1
|
Liu W, Zhang J, Zhang D, Zhang L. Role of circulating inflammatory protein in the development of diabetic renal complications: proteome-wide Mendelian randomization and colocalization analyses. Front Endocrinol (Lausanne) 2024; 15:1406442. [PMID: 39040677 PMCID: PMC11260607 DOI: 10.3389/fendo.2024.1406442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Background Diabetes ranks among the most widespread diseases globally, with the kidneys being particularly susceptible to its vascular complications. The identification of proteins for pathogenesis and novel drug targets remains imperative. This study aims to investigate roles of circulating inflammatory proteins in diabetic renal complications. Methods Data on the proteins were derived from a genome-wide protein quantitative trait locus (pQTL) study, while data on diabetic renal complications came from the FinnGen study. In this study, proteome-wide Mendelian randomization (MR) and colocalization analyses were used to assess the relationship between circulating inflammatory proteins and diabetic renal complications. Results MR approach indicated that elevated levels of interleukin 12B (IL-12B) (OR 1.691, 95%CI 1.179-2.427, P=4.34×10-3) and LIF interleukin 6 family cytokine (LIF) (OR 1.349, 95%CI 1.010-1.801, P=4.23×10-2) increased the risk of type 1 diabetes (T1D) with renal complications, while higher levels of fibroblast growth factor 19 (FGF19) (OR 1.202, 95%CI 1.009-1.432, P=3.93×10-2), fibroblast growth factor 23 (FGF23) (OR 1.379, 95%CI 1.035-1.837, P=2.82×10-2), C-C motif chemokine ligand 7 (CCL7) (OR 1.385, 95%CI 1.111-1.725, P=3.76×10-3), and TNF superfamily member 14 (TNFSF14) (OR 1.244, 95%CI 1.066-1.451, P=5.63×10-3) indicated potential risk factors for type 2 diabetes (T2D) with renal complications. Colocalization analysis supported these findings, revealing that most identified proteins, except for DNER, likely share causal variants with diabetic renal complications. Conclusion Our study established associations between specific circulating inflammatory proteins and the risk of diabetic renal complications, suggesting these proteins as targets for further investigation into the pathogenesis and potential therapeutic interventions for T1D and T2D with renal complications.
Collapse
Affiliation(s)
- Wenli Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqi Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Duo Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Natsuki Y, Morioka T, Kakutani Y, Yamazaki Y, Ochi A, Kurajoh M, Mori K, Imanishi Y, Shoji T, Inaba M, Emoto M. Serum Fibroblast Growth Factor 23 Levels are Associated with Vascular Smooth Muscle Dysfunction in Type 2 Diabetes. J Atheroscler Thromb 2023; 30:1838-1848. [PMID: 37225519 DOI: 10.5551/jat.64000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
AIM Increased level of serum fibroblast growth factor 23 (FGF23) is a hallmark of abnormal phosphate metabolism in patients with chronic kidney disease (CKD) and is recently shown to be associated with the risk of cardiovascular disease even in those without CKD. This study investigated the association between serum FGF23 levels and vascular function in patients with type 2 diabetes. METHODS This was a cross-sectional study involving 283 Japanese patients with type 2 diabetes. Flow-mediated dilatation (FMD) and nitroglycerin-mediated dilatation (NMD) of the brachial artery were measured via ultrasonography to evaluate vascular endothelial and smooth muscle functions, respectively. Serum intact FGF23 levels were determined via a sandwich enzyme-linked immunosorbent assay. RESULTS The median values of FMD, NMD, and serum FGF23 were 6.0%, 14.0%, and 27.3 pg/mL, respectively. The serum FGF23 levels were inversely associated with NMD but not with FMD, and the association was independent of atherosclerotic risk factors, estimated glomerular filtration rate (eGFR), and serum phosphate levels. Furthermore, the relationship between serum FGF23 levels and NMD was modified by kidney function, which was pronounced in subjects with normal kidney function (eGFR ≥ 60 mL/min/1.73 m2). CONCLUSION Serum FGF23 levels are independently and inversely associated with NMD in patients with type 2 diabetes, particularly in those with normal kidney function. Our results indicate that FGF23 is involved in vascular smooth muscle dysfunction and that increased serum levels of FGF23 may serve as a novel biomarker for vascular smooth muscle dysfunction in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yuka Natsuki
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Yoshinori Kakutani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Yuko Yamazaki
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Akinobu Ochi
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Masafumi Kurajoh
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Katsuhito Mori
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine
| | - Yasuo Imanishi
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate School of Medicine
- Vascular Science Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine
- Vascular Science Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine
| |
Collapse
|
3
|
Magnussen LV, Helskov Jørgensen L, Glintborg D, Andersen MS. Hepcidin Reduction during Testosterone Therapy in Men with Type 2 Diabetes: A Randomized, Double-Blinded, Placebo-Controlled Study. Biomedicines 2023; 11:3184. [PMID: 38137405 PMCID: PMC10740671 DOI: 10.3390/biomedicines11123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
High hepcidin is linked to low-grade inflammation and lower iron levels. The consequences of testosterone replacement therapy (TRT) on inflammation and the risk of cardiovascular disease (CVD) are undetermined. We investigate the effect of TRT on the inflammatory cardiovascular risk markers hepcidin-iron, fibroblast growth factor 23 (FGF23)-phosphate-klotho, and calprotectin pathways. METHODS A randomized, placebo-controlled, double-blinded study at an academic tertiary-care medical center. Interventions were testosterone gel (TRT, n = 20) or placebo gel (n = 19) for 24 weeks. We included 39 men (50-70 years) with type 2 diabetes (T2D) on metformin monotherapy with bioavailable testosterone levels <7.3 nmol/L. Body composition was assessed with DXA- and MRI-scans; the main study outcomes were serum hepcidin-iron, FGF23, phosphate, klotho, and calprotectin. RESULTS Hepcidin levels decreased during TRT (β = -9.5 ng/mL, p < 0.001), lean body mass (β = 1.9 kg, p = 0.001) increased, and total fat mass (β = -1.3 kg, p = 0.009) decreased compared to placebo. Delta hepcidin was not associated with changes in lean body mass or fat mass. Iron and the pathways of FGF23-phosphate-klotho and calprotectin were unchanged during TRT. CONCLUSIONS During TRT, the reduction in hepcidin was not associated with circulating iron levels, lean body mass, or fat mass; these findings suggested a direct anti-inflammatory effect of TRT and no indirect effect mediated through these factors.
Collapse
Affiliation(s)
- Line Velling Magnussen
- Department of Endocrinology and Metabolism, Odense University Hospital, 5000 Odense, Denmark; (D.G.); (M.S.A.)
| | - Louise Helskov Jørgensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark;
| | - Dorte Glintborg
- Department of Endocrinology and Metabolism, Odense University Hospital, 5000 Odense, Denmark; (D.G.); (M.S.A.)
| | - Marianne Skovsager Andersen
- Department of Endocrinology and Metabolism, Odense University Hospital, 5000 Odense, Denmark; (D.G.); (M.S.A.)
| |
Collapse
|
4
|
Medina Néri AK, Silva RP, Meneses GC, Costa Martins AM, Portela Lima AO, Callou Filho CR, Cavalcante Vidal FD, de Oliveira Lima JM, Rocha EA, da Silva Júnior GB. Association between endothelial biomarkers and lipid and glycemic levels: a cross-sectional study with diabetic patients. Biomark Med 2023; 17:935-946. [PMID: 38230971 DOI: 10.2217/bmm-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Background: Biomarkers can help understand the impact of achieving therapeutic goals in developing vascular diseases in diabetics. Aim: To assess the association between lipid and glycemic profiles and endothelial biomarkers in diabetics. Methods: Cross-sectional study that evaluated lipid and glycemic levels and biomarkers (VCAM-1, Sdc-1, FGF-23 and KIM-1 in diabetics. Results: Higher VCAM-1 levels were associated with higher low-density lipoprotein cholesterol and non-high-density lipoprotein (HDL) cholesterol levels (in the group with inadequate glycohemoglobin A1c [HbA1c] levels), with higher glycemic levels (in the group with inadequate HDL cholesterol levels) and with lower HDL cholesterol levels (both groups). VCAM-1 was independently associated with not achieving adequate HbA1c levels. Conclusion: In uncontrolled diabetics, VCAM-1 was independently associated with having inadequate HbA1c levels, suggesting they may already have endothelial damage.
Collapse
Affiliation(s)
- Ane Karoline Medina Néri
- University of Fortaleza, Health Sciences Center, Postgraduate Program in Collective Health, Fortaleza, 60811-905, Brazil
| | - Ricardo Pereira Silva
- Federal University of Ceará, Walter Cantídio Teaching Hospital, Cardiology Service, Fortaleza, 60430-372, Brazil
| | - Gdayllon Cavalcante Meneses
- Federal University of Ceará, Federal University of Ceará, Medical Sciences Post-Graduate Program, Fortaleza, 60430-140, Brazil
| | - Alice Maria Costa Martins
- Federal University of Ceará, Clinical and Toxicological Analysis Department, School of Pharmacy, Fortaleza, 60430-160, Brazil
| | - Ana Ofélia Portela Lima
- University of Fortaleza, Health Sciences Center, Postgraduate Program in Collective Health, Fortaleza, 60811-905, Brazil
| | - Cesário Rui Callou Filho
- University of Fortaleza, Health Sciences Center, Postgraduate Program in Collective Health, Fortaleza, 60811-905, Brazil
| | | | - Jeruza Mara de Oliveira Lima
- Federal University of Ceará, Walter Cantídio Teaching Hospital, Cardiology Service, Fortaleza, 60430-372, Brazil
| | - Eduardo Arrais Rocha
- Federal University of Ceará, Walter Cantídio Teaching Hospital, Cardiology Service, Fortaleza, 60430-372, Brazil
| | | |
Collapse
|
5
|
Kurpas A, Supel K, Wieczorkiewicz P, Bodalska Duleba J, Zielinska M. Fibroblast Growth Factor 23: Potential Marker of Invisible Heart Damage in Diabetic Population. Biomedicines 2023; 11:1523. [PMID: 37371618 PMCID: PMC10294899 DOI: 10.3390/biomedicines11061523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Two-dimensional speckle-tracking echocardiography (2DSTE) detects myocardial dysfunction despite a preserved left ventricular ejection fraction. Fibroblast growth factor 23 (FGF23) has become a promising biomarker of cardiovascular risk. This study aimed to determine whether FGF23 may be used as a marker of myocardial damage among patients with diabetes mellitus type 2 (T2DM) and no previous history of myocardial infarction. The study enrolled 71 patients with a median age of 70 years. Laboratory data were analyzed retrospectively. Serum FGF23 levels were determined using a sandwich enzyme-linked immunosorbent assay. All patients underwent conventional echocardiography and 2DSTE. Baseline characteristics indicated that the median time elapsed since diagnosis with T2DM was 19 years. All subjects were divided into two groups according to left ventricular diastolic function. Individuals with confirmed left ventricular diastolic dysfunction had significantly lower levels of estimated glomerular filtration rate and higher values of hemoglobin A1c. Global circumferential strain (GCS) was reduced in the majority of patients. Only an epicardial GCS correlated significantly with the FGF23 concentration in all patients. The study indicates that a cardiac strain is a reliable tool for a subtle myocardial damage assessment. It is possible that FGF23 may become an early diagnostic marker of myocardial damage in patients with T2DM.
Collapse
Affiliation(s)
- Anna Kurpas
- Department of Interventional Cardiology, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (A.K.); (P.W.); (M.Z.)
| | - Karolina Supel
- Department of Interventional Cardiology, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (A.K.); (P.W.); (M.Z.)
| | - Paulina Wieczorkiewicz
- Department of Interventional Cardiology, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (A.K.); (P.W.); (M.Z.)
| | | | - Marzenna Zielinska
- Department of Interventional Cardiology, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (A.K.); (P.W.); (M.Z.)
| |
Collapse
|
6
|
Castelblanco E, Hernández M, Alonso N, Ribes-Betriu A, Real J, Granado-Casas M, Rossell J, Rojo-López MI, Dusso AS, Julve J, Mauricio D. Association of α-klotho with subclinical carotid atherosclerosis in subjects with type 1 diabetes mellitus. Cardiovasc Diabetol 2022; 21:207. [PMID: 36221075 PMCID: PMC9554979 DOI: 10.1186/s12933-022-01640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Compelling evidence suggests that the fibroblast growth factor 23 (FGF23) / α-klotho axis is impaired in subjects with diabetes mellitus. We examined the relationship between parameters related to calcium/phosphate homeostasis, including FGF23 and α-klotho, and subclinical carotid atherosclerosis burden in type 1 diabetes mellitus (T1D) subjects. Methods This cross-sectional study involved 226 subjects with T1D and 147 age-, sex- and plaque-matched, non-diabetic (non-T1D) subjects, both with normal renal function. Carotid ultrasound was performed to determine the presence and burden of atheromatous plaques. Concentrations of the intact form of FGF23 and α-klotho were assessed by ELISA. Calcium, phosphate, parathyroid hormone, and vitamin D levels were also determined. Negative binomial regression models were used to examine relationship between parameters studied and subclinical carotid atherosclerosis. Results Only FGF23 was increased in T1D compared with non-diabetic subjects (> 2-fold; p < 0.05). α-klotho was higher in subjects with subclinical carotid atherosclerosis (1.4-fold, p < 0.05). Regression analysis revealed that the log α-klotho concentration was positively associated with the presence of subclinical carotid atherosclerosis both in T1D subjects (incidence rate ratio [IRR]: 1.41; 95% confidence interval [CI], 1.06–1.89; p < 0.05) and in non-T1D subjects (IRR: 1.65; 95% CI, 1.02–2.75; p < 0.05). The models also showed that age, smoking and albuminuria-to-creatinine ratio were positively associated with subclinical carotid atherosclerosis in T1D subjects. Interestingly, sex-related protection against plaque was also revealed in T1D women. Conclusion Higher α-klotho was associated with subclinical carotid atherosclerotic in the absence of kidney dysfunction. This finding also points to a new pathophysiological pathway involved in the development and progression of this complication. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01640-3.
Collapse
Affiliation(s)
- Esmeralda Castelblanco
- Endocrinology, Metabolism and Lipid Research Division, Department of Medicine, Washington University School of Medicine, 63110, St Louis, MO, USA.,Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), 08007, Barcelona, Spain
| | - Marta Hernández
- Department of Endocrinology & Nutrition, Hospital Universitari Arnau de Vilanova & Institut d'Investigació Biomédica de Lleida (IRB Lleida), 25198, Lleida, Spain
| | - Nuria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Spain.,Department of Medicine, Autonomous University of Barcelona, 08916, Barcelona, Spain
| | - Aina Ribes-Betriu
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041, Barcelona, Spain
| | - Jordi Real
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), 08007, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Minerva Granado-Casas
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041, Barcelona, Spain.,Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Joana Rossell
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041, Barcelona, Spain.,Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Marina Idalia Rojo-López
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041, Barcelona, Spain.,Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Adriana Silvia Dusso
- Endocrinology, Metabolism and Lipid Research Division, Department of Medicine, Washington University School of Medicine, 63110, St Louis, MO, USA
| | - Josep Julve
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029, Madrid, Spain. .,Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041, Barcelona, Spain. .,Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain.
| | - Didac Mauricio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029, Madrid, Spain. .,Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041, Barcelona, Spain. .,Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain. .,Faculty of Medicine, University of Vic (UVIC/UCC), 08500, Vic, Spain.
| |
Collapse
|
7
|
Takashi Y, Maeda Y, Toyokawa K, Oda N, Yoshioka R, Sekiguchi D, Minami M, Kawanami D. Fibroblast growth factor 23 and kidney function in patients with type 1 diabetes. PLoS One 2022; 17:e0274182. [PMID: 36084108 PMCID: PMC9462763 DOI: 10.1371/journal.pone.0274182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a key determinant of morbidity and mortality in patients with type 1 diabetes (T1D). Identifying factors associated with early glomerular filtration rate (GFR) decline in T1D is important in prevention or early intervention for DKD. This study investigated whether phosphate metabolism, including fibroblast growth factor 23 (FGF23) is associated with the kidney function of patients with T1D. We randomly recruited 118 patients with T1D with a normal or mildly impaired kidney function [chronic kidney disease (CKD) stages of G1/G2, A1/A2], and measured their serum FGF23 levels. Serum FGF23 was significantly negatively associated with the estimated GFR (eGFR) (r = -0.292, P = 0.0016), but not urinary albumin creatinine ratio (UACR), and positively associated with serum phosphate (Pi; r = 0.273, P = 0.0027). Serum FGF23 increased with decreasing eGFR quartiles (P for linear trend = 0.0371), while FGF23 was modestly higher in the higher quartiles of UACR (not statistically significant). The multiple linear regression analysis also showed a significant inverse association between FGF23 and eGFR (Model 1: β = -0.149, P = 0.0429; Model 2: β = -0.141, P = 0.0370). The association remained significant after adjustment for Pi. We identified that FGF23 was inversely associated with the eGFR in T1D patients with a normal or mildly impaired kidney function.
Collapse
Affiliation(s)
- Yuichi Takashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
- * E-mail: (YT); (DK)
| | - Yasutaka Maeda
- MINAMI Diabetes Clinical Research Center, Clinic Masae Minami, Fukuoka, Japan
| | - Kyoko Toyokawa
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Naoki Oda
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Rie Yoshioka
- MINAMI Diabetes Clinical Research Center, Clinic Masae Minami, Fukuoka, Japan
| | - Dan Sekiguchi
- MINAMI Diabetes Clinical Research Center, Clinic Masae Minami, Fukuoka, Japan
| | - Masae Minami
- MINAMI Diabetes Clinical Research Center, Clinic Masae Minami, Fukuoka, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
- * E-mail: (YT); (DK)
| |
Collapse
|
8
|
Nandakumar M, Moin ASM, Ramanjaneya M, Qaissi AA, Sathyapalan T, Atkin SL, Butler AE. Severe iatrogenic hypoglycaemia modulates the fibroblast growth factor protein response. Diabetes Obes Metab 2022; 24:1483-1497. [PMID: 35415885 DOI: 10.1111/dom.14716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION There is evidence that fibroblast growth factor (FGF) levels may be implicated in hypoglycaemia, with FGF19 being a potential contributor to insulin-independent pathways driving postprandial hypoglycaemia following bariatric surgery and basic FGF (FGF2) being elevated following mild hypoglycaemia occurring after the glucose tolerance test. However, their response following severe iatrogenic hypoglycaemia is unknown and therefore this pilot exploratory study was undertaken. METHODS A case-control study of aged-matched type 2 diabetes (T2D; n = 23) and control (n = 23) subjects who underwent a hyperinsulinaemic clamp, initially to euglycaemia in T2D (5 mmol/L; 90 mg/dl), and then to hypoglycaemia (<2 mmol/L; <36 mg/dl) with subsequent follow-up time course to 24 h. FGF and FGF receptor proteins were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. RESULTS At baseline, FGF12 (p = .006) was higher and FGF20 (p = .004) was lower in T2D versus controls. At hypoglycaemia, FGF7 was lower in T2D. Post-hypoglycaemic levels of FGF18, FGF19, FGF20 and FGF23 were lower while FGF12 and FGF16 were higher in T2D versus control at different time points. No differences between T2D and controls were seen for FGF1, FGF2, FGF4, FGF6, FGF8, FGF9, FGF10, FGF21 or any of the FGF receptors. At 24 h post-hypoglycaemia, FGF20 (p = .01) differed between controls and T2D, while the levels for the other proteins measured returned to baseline. None of the FGF proteins altered from baseline to euglycaemia when clamped in T2D subjects. FGF23 negatively correlated with fasting blood glucose, but no FGFs correlated with body mass index in T2D. CONCLUSION Severe transient hypoglycaemia modulated FGF7, 16, 19, 20 and 23 (known to be associated with diabetes), together with FGF18 and 12, not previously reported to be associated with diabetes but that may be important in the pathophysiology of hypoglycaemia; FGF20 remained low at 24 h. Taken together, these data suggest that recurrent hypoglycaemia may contribute to the development of complications through changes in FGF proteins.
Collapse
Affiliation(s)
- Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Al Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Alexandra E Butler
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| |
Collapse
|
9
|
Kurpas A, Supel K, Wieczorkiewicz P, Bodalska Duleba J, Zielinska M. Fibroblast Growth Factor 23 and Cardiovascular Risk in Diabetes Patients-Cardiologists Be Aware. Metabolites 2022; 12:498. [PMID: 35736431 PMCID: PMC9254740 DOI: 10.3390/metabo12060498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Numerous clinical studies have indicated that elevated FGF23 (fibroblast growth factor 23) levels may be associated with cardiovascular (CV) mortality, especially in patients with chronic kidney disease. The purpose of this study was to examine the hypothesis that FGF23 may be a potent CV risk factor among patients with long-standing type 2 diabetes mellitus (T2DM). Research was performed utilizing patients with T2DM and regular outpatient follow-up care. Baseline characteristics determined by laboratory tests were recorded. Serum FGF23 levels were detected using a sandwich enzyme-linked immunosorbent assay. All patients underwent echocardiograms and 12-lead electrocardiograms. Data records of 102 patients (males: 57%) with a median age of 69 years (interquartile range (IQR) 66.0-74.0) were analyzed. Baseline characteristics indicated that one-third (33%) of patients suffered from ischemic heart disease (IHD), and the median time elapsed since diagnosis with T2DM was 19 years (IQR 14.0-25.0). The hemoglobin A1c, estimated glomerular filtration rate, and FGF23 values were, respectively, as follows: 6.85% (IQR 6.5-7.7), 80 mL/min/1.73 m2 (IQR 70.0-94.0), and 253.0 pg/mL (IQR 218.0-531.0). The study revealed that FGF23 was elevated in all patients, regardless of IHD status. Thus, the role of FGF23 as a CV risk factor should not be overestimated among patients with T2DM and good glycemic control.
Collapse
Affiliation(s)
- Anna Kurpas
- Department of Interventional Cardiology, Medical University of Lodz, 92-213 Lodz, Poland; (A.K.); (K.S.); (P.W.)
| | - Karolina Supel
- Department of Interventional Cardiology, Medical University of Lodz, 92-213 Lodz, Poland; (A.K.); (K.S.); (P.W.)
| | - Paulina Wieczorkiewicz
- Department of Interventional Cardiology, Medical University of Lodz, 92-213 Lodz, Poland; (A.K.); (K.S.); (P.W.)
| | | | - Marzenna Zielinska
- Department of Interventional Cardiology, Medical University of Lodz, 92-213 Lodz, Poland; (A.K.); (K.S.); (P.W.)
| |
Collapse
|
10
|
Takashi Y, Kawanami D. The Role of Bone-Derived Hormones in Glucose Metabolism, Diabetic Kidney Disease, and Cardiovascular Disorders. Int J Mol Sci 2022; 23:ijms23042376. [PMID: 35216490 PMCID: PMC8879859 DOI: 10.3390/ijms23042376] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
Bone contributes to supporting the body, protecting the central nervous system and other organs, hematopoiesis, the regulation of mineral metabolism (mainly calcium and phosphate), and assists in respiration. Bone has many functions in the body. Recently, it was revealed that bone also works as an endocrine organ and secretes several systemic humoral factors, including fibroblast growth factor 23 (FGF23), osteocalcin (OC), sclerostin, and lipocalin 2. Bone can communicate with other organs via these hormones. In particular, it has been reported that these bone-derived hormones are involved in glucose metabolism and diabetic complications. Some functions of these bone-derived hormones can become useful biomarkers that predict the incidence of diabetes and the progression of diabetic complications. Furthermore, other functions are considered to be targets for the prevention or treatment of diabetes and its complications. As is well known, diabetes is now a worldwide health problem, and many efforts have been made to treat diabetes. Thus, further investigations of the endocrine system through bone-derived hormones may provide us with new perspectives on the prediction, prevention, and treatment of diabetes. In this review, we summarize the role of bone-derived hormones in glucose metabolism, diabetic kidney disease, and cardiovascular disorders.
Collapse
|
11
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Bone-kidney axis: A potential therapeutic target for diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:996776. [PMID: 36353239 PMCID: PMC9637707 DOI: 10.3389/fendo.2022.996776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). However, its pathogenesis remains unclear, and effective prevention and treatment strategies are lacking. Recently, organ-to-organ communication has become a new focus of studies on pathogenesis. Various organs or tissues (the liver, muscle and adipose tissue) secrete a series of proteins or peptides to regulate the homeostasis of distal organs in an endocrine manner. Bone, an important part of the body, can also secrete bone-derived proteins or peptides that act on distal organs. As an organ with high metabolism, the kidney is responsible for signal and material exchange with other organs at any time through circulation. In this review, we briefly discussed bone composition and changes in bone structure and function in DN and summarized the current status of bone-derived proteins and their role in the progression of DN. We speculated that the "bone-kidney axis" is a potential target for early diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|
12
|
Li Y, Gu Z, Wang J, Wang Y, Chen X, Dong B. The Emerging Role of Bone-Derived Hormones in Diabetes Mellitus and Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:938830. [PMID: 35966090 PMCID: PMC9367194 DOI: 10.3389/fendo.2022.938830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) causes the greatest proportion of end-stage renal disease (ESRD)-related mortality and has become a high concern in patients with diabetes mellitus (DM). Bone is considered an endocrine organ, playing an emerging role in regulating glucose and energy metabolism. Accumulating research has proven that bone-derived hormones are involved in glucose metabolism and the pathogenesis of DM complications, especially DKD. Furthermore, these hormones are considered to be promising predictors and prospective treatment targets for DM and DKD. In this review, we focused on bone-derived hormones, including fibroblast growth factor 23, osteocalcin, sclerostin, and lipocalin 2, and summarized their role in regulating glucose metabolism and DKD.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zuhua Gu
- Department of Endocrinology and Nephropathy, Weihai Hospital, Weihai, China
| | - Jun Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| | - Bingzi Dong
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| |
Collapse
|
13
|
Kourtidou C, Stangou M, Marinaki S, Tziomalos K. Novel Cardiovascular Risk Factors in Patients with Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms222011196. [PMID: 34681856 PMCID: PMC8537513 DOI: 10.3390/ijms222011196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with diabetic kidney disease (DKD) are at very high risk for cardiovascular events. Only part of this increased risk can be attributed to the presence of diabetes mellitus (DM) and to other DM-related comorbidities, including hypertension and obesity. The identification of novel risk factors that underpin the association between DKD and cardiovascular disease (CVD) is essential for risk stratification, for individualization of treatment and for identification of novel treatment targets.In the present review, we summarize the current knowledge regarding the role of emerging cardiovascular risk markers in patients with DKD. Among these biomarkers, fibroblast growth factor-23 and copeptin were studied more extensively and consistently predicted cardiovascular events in this population. Therefore, it might be useful to incorporate them in risk stratification strategies in patients with DKD to identify those who would possibly benefit from more aggressive management of cardiovascular risk factors.
Collapse
Affiliation(s)
- Christodoula Kourtidou
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
- Correspondence:
| | - Maria Stangou
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Smaragdi Marinaki
- Department of Nephrology and Renal Transplantation, Medical School, National and Kapodistrian University of Athens, Laiko Hospital, 11527 Athens, Greece;
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| |
Collapse
|
14
|
Cooper ID, Brookler KH, Crofts CAP. Rethinking Fragility Fractures in Type 2 Diabetes: The Link between Hyperinsulinaemia and Osteofragilitas. Biomedicines 2021; 9:1165. [PMID: 34572351 PMCID: PMC8472634 DOI: 10.3390/biomedicines9091165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) and/or cardiovascular disease (CVD), conditions of hyperinsulinaemia, have lower levels of osteocalcin and bone remodelling, and increased rates of fragility fractures. Unlike osteoporosis with lower bone mineral density (BMD), T2DM bone fragility "hyperinsulinaemia-osteofragilitas" phenotype presents with normal to increased BMD. Hyperinsulinaemia and insulin resistance positively associate with increased BMD and fragility fractures. Hyperinsulinaemia enforces glucose fuelling, which decreases NAD+-dependent antioxidant activity. This increases reactive oxygen species and mitochondrial fission, and decreases oxidative phosphorylation high-energy production capacity, required for osteoblasto/cytogenesis. Osteocytes directly mineralise and resorb bone, and inhibit mineralisation of their lacunocanalicular space via pyrophosphate. Hyperinsulinaemia decreases vitamin D availability via adipocyte sequestration, reducing dendrite connectivity, and compromising osteocyte viability. Decreased bone remodelling and micropetrosis ensues. Trapped/entombed magnesium within micropetrosis fossilisation spaces propagates magnesium deficiency (MgD), potentiating hyperinsulinaemia and decreases vitamin D transport. Vitamin D deficiency reduces osteocalcin synthesis and favours osteocyte apoptosis. Carbohydrate restriction/fasting/ketosis increases beta-oxidation, ketolysis, NAD+-dependent antioxidant activity, osteocyte viability and osteocalcin, and decreases excess insulin exposure. Osteocalcin is required for hydroxyapatite alignment, conferring bone structural integrity, decreasing fracture risk and improving metabolic/endocrine homeodynamics. Patients presenting with fracture and normal BMD should be investigated for T2DM and hyperinsulinaemia.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Translational Physiology Research Group, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Kenneth H. Brookler
- Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Catherine A. P. Crofts
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand;
| |
Collapse
|
15
|
McCullough PA. Phosphate Control: The Next Frontier in Dialysis Cardiovascular Mortality. Cardiorenal Med 2021; 11:123-132. [PMID: 34120113 DOI: 10.1159/000516286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is a major cause of death in patients with chronic kidney disease (CKD) on dialysis. Mortality rates are still unacceptably high even though they have fallen in the past 2 decades. Hyperphosphatemia (elevated serum phosphate levels) is seen in almost all patients with advanced CKD and is by far the largest remaining modifiable contributor to CKD mortality. SUMMARY Phosphate retention drives multiple physiological mechanisms linked to increased risk of CVD. Fibroblast growth factor 23 and parathyroid hormone (PTH) levels, both of which have been suggested to have direct pathogenic CV effects, increase in response to phosphate retention. Phosphate, calcium, and PTH levels are linked in a progressively worsening cycle. Maladaptive upregulation of phosphate absorption is also likely to occur further exacerbating hyperphosphatemia. Even higher phosphate levels within the normal range may be a risk factor for vascular calcification and, thus, CV morbidity and mortality. A greater degree of phosphate control is important to reduce the risk of CV morbidity and mortality. Improved phosphate control and regular monitoring of phosphate levels are guideline-recommended, established clinical practices. There are several challenges with the current phosphate management approaches in patients with CKD on dialysis. Dietary restriction of phosphate and thrice-weekly dialysis alone are insufficient/unreliable to reduce phosphate to <5.5 mg/dL. Even with the addition of phosphate binders, the only pharmacological treatment currently indicated for hyperphosphatemia, the majority of patients are unable to achieve and maintain phosphate levels <5.5 mg/dL (or more normal levels) [PhosLo® gelcaps (calcium acetate): 667 mg (prescribing information), 2011, VELPHORO®: (Sucroferric oxyhydroxide) (prescribing information), 2013, FOSRENAL®: (Lanthanum carbonate) (prescribing information), 2016, AURYXIA®: (Ferric citrate) tablets (prescribing information), 2017, RENVELA®: (Sevelamer carbonate) (prescribing information), 2020, RealWorld dynamix. Dialysis US: Spherix Global Insights, 2019]. Phosphate binders do not target the primary pathway of phosphate absorption (paracellular), have limited binding capacity, and bind nonspecifically [PhosLo® gelcaps (calcium acetate): 667 mg (prescribing information). 2013, VELPHORO®: (Sucroferric oxyhydroxide) (prescribing information), 2013, FOSRENAL®: (Lanthanum carbonate) (prescribing information), 2016, AURYXIA®: (Ferric citrate) tablets (prescribing information), 2017, RENVELA®: (Sevelamer carbonate) (prescribing information) 2020]. Key Messages: Despite current phosphate management strategies, most patients on dialysis are unable to consistently achieve target phosphate levels, indicating a need for therapeutic innovations [RealWorld dynamix. Dialysis US: Spherix Global Insights, 2019]. Given a growing evidence base that the dominant mechanism of phosphate absorption is the intestinal paracellular pathway, new therapies are investigating ways to reduce phosphate levels by blocking absorption through the paracellular pathway.
Collapse
Affiliation(s)
- Peter A McCullough
- Baylor University Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, Texas A & M College of Medicine, Baylor Heart and Vascular Institute, Dallas, Texas, USA.,Baylor Jack and Jane Hamilton Heart and Vascular Hospital, Dallas, Texas, USA
| |
Collapse
|
16
|
Diabetic kidney disease: An overview of prevalence, risk factors, and biomarkers. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2021. [DOI: 10.1016/j.cegh.2020.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Sørensen MH, Bojer AS, Jørgensen NR, Broadbent DA, Plein S, Madsen PL, Gæde P. Fibroblast growth factor-23 is associated with imaging markers of diabetic cardiomyopathy and anti-diabetic therapeutics. Cardiovasc Diabetol 2020; 19:158. [PMID: 32998751 PMCID: PMC7528463 DOI: 10.1186/s12933-020-01135-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023] Open
Abstract
Background The biomarker fibroblast growth factor-23 (FGF-23) has been associated with increased cardiovascular morbidity and mortality in both patients with and without type 2 diabetes. The aim of this study was to evaluate the relationship between FGF-23 and cardiac structure, function and perfusion in patients with type 2 diabetes and normal or mildly impaired kidney function. Furthermore, to investigate the association between FGF-23, anti-diabetes therapy and the classic complications and risk factors associated with type 2 diabetes. Methods In this cross-sectional study, 246 patients with type 2 diabetes underwent echocardiography and advanced cardiac magnetic resonance imaging to assess left ventricular (LV) structure and function. In addition, myocardial blood flow (MBF) during rest and pharmacological stress (adenosine 140 µg/kg/min) were evaluated in 183 of the patients. Patients with eGFR < 60 ml/min/1.73 m2 were excluded. Results Median (Q1–Q3) FGF-23 was 74 (58–91) ng/L. Patients with FGF-23 above the median had lower MBF during stress (2.3 ± 0.9 vs. 2.7 ± 0.9 ml/min/g, P = 0.001) and lower overall myocardial perfusion reserve (MPR) (2.7 ± 0.8 vs. 3.3 ± 1.1, P < 0.001). LV mass (143 ± 40 vs. 138 ± 36 g, P = 0.04) and E/e* (8.5 ± 3.2 vs. 7.6 ± 2.7, P = 0.04) were higher in patients with FGF-23 above the median. In a linear model adjusted for age, sex, eGFR and hypertension, increasing FGF-23 was associated with decreased MPR (P < 0.01, R2 = 0.11) and increased E/e* (P < 0.01, R2 = 0.07). FGF-23 was lower in patients receiving glucagon like peptide-1 (GLP-1) analogues (71 (57–86) vs. 80 (60–98) ng/L, P = 0.01) than in those who did not receive GLP-1 analogues. Conclusions In patients with type 2 diabetes and normal or mildly impaired kidney function, increased levels of FGF-23 are associated with impaired cardiac diastolic function and decreased MPR, caused by a decrease in maximal MBF during stress. Use of GLP-1 analogues is associated with decreased levels of FGF-23. Clinical trial registrationhttps://www.clinicaltrials.gov. Unique identifier: NCT02684331. Date of registration: February 18, 2016
Collapse
Affiliation(s)
- Martin H Sørensen
- Department of Cardiology and Endocrinology, Slagelse Hospital, Ingemannsvej 32, 4200, Slagelse, Region Zealand, Denmark. .,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| | - Annemie S Bojer
- Department of Cardiology and Endocrinology, Slagelse Hospital, Ingemannsvej 32, 4200, Slagelse, Region Zealand, Denmark.,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Capital Region of Denmark, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David A Broadbent
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Per L Madsen
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Capital Region of Denmark, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Gæde
- Department of Cardiology and Endocrinology, Slagelse Hospital, Ingemannsvej 32, 4200, Slagelse, Region Zealand, Denmark.,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Yeung SMH, Bakker SJL, Laverman GD, De Borst MH. Fibroblast Growth Factor 23 and Adverse Clinical Outcomes in Type 2 Diabetes: a Bitter-Sweet Symphony. Curr Diab Rep 2020; 20:50. [PMID: 32857288 PMCID: PMC7455586 DOI: 10.1007/s11892-020-01335-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Fibroblast growth factor 23 (FGF23) is a key phosphate-regulating hormone that has been associated with adverse outcomes in patients with chronic kidney disease (CKD). Emerging data suggest that FGF23 plays a specific role in type 2 diabetes, partly independent of kidney function. We aimed to summarize current literature on the associations between FGF23 and outcomes in patients with type 2 diabetes with or without CKD. RECENT FINDINGS Several cohort studies have shown strong associations between plasma FGF23 and cardiovascular outcomes in diabetic CKD. Moreover, recent data suggest that FGF23 are elevated and may also be a risk factor for cardiovascular disease and mortality in type 2 diabetes patients without CKD, although the magnitude of the association is smaller than in CKD patients. Diabetes-related factors may influence plasma FGF23 levels, and a higher FGF23 levels seem to contribute to a higher cardiovascular and mortality risk in patients with type 2 diabetes. Although this risk may be relevant in diabetic individuals with preserved kidney function, it is strongly accentuated in diabetic nephropathy. Future studies should clarify if FGF23 is merely a disease severity marker or a contributor to adverse outcomes in type 2 diabetes and establish if antidiabetic medication can modify FGF23 levels.
Collapse
Affiliation(s)
- Stanley M. H. Yeung
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Gozewijn D. Laverman
- Department of Internal Medicine/Nephrology, Ziekenhuisgroep Twente Hospital, Almelo and Hengelo, the Netherlands
| | - Martin H. De Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
19
|
Rroji M, Figurek A, Spasovski G. Should We Consider the Cardiovascular System While Evaluating CKD-MBD? Toxins (Basel) 2020; 12:toxins12030140. [PMID: 32106499 PMCID: PMC7150959 DOI: 10.3390/toxins12030140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular (CV) disease is highly prevalent in the population with chronic kidney disease (CKD), where the risk of CV death in early stages far exceeds the risk of progression to dialysis. The presence of chronic kidney disease-mineral and bone disorder (CKD-MBD) has shown a strong correlation with CV events and mortality. As a non-atheromatous process, it could be partially explained why standard CV disease-modifying drugs do not provide such an impact on CV mortality in CKD as observed in the general population. We summarize the potential association of CV comorbidities with the older (parathyroid hormone, phosphate) and newer (FGF23, Klotho, sclerostin) CKD-MBD biomarkers.
Collapse
Affiliation(s)
- Merita Rroji
- University Department of Nephrology, Faculty of Medicine, University of Medicine Tirana, Tirana 1001, Albania
- Correspondence:
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland;
| | - Goce Spasovski
- University Department of Nephrology, Medical Faculty, University of Skopje, Skopje 1000, North Macedonia;
| |
Collapse
|
20
|
Aroor AR, Whaley-Connell A, Sowers JR. Renal resistive index as a novel biomarker for cardiovascular and kidney risk reduction in type II diabetes. J Clin Hypertens (Greenwich) 2020; 22:231-233. [PMID: 32003929 DOI: 10.1111/jch.13817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - Adam Whaley-Connell
- Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.,Division of Nephrology and Hypertension, Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.,Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| |
Collapse
|