CNBD) and fibre length (CNFL); urinary albumin/creatinine ratio (uACR), estimated glomerular filtration rate (eGFRcyst-creat) and retinal grading were taken. RESULTS Twenty-six (62% female; median age 52 years) obese patients with T2D were recruited. Body mass index (BMI) (47.2 to 34.5 kg/m2; p < 0.001) decreased post-operatively. There were improvements in CNFD (27.1 to 29.2/mm2; p = 0.005), CNBD (63.4 to 77.8/mm2; p = 0.008), CNFL (20.0 to 20.2/mm2; p = 0.001), NSP (3 to 0/38; p < 0.001) and eGFRcyst-creat (128 to 120 ml/min; p = 0.015) post-bariatric surgery. Changes in (Δ) triglycerides were independently associated with ΔCNFL (β = - 0.53; p = 0.024) and Δsystolic blood pressure (β = 0.62;p = 0.017), and %excess BMI loss (β = - 0.004; p = 0.018) were associated with ΔeGFRcyst-creat. There was no significant change in NDS, VPT, CPT, WPT, NCS, uACR or retinopathy status. Glomerular hyperfiltration resolved in 42% of the 12 patients with this condition pre-operatively. CONCLUSION Bariatric surgery results in improvements in small nerve fibres and glomerular hyperfiltration in obese people with T2D, which were associated with weight loss, triglycerides and systolic blood pressure, but with no change in retinopathy or uACR at 12 months.
Collapse
Affiliation(s)
- Safwaan Adam
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Shazli Azmi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Jan H Ho
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Yifen Liu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Tarza Siahmansur
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew Marshall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Shaishav S Dhage
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Zohaib Iqbal
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Yvonne D'Souza
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Salim Natha
- Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, UK
| | - Philip A Kalra
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust, Salford, UK
| | - Rachelle Donn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Basil J Ammori
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust, Salford, UK
| | - Akheel A Syed
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust, Salford, UK
| | - Paul N Durrington
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rayaz A Malik
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Weill-Cornell Medicine-Qatar, Doha, Qatar
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
49
|
Odriozola A, Ortega L, Martinez L, Odriozola S, Torrens A, Corroleu D, Martínez S, Ponce M, Meije Y, Presas M, Duarte A, Belén Odriozola M, Malik RA. Widespread sensory neuropathy in diabetic patients hospitalized with severe COVID-19 infection. Diabetes Res Clin Pract 2021; 172:108631. [PMID: 33346072 PMCID: PMC7746125 DOI: 10.1016/j.diabres.2020.108631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022]
Abstract
AIMS To characterize the distribution and severity of sensory neuropathy using a portable quantitative sensory testing (QST) device in diabetic patients (DM) hospitalized with severe COVID-19 infection. METHODS Four patients with diabetes and severe SARS-CoV-2 requiring non-invasive ventilation for a protracted duration underwent clinical, laboratory and radiologic assessment and detailed evaluation of neuropathic symptoms, neurological assessment, QST on the dorsum of the foot and face using NerveCheck Master with assessment of taste and smell. RESULTS All four subjects developed neuropathic symptoms characterized by numbness in the feet with preserved reflexes. QST confirmed symmetrical abnormality of vibration and thermal thresholds in both lower limbs in all patients and an abnormal heat pain threshold on the face of two patients and altered taste and smell. CONCLUSIONS Severe COVID-19 infection with hypoxemia is associated with neuropathic symptoms and widespread sensory dysfunction in patients with DM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
50
|
Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics (Basel) 2021; 11:diagnostics11020165. [PMID: 33498918 PMCID: PMC7911433 DOI: 10.3390/diagnostics11020165] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of both type 1 and 2 diabetes. As a result, neuropathic pain, diabetic foot ulcers and lower-limb amputations impact drastically on quality of life, contributing to the individual, societal, financial and healthcare burden of diabetes. DPN is diagnosed at a late, often pre-ulcerative stage due to a lack of early systematic screening and the endorsement of monofilament testing which identifies advanced neuropathy only. Compared to the success of the diabetic eye and kidney screening programmes there is clearly an unmet need for an objective reliable biomarker for the detection of early DPN. This article critically appraises research and clinical methods for the diagnosis or screening of early DPN. In brief, functional measures are subjective and are difficult to implement due to technical complexity. Moreover, skin biopsy is invasive, expensive and lacks diagnostic laboratory capacity. Indeed, point-of-care nerve conduction tests are convenient and easy to implement however questions are raised regarding their suitability for use in screening due to the lack of small nerve fibre evaluation. Corneal confocal microscopy (CCM) is a rapid, non-invasive, and reproducible technique to quantify small nerve fibre damage and repair which can be conducted alongside retinopathy screening. CCM identifies early sub-clinical DPN, predicts the development and allows staging of DPN severity. Automated quantification of CCM with AI has enabled enhanced unbiased quantification of small nerve fibres and potentially early diagnosis of DPN. Improved screening tools will prevent and reduce the burden of foot ulceration and amputations with the primary aim of reducing the prevalence of this common microvascular complication.
Collapse
|