1
|
ElSayed NA, McCoy RG, Aleppo G, Balapattabi K, Beverly EA, Briggs Early K, Bruemmer D, Echouffo-Tcheugui JB, Ekhlaspour L, Garg R, Khunti K, Lal R, Lingvay I, Matfin G, Pandya N, Pekas EJ, Pilla SJ, Polsky S, Segal AR, Seley JJ, Stanton RC, Bannuru RR. 7. Diabetes Technology: Standards of Care in Diabetes-2025. Diabetes Care 2025; 48:S146-S166. [PMID: 39651978 PMCID: PMC11635043 DOI: 10.2337/dc25-s007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
2
|
ElSayed NA, McCoy RG, Aleppo G, Bajaj M, Balapattabi K, Beverly EA, Briggs Early K, Bruemmer D, Echouffo-Tcheugui JB, Ekhlaspour L, Gaglia JL, Garg R, Girotra M, Khunti K, Lal R, Lingvay I, Matfin G, Neumiller JJ, Pandya N, Pekas EJ, Pilla SJ, Polsky S, Segal AR, Seley JJ, Stanton RC, Bannuru RR. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2025. Diabetes Care 2025; 48:S181-S206. [PMID: 39651989 PMCID: PMC11635045 DOI: 10.2337/dc25-s009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
3
|
O'Connell MA, Northam EA, Brown A, Papoutsis J, Schuster T, Skinner T, Jenkins AJ, Ambler GR, Cameron FJ. Does insulin pump therapy offer benefits for behaviour, mood, cognition and HbA1c in children and adolescents with type 1 diabetes? A randomised controlled trial with observational follow-up. Arch Dis Child 2024; 109:806-811. [PMID: 38237958 DOI: 10.1136/archdischild-2023-326007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/13/2023] [Indexed: 09/27/2024]
Abstract
AIMS Improved behaviour, mood, cognition and HbA1c have been reported with short-term use of continuous subcutaneous insulin infusion (CSII) in youth with type 1 diabetes (T1D). We sought to re-examine these findings in a randomised controlled trial (RCT), with longitudinal follow-up. METHODS RCT of youth aged 7-15 years with T1D, at two tertiary paediatric centres. Participants were randomised to commence CSII or continue multiple daily injections (MDI). Behaviour, mood, cognition and HbA1c were assessed. Primary outcome was difference in parent-reported behaviour (BASC-2) at 4 months. After the 4-month RCT, MDI participants commenced CSII; outcomes were reassessed at +2 years. RESULTS Participating youth (n=101) were randomised to CSII (n=56) or MDI (n=45). Significant differences favouring CSII were found at 4 months in parent-reported behaviour problems (Cohen's d 0.41 (95% CI 0.004 to 0.795); p=0.048) and HbA1c (mean (95% CI) difference: 7 (2.3 to 11.7) mmol/mol (0.6% (0.2 to 1.0%); p=0.001)). Improvements from baseline were documented in mood and cognitive outcomes in both study groups over the 4-month RCT; however, no between-group differences were evident at 4 months. Sixteen of 76 (21%) participants completing assessments at +2 years had discontinued CSII. In n=60 still using CSII, measurements of behaviour, mood and HbA1c were comparable to baseline. CONCLUSIONS Parent-reported behaviour problems and HbA1c, but not mood or neurocognitive outcomes, were clinically significantly lower with CSII, relative to MDI, after 4 months. Observational follow-up indicated no impact of treatment modality at +2 years, relative to baseline levels. Taken together, these data indicate that use of CSII alone does not comprehensively benefit neuropsychological outcomes in childhood T1D.
Collapse
Affiliation(s)
- Michele A O'Connell
- Endocrinology and Diabetes, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Amy Brown
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | - Tibor Schuster
- Department of Family Medicine, McGill University, Montreal, Quebec, Canada
| | - Timothy Skinner
- La Trobe University, Melbourne, Victoria, Australia
- Australian Centre for Behavioural Research in Diabetes, Deakin University, Geelong, Victoria, Australia
- Institute of Psychology, Copenhagen University, Copenhagen, Denmark
| | - Alicia J Jenkins
- Endocrinology and Diabetes, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey R Ambler
- The University of Sydney, Sydney, New South Wales, Australia
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Fergus J Cameron
- Endocrinology and Diabetes, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Guerlich K, Patro-Golab B, Dworakowski P, Fraser AG, Kammermeier M, Melvin T, Koletzko B. Evidence from clinical trials on high-risk medical devices in children: a scoping review. Pediatr Res 2024; 95:615-624. [PMID: 37758865 PMCID: PMC10899114 DOI: 10.1038/s41390-023-02819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Meeting increased regulatory requirements for clinical evaluation of medical devices marketed in Europe in accordance with the Medical Device Regulation (EU 2017/745) is challenging, particularly for high-risk devices used in children. METHODS Within the CORE-MD project, we performed a scoping review on evidence from clinical trials investigating high-risk paediatric medical devices used in paediatric cardiology, diabetology, orthopaedics and surgery, in patients aged 0-21 years. We searched Medline and Embase from 1st January 2017 to 9th November 2022. RESULTS From 1692 records screened, 99 trials were included. Most were multicentre studies performed in North America and Europe that mainly had evaluated medical devices from the specialty of diabetology. Most had enrolled adolescents and 39% of trials included both children and adults. Randomized controlled trials accounted for 38% of the sample. Other frequently used designs were before-after studies (21%) and crossover trials (20%). Included trials were mainly small, with a sample size <100 participants in 64% of the studies. Most frequently assessed outcomes were efficacy and effectiveness as well as safety. CONCLUSION Within the assessed sample, clinical trials on high-risk medical devices in children were of various designs, often lacked a concurrent control group, and recruited few infants and young children. IMPACT In the assessed sample, clinical trials on high-risk medical devices in children were mainly small, with variable study designs (often without concurrent control), and they mostly enrolled adolescents. We provide a systematic summary of methodologies applied in clinical trials of medical devices in the paediatric population, reflecting obstacles in this research area that make it challenging to conduct adequately powered randomized controlled trials. In view of changing European regulations and related concerns about shortages of high-risk medical devices for children, our findings may assist competent authorities in setting realistic requirements for the evidence level to support device conformity certification.
Collapse
Affiliation(s)
- Kathrin Guerlich
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
- Child Health Foundation - Stiftung Kindergesundheit, c/o Dr. von Hauner Children's Hospital, Munich, Germany
| | - Bernadeta Patro-Golab
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
| | | | - Alan G Fraser
- Department of Cardiology, University Hospital of Wales, Cardiff, Wales, UK
| | - Michael Kammermeier
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
| | - Tom Melvin
- Department of Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Berthold Koletzko
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany.
- Child Health Foundation - Stiftung Kindergesundheit, c/o Dr. von Hauner Children's Hospital, Munich, Germany.
- European Academy of Paediatrics, Brussels, Belgium.
| |
Collapse
|
5
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Gaglia JL, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S158-S178. [PMID: 38078590 PMCID: PMC10725810 DOI: 10.2337/dc24-s009] [Citation(s) in RCA: 139] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
6
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 7. Diabetes Technology: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S126-S144. [PMID: 38078575 PMCID: PMC10725813 DOI: 10.2337/dc24-s007] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
7
|
Rossi A, Montefusco L, Reseghetti E, Pastore IF, Rossi G, Usuelli V, Loretelli C, Boci D, Ben Nasr M, D'Addio F, Bucciarelli L, Argenti S, Morpurgo P, Lunati ME, Fiorina P. Daytime hypoglycemic episodes during the use of an advanced hybrid closed loop system. Diabetes Res Clin Pract 2023; 206:111011. [PMID: 37956944 DOI: 10.1016/j.diabres.2023.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
AIMS The use of advanced hybrid closed loop systems is spreading due to the beneficial effects on glycometabolic control obtained in patients with type 1 diabetes. However, hypoglycemic episodes can be sometimes a matter of concern. We aim to compare the hypoglycemic risk of an advanced hybrid closed loop system and a predictive low glucose suspend sensor augmented pump. METHODS In this retrospective three months observational study, we included 30 patients using Medtronic Minimed™ 780G advanced hybrid closed loop system and 30 patients using a Medtronic Minimed™ predictive low glucose suspend sensor augmented pump. RESULTS The advanced hybrid closed loop system reduced the time spent above 180 mg/dL threshold and increased the time in range as compared to the predictive low glucose suspend. No severe hypoglycemia occurred in both groups and no differences were observed in the percentage of time spent below 70 mg/dl and 54 mg/dl glucose threshold. Nevertheless, more hypoglycemic episodes were recorded during daytime, but not in nighttime, with the use of the advanced hybrid closed loop system. CONCLUSIONS Our results confirmed the general improvement of glycemic outcomes obtained with the advanced hybrid closed loop system; however more hypoglycemic episodes during daytime were evident.
Collapse
Affiliation(s)
- Antonio Rossi
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Elia Reseghetti
- Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | | | - Giada Rossi
- Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Vera Usuelli
- Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Cristian Loretelli
- Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; International Center for T1D - Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Milan, Italy
| | - Denisa Boci
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Moufida Ben Nasr
- Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; International Center for T1D - Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Milan, Italy
| | - Francesca D'Addio
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy; Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; International Center for T1D - Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Milan, Italy
| | | | - Sabrina Argenti
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paola Morpurgo
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy; Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; International Center for T1D - Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Kladov DE, Berikov VB, Semenova JF, Klimontov VV. Nocturnal Glucose Patterns with and without Hypoglycemia in People with Type 1 Diabetes Managed with Multiple Daily Insulin Injections. J Pers Med 2023; 13:1454. [PMID: 37888065 PMCID: PMC10608186 DOI: 10.3390/jpm13101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Nocturnal hypoglycemia (NH) is a potentially dangerous and underestimated complication of insulin therapy. In this study, we aimed to determine which patterns of nocturnal glucose profiles are associated with NH in patients with type 1 diabetes (T1D) managed with multiple daily insulin injections. A dataset of continuous glucose monitoring (CGM) recordings obtained from 395 adult subjects with T1D was used for modeling. The clustering of CGM data was performed using a hierarchical clustering algorithm. Ten clusters without hypoglycemia and six clusters with NH episode(s) were identified. The differences among the clusters included initial and final glucose levels, glucose change during the night, and the presence of uptrends or downtrends. Post-midnight hyperglycemia was revealed in 5 out of 10 clusters without NH; in patterns with downtrends, initially elevated glucose prevented NH episodes. In clusters with initially near-normal glucose levels and downtrends, most episodes of NH were observed from midnight to 4 a.m.; if glucose was initially elevated, the episodes occurred at 2-4 a.m. or 4-6 a.m., depending on the time of the start of the downtrend. The results demonstrate the diversity of nocturnal glucose profiles in patients with T1D, which highlights the need for a differentiated approach to therapy adjustment.
Collapse
Affiliation(s)
- Danil E. Kladov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia (J.F.S.)
- Department of Mathematics and Mechanics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir B. Berikov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia (J.F.S.)
- Laboratory of Data Analysis, Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Julia F. Semenova
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia (J.F.S.)
| | - Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia (J.F.S.)
- V. Zelman Institute of Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Godoi A, Reis Marques I, Padrão EMH, Mahesh A, Hespanhol LC, Riceto Loyola Júnior JE, de Souza IAF, Moreira VCS, Silva CH, Miyawaki IA, Oommen C, Gomes C, Silva AC, Advani K, de Sa JR. Glucose control and psychosocial outcomes with use of automated insulin delivery for 12 to 96 weeks in type 1 diabetes: a meta-analysis of randomised controlled trials. Diabetol Metab Syndr 2023; 15:190. [PMID: 37759290 PMCID: PMC10537468 DOI: 10.1186/s13098-023-01144-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Glycaemic control of Type 1 Diabetes Mellitus (T1DM) remains a challenge due to hypoglycaemic episodes and the burden of insulin self-management. Advancements have been made with the development of automated insulin delivery (AID) devices, yet, previous reviews have only assessed the use of AID over days or weeks, and potential benefits with longer time of AID use in this population remain unclear. METHODS We performed a systematic review and meta-analysis of randomised controlled trials comparing AID (hybrid and fully closed-loop systems) to usual care (sensor augmented pumps, multiple daily insulin injections, continuous glucose monitoring and predictive low-glucose suspend) for adults and children with T1DM with a minimum duration of 3 months. We searched PubMed, Embase, Cochrane Central, and Clinicaltrials.gov for studies published up until April 4, 2023. Main outcomes included time in range 70-180 mg/dL as the primary outcome, and change in HbA1c (%, mmol/mol), glucose variability, and psychosocial impact (diabetes distress, treatment satisfaction and fear of hypoglycaemia) as secondary outcomes. Adverse events included diabetic ketoacidosis (DKA) and severe hypoglycaemia. Statistical analyses were conducted using mean differences and odds ratios. Sensitivity analyses were performed according to age, study duration and type of AID device. The protocol was registered in PROSPERO, CRD42022366710. RESULTS We identified 25 comparisons from 22 studies (six crossover and 16 parallel designs) including a total of 2376 participants (721 in adult studies, 621 in paediatric studies, and 1034 in combined studies) which were eligible for analysis. Use of AID devices ranged from 12 to 96 weeks. Patients using AID had 10.87% higher time in range [95% CI 9.38 to 12.37; p < 0.0001, I2 = 87%) and 0.37% (4.77 mmol/mol) lower HbA1c (95% CI - 0.49% (- 6.39 mmol/mol) to - 0.26 (- 3.14 mmol/mol); p < 0·0001, I2 = 77%]. AID systems decreased night hypoglycaemia, time in hypoglycaemia and hyperglycaemia and improved patient distress, with no increase in the risk of DKA or severe hypoglycaemia. No difference was found regarding treatment satisfaction or fear of hypoglycaemia. Among children, there was no difference in glucose variability or time spent in hypoglycaemia between the use of AID systems or usual care. In sensitivity analyses, results remained consistent with the overall analysis favouring AID. CONCLUSION The use of AID systems over 12 weeks, regardless of technical or clinical differences, improved glycaemic outcomes and diabetes distress without increasing the risk of adverse events in adults and children with T1DM.
Collapse
Affiliation(s)
- Amanda Godoi
- Cardiff University School of Medicine, Neuadd Meirionnydd, Cardiff, CF144YS, UK.
| | | | | | | | | | | | | | | | | | | | | | - Cintia Gomes
- Federal University of Santa Maria, Santa Maria, Brazil
| | - Ariadne C Silva
- UniEvangelica University Centre of Anapolis, Anapolis, Brazil
| | | | - Joao Roberto de Sa
- Endocrinology Division, ABC School of Medicine and Federal University of Sao Paulo, Paulista School of Medicine, São Paulo, Brazil
| |
Collapse
|
10
|
Cardona-Hernandez R, Dôvc K, Biester T, Ekhlaspour L, Macedoni M, Tauschmann M, Mameli C. New therapies towards a better glycemic control in youths with type 1 diabetes. Pharmacol Res 2023; 195:106882. [PMID: 37543096 PMCID: PMC11073821 DOI: 10.1016/j.phrs.2023.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Type 1 diabetes (T1D) is the most frequent form of diabetes in pediatric age, affecting more than 1.5 million people younger than age 20 years worldwide. Early and intensive control of diabetes provides continued protection against both microvascular and macrovascular complications, enhances growth, and ensures normal pubertal development. In the absence of definitive reversal therapy for this disease, achieving and maintaining the recommended glycemic targets is crucial. In the last 30 years, enormous progress has been made using technology to better treat T1D. In spite of this progress, the majority of children, adolescents and young adults do not reach the recommended targets for glycemic control and assume a considerable burden each day. The development of promising new therapeutic advances, such as more physiologic insulin analogues, pioneering diabetes technology including continuous glucose monitoring and closed loop systems as well as new adjuvant drugs, anticipate a new paradigm in T1D management over the next few years. This review presents insights into current management of T1D in youths.
Collapse
Affiliation(s)
| | - Klemen Dôvc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, Ljubljana, Slovenia
| | - Torben Biester
- AUF DER BULT, Diabetes Center for Children and Adolescents, Hannover, Germany
| | - Laya Ekhlaspour
- Department of Pediatrics, Division of Endocrinology. University of California, San Francisco, CA, United States
| | | | - Martin Tauschmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Chiara Mameli
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
11
|
Jabari M. Efficacy and safety of closed-loop control system for type one diabetes in adolescents a meta analysis. Sci Rep 2023; 13:13165. [PMID: 37574494 PMCID: PMC10423718 DOI: 10.1038/s41598-023-40423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023] Open
Abstract
This meta-analysis compares the efficacy and safety of Closed-Loop Control (CLC) to Sensor-Augmented Insulin Pump (SAP) for adolescent patients with Type 1 Diabetes Mellitus (T1DM). Eleven randomized-controlled trials were included with a total of 570 patients, from a total of 869 articles found adhering to PRISMA guidelines. The efficacy of the therapies were evaluated from the day, night and during physical activities monitoring of the of the mean blood glucose (BG), Time In Range (TIR), and Standard Deviation (SD) of the glucose variability. The safety measure of the therapies, was assessed from the day and night recording of the hypoglycemic and hyperglycemic events occurred. Pooled results of comparison of mean BG values for day, night and physical activities, - 4.33 [- 6.70, - 1.96] (P = 0.0003), - 16.61 [- 31.68, - 1.54] (P = 0.03) and - 8.27 [- 19.52, 2.99] (P = 0.15). The monitoring for day, night and physical activities for TIR - 13.18 [- 19.18, - 7.17] (P < 0.0001), - 15.36 [- 26.81, - 3.92] (P = 0.009) and - 7.39 [- 17.65, 2.87] (P = 0.16). The day and night results of SD of glucose variability was - 0.40 [- 0.79, - 0.00] (P = 0.05) and - 0.86 [- 2.67, 0.95] (P = 0.35). These values shows the superiority of CLC system in terms of efficacy. The safety evaluation, of the day, night and physical activities observations of average blood glucose goal hypoglycemic events - 0.54 [- 1.86, 0.79] (P = 0.43), 0.04 [- 0.20, 0.27] (P = 0.77) and 0.00 [- 0.25, 0.25] (P = 1.00) and hyperglycemic events - 0.04 [- 0.20, 0.27] (P = 0.77), - 7.11 [- 12.77, - 1.45] (P = 0.01) and - 0.00 [- 0.10, 0.10] (P = 0.97), highlights the commendable safety factor of CLC. The CLC systems can be considered as an ideal preference in the management of adolescents with type 1 diabetes to be used during a 24 h basis.
Collapse
Affiliation(s)
- Mosleh Jabari
- Department of Pediatrics, Imam Mohammed Ibn Saud Islamic University, An Nada, 13317, Riyadh, Saudi Arabia.
| |
Collapse
|
12
|
Messer LH, Cook PF, Voida S, Fiesler C, Fivekiller E, Agrawal C, Xu T, Forlenza GP, Sankaranarayanan S. Situational Awareness and Proactive Engagement Predict Higher Time in Range in Adolescents and Young Adults Using Hybrid Closed-Loop. Pediatr Diabetes 2023; 2023:1888738. [PMID: 37614410 PMCID: PMC10445779 DOI: 10.1155/2023/1888738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Background Adolescents and young adults with type 1 diabetes have high HbA1c levels and often struggle with self-management behaviors and attention to diabetes care. Hybrid closed-loop systems (HCL) like the t:slim X2 with Control-IQ technology (Control-IQ) can help improve glycemic control. The purpose of this study is to assess adolescents' situational awareness of their glucose control and engagement with the Control-IQ system to determine significant factors in daily glycemic control. Methods Adolescents (15-25 years) using Control-IQ participated in a 2-week prospective study, gathering detailed information about Control-IQ system engagements (boluses, alerts, and so on) and asking the participants' age and gender about their awareness of glucose levels 2-3 times/day without checking. Mixed models assessed which behaviors and awareness items correlated with time in range (TIR, 70-180 mg/dl, 3.9-10.0 mmol/L). Results Eighteen adolescents/young adults (mean age 18 ± 1.86 years and 86% White non-Hispanic) completed the study. Situational awareness of glucose levels did not correlate with time since the last glucose check (p = 0.8). In multivariable modeling, lower TIR was predicted on days when adolescents underestimated their glucose levels (r = -0.22), received more CGM alerts (r = -0.31), and had more pump engagements (r = -0.27). A higher TIR was predicted when adolescents responded to CGM alerts (r = 0.20) and entered carbohydrates into the bolus calculator (r = 0.49). Conclusion Situational awareness is an independent predictor of TIR and may provide insight into patterns of attention and focus that could positively influence glycemic outcomes in adolescents. Proactive engagements predict better TIR, whereas reactive engagement predicted lower TIR. Future interventions could be designed to train users to develop awareness and expertise in effective diabetes self-management.
Collapse
Affiliation(s)
- Laurel H. Messer
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul F. Cook
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen Voida
- Department of Information Science, University of Colorado Boulder, Boulder, CO, USA
| | - Casey Fiesler
- Department of Information Science, University of Colorado Boulder, Boulder, CO, USA
| | - Emily Fivekiller
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chinmay Agrawal
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
| | - Tian Xu
- Department of Information Science, University of Colorado Boulder, Boulder, CO, USA
| | - Gregory P. Forlenza
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
13
|
Phillip M, Nimri R, Bergenstal RM, Barnard-Kelly K, Danne T, Hovorka R, Kovatchev BP, Messer LH, Parkin CG, Ambler-Osborn L, Amiel SA, Bally L, Beck RW, Biester S, Biester T, Blanchette JE, Bosi E, Boughton CK, Breton MD, Brown SA, Buckingham BA, Cai A, Carlson AL, Castle JR, Choudhary P, Close KL, Cobelli C, Criego AB, Davis E, de Beaufort C, de Bock MI, DeSalvo DJ, DeVries JH, Dovc K, Doyle FJ, Ekhlaspour L, Shvalb NF, Forlenza GP, Gallen G, Garg SK, Gershenoff DC, Gonder-Frederick LA, Haidar A, Hartnell S, Heinemann L, Heller S, Hirsch IB, Hood KK, Isaacs D, Klonoff DC, Kordonouri O, Kowalski A, Laffel L, Lawton J, Lal RA, Leelarathna L, Maahs DM, Murphy HR, Nørgaard K, O’Neal D, Oser S, Oser T, Renard E, Riddell MC, Rodbard D, Russell SJ, Schatz DA, Shah VN, Sherr JL, Simonson GD, Wadwa RP, Ward C, Weinzimer SA, Wilmot EG, Battelino T. Consensus Recommendations for the Use of Automated Insulin Delivery Technologies in Clinical Practice. Endocr Rev 2023; 44:254-280. [PMID: 36066457 PMCID: PMC9985411 DOI: 10.1210/endrev/bnac022] [Citation(s) in RCA: 158] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/22/2022] [Indexed: 02/06/2023]
Abstract
The significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers, and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past 6 years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage.
Collapse
Affiliation(s)
- Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, 49202 Petah Tikva, Israel
- Sacker Faculty of Medicine, Tel-Aviv University, 39040 Tel-Aviv, Israel
| | - Revital Nimri
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, 49202 Petah Tikva, Israel
- Sacker Faculty of Medicine, Tel-Aviv University, 39040 Tel-Aviv, Israel
| | - Richard M Bergenstal
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | | | - Thomas Danne
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | - Roman Hovorka
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Boris P Kovatchev
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Laurel H Messer
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Roy W Beck
- Jaeb Center for Health Research Foundation, Inc., Tampa, FL 33647, USA
| | - Sarah Biester
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | - Torben Biester
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | - Julia E Blanchette
- College of Nursing, University of Utah, Salt Lake City, UT 84112, USA
- Center for Diabetes and Obesity, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Hospital and San Raffaele Vita Salute University, Milan, Italy
| | - Charlotte K Boughton
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Marc D Breton
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Sue A Brown
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Division of Endocrinology, University of Virginia, Charlottesville, VA 22903, USA
| | - Bruce A Buckingham
- Division of Endocrinology, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA 94304, USA
| | - Albert Cai
- The diaTribe Foundation/Close Concerns, San Diego, CA 94117, USA
| | - Anders L Carlson
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - Jessica R Castle
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pratik Choudhary
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Kelly L Close
- The diaTribe Foundation/Close Concerns, San Diego, CA 94117, USA
| | - Claudio Cobelli
- Department of Woman and Child’s Health, University of Padova, Padova, Italy
| | - Amy B Criego
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - Elizabeth Davis
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Perth, Australia
| | - Carine de Beaufort
- Diabetes & Endocrine Care Clinique Pédiatrique DECCP/Centre Hospitalier Luxembourg, and Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch sur Alzette, GD Luxembourg/Department of Paediatrics, UZ-VUB, Brussels, Belgium
| | - Martin I de Bock
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Daniel J DeSalvo
- Division of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77598, USA
| | - J Hans DeVries
- Amsterdam UMC, University of Amsterdam, Internal Medicine, Amsterdam, The Netherlands
| | - Klemen Dovc
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children’s Hospital, Ljubljana, Slovenia, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Laya Ekhlaspour
- Lucile Packard Children’s Hospital—Pediatric Endocrinology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Naama Fisch Shvalb
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, 49202 Petah Tikva, Israel
| | - Gregory P Forlenza
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Satish K Garg
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dana C Gershenoff
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - Linda A Gonder-Frederick
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ahmad Haidar
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Sara Hartnell
- Wolfson Diabetes and Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Simon Heller
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Irl B Hirsch
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Korey K Hood
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Diana Isaacs
- Cleveland Clinic, Endocrinology and Metabolism Institute, Cleveland, OH 44106, USA
| | - David C Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA 94010, USA
| | - Olga Kordonouri
- AUF DER BULT, Diabetes-Center for Children and Adolescents, Endocrinology and General Paediatrics, Hannover, Germany
| | | | - Lori Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Julia Lawton
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Rayhan A Lal
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lalantha Leelarathna
- Manchester University Hospitals NHS Foundation Trust/University of Manchester, Manchester, UK
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA 94304, USA
| | - Helen R Murphy
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen and Department of Clinical Medicine, University of Copenhagen, Gentofte, Denmark
| | - David O’Neal
- Department of Medicine and Department of Endocrinology, St Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, Australia
| | - Sean Oser
- Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tamara Oser
- Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, and Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Michael C Riddell
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Canada
| | - David Rodbard
- Biomedical Informatics Consultants LLC, Potomac, MD, USA
| | - Steven J Russell
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL 02114, USA
| | - Viral N Shah
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer L Sherr
- Department of Pediatrics, Yale University School of Medicine, Pediatric Endocrinology, New Haven, CT 06511, USA
| | - Gregg D Simonson
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN 55416, USA
| | - R Paul Wadwa
- Barbara Davis Center for Diabetes, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Candice Ward
- Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Stuart A Weinzimer
- Department of Pediatrics, Yale University School of Medicine, Pediatric Endocrinology, New Haven, CT 06511, USA
| | - Emma G Wilmot
- Department of Diabetes & Endocrinology, University Hospitals of Derby and Burton NHS Trust, Derby, UK
- Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, Nottingham, England, UK
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children’s Hospital, Ljubljana, Slovenia, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Renard E. Automated insulin delivery systems: from early research to routine care of type 1 diabetes. Acta Diabetol 2023; 60:151-161. [PMID: 35994106 DOI: 10.1007/s00592-022-01929-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Automated insulin delivery (AID) systems, so-called closed-loop systems or artificial pancreas, are based upon the concept of insulin supply driven by blood glucose levels and their variations according to body glucose needs, glucose intakes and insulin action. They include a continuous glucose monitoring device which provides a signal to a control algorithm tuning insulin delivery from an infusion pump. The control algorithm is the key of the system since it commands insulin administration in order to maintain blood glucose in a predefined target range and close to a near-normal glucose level. The last two decades have shown dramatic advances toward the use in free life of AID systems for routine care of type 1 diabetes through step-by-step demonstrations of feasibility, safety and efficacy in successive hospital, transitional and outpatient trials. Because of the constraints of pharmacokinetics and dynamics of subcutaneous insulin delivery, the currently available AID systems are all 'hybrid' or 'semi-automated' insulin delivery systems with a need of meal and exercise announcements in order to anticipate rapid glucose variations through pre-meal bolus or pre-exercise reduction of infusion rate. Nevertheless, these AID systems significantly improve time spent in a near-normal range with a reduction of the risk of hypoglycemia and the mental load of managing diabetes in everyday life, representing a milestone in insulin therapy. Expected progression toward fully automated, further miniaturized and integrated, possibly implantable on long-term and more physiological closed-loop systems paves the way for a functional cure of type 1 diabetes.
Collapse
Affiliation(s)
- Eric Renard
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, Montpellier, France.
- INSERM Clinical Investigation Centre CIC 1411, Montpellier, France.
- Department of Physiology, Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France.
| |
Collapse
|
15
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Gabbay RA, on behalf of the American Diabetes Association. 7. Diabetes Technology: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S111-S127. [PMID: 36507635 PMCID: PMC9810474 DOI: 10.2337/dc23-s007] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
16
|
Díaz-Balzac CA, Pillinger D, Wittlin SD. Continuous subcutaneous insulin infusions: Closing the loop. J Clin Endocrinol Metab 2022; 108:1019-1033. [PMID: 36573281 DOI: 10.1210/clinem/dgac746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 12/29/2022]
Abstract
CONTEXT Continuous subcutaneous insulin infusions (CSIIs) and continuous glucose monitors (CGMs) have revolutionized the management of diabetes mellitus (DM). Over the last two decades the development of advanced, small, and user-friendly technology has progressed substantially, essentially closing the loop in the fasting and post-absorptive state, nearing the promise of an artificial pancreas. The momentum was mostly driven by the diabetes community itself, to improve its health and quality of life. EVIDENCE ACQUISITION Literature regarding CSII and CGM was reviewed. EVIDENCE SYNTHESIS Management of DM aims to regulate blood glucose to prevent long term micro and macrovascular complications. CSIIs combined with CGMs provide an integrated system to maintain tight glycemic control in a safe and uninterrupted fashion, while minimizing hypoglycemic events. Recent advances have allowed to 'close the loop' by better mimicking endogenous insulin secretion and glucose level regulation. Evidence supports sustained improvement in glycemic control with reduced episodes of hypoglycemia using these systems, while improving quality of life. Ongoing work in delivery algorithms with or without counterregulatory hormones will allow for further layers of regulation of the artificial pancreas. CONCLUSION Ongoing efforts to develop an artificial pancreas have created effective tools to improve the management of DM. CSIIs and CGMs are useful in diverse populations ranging from children to the elderly, as well as in various clinical contexts. Individually and more so together, these have had a tremendous impact in the management of DM, while avoiding treatment fatigue. However, cost and accessibility are still a hindrance to its wider application.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Box 693, Rochester, NY 14642, USA
| | - David Pillinger
- Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Box 693, Rochester, NY 14642, USA
| | - Steven D Wittlin
- Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Box 693, Rochester, NY 14642, USA
| |
Collapse
|
17
|
Baxter F, Baillie N, Forbes S. Study protocol: a randomised controlled proof-of-concept real-world study - does maximising time in range using hybrid closed loop insulin delivery and a low carbohydrate diet restore the glucagon response to hypoglycaemia in adults with type 1 diabetes? BMJ Open 2022; 12:e054958. [PMID: 36600427 PMCID: PMC9772676 DOI: 10.1136/bmjopen-2021-054958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION People with type 1 diabetes (T1D) develop an impaired glucagon response to hypoglycaemia within 5 years of diagnosis, increasing their risk of severe hypoglycaemia. It is not known whether eliminating hypoglycaemia and hyperglycaemia allows recovery of this glucagon response. Hybrid closed loop (HCL) technologies improve glycaemic time in range (TIR). However, post-prandial glycaemic excursions are still evident. Consuming a low carbohydrate diet (LCD) may minimise these excursions. METHODS AND ANALYSIS This feasibility study will assess if maximising TIR (glucose ≥3.9 mmol/L≤10 mmol/L) using HCL systems plus an LCD (defined here as <130 g carbohydrate/day) for >8 months, restores the glucagon response to insulin-induced hypoglycaemia. Adults (n=24) with T1D (C-peptide <200 pmol/L), naïve to continuous glucose monitoring (CGM) and HCL systems, will be recruited and randomised to: group 1 (non-HCL) to continue their standard diabetes care with intermittent blinded CGM; or group 2 (HCL-LCD) to use the HCL system and follow a LCD. Baseline data on diet and glycaemia will be collected from all participants. The HCL-LCD group will then enter a 2-week run-in to acclimatise to their devices. Throughout, the HCL-LCD group will have their glucose closely monitored and adjusted aiming for glycaemic TIR >70%. Participants will have their glucagon response to hypoglycaemia measured at the beginning and 8 months later at the study end using a stepped hyperinsulinaemic hypoglycaemic clamp, in combination with the stable isotopes 6,6-2H2-glucose (D2-glucose) and 1,1,2,3,3-2H5-glycerol (D5-glycerol) to assess glucose and glycerol kinetics. The impact of hypoglycaemia on symptoms and cognitive function will be assessed during each clamp study. The primary outcome is the difference in the glucagon response to hypoglycaemia between and within groups at baseline versus study end. ETHICS AND DISSEMINATION Ethical (20/SS/0117)/institutional review board (2021/0001) approval has been obtained. The study will be disseminated by peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT04614168.
Collapse
Affiliation(s)
- Faye Baxter
- University of Edinburgh Division of BHF Centre for Cardiovascular Science, Edinburgh, UK
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Nicola Baillie
- University of Edinburgh Division of BHF Centre for Cardiovascular Science, Edinburgh, UK
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Shareen Forbes
- University of Edinburgh Division of BHF Centre for Cardiovascular Science, Edinburgh, UK
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
- Edmonton Islet Transplant Programme, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Closed-loop insulin pump systems (artificial pancreas) represent the cutting edge of insulin delivery technology. There are only a few systems currently approved for use in the USA: the MiniMed 670G/770G (which share an algorithm), t:slim X2 Control IQ, and the Omnipod 5. We review these systems and look into the future of the technology. RECENT FINDINGS All of the approved closed-loop insulin pump systems have demonstrated in multicenter prospective trials improvements in time in range, hemoglobin A1c, and time spent in hypoglycemia. The newer systems have also improved time spent in automation. Comparisons between the systems with regard to glycemic control are difficult to make due to differences in clinical trial design, but there are notable differences in the user experience between systems. The past few years have been a time of exponential development in the field of closed-loop insulin pump systems. However, more research is needed to provide full automation of these systems without any need for information from the user.
Collapse
Affiliation(s)
- Keren Zhou
- Endocrinology and Metabolism Institute, Cleveland Clinic, 9500 Euclid Avenue, F20, Cleveland, OH, 44195, US.
| | - Diana Isaacs
- Endocrinology and Metabolism Institute, Cleveland Clinic, 9500 Euclid Avenue, F20, Cleveland, OH, 44195, US
| |
Collapse
|
19
|
Jiao X, Shen Y, Chen Y. Better TIR, HbA1c, and less hypoglycemia in closed-loop insulin system in patients with type 1 diabetes: a meta-analysis. BMJ Open Diabetes Res Care 2022; 10:10/2/e002633. [PMID: 35450868 PMCID: PMC9024214 DOI: 10.1136/bmjdrc-2021-002633] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/03/2022] [Indexed: 12/18/2022] Open
Abstract
The study aimed to evaluate the effectiveness and safety of long-term use of closed-loop insulin system (CLS) in non-pregnant patients with type 1 diabetes mellitus (T1DM) using systematic review and meta-analysis. A literature search was performed using MEDLINE, EMBASE, and the Cochrane Library. Randomized controlled trials (RCTs) on long-term use (not less than 8 weeks) of CLS in patients with T1DM were selected. Meta-analysis was performed with RevMan V.5.3.5 to compare CLS with controls (continuous subcutaneous insulin infusion with blinded continuous glucose monitoring or unblinded sensor-augmented pump therapy or multiple daily injections or predictive low-glucose suspend system) in adults and children with type 1 diabetes. Research quality evaluation was conducted using the Cochrane risk of bias tool. Eleven RCTs (817 patients) that satisfied the eligibility criteria were included in the meta-analysis. Compared with controls, the CLS group had a favorable effect on the proportion of time with sensor glucose level in 3.9-10 mmol/L (10.32%, 8.70% to 11.95%), above 10 mmol/L (-8.89%, -10.57% to -7.22%), or below 3.9 mmol/L (-1.09%, -1.54% to -0.64%) over 24 hours. The CLS group also had lower glycated hemoglobin levels (-0.30%, -0.41% to -0.19%), and glucose variability, coefficient of variation of glucose, and SD were lower by 1.41 (-2.38 to -0.44, p=0.004) and 6.37 mg/dL (-9.19 mg/dL to -3.55 mg/dL, p<0.00001). There were no significant differences between the CLS and the control group in terms of daily insulin dose, quality of life assessment, and satisfaction with diabetes treatment. CLS is a better solution than control treatment in optimizing blood glucose management in patients with T1DM. CLS could become a common means of treating T1DM in clinical practice.
Collapse
Affiliation(s)
- Xiaojuan Jiao
- Department of Endocrinology and Metabolism, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi, China
| | - Yifa Chen
- Department of Endocrinology and Metabolism, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Forlenza GP, Vigers T, Berget C, Messer LH, Lal RA, Basina M, Maahs DM, Hood K, Buckingham B, Wilson DM, Wadwa RP, Driscoll KA, Pyle L. Predicting Success with a First-Generation Hybrid Closed-Loop Artificial Pancreas System Among Children, Adolescents, and Young Adults with Type 1 Diabetes: A Model Development and Validation Study. Diabetes Technol Ther 2022; 24:157-166. [PMID: 34780306 PMCID: PMC8971998 DOI: 10.1089/dia.2021.0326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Hybrid Closed-Loop (HCL) systems aid individuals with type 1 diabetes in improving glycemic control; however, sustained use over time has not been consistent for all users. This study developed and validated prognostic models for successful 12-month use of the first commercial HCL system based on baseline and 1- or 3-month data. Methods and Materials: Data from participants at the Barbara Davis Center (N = 85) who began use of the MiniMed 670G HCL were used to develop prognostic models using logistic regression and Lasso model selection. Candidate factors included sex, age, duration of diabetes, baseline hemoglobin A1c (HbA1c), race, ethnicity, insurance status, history of insulin pump and continuous glucose monitor use, 1- or 3-month Auto Mode use, boluses per day, and time in range (TIR; 70-180 mg/dL), and scores on behavioral questionnaires. Successful use of HCL was predefined as Auto Mode use ≥60%. The 3-month model was then externally validated against a sample from Stanford University (N = 55). Results: Factors in the final model included baseline HbA1c, sex, ethnicity, 1- or 3-month Auto Mode use, Boluses per Day, and TIR. The 1- and 3-month prognostic models had very good predictive ability with area under the curve values of 0.894 and 0.900, respectively. External validity was acceptable with an area under the curve of 0.717. Conclusions: Our prognostic models use clinically accessible baseline and early device-use factors to identify risk for failure to succeed with 670G HCL technology. These models may be useful to develop targeted interventions to promote success with new technologies.
Collapse
Affiliation(s)
- Gregory P. Forlenza
- Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado Anschutz Campus, Aurora, Colorado, USA
- Address correspondence to: Gregory P. Forlenza, MD, Associate Professor of Pediatrics, Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado Anschutz Campus,, 1775 Aurora Court, MS A140, Aurora, CO 80045, USA
| | - Tim Vigers
- Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado Anschutz Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Campus, Aurora, Colorado, USA
| | - Cari Berget
- Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado Anschutz Campus, Aurora, Colorado, USA
| | - Laurel H. Messer
- Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado Anschutz Campus, Aurora, Colorado, USA
| | - Rayhan A. Lal
- Stanford Diabetes Research Center, School of Medicine, Stanford University, Stanford, California, USA
| | - Marina Basina
- Stanford Diabetes Research Center, School of Medicine, Stanford University, Stanford, California, USA
| | - David M. Maahs
- Stanford Diabetes Research Center, School of Medicine, Stanford University, Stanford, California, USA
| | - Korey Hood
- Stanford Diabetes Research Center, School of Medicine, Stanford University, Stanford, California, USA
| | - Bruce Buckingham
- Stanford Diabetes Research Center, School of Medicine, Stanford University, Stanford, California, USA
| | - Darrell M. Wilson
- Stanford Diabetes Research Center, School of Medicine, Stanford University, Stanford, California, USA
| | - R. Paul Wadwa
- Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado Anschutz Campus, Aurora, Colorado, USA
| | - Kimberly A. Driscoll
- Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado Anschutz Campus, Aurora, Colorado, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Laura Pyle
- Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado Anschutz Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Campus, Aurora, Colorado, USA
| |
Collapse
|
21
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc22-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc22-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
22
|
von dem Berge T, Biester S, Biester T, Buchmann AK, Datz N, Grosser U, Kapitzke K, Klusmeier B, Remus K, Reschke F, Tiedemann I, Weiskorn J, Würsig M, Thomas A, Kordonouri O, Danne T. Empfehlungen zur Diabetes-Behandlung mit automatischen Insulin-Dosierungssystemen. DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-1652-9011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ZusammenfassungDas Prinzip der automatischen Insulindosierung, kurz „AID“ genannt, zeigt in Zulassungsstudien und Real-World-Erfahrungen ausgezeichnete Behandlungsergebnisse. Beim AID wird eine Insulinpumpe mit einem System zur kontinuierlichen Glukosemessung zusammengeschaltet, während ein Rechenprogramm, der sogenannte Algorithmus, die Steuerung der Insulingabe nach Bedarf übernimmt. Idealerweise wäre das System ein geschlossener Kreis, bei dem die Menschen mit Diabetes keine Eingabe mehr machen müssten. Jedoch sind bei den heute verfügbaren Systemen verschiedene Grundeinstellungen und Eingaben erforderlich (insbesondere von Kohlenhydratmengen der Mahlzeiten oder körperlicher Aktivität), die sich von den bisherigen Empfehlungen der sensorunterstützten Pumpentherapie in einzelnen Aspekten unterscheiden. So werden die traditionellen Konzepte von „Basal“ und „Bolus“ mit AID weniger nützlich, da der Algorithmus beide Arten der Insulinabgabe verwendet, um die Glukosewerte dem eingestellten Zielwert zu nähern. Daher sollte bei diesen Systemen statt der Erfassung von „Basal“ und „Bolus“, zwischen einer „nutzerinitiierten“ und einer „automatischen“ Insulindosis unterschieden werden. Gemeinsame Therapieprinzipien der verschiedenen AID-Systeme umfassen die passgenaue Einstellung des Kohlenhydratverhältnisses, die Bedeutung des Timings der vom Anwender initiierten Insulinbolusgaben vor der Mahlzeit, den korrekten Umgang mit einem verzögerten oder versäumten Mahlzeitenbolus, neue Prinzipien im Umgang mit Sport oder Alkoholgenuss sowie den rechtzeitigen Umstieg von AID zu manuellem Modus bei Auftreten erhöhter Ketonwerte. Das Team vom Diabetes-Zentrum AUF DER BULT in Hannover hat aus eigenen Studienerfahrungen und der zugrunde liegenden internationalen Literatur praktische Empfehlungen zur Anwendung und Schulung der gegenwärtig und demnächst in Deutschland kommerziell erhältlichen Systeme zusammengestellt. Für den Erfolg der AID-Behandlung scheint das richtige Erwartungsmanagement sowohl beim Behandlungsteam und als auch beim Anwender von großer Bedeutung zu sein.
Collapse
Affiliation(s)
- Thekla von dem Berge
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Sarah Biester
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Torben Biester
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Anne-Kathrin Buchmann
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Nicolin Datz
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Ute Grosser
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Kerstin Kapitzke
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Britta Klusmeier
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Kerstin Remus
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Felix Reschke
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Inken Tiedemann
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Jantje Weiskorn
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Martina Würsig
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | | | - Olga Kordonouri
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Thomas Danne
- Diabetes-Zentrum für Kinder und Jugendliche, AUF DER BULT, Kinder- und Jugendkrankenhaus, Hannover, Germany
| |
Collapse
|
23
|
Lane WS, Weinrib SL, Lawrence MJ, Lane BC, Jarrett RT. Basal Insulin Degludec and Glycemic Control Compared to Aspart Via Insulin Pump in Type 1 Diabetes (BIGLEAP): A Single-Center, Open-Label, Randomized, Crossover Trial. Endocr Pract 2021; 28:165-172. [PMID: 34763071 DOI: 10.1016/j.eprac.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE We compared the efficacy of the second-generation basal insulin degludec (IDeg) to that of insulin aspart via pump using continuous glucose monitoring in patients with well-controlled type 1 diabetes. METHODS In this 40-week, single-center, randomized, crossover-controlled trial, adults with well-controlled type 1 diabetes (hemoglobin A1C of <7.5% [<58 mmol/mol]) (N = 52) who were using an insulin pump and continuous glucose monitoring were randomized to 1 of 2 treatments for a 20-week period: a single daily injection of IDeg with bolus aspart via pump or a continuous subcutaneous insulin infusion (CSII) with aspart, followed by crossover to the other treatment. The primary endpoint was time in range (70-180 mg/dL) during the final 2 weeks of each treatment period. RESULTS Fifty-two patients were randomized and completed both treatment periods. The time in range for IDeg and CSII was 71.5% and 70.9%, respectively (P = .553). The time in level 1 hypoglycemia for the 24-hour period with IDeg and CSII was 2.19% and 1.75%, respectively (P = .065). The time in level 2 hypoglycemia for the 24-hour period with IDeg and CSII was 0.355% and 0.271%, respectively (P = .212), and the nocturnal period was 0.330% and 0.381%, respectively (P = .639). The mean standard deviation of blood glucose levels for the 24-hour period for IDeg and CSII was 52.4 mg/dL and 51.0 mg/dL, respectively (P = .294). The final hemoglobin A1C level for each treatment was 7.04% (53 mmol/mol) with IDeg, and 6.95% (52 mmol/mol) with CSII (P = .288). Adverse events were similar between treatments. CONCLUSION We observed similar glycemic control between IDeg and insulin aspart via CSII for basal insulin coverage in patients with well-controlled type 1 diabetes.
Collapse
Affiliation(s)
- Wendy S Lane
- Mountain Diabetes and Endocrine Center, Asheville, North Carolina.
| | | | | | - Benjamin C Lane
- Department of Data Science, Vanderbilt University, Nashville, Tennessee
| | - Ryan T Jarrett
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
24
|
Moon SJ, Jung I, Park CY. Current Advances of Artificial Pancreas Systems: A Comprehensive Review of the Clinical Evidence. Diabetes Metab J 2021; 45:813-839. [PMID: 34847641 PMCID: PMC8640161 DOI: 10.4093/dmj.2021.0177] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
Since Banting and Best isolated insulin in the 1920s, dramatic progress has been made in the treatment of type 1 diabetes mellitus (T1DM). However, dose titration and timely injection to maintain optimal glycemic control are often challenging for T1DM patients and their families because they require frequent blood glucose checks. In recent years, technological advances in insulin pumps and continuous glucose monitoring systems have created paradigm shifts in T1DM care that are being extended to develop artificial pancreas systems (APSs). Numerous studies that demonstrate the superiority of glycemic control offered by APSs over those offered by conventional treatment are still being published, and rapid commercialization and use in actual practice have already begun. Given this rapid development, keeping up with the latest knowledge in an organized way is confusing for both patients and medical staff. Herein, we explore the history, clinical evidence, and current state of APSs, focusing on various development groups and the commercialization status. We also discuss APS development in groups outside the usual T1DM patients and the administration of adjunct agents, such as amylin analogues, in APSs.
Collapse
Affiliation(s)
- Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Inha Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Messer LH, Berget C, Ernst A, Towers L, Slover RH, Forlenza GP. Initiating hybrid closed loop: A program evaluation of an educator-led Control-IQ follow-up at a large pediatric clinic. Pediatr Diabetes 2021; 22:586-593. [PMID: 33502062 PMCID: PMC8252603 DOI: 10.1111/pedi.13183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Control-IQ (Tandem Diabetes) is a hybrid closed-loop (HCL) system that users self-initiate after completing online training. Best practices for clinical follow-up are not known. Our quality improvement objective was to evaluate the usefulness of an educator-led follow-up program for new HCL users in a type 1 diabetes pediatric clinic. METHODS We implemented an ''HCLCheck-in'' program, first determining when users started HCL, then having diabetes educators contact them for a follow-up call 2-weeks after start. Educators used a Clinical Tool to inform insulin dose and behavior recommendations, and used four benchmarks to determine need for further follow-up: ≥71% HCL use, ≥71% CGM use, ≥60% Time-in-Range (TIR, 70-180 mg/dL), <5% below 70 mg/dL. Family and educator satisfaction were surveyed. RESULTS One-hundred-twenty-three youth [mean age 13.6 ± 3.7 y, 53.7% female, mean HbA1c 7.6 ± 1.4% (60 mmol/mol)] completed an HCLCheck-in call a median (IQR) of 18(15, 21) days post-HCL start. 74 users (60%) surpassed benchmarks with 94% HCL use and 71% TIR. Of the 49 who did not, 16 completed a second call, and improved median TIR 12.5% (p = 0.03). HCL users reported high satisfaction with the program overall [median 10 (9, 10) out of 10]. Educators spent a median of 45 (32,70) minutes per user and rated satisfaction with the program as 8 (7,9.5) and the Tool as 9 (9, 10). CONCLUSION Our HCLCheck-in program received high satisfaction ratings and resulted in improved TIR for those initially not meeting benchmarks, suggesting users may benefit from early follow-up. Similar programs may be beneficial for other new technologies.
Collapse
Affiliation(s)
- Laurel H. Messer
- School of Medicine, Barbara Davis Center for Childhood DiabetesUniversity of Colorado DenverDenverColoradoUSA
| | - Cari Berget
- School of Medicine, Barbara Davis Center for Childhood DiabetesUniversity of Colorado DenverDenverColoradoUSA
| | - Ashlee Ernst
- School of Medicine, Barbara Davis Center for Childhood DiabetesUniversity of Colorado DenverDenverColoradoUSA
| | - Lindsey Towers
- School of Medicine, Barbara Davis Center for Childhood DiabetesUniversity of Colorado DenverDenverColoradoUSA
| | - Robert H. Slover
- School of Medicine, Barbara Davis Center for Childhood DiabetesUniversity of Colorado DenverDenverColoradoUSA
| | - Gregory P. Forlenza
- School of Medicine, Barbara Davis Center for Childhood DiabetesUniversity of Colorado DenverDenverColoradoUSA
| |
Collapse
|
26
|
Abstract
The ambulatory glucose profile (AGP) and the frequency distribution for glucose by ranges are well established as standard methods for display, analysis, and interpretation of glucose data arising from self-monitoring, continuous glucose monitoring, and automated insulin delivery systems. In this review, we consider several refinements that may further improve the utility of the AGP. These include (1) display of the AGP together with information regarding dietary intake, medication administration (e.g., insulin), glucose lowering (pharmacodynamic) activity of medications, and physical activity measured by accelerometers or heart rate; (2) display of average time below range (%TBR), time above range (%TAR), and time in range (%TIR) by time of day to indicate timing of hypoglycemic and hyperglycemic episodes; (3) detailed analysis of postprandial excursions for each of the major meals after synchronizing by onset of meals and adjusting for the premeal glucose levels, enabling comparisons of magnitude, shape, and patterns; (4) methods to characterize distinct patterns on different days of the week; (5) display of glucose on a nonlinear scale to improve the balance between deviations associated with hypoglycemia versus hyperglycemia; (6) use of time scales other than midnight-to-midnight to facilitate analysis of time segments of particular interest (e.g., overnight); (7) options to display individual glucose values to assist in the identification of dates and times of outliers and episodes of hypoglycemia and hyperglycemia; and (8) methods to compare AGPs obtained from different individuals or groups receiving alternative interventions in terms of therapy or technology. These refinements, individually or collectively, can potentially further enhance the effectiveness of the AGP for assessment of glucose levels, patterns, and variability. We discuss several questions regarding implementation and optimization of these methods.
Collapse
Affiliation(s)
- David Rodbard
- Biomedical Informatics Consultants LLC, Potomac, Maryland, USA
| |
Collapse
|
27
|
Pinsker JE, Müller L, Constantin A, Leas S, Manning M, McElwee Malloy M, Singh H, Habif S. Real-World Patient-Reported Outcomes and Glycemic Results with Initiation of Control-IQ Technology. Diabetes Technol Ther 2021; 23:120-127. [PMID: 32846114 PMCID: PMC7868573 DOI: 10.1089/dia.2020.0388] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: The t:slim X2™ insulin pump with Control-IQ™ technology, an advanced hybrid closed-loop system, became available in the United States in early 2020. Real-world outcomes with use of this system have not yet been comprehensively reported. Methods: Individuals with type 1 diabetes (T1D) (≥14 years of age) who had ≥21 days of pump usage data were invited via email to participate. Participants completed psychosocial questionnaires (Technology Acceptance Scale [TAS], well-being index [WHO-5], and Diabetes Impact and Devices Satisfaction [DIDS] scale) at timepoint 1 (T1) (at least 3 weeks after starting Control-IQ technology) and the DIDS and WHO-5 at timepoint 2 (T2) (4 weeks from T1). Patient-reported outcomes (PROs) and glycemic outcomes were reviewed at each timepoint. Results: Overall, 9,085 potentially eligible individuals received the study invite. Of these, 3,116 consented and subsequently 1,435 participants completed questionnaires at both T1 and T2 and had corresponding glycemic data available on the t:connect® web application. Time in range was 78.2% (70.2%-85.1%) at T1 and 79.2% (70.3%-86.2%) at T2. PROs reflected high device-related satisfaction and reduced diabetes impact at T2. Factors contributing to high trust in the system included sensor accuracy, improved diabetes control, reduction in extreme blood glucose levels, and improved sleep quality. In addition, participants reported improved quality of life, ease of use, and efficient connectivity to the continuous glucose monitoring system as being valuable features of the system. Conclusions: Continued real-world use of the t:slim X2 pump with Control-IQ technology showed improvements in psychosocial outcomes and persistent achievement of recommended TIR glycemic outcomes in people with T1D.
Collapse
Affiliation(s)
| | - Lars Müller
- University of California San Diego, Design Lab, La Jolla, California, USA
| | | | - Scott Leas
- Tandem Diabetes Care, Data Science, San Diego, California, USA
| | - Michelle Manning
- Tandem Diabetes Care, Behavioral Sciences, San Diego, California, USA
| | | | - Harsimran Singh
- Tandem Diabetes Care, Behavioral Sciences, San Diego, California, USA
| | - Steph Habif
- Tandem Diabetes Care, Behavioral Sciences, San Diego, California, USA
| |
Collapse
|
28
|
Redondo MJ, Libman I, Maahs DM, Lyons SK, Saraco M, Reusch J, Rodriguez H, DiMeglio LA. The Evolution of Hemoglobin A 1c Targets for Youth With Type 1 Diabetes: Rationale and Supporting Evidence. Diabetes Care 2021; 44:301-312. [PMID: 33431422 PMCID: PMC7818324 DOI: 10.2337/dc20-1978] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/08/2020] [Indexed: 02/03/2023]
Abstract
The American Diabetes Association 2020 Standards of Medical Care in Diabetes (Standards of Care) recommends a hemoglobin A1c (A1C) of <7% (53 mmol/mol) for many children with type 1 diabetes (T1D), with an emphasis on target personalization. A higher A1C target of <7.5% may be more suitable for youth who cannot articulate symptoms of hypoglycemia or have hypoglycemia unawareness and for those who do not have access to analog insulins or advanced diabetes technologies or who cannot monitor blood glucose regularly. Even less stringent A1C targets (e.g., <8%) may be warranted for children with a history of severe hypoglycemia, severe morbidities, or short life expectancy. During the "honeymoon" period and in situations where lower mean glycemia is achievable without excessive hypoglycemia or reduced quality of life, an A1C <6.5% may be safe and effective. Here, we provide a historical perspective of A1C targets in pediatrics and highlight evidence demonstrating detrimental effects of hyperglycemia in children and adolescents, including increased likelihood of brain structure and neurocognitive abnormalities, microvascular and macrovascular complications, long-term effects, and increased mortality. We also review data supporting a decrease over time in overall severe hypoglycemia risk for youth with T1D, partly associated with the use of newer insulins and devices, and weakened association between lower A1C and severe hypoglycemia risk. We present common barriers to achieving glycemic targets in pediatric diabetes and discuss some strategies to address them. We aim to raise awareness within the community on Standards of Care updates that impact this crucial goal in pediatric diabetes management.
Collapse
Affiliation(s)
- Maria J Redondo
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Ingrid Libman
- Division of Pediatric Endocrinology, Diabetes and Metabolism, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - David M Maahs
- Division of Pediatric Endocrinology and Diabetes, Stanford University, Stanford, CA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA
- Health Research and Policy (Epidemiology), Stanford University, Stanford, CA
| | - Sarah K Lyons
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | | | - Jane Reusch
- University of Colorado and Rocky Mountain Regional VA Medical Center, Aurora, CO
| | - Henry Rodriguez
- USF Diabetes and Endocrinology Section, University of South Florida, Tampa, FL
| | - Linda A DiMeglio
- Division of Pediatric Endocrinology and Diabetology and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
29
|
Phillip M, Bergenstal RM, Close KL, Danne T, Garg SK, Heinemann L, Hirsch IB, Kovatchev BP, Laffel LM, Mohan V, Parkin CG, Battelino T. The Digital/Virtual Diabetes Clinic: The Future Is Now-Recommendations from an International Panel on Diabetes Digital Technologies Introduction. Diabetes Technol Ther 2021; 23:146-154. [PMID: 32905711 PMCID: PMC8098767 DOI: 10.1089/dia.2020.0375] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The increasing prevalence of diabetes, combined with a growing global shortage of health care professionals (HCP), necessitates the need to develop new approaches to diabetes care delivery to expand access to care, lessen the burden on people with diabetes, improve efficiencies, and reduce the unsustainable financial liability on health systems and payers. Use of digital diabetes technologies and telehealth protocols within a digital/virtual diabetes clinic has the potential to address these challenges. However, several issues must be resolved to move forward. In February 2020, organizers of the Advanced Technologies & Treatments for Diabetes Annual Conference convened an international panel of HCP, researchers, patient advocates, and industry representatives to review the status of digital diabetes technologies, characterize deficits in current technologies, and identify issues for consideration. Since that meeting, the importance of using telehealth and digital diabetes technologies has been demonstrated amid the global coronavirus disease (COVID-19) pandemic. This article summarizes the panel's discussion of the opportunities, obstacles, and requisites for advancing the use of these technologies as a standard of care for the management of diabetes.
Collapse
Affiliation(s)
- Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Richard M. Bergenstal
- International Diabetes Center at Park Nicollet, Health Partners, Minneapolis, Minnesota, USA
| | - Kelly L. Close
- Close Concerns and diaTribe, San Francisco, California, USA
| | - Thomas Danne
- Diabetes Centre for Children and Adolescents, AUF DER BULT, Kinder-und Jugendkrankenhaus, Hannover, Germany
| | - Satish K. Garg
- University of Colorado Denver and Barbara Davis Center for Diabetes, Aurora, Colorado, USA
| | | | - Irl B. Hirsch
- Division of Metabolism, Endocrinology, & Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Boris P. Kovatchev
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Lori M. Laffel
- Pediatric, Adolescent and Young Adult Section and Section on Clinical, Behavioral and Outcomes Research, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Viswanathan Mohan
- Dr. Mohan's Diabetes Specialties Centre & Madras Diabetes Research Foundation, Chennai, India
| | | | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Medical Centre-University Children's Hospital, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
Dovc K, Battelino T. Time in range centered diabetes care. Clin Pediatr Endocrinol 2021; 30:1-10. [PMID: 33446946 PMCID: PMC7783127 DOI: 10.1297/cpe.30.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Optimal glycemic control remains challenging and elusive for many people with diabetes. With the comprehensive clinical evidence on safety and efficiency in large populations, and with broader reimbursement, the adoption of continuous glucose monitoring (CGM) is rapidly increasing. Standardized visual reporting and interpretation of CGM data and clear and understandable clinical targets will help professionals and individuals with diabetes use diabetes technology more efficiently, and finally improve long-term outcomes with less everyday disease burden. For the majority of people with type 1 or type 2 diabetes, time in range (between 70 and 180 mg/dL, or 3.9 and 10 mmol/L) target of more than 70% is recommended, with each incremental increase of 5% towards this target being clinically meaningful. At the same time, the goal is to minimize glycemic excursions: a recommended target for a time below range (< 70 mg/dL or < 3.9 mmol/L) is less than 4%, and time above range (> 180 mg/dL or 10 mmol/L) less than 25%, with less stringent goals for older individuals or those at increased risk. These targets should be individualized: the personal use of CGM with the standardized data presentation provides all necessary means to accurately tailor diabetes management to the needs of each individual with diabetes.
Collapse
Affiliation(s)
- Klemen Dovc
- University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
31
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc21-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc21-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
32
|
Vergleich von Closed-Loop-System und Pumpe mit prädiktiver Hypo-Abschaltung. DIABETOL STOFFWECHS 2020. [DOI: 10.1055/a-1265-1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Galindo RJ, Aleppo G. Continuous glucose monitoring: The achievement of 100 years of innovation in diabetes technology. Diabetes Res Clin Pract 2020; 170:108502. [PMID: 33065179 PMCID: PMC7736459 DOI: 10.1016/j.diabres.2020.108502] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monitoring of glucose levels is essential to effective diabetes management. Over the past 100 years, there have been numerous innovations in glucose monitoring methods. The most recent advances have centered on continuous glucose monitoring (CGM) technologies. Numerous studies have demonstrated that use of continuous glucose monitoring confers significant glycemic benefits on individuals with type 1 diabetes (T1DM) and type 2 diabetes (T2DM). Ongoing improvements in accuracy and convenience of CGM devices have prompted increasing adoption of this technology. The development of standardized metrics for assessing CGM data has greatly improved and streamlined analysis and interpretation, enabling clinicians and patients to make more informed therapy modifications. However, many clinicians many be unfamiliar with current CGM and how use of these devices may help individuals with T1DM and T2DM achieve their glycemic targets. The purpose of this review is to present an overview of current CGM systems and provide guidance to clinicians for initiating and utilizing CGM in their practice settings.
Collapse
Affiliation(s)
- Rodolfo J Galindo
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, 69 Jesse Hill Jr. Dr., Glenn Building, Suite 202, Atlanta, GA, 30303, USA.
| | - Grazia Aleppo
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave, Suite 530, Chicago, IL 60611, USA.
| |
Collapse
|