1
|
Wang Y, Li S, Lu J, Feng K, Huang X, Hu F, Sun M, Zou Y, Li Y, Huang W, Zhou J. The complexity of glucose time series is associated with short- and long-term mortality in critically ill adults: a multi-center, prospective, observational study. J Endocrinol Invest 2024; 47:3091-3099. [PMID: 38762634 PMCID: PMC11549136 DOI: 10.1007/s40618-024-02393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The wealth of data taken from continuous glucose monitoring (CGM) remains to be fully used. We aimed to evaluate the relationship between a promising new CGM metric, complexity of glucose time series index (CGI), and mortality in critically ill patients. METHODS A total of 293 patients admitted to mixed medical/surgical intensive care units from 5 medical centers in Shanghai were prospectively included between May 2020 and November 2021. CGI was assessed using intermittently scanned CGM, with a median monitoring period of 12.0 days. Outcome measures included short- and long-term mortality. RESULTS During a median follow-up period of 1.7 years, a total of 139 (47.4%) deaths were identified, of which 73 (24.9%) occurred within the first 30 days after ICU admission, and 103 (35.2%) within 90 days. The multivariable-adjusted HRs for 30-day mortality across ascending tertiles of CGI were 1.00 (reference), 0.68 (95% CI 0.38-1.22) and 0.36 (95% CI 0.19-0.70), respectively. For per 1-SD increase in CGI, the risk of 30-day mortality was decreased by 51% (HR 0.49, 95% CI 0.35-0.69). Further adjustment for HbA1c, mean glucose during hospitalization and glucose variability partially attenuated these associations, although the link between CGI and 30-day mortality remained significant (per 1-SD increase: HR 0.57, 95% CI 0.40-0.83). Similar results were observed when 90-day mortality was considered as the outcome. Furthermore, CGI was also significantly and independently associated with long-term mortality (per 1-SD increase: HR 0.77, 95% CI 0.61-0.97). CONCLUSIONS In critically ill patients, CGI is significantly associated with short- and long-term mortality.
Collapse
Affiliation(s)
- Y Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China
| | - S Li
- Department of Anesthesiology, Tongji University Affiliated Shanghai Tenth People's Hospital, Shanghai, China
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - J Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China
| | - K Feng
- Department of Critical Care Medicine, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - X Huang
- Department of Critical Care Medicine, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - F Hu
- Department of Critical Care Medicine, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - M Sun
- Department of Critical Care Medicine, Shanghai Eighth People's Hospital, Shanghai, China
| | - Y Zou
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital East Campus, Shanghai, China
| | - Y Li
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- Department of Critical Care Medicine, Tongji University Affiliated Shanghai Tenth People's Hospital, 301 Yanan Middle Road, Shanghai, 200040, China.
| | - W Huang
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- Department of Critical Care Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, 966 Huaihai Middle Road, Shanghai, 200031, China.
| | - J Zhou
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
2
|
Di Molfetta S, Rossi A, Boscari F, Irace C, Laviola L, Bruttomesso D. Criteria for Personalised Choice of a Continuous Glucose Monitoring System: An Expert Opinion. Diabetes Ther 2024; 15:2263-2278. [PMID: 39347900 PMCID: PMC11467157 DOI: 10.1007/s13300-024-01654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Despite the growing evidence supporting the outpatient use of continuous glucose monitoring (CGM) for improving glycaemic control and reducing hypoglycaemia, there is a need for a detailed understanding of the specific features of CGM devices that best meet individual patient needs. This expert opinion, based on a comprehensive literature review and the personal perspectives of clinicians, aims to provide the healthcare professionals (HCPs) with a comprehensive framework for selecting CGM devices. It evaluates the current state of CGM technology, categorizing features into essential features, major drivers of choice, and additional/useful features. Moreover, the practical model presented outlines a patient's journey with CGM, emphasising the importance of aligning device features with patient needs. This includes understanding the patient's lifestyle, clinical conditions, and personal preferences to optimize CGM use and improve diabetes management outcomes.
Collapse
Affiliation(s)
- Sergio Di Molfetta
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Antonio Rossi
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Department of Biomedical and Clinical Sciences, University of Milan, 20157, Milan, Italy
| | - Federico Boscari
- Unit of Metabolic Diseases, University Hospital of Padua, 35128, Padua, Italy
| | - Concetta Irace
- Department of Health Science, University Magna Græcia Catanzaro, Viale Europa Località Germaneto, 88100, Catanzaro, Italy.
| | - Luigi Laviola
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Daniela Bruttomesso
- Unit of Metabolic Diseases, University Hospital of Padua, 35128, Padua, Italy
| |
Collapse
|
3
|
Lim HA, Kim M, Kim NJ, Huh J, Jeong JO, Hwang W, Choi H. The Performance of Continuous Glucose Monitoring During the Intraoperative Period: A Scoping Review. J Clin Med 2024; 13:6169. [PMID: 39458119 PMCID: PMC11508367 DOI: 10.3390/jcm13206169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Introduction: Perioperative dysglycemia is associated with negative surgical outcomes, including increased risk of infections and longer hospital stays. Continuous glucose monitoring (CGM) provides real-time glucose data, potentially improving glycemic control during surgery. However, the performance of CGM in the intraoperative environment has not been well established. This scoping review aimed to evaluate the performance of CGM systems during the intraoperative period, focusing on their technical reliability, accuracy, adverse device effects, and efficacy. Inclusion criteria: Studies that assessed intraoperative CGM performance, focusing on technical reliability, accuracy, adverse effects, or efficacy, were included. No restrictions were placed on the study design, surgical type, participant demographics, or publication date. Methods: A comprehensive literature search was performed using PubMed, EMBASE, and the Cochrane Library, covering publications up to 12 June 2024. Two independent reviewers screened and selected the studies for inclusion based on predefined eligibility criteria. Data extraction focused on the study characteristics, CGM performance, and outcomes. Results: Twenty-two studies were included, the majority of which were prospective cohort studies. CGM systems demonstrated a high technical reliability, with sensor survival rates above 80%. However, the accuracy varied, with some studies reporting mean or median absolute relative differences of over 15%. The adverse effects were minimal and mainly involved minor skin irritation. One randomized trial found no significant difference between CGM and point-of-care glucose monitoring for glycemic control. Conclusions: Although CGM has the potential to improve intraoperative glycemic management, its accuracy remains inconsistent. Future research should explore newer CGM technologies and assess their impact on surgical outcomes.
Collapse
Affiliation(s)
- Hyun Ah Lim
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Minjoo Kim
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (J.H.)
| | - Na Jin Kim
- Medical Library, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jaewon Huh
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (J.H.)
| | - Jin-Oh Jeong
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winson-Salem, NC 27157, USA;
| | - Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (J.H.)
| | - Hoon Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (J.H.)
| |
Collapse
|
4
|
Philis-Tsimikas A, Diego ERNS, Vincent L, Lohnes S, Singleton C. Are we Ready for Real-Time Continuous Glucose Monitoring in the Hospital Setting? Benefits, Challenges, and Practical Approaches for Implementation : Case Vignette: Remote Real-Time Continuous Glucose Monitoring for Hospitalized Care in Quincy Koala. Curr Diab Rep 2024; 24:217-226. [PMID: 39126617 DOI: 10.1007/s11892-024-01549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE OF REVIEW While preliminary evidence for use of real-time continuous glucose monitoring (rtCGM) in the hospital setting is encouraging, challenges with currently available devices and technology will need to be overcome as part of real-world integration. This paper reviews the current evidence and guidelines regarding use of rtCGM in the hospital and suggests a practical approach to implementation. RECENT FINDINGS There is now a considerable body of real-world evidence on the benefits of reducing dysglycemia in the hospital using both traditional point-of-care (POC) glucose testing and rtCGM. Benefits of rtCGM include decreased frequency of hypo- and hyperglycemia with reduced need of frequent POC checks and it is both feasible and well-accepted by nursing staff and providers. If expansion to additional sites is to be considered, practical solutions will need to be offered. Recommendations for an operational workflow and tools are described to guide implementation in the non-ICU setting. Further testing in randomized controlled trials and real-world dissemination and implementation designs is needed, together with industry and technology collaborations, to further streamline the integration into health systems.
Collapse
Affiliation(s)
- Athena Philis-Tsimikas
- Scripps Whittier Diabetes Institute, 9834 Genesee Ave, Suite 300, La Jolla, CA, 92037, USA.
| | - Emily Rose N San Diego
- Scripps Whittier Diabetes Institute, 9834 Genesee Ave, Suite 300, La Jolla, CA, 92037, USA
- Scripps Research Translational Institute, La Jolla, CA, USA
| | - Lauren Vincent
- Scripps Whittier Diabetes Institute, 9834 Genesee Ave, Suite 300, La Jolla, CA, 92037, USA
- Scripps Health Inpatient Providers Medical Group, San Diego, CA, USA
| | - Suzanne Lohnes
- Scripps Whittier Diabetes Institute, 9834 Genesee Ave, Suite 300, La Jolla, CA, 92037, USA
| | | |
Collapse
|
5
|
Thabit H, Schofield J. Technology in the management of diabetes in hospitalised adults. Diabetologia 2024; 67:2114-2128. [PMID: 38953925 PMCID: PMC11447115 DOI: 10.1007/s00125-024-06206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
Suboptimal glycaemic management in hospitals has been associated with adverse clinical outcomes and increased financial costs to healthcare systems. Despite the availability of guidelines for inpatient glycaemic management, implementation remains challenging because of the increasing workload of clinical staff and rising prevalence of diabetes. The development of novel and innovative technologies that support the clinical workflow and address the unmet need for effective and safe inpatient diabetes care delivery is still needed. There is robust evidence that the use of diabetes technology such as continuous glucose monitoring and closed-loop insulin delivery can improve glycaemic management in outpatient settings; however, relatively little is known of its potential benefits and application in inpatient diabetes management. Emerging data from clinical studies show that diabetes technologies such as integrated clinical decision support systems can potentially mediate safer and more efficient inpatient diabetes care, while continuous glucose sensors and closed-loop systems show early promise in improving inpatient glycaemic management. This review aims to provide an overview of current evidence related to diabetes technology use in non-critical care adult inpatient settings. We highlight existing barriers that may hinder or delay implementation, as well as strategies and opportunities to facilitate the clinical readiness of inpatient diabetes technology in the future.
Collapse
Affiliation(s)
- Hood Thabit
- Diabetes, Endocrinology and Metabolism Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK.
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Jonathan Schofield
- Diabetes, Endocrinology and Metabolism Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Thullen A, Gerber R, Keen A. Glycemic Outcomes and Nurse Perceptions of Continuous Glucose Monitoring for Hospitalized Patients. J Nurs Care Qual 2024; 39:310-316. [PMID: 39167920 DOI: 10.1097/ncq.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
BACKGROUND Continuous glucose monitoring (CGM) can decrease hypoglycemic events and health care costs; however, barriers and facilitators that influence CGM use are unknown. PURPOSE The purpose of this study was to evaluate hypoglycemic events and cost outcomes after CGM implementation and describe associated barriers and facilitators. METHODS A mixed-methods study design was used to evaluate CGM implementation on 2 pulmonary units within an academic health center. Hypoglycemic events were evaluated before and after CGM implementation, and nurses were interviewed about facilitators and barriers that influence CGM use. RESULTS Hypoglycemic events decreased from a rate of 0.0906 per 1000 patient days to 0.0503 postimplementation, P < .0001. A $105 766 cost avoidance was recognized. Barriers and facilitators to CGM use are described. CONCLUSIONS Findings support CGM implementation, while uniquely contributing financial impact and device use barriers and facilitators. Hospitals may consider CGM use to improve timely identification and treatment of hypoglycemia.
Collapse
Affiliation(s)
- Alexandra Thullen
- Authors Affiliations: Nursing Quality, Adult Academic Health Center, Indiana University Health, Indianapolis, Indiana (Thullen, Gerber, and Keen)
| | | | | |
Collapse
|
7
|
O'Connor MY, Flint KL, Sabean A, Ashley A, Zheng H, Yan J, Steiner BA, Anandakugan N, Calverley M, Bartholomew R, Greaux E, Larkin M, Russell SJ, Putman MS. Accuracy of continuous glucose monitoring in the hospital setting: an observational study. Diabetologia 2024:10.1007/s00125-024-06250-0. [PMID: 39126488 DOI: 10.1007/s00125-024-06250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024]
Abstract
AIMS/HYPOTHESIS Continuous glucose monitoring (CGM) improves glycaemic outcomes in the outpatient setting; however, there are limited data regarding CGM accuracy in hospital. METHODS We conducted a prospective, observational study comparing CGM data from blinded Dexcom G6 Pro sensors with reference point of care and laboratory glucose measurements during participants' hospitalisations. Key accuracy metrics included the proportion of CGM values within ±20% of reference glucose values >5.6 mmol/l or within ±1.1 mmol/l of reference glucose values ≤5.6 mmol/l (%20/20), the mean and median absolute relative difference between CGM and reference value (MARD and median ARD, respectively) and Clarke error grid analysis (CEGA). A retrospective calibration scheme was used to determine whether calibration improved sensor accuracy. Multivariable regression models and subgroup analyses were used to determine the impact of clinical characteristics on accuracy assessments. RESULTS A total of 326 adults hospitalised on 19 medical or surgical non-intensive care hospital floors were enrolled, providing 6648 matched glucose pairs. The %20/20 was 59.5%, the MARD was 19.2% and the median ARD was 16.8%. CEGA showed that 98.2% of values were in zone A (clinically accurate) and zone B (benign). Subgroups with lower accuracy metrics included those with severe anaemia, renal dysfunction and oedema. Application of a once-daily morning calibration schedule improved accuracy (MARD 11.4%). CONCLUSIONS/INTERPRETATION The CGM accuracy when used in hospital may be lower than that reported in the outpatient setting, but this may be improved with appropriate patient selection and daily calibration. Further research is needed to understand the role of CGM in inpatient settings.
Collapse
Affiliation(s)
- Mollie Y O'Connor
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kristen L Flint
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amy Sabean
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Annabelle Ashley
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Hui Zheng
- Biostatics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Joyce Yan
- Biostatics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Barbara A Steiner
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Melissa Calverley
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Bartholomew
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Evelyn Greaux
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mary Larkin
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Steven J Russell
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA, USA
- Beta Bionics Inc, Concord, MA, USA
| | - Melissa S Putman
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
Visser MM, Vangoitsenhoven R, Gillard P, Mathieu C. Review Article - Diabetes Technology in the Hospital: An Update. Curr Diab Rep 2024; 24:173-182. [PMID: 38842632 DOI: 10.1007/s11892-024-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW There have been many developments in diabetes technology in recent years, with continuous glucose monitoring (CGM), insulin pump therapy (CSII) and automated insulin delivery (AID) becoming progressively accepted in outpatient diabetes care. However, the use of such advanced diabetes technology in the inpatient setting is still limited for several reasons, including logistical challenges and staff training needs. On the other hand, hospital settings with altered diet and stress-induced hyperglycemia often pose challenges to tight glycemic control using conventional treatment tools. Integrating smarter glucose monitoring and insulin delivery devices into the increasingly technical hospital environment could reduce diabetes-related morbidity and mortality. This narrative review describes the most recent literature on the use of diabetes technology in the hospital and suggests avenues for further research. RECENT FINDINGS Advanced diabetes technology has the potential to improve glycemic control in hospitalized people with and without diabetes, and could add particular value in certain conditions, such as nutrition therapy or perioperative management. Taken together, CGM allows for more accurate and patient-friendly follow-up and ad hoc titration of therapy. AID may also provide benefits, including improved glycemic control and reduced nursing workload. Before advanced diabetes technology can be used on a large scale in the hospital, further research is needed on efficacy, accuracy and safety, while implementation factors such as cost and staff training must also be overcome.
Collapse
Affiliation(s)
| | | | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven, Louvain, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, Louvain, Belgium.
| |
Collapse
|
9
|
Kurnikowski A, Werzowa J, Hödlmoser S, Krenn S, Paschen C, Mussnig S, Tura A, Harreiter J, Krebs M, Song PX, Eller K, Pascual J, Budde K, Hecking M, Schwaiger E. Continuous Insulin Therapy to Prevent Post-Transplant Diabetes Mellitus: A Randomized Controlled Trial. Kidney Med 2024; 6:100860. [PMID: 39157193 PMCID: PMC11326904 DOI: 10.1016/j.xkme.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Rationale & Objectives Hyperglycemia is frequently observed early after transplantation and associated with development of post-transplant diabetes mellitus (PTDM). Here, we assessed continuous subcutaneous insulin infusion (CSII) targeting afternoon hyperglycemia. Study Design Open-label randomized parallel 3-arm design. Settings & Participants In total, 85 kidney transplant recipients without previous diabetes diagnosis were randomized to postoperative CSII therapy, basal insulin, or control. Interventions Insulin was to be initiated at afternoon capillary blood glucose level of ≥140 mg/dL (7.8 mmol/L; CSII and basal insulin) or fasting plasma glucose level of ≥200 mg/dL (11.1 mmol/L; control). Outcomes Hemoglobin A1c (HbA1c) levels at 3 months post-transplant (primary endpoint). PTDM assessed using oral glucose tolerance test at 12 and 24 months. Results CSII therapy lasted until median day 18 and maximum day 88. The median HbA1c value at month 3 was 5.6% (38 mmol/mol) in the CSII group versus 5.7% (39 mmol/mol) in the control group (P = 0.70) and 5.4% (36 mmol/mol) in the basal insulin group (P = 0.02). At months 12 and 24, the odds for PTDM were similar compared with the control group (odds ratios [95% confidence intervals], 0.80 [0.18-3.49] and 0.71 [0.15-3.16], respectively) and the basal insulin group (0.96 [0.18-5.68] and 1.51 [0.24-12.84], respectively). Mild hypoglycemia events occurred in the CSII and the basal insulin groups. Limitations This study is limited by outdated insulin pump technology, frequent discontinuations of CSII, a complex protocol, and concerns regarding reliability of HbA1c measurements. Conclusions CSII therapy was not superior at reducing HbA1c levels at month 3 or PTDM prevalence at months 12 and 24 compared with the control or basal insulin group.
Collapse
Affiliation(s)
- Amelie Kurnikowski
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Johannes Werzowa
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Vienna, Austria
- First Medical Department, Hanusch Hospital, Vienna, Austria
| | - Sebastian Hödlmoser
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Simon Krenn
- Center for Health & Bioresources, Medical Signal Analysis, Austrian Institute of Technology GmbH, Vienna, Austria
| | - Christopher Paschen
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sebastian Mussnig
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrea Tura
- CNR Institute of Neuroscience, Padova, Italy
| | - Jürgen Harreiter
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Medicine, Landesklinikum Scheibbs, Scheibbs, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter X.K. Song
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julio Pascual
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Klemens Budde
- Medizinische Klinik m. S. Nephrologie, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Manfred Hecking
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
- Kuratorium for Dialysis and Kidney Transplantation (KfH) e.V., Germany
| | - Elisabeth Schwaiger
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I: Cardiology and Nephrology, Hospital of the Brothers of St. John of God, Eisenstadt, Austria
| |
Collapse
|
10
|
Wang Y, Lu J, Wang M, Ni J, Yu J, Wang S, Wu L, Lu W, Zhu W, Guo J, Yu X, Bao Y, Zhou J. Real-time continuous glucose monitoring-guided glucose management in inpatients with diabetes receiving short-term continuous subcutaneous insulin infusion: a randomized clinical trial. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 48:101067. [PMID: 39119238 PMCID: PMC11305887 DOI: 10.1016/j.lanwpc.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 08/10/2024]
Abstract
Background The use of real-time continuous glucose monitoring (rtCGM) technology remains largely investigational in the hospital setting. The current study aimed to evaluate the effectiveness of rtCGM in inpatients with diabetes who were treated with short-term continuous subcutaneous insulin infusion (CSII). Methods In this randomized, parallel controlled trial conducted on the endocrinology wards in a tertiary hospital located in Shanghai, adults with type 1 and type 2 diabetes who required short-term CSII during hospitalization were randomly assigned (1:1) to receive either rtCGM-based glucose monitoring and management program or point-of-care (POC) standard of care (8 times/day) with blinded CGM. Primary outcome measure was the difference in the percentage of time within the target glucose range of 3.9-10 mmol/L (TIR, %). This study was registered at www.chictr.org.cn (ChiCTR2300068933). Findings Among the 475 randomized participants (237 in the rtCGM group and 238 in the POC group), the mean age of was 60 ± 13 years, and the mean baseline glycated hemoglobin level was 9.4 ± 1.8%. The CGM-recorded mean TIR was 71.1 ± 15.8% in the rtCGM group and 62.9 ± 18.9% in the POC group, with a mean difference of 8.2% (95% confidence interval [CI]: 5.1-11.4%, P < 0.001). The mean time above range >10 mmol/L was significantly lower in the rtCGM group than in the POC group (28.3 ± 15.8% vs. 36.6 ± 19.0%, P < 0.001), whereas there was no significant between-group difference in the time below range <3.9 mmol/L (P = 0.11). Moreover, the time to reach target glucose was significantly shorter in the rtCGM group than in the POC group (2.0 [1.0-4.0] days vs. 4.0 [2.0-5.0] days, P < 0.001). There were no serious adverse events in both groups. Interpretation In patients with diabetes who received short-term CSII during hospitalization, the rtCGM program resulted in better glucose control than the POC standard of care, without increasing the risk of hypoglycemia. Funding The Program of Shanghai Academic Research Leader (22XD1402300), Shanghai Oriental Talent Program (Youth Project) (No. NA), the Shanghai "Rising Stars of Medical Talent" Youth Development Program-Outstanding Youth Medical Talents (SHWSRS(2021)_099), and the Shanghai Research Center for Endocrine and Metabolic Diseases (2022ZZ01002).
Collapse
Affiliation(s)
- Yaxin Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, China
| | - Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, China
| | - Ming Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, China
| | - Jiaying Ni
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, China
| | - Jiamin Yu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, China
| | - Shiyun Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, China
| | - Liang Wu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, China
| | - Wei Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, China
| | - Wei Zhu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, China
| | - Jingyi Guo
- Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiangtian Yu
- Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Clinical Center for Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, China
| |
Collapse
|
11
|
Gómez AM, Henao Carrillo DC, Ré MA, Faradji RN, Flores Caloca O, de la Garza Hernández NE, Antillón Ferreira C, Garnica-Cuéllar JC, Krakauer M, Galindo RJ. Recommendations on the use of the flash continuous glucose monitoring system in hospitalized patients with diabetes in Latin America. Diabetol Metab Syndr 2024; 16:128. [PMID: 38867297 PMCID: PMC11167888 DOI: 10.1186/s13098-024-01362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Continuous glucose monitoring can improve glycemic control for hospitalized patients with diabetes, according to current evidence. However, there is a lack of consensus-established recommendations for the management of hospitalized patients with diabetes using flash continuous glucose monitoring system (fCGM) in Latin America. Therefore, this expert consensus exercise aimed to establish guidelines on the implementation of fCGM in the management of hospitalized patients with diabetes in Latin America. METHODS The modified Delphi method was applied on a panel of nine specialists, establishing consensus at 80%. A twenty-two-question instrument was developed to establish recommendations on the use of fCGM in hospitalized patients living with diabetes. RESULTS Based on consensus, experts recommend the use of fCGM in hospitalized patients with diabetes starting at admission or whenever hyperglycemia (> 180 mg/dl) is confirmed and continue monitoring throughout the entire hospital stay. The recommended frequency of fCGM scans varies depending on the patient's age and diabetes type: ten scans per day for pediatric patients with type 1 and 2 diabetes, adult patients with type 1 diabetes and pregnant patients, and seven scans for adult patients with type 2 diabetes. Different hospital services can benefit from fCGM, including the emergency room, internal medicine departments, intensive care units, surgery rooms, and surgery wards. CONCLUSIONS The use of fCGM is recommended for patients with diabetes starting at the time of admission in hospitals in Latin America, whenever the necessary resources (devices, education, personnel) are available.
Collapse
|
12
|
Idrees T, Castro-Revoredo IA, Oh HD, Gavaller MD, Zabala Z, Moreno E, Moazzami B, Galindo RJ, Vellanki P, Cabb E, Johnson TM, Peng L, Umpierrez GE. Continuous Glucose Monitoring-Guided Insulin Administration in Long-Term Care Facilities: A Randomized Clinical Trial. J Am Med Dir Assoc 2024; 25:884-888. [PMID: 38460943 PMCID: PMC11283256 DOI: 10.1016/j.jamda.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVES To evaluate the efficacy of real-time continuous glucose monitoring (rt-CGM) in adjusting insulin therapy in long-term care facilities (LTCF). DESIGN Prospective randomized clinical trial. SETTINGS AND PARTICIPANTS Insulin-treated patients with type 2 diabetes (T2D) admitted to LTCF. METHODS Participants in the standard of care wore a blinded CGM with treatment adjusted based on point-of-care capillary glucose results before meals and bedtime (POC group). Participants in the intervention (CGM group) wore a Dexcom G6 CGM with treatment adjusted based on daily CGM profile. Treatment adjustment was performed by the LTCF medical team, with a duration of intervention up to 60 days. The primary endpoint was difference in time in range (TIR 70-180 mg/dL) between treatment groups. RESULTS Among 100 participants (age 74.73 ± 11 years, 80% admitted for subacute rehabilitation and 20% for nursing home care), there were no significant differences in baseline clinical characteristics between groups, and CGM data were compared for a median of 17 days. There were no differences in TIR (53.38% ± 30.16% vs 48.81% ± 28.03%, P = .40), mean daily mean CGM glucose (184.10 ± 43.4 mg/dL vs 190.0 ± 45.82 mg/dL, P = .71), or the percentage of time below range (TBR) <70 mg/dL (0.83% ± 2.59% vs 1.18% ± 3.54%, P = .51), or TBR <54 mg/dL (0.23% ± 0.85% vs 0.56% ± 2.24%, P = .88) between rt-CGM and POC groups. CONCLUSIONS AND IMPLICATIONS The use of rtCGM is safe and effective in guiding insulin therapy in patients with T2D in LTCF resulting in a similar improvement in glycemic control compared to POC-guided insulin adjustment.
Collapse
Affiliation(s)
- Thaer Idrees
- Division of Endocrinology, Department of Medicine, Emory University, Atlanta, GA, USA
| | | | - Hyungseok D Oh
- Division of Geriatrics, and Division of General Internal Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Monica D Gavaller
- Division of Geriatrics, and Division of General Internal Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Zohyra Zabala
- Division of Endocrinology, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Emmelin Moreno
- Division of Endocrinology, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Bobak Moazzami
- Division of Endocrinology, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Rodolfo J Galindo
- Division of Endocrinology, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Priyathama Vellanki
- Division of Endocrinology, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Elena Cabb
- Division of Geriatrics, and Division of General Internal Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Theodore M Johnson
- Division of General Internal Medicine, Department of Medicine, Emory University, Atlanta, GA, USA; Department of Family and Preventive Medicine, Emory University, Atlanta, GA, USA
| | - Limin Peng
- Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Guillermo E Umpierrez
- Division of Endocrinology, Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Janssen H, Jhanji S, Oliver NS, Ackland GL. Ward monitoring 4.0: real-time metabolic insights from continuous glucose monitoring into perioperative organ dysfunction. Br J Anaesth 2024; 132:843-848. [PMID: 38448275 DOI: 10.1016/j.bja.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 03/08/2024] Open
Abstract
The now-routine clinical deployment of continuous glucose monitoring has demonstrated benefit in real-world settings. We make the case that continuous glucose monitoring can help re-examine, at scale, the role that (stress) hyperglycaemia plays in fuelling organ dysfunction after tissue trauma. Provided robust perioperative data do emerge, well-established continuous glucose monitoring technology could soon help transform the perioperative landscape.
Collapse
Affiliation(s)
- Henrike Janssen
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Shaman Jhanji
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Royal Marsden Hospital, London, UK
| | - Nick S Oliver
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
14
|
Baker M, Lauterwasser S, Valenti C, Kallenberger M, Stolte H. Evaluation of a hybrid protocol using continuous glucose monitoring and point-of-care testing in non-critically ill patients in a community hospital. Am J Health Syst Pharm 2024; 81:e261-e267. [PMID: 38146957 DOI: 10.1093/ajhp/zxad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
PURPOSE Inpatient glycemic management typically involves use of point-of-care (POC) glucose measurements to inform insulin dosing decisions. This study evaluated a hybrid monitoring protocol using real-time continuous glucose monitoring (rtCGM) supplemented with POC testing at a community hospital. METHODS Adult inpatients receiving POC glucose testing were monitored using rtCGM in a telemetry unit. The hybrid monitoring protocol required a once-daily POC test but otherwise primarily relied on rtCGM values for insulin dosing decisions. Outcomes assessment included surveillance error grid (SEG) and Clarke Error Grid (CEG) analysis results, the mean absolute relative difference (MARD) for available rtCGM-POC value pairs before and after study protocol application, the number of POC tests avoided, and the number of hypoglycemic events involving a blood glucose value of <70 mg/dL identified by rtCGM and POC values. RESULTS Data were collected from 30 inpatients (the mean age was 69.4 years, 77% were female, 80% had type 2 diabetes, and 37% were at-home insulin users). With the protocol applied, a total of 202 rtCGM-POC pairs produced a MARD of 12.5%. SEG analysis showed 2 pairs in the "moderate" risk category, with all other pairs in the "none" or "slight" risk categories. CEG analysis showed 99% of paired values to be in the clinically acceptable range. Six hypoglycemic events in 5 patients were resolved without incident. Three hundred three POC tests were avoided, a 60% reduction for the study duration. CONCLUSION Use of a hybrid monitoring protocol of rtCGM and POC testing in a community hospital demonstrated sustained rtCGM accuracy and was found to reduce the frequency of POC testing to manage inpatient glycemia.
Collapse
Affiliation(s)
- Matt Baker
- North Kansas City Hospital, North Kansas City, MO, USA
| | | | | | | | | |
Collapse
|
15
|
Zhu T, Kuang L, Piao C, Zeng J, Li K, Georgiou P. Population-Specific Glucose Prediction in Diabetes Care With Transformer-Based Deep Learning on the Edge. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:236-246. [PMID: 38163299 DOI: 10.1109/tbcas.2023.3348844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Leveraging continuous glucose monitoring (CGM) systems, real-time blood glucose (BG) forecasting is essential for proactive interventions, playing a crucial role in enhancing the management of type 1 diabetes (T1D) and type 2 diabetes (T2D). However, developing a model generalized to a population and subsequently embedding it within a microchip of a wearable device presents significant technical challenges. Furthermore, the domain of BG prediction in T2D remains under-explored in the literature. In light of this, we propose a population-specific BG prediction model, leveraging the capabilities of the temporal fusion Transformer (TFT) to adjust predictions based on personal demographic data. Then the trained model is embedded within a system-on-chip, integral to our low-power and low-cost customized wearable device. This device seamlessly communicates with CGM systems through Bluetooth and provides timely BG predictions using edge computing. When evaluated on two publicly available clinical datasets with a total of 124 participants with T1D or T2D, the embedded TFT model consistently demonstrated superior performance, achieving the lowest prediction errors when compared with a range of machine learning baseline methods. Executing the TFT model on our wearable device requires minimal memory and power consumption, enabling continuous decision support for more than 51 days on a single Li-Poly battery charge. These findings demonstrate the significant potential of the proposed TFT model and wearable device in enhancing the quality of life for people with diabetes and effectively addressing real-world challenges.
Collapse
|
16
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Galindo RJ, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 16. Diabetes Care in the Hospital: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S295-S306. [PMID: 38078585 PMCID: PMC10725815 DOI: 10.2337/dc24-s016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
17
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 7. Diabetes Technology: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S126-S144. [PMID: 38078575 PMCID: PMC10725813 DOI: 10.2337/dc24-s007] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
18
|
Bowles T, Trentino KM, Lloyd A, Trentino L, Jones G, Murray K, Thompson A, Halpin S, Waterer G. Outcomes in patients receiving continuous monitoring of vital signs on general wards: A systematic review and meta-analysis of randomised controlled trials. Digit Health 2024; 10:20552076241288826. [PMID: 39398891 PMCID: PMC11468343 DOI: 10.1177/20552076241288826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Objective The timely identification of deterioration on general wards is crucial to patient care with each hour of delay independently associated with increased risk of death. The introduction of continuous monitoring of patient vital signs on general wards, currently not standard care, may improve patient outcomes. Our aim was to investigate whether patients on general wards receiving continuous vital signs monitoring have better outcomes than patients receiving usual care. Methods Meta-analysis of randomised controlled trials comparing non-critical care patients receiving continuous monitoring of vital signs to usual care. We searched Medline, Embase, and Web of Science, and assessed risk of bias with version 2 of the Cochrane risk-of-bias tool for randomised trials. In addition to measures related to the early detection of deterioration, we planned to present all patient outcomes reported by the clinical trials included. Results We included seven trials involving 1284 participants. There were no statistically significant differences in the four outcomes pooled. Comparing continuously monitored to normal care, the pooled odds for hospital mortality, major event/complication, and HDU/ICU admission was 0.95 (95% CI 0.59-1.53, p = 0.84; 660 participants, 3 studies), 0.71 (95% CI 0.38-1.31, p = 0.27; 948 participants, 4 studies) and 0.82 (95% CI 0.25-2.67, p = 0.74; 655 participants, 4 studies), respectively. The mean difference for length of stay was 2.12 days lower (95% CI -5.56 to 1.32, p = 0.23; 1034 participants, 6 studies). Conclusion We found no significant improvements in outcomes for patients continuously monitored compared to usual care. Further research is needed to understand what modalities of continuous monitoring may influence outcomes and investigate the implications of a telepresence service and multi-parameter scoring system. Registration PROSPERO CRD42023458656.
Collapse
Affiliation(s)
- Tim Bowles
- Community and Virtual Care Innovation, East Metropolitan Health Service, Perth, Western Australia, Australia
| | - Kevin M. Trentino
- Community and Virtual Care Innovation, East Metropolitan Health Service, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Adam Lloyd
- Community and Virtual Care Innovation, East Metropolitan Health Service, Perth, Western Australia, Australia
| | - Laura Trentino
- Community and Virtual Care Innovation, East Metropolitan Health Service, Perth, Western Australia, Australia
| | - Glynis Jones
- South Metropolitan Health Service, Fiona Stanley Hospital, Library and Information Service for East and South Metropolitan Health Services, Murdoch, Western Australia, Australia
| | - Kevin Murray
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Aleesha Thompson
- Community and Virtual Care Innovation, East Metropolitan Health Service, Perth, Western Australia, Australia
| | - Sarah Halpin
- South Metropolitan Health Service, Fiona Stanley Hospital, Library and Information Service for East and South Metropolitan Health Services, Murdoch, Western Australia, Australia
| | - Grant Waterer
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
- East Metropolitan Health Service, Perth, Western Australia,
Australia
| |
Collapse
|
19
|
Mirmira RG, Kulkarni RN, Xu P, Drossos T, Varady K, Knutson KL, Reutrakul S, Martyn-Nemeth P, Sargis RM, Wallia A, Tuchman AM, Weissberg-Benchell J, Danielson KK, Oakes SA, Thomas CC, Layden BT, May SC, Burbea Hoffmann M, Gatta E, Solway J, Philipson LH. Stress and human health in diabetes: A report from the 19 th Chicago Biomedical Consortium symposium. J Clin Transl Sci 2023; 7:e263. [PMID: 38229904 PMCID: PMC10790105 DOI: 10.1017/cts.2023.646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/01/2023] [Indexed: 01/18/2024] Open
Abstract
Stress and diabetes coexist in a vicious cycle. Different types of stress lead to diabetes, while diabetes itself is a major life stressor. This was the focus of the Chicago Biomedical Consortium's 19th annual symposium, "Stress and Human Health: Diabetes," in November 2022. There, researchers primarily from the Chicago area met to explore how different sources of stress - from the cells to the community - impact diabetes outcomes. Presenters discussed the consequences of stress arising from mutant proteins, obesity, sleep disturbances, environmental pollutants, COVID-19, and racial and socioeconomic disparities. This symposium showcased the latest diabetes research and highlighted promising new treatment approaches for mitigating stress in diabetes.
Collapse
Affiliation(s)
- Raghavendra G. Mirmira
- Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Rohit N. Kulkarni
- Department of Medicine, Islet Cell and Regenerative Biology, Joslin Diabetes Center, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Boston, MA, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Tina Drossos
- Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Kristen L. Knutson
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sirimon Reutrakul
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Pamela Martyn-Nemeth
- Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Robert M. Sargis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Amisha Wallia
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Jill Weissberg-Benchell
- Department of Psychiatry and Behavioral Sciences, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kirstie K. Danielson
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Scott A. Oakes
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Celeste C. Thomas
- Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Brian T. Layden
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL, USA
| | - Sarah C. May
- Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | | | | | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Louis H. Philipson
- Department of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Spanakis EK, Cook CB, Kulasa K, Aloi JA, Bally L, Davis G, Dungan KM, Galindo RJ, Mendez CE, Pasquel FJ, Shah VN, Umpierrez GE, Aaron RE, Tian T, Yeung AM, Huang J, Klonoff DC. A Consensus Statement for Continuous Glucose Monitoring Metrics for Inpatient Clinical Trials. J Diabetes Sci Technol 2023; 17:1527-1552. [PMID: 37592726 PMCID: PMC10658683 DOI: 10.1177/19322968231191104] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Diabetes Technology Society organized an expert consensus panel to develop metrics for research in the use of continuous glucose monitors (CGMs) in a hospital setting. The experts met virtually in small groups both before and after an April 13, 2023 virtual meeting of the entire panel. The goal of the panel was to develop consensus definitions in anticipation of greater use of CGMs in hospital settings in the future. Establishment of consensus definitions of inpatient analytical metrics will be easier to compare outcomes between studies. Panelists defined terms related to 10 dimensions of measurements related to the use of CGMs including (1) hospital hypoglycemia, (2) hospital hyperglycemia, (3) hospital time in range, (4) hospital glycemic variability, (5) hospital glycemia risk index, (6) accuracy of CGM devices and reference methods for CGMs in the hospital, (7) meaningful time blocks for hospital glycemic goals, (8) hospital CGM data sufficiency, (9) using CGM data for insulin dosing, and (10) miscellaneous factors. The panelists voted on 51 proposed recommendations. Based on the panel vote, 51 recommendations were classified as either strong (43) or mild (8). Additional research is needed on CGM performance in the hospital. This consensus report is intended to support that type of research intended to improve outcomes for hospitalized people with diabetes.
Collapse
Affiliation(s)
- Elias K. Spanakis
- Baltimore VA Medical Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Curtiss B. Cook
- Division of Endocrinology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kristen Kulasa
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joseph A. Aloi
- Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Georgia Davis
- Emory University School of Medicine, Atlanta, GA, USA
| | - Kathleen M. Dungan
- Division of Endocrinology, Diabetes & Metabolism, The Ohio State University, Columbus, OH, USA
| | | | | | | | - Viral N. Shah
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Tiffany Tian
- Diabetes Technology Society, Burlingame, CA, USA
| | | | | | - David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
21
|
Irace C, Coluzzi S, Di Cianni G, Forte E, Landi F, Rizzo MR, Sesti G, Succurro E, Consoli A. Continuous glucose monitoring (CGM) in a non-Icu hospital setting: The patient's journey. Nutr Metab Cardiovasc Dis 2023; 33:2107-2118. [PMID: 37574433 DOI: 10.1016/j.numecd.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023]
Abstract
AIMS Although consistent data support the outpatient use of continuous glucose monitoring (CGM) to improve glycemic control and reduce hypoglycemic burden, and clinical outcomes, there are limited data regarding its use in the hospital setting, particularly in the non-intensive care unit (non-ICU) setting. The emerging use of CGM in the non-critical care setting may be useful in increasing the efficiency of hospital care and reducing the length of stay for patients with diabetes while improving glycemic control. DATA SYNTHESIS The purpose of this Expert Opinion paper was to evaluate the state of the art and provide a practical model of how CGM can be implemented in the hospital. SETTING A patient's CGM journey from admission to the ward to the application of the sensor, from patient education on the device during hospitalization until discharge of the patient to maintain remote control. CONCLUSIONS This practical approach for the implementation and management of CGM in patients with diabetes admitted to non-ICUs could guide hospitals in their diabetes management initiatives using CGM, helping to identify patients most likely to benefit and suggesting how this technology can be implemented to maximize clinical benefits.
Collapse
Affiliation(s)
- Concetta Irace
- Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Sara Coluzzi
- Endocrinology and Metabolism Unit, ASL, Pescara, Italy
| | - Graziano Di Cianni
- ASL Tuscany Northwest, Diabetes and Metabolic Disease, Livorno Hospital, Livorno, Italy
| | | | - Francesco Landi
- Department of Geriatrics and Orthopedics, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Agostino Consoli
- Endocrinology and Metabolism Unit, ASL, Pescara, Italy; Department of Medicine and Aging Sciences DMSI and Center for Advanced Studies and Technology CAST, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
22
|
Zelada H, Perez-Guzman MC, Chernavvsky DR, Galindo RJ. Continuous glucose monitoring for inpatient diabetes management: an update on current evidence and practice. Endocr Connect 2023; 12:e230180. [PMID: 37578799 PMCID: PMC10563639 DOI: 10.1530/ec-23-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
Over the last few years, several exciting changes in continuous glucose monitoring (CGM) technology have expanded its use and made CGM the standard of care for patients with type 1 and type 2 diabetes using insulin therapy. Consequently, hospitals started to notice increased use of these devices in their hospitalized patients. Furthermore during the coronavirus disease 2019 (COVID) pandemic, there was a critical need for innovative approaches to glycemic monitoring, and several hospitals started to implement CGM protocols in their daily practice. Subsequently, a plethora of studies have demonstrated the efficacy and safety of CGM use in the hospital, leading to clinical practice guideline recommendations. Several studies have also suggested that CGM has the potential to become the standard of care for some hospitalized patients, overcoming the limitations of current capillary glucose testing. Albeit, there is a need for more studies and particularly regulatory approval. In this review, we provide a historical overview of the evolution of glycemic monitoring in the hospital and review the current evidence, implementation protocols, and guidance for the use of CGM in hospitalized patients.
Collapse
Affiliation(s)
- Henry Zelada
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | | | - Daniel R Chernavvsky
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Rodolfo J Galindo
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine. Miami, Florida, USA
| |
Collapse
|
23
|
Finn E, Schlichting L, Grau L, Douglas IS, Pereira RI. Real-world Accuracy of CGM in Inpatient Critical and Noncritical Care Settings at a Safety-Net Hospital. Diabetes Care 2023; 46:1825-1830. [PMID: 37561954 PMCID: PMC10516250 DOI: 10.2337/dc23-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE We sought to determine real-world accuracy of inpatient continuous glucose monitoring (CGM) at multiple levels of acuity in a large safety-net hospital. RESEARCH DESIGN AND METHODS We analyzed records from hospitalized patients on Dexcom G6 CGM, including clinical, point of care (POC), and laboratory (Lab) glucose, and CGM data. POC/Lab values were matched to the closest timed CGM value. Encounters were divided into not critically ill (NCI) versus critically ill (CI). CGM accuracy was evaluated. RESULTS Paired readings (2,744 POC-CGM; 3,705 Lab-CGM) were analyzed for 233 patients with 239 encounters (83 NCI, 156 CI). POC-CGM aggregated and average mean absolute relative differences (MARD) were 15.1% and 17.1%. Lab-CGM aggregated and average MARDs were 11.4% and 12.2%. Accuracy for POC-CGM and Lab-CGM was 96.5% and 99.1% in Clarke Error Grid zones A/B. CONCLUSIONS Real-world accuracy of inpatient CGM is acceptable for NCI and CI patients. Further exploration of conditions associated with lower CGM accuracy in real-world settings is warranted.
Collapse
Affiliation(s)
- Erin Finn
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado, Aurora, CO
| | | | - Laura Grau
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, CO
| | - Ivor S. Douglas
- Medicine Service, Denver Health and Hospital Authority, Denver, CO
- Department of Medicine, Pulmonary Science, and Critical Care Medicine, University of Colorado, Aurora, CO
| | - Rocio I. Pereira
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado, Aurora, CO
- Medicine Service, Denver Health and Hospital Authority, Denver, CO
| |
Collapse
|
24
|
Davis GM, Hughes MS, Brown SA, Sibayan J, Perez-Guzman MC, Stumpf M, Thompson Z, Basina M, Patel RM, Hester J, Abraham A, Ly TT, Chaney C, Tan M, Hsu L, Kollman C, Beck RW, Lal R, Buckingham B, Pasquel FJ. Automated Insulin Delivery with Remote Real-Time Continuous Glucose Monitoring for Hospitalized Patients with Diabetes: A Multicenter, Single-Arm, Feasibility Trial. Diabetes Technol Ther 2023; 25:677-688. [PMID: 37578778 PMCID: PMC10611957 DOI: 10.1089/dia.2023.0304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Introduction: Multiple daily injection insulin therapy frequently fails to meet hospital glycemic goals and is prone to hypoglycemia. Automated insulin delivery (AID) with remote glucose monitoring offers a solution to these shortcomings. Research Design and Methods: In a single-arm multicenter pilot trial, we tested the feasibility, safety, and effectiveness of the Omnipod 5 AID System with real-time continuous glucose monitoring (CGM) for up to 10 days in hospitalized patients with insulin-requiring diabetes on nonintensive care unit medical-surgical units. Primary endpoints included the proportion of time in automated mode and percent time-in-range (TIR 70-180 mg/dL) among participants with >48 h of CGM data. Safety endpoints included incidence of severe hypoglycemia and diabetes-related ketoacidosis (DKA). Additional glycemic endpoints, CGM accuracy, and patient satisfaction were also explored. Results: Twenty-two participants were enrolled; 18 used the system for a total of 96 days (mean 5.3 ± 3.1 days per patient), and 16 had sufficient CGM data required for analysis. Median percent time in automated mode was 95% (interquartile range 92%-98%) for the 18 system users, and the 16 participants with >48 h of CGM data achieved an overall TIR of 68% ± 16%, with 0.17% ± 0.3% time <70 mg/dL and 0.06% ± 0.2% time <54 mg/dL. Sensor mean glucose was 167 ± 21 mg/dL. There were no DKA or severe hypoglycemic events. All participants reported satisfaction with the system at study end. Conclusions: The use of AID with a disposable tubeless patch-pump along with remote real-time CGM is feasible in the hospital setting. These results warrant further investigation in randomized trials.
Collapse
Affiliation(s)
- Georgia M. Davis
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael S. Hughes
- Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University, Stanford, California, USA
| | - Sue A. Brown
- Division of Endocrinology, Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Judy Sibayan
- Jaeb Center for Health Research, Tampa, Florida, USA
| | - M. Citlalli Perez-Guzman
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Meaghan Stumpf
- Division of Endocrinology, Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Marina Basina
- Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ronak M. Patel
- Division of Endocrinology, Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Joi Hester
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amalia Abraham
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Trang T. Ly
- Insulet Corporation, Acton, Massachusetts, USA
| | - Cherie Chaney
- Division of Endocrinology, Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Marilyn Tan
- Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University, Stanford, California, USA
| | - Liana Hsu
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Craig Kollman
- Jaeb Center for Health Research, Tampa, Florida, USA
| | - Roy W. Beck
- Jaeb Center for Health Research, Tampa, Florida, USA
| | - Rayhan Lal
- Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University, Stanford, California, USA
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Bruce Buckingham
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Francisco J. Pasquel
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Spierling Bagsic SR, Fortmann AL, Belasco R, Bastian A, Lohnes S, Ritko A, Sandoval H, Chichmarenko M, Soriano EC, Talavera L, Philis-Tsimikas A. Real-Time Continuous Glucose Monitoring in the Hospital: A Real-World Experience. J Diabetes Sci Technol 2023; 17:656-666. [PMID: 37056168 PMCID: PMC10210125 DOI: 10.1177/19322968231165982] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
BACKGROUND Glycemic control in the hospital setting is imperative for improving outcomes among patients with diabetes. Bedside point-of-care (POC) glucose monitoring has remained the gold standard for decades, while only providing momentary glimpses into a patient's glycemic control. Continuous glucose monitoring (CGM) has been shown to improve glycemic control in the ambulatory setting. However, a paucity of inpatient experience and data remains a barrier to US Food and Drug Administration (FDA) approval and expanded/non-research use in the hospital setting. METHOD Amid the COVID-19 pandemic, the FDA exercised its enforcement discretion to not object to the use of CGM systems for the treatment of patients in hospital settings to support COVID-19 health care-related efforts to reduce viral exposure of health care workers. Following this announcement, Scripps Health, a large not-for-profit health care system in San Diego, California, implemented CGM as the new "standard of care" (CGM as SOC) for glucose monitoring and management in the hospital. RESULTS The present report serves to (1) detail the implementation procedures for employing this new SOC; (2) describe the patients receiving CGM as SOC, their glycemic control, and hospital outcomes; and (3) share lessons learned over two years and nearly 900 hospital encounters involving CGM. CONCLUSIONS Here, we conclude that CGM is feasible in the hospital setting by using a dedicated diabetes care team and the CGM technology with remote monitoring.
Collapse
Affiliation(s)
| | - Addie L. Fortmann
- Scripps Whittier Diabetes Institute,
Scripps Health, San Diego, CA, USA
| | - Rebekah Belasco
- Scripps Whittier Diabetes Institute,
Scripps Health, San Diego, CA, USA
| | | | - Suzanne Lohnes
- Scripps Whittier Diabetes Institute,
Scripps Health, San Diego, CA, USA
| | | | - Haley Sandoval
- Scripps Whittier Diabetes Institute,
Scripps Health, San Diego, CA, USA
| | | | - Emily C. Soriano
- Scripps Whittier Diabetes Institute,
Scripps Health, San Diego, CA, USA
| | - Laura Talavera
- Scripps Whittier Diabetes Institute,
Scripps Health, San Diego, CA, USA
| | | |
Collapse
|
26
|
Boeder S, Kobayashi E, Ramesh G, Serences B, Kulasa K, Majithia AR. Accuracy and Glycemic Efficacy of Continuous Glucose Monitors in Critically Ill COVID-19 Patients: A Retrospective Study. J Diabetes Sci Technol 2023; 17:642-648. [PMID: 35876258 PMCID: PMC10159791 DOI: 10.1177/19322968221113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Continuous glucose monitoring (CGM) is approved for insulin dosing decisions in the ambulatory setting, but not currently for inpatients. CGM has the capacity to reduce patient-provider contact in inpatients with coronavirus disease 2019 (COVID-19), thus potentially reducing in hospital virus transmission. However, there are sparse data on the accuracy and efficacy of CGM to titrate insulin doses in inpatients. METHODS Under an emergency use protocol, CGM (Dexcom G6) was used alongside standard point-of-care (POC) glucose measurements in patients critically ill from complications of COVID-19 requiring intravenous (IV) insulin. Glycemic control during IV insulin therapy was retrospectively assessed comparing periods with and without adjunctive CGM use. Accuracy metrics were computed and Clarke Error Grid analysis performed comparing CGM glucose values with POC measurements. RESULTS Twenty-four critically ill patients who met criteria for emergency use of CGM resulted in 47 333 CGM and 5677 POC glucose values. During IV insulin therapy, individuals' glycemic control improved when CGM was used (mean difference -30.7 mg/dL). Among 2194 matched CGM: POC glucose pairs, a high degree of concordance was observed with a mean absolute relative difference of 14.8% and 99.5% of CGM: POC pairs falling in Zones A and B of the Clarke Error Grid. CONCLUSIONS Continuous glucose monitoring use in critically ill COVID-19 patients improved glycemic control during IV insulin therapy. Continuous glucose monitoring glucose data were highly concordant with POC glucose during IV insulin therapy in critically ill patients suggesting that CGM could substitute for POC measurements in inpatients thus reducing patient-provider contact and mitigating infection transmission.
Collapse
Affiliation(s)
- Schafer Boeder
- Division of Endocrinology and
Metabolism, Department of Medicine, University of California, San Diego, La Jolla,
CA, USA
| | - Emily Kobayashi
- Bioinformatics and Systems Biology
Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Gautam Ramesh
- School of Medicine, University of
California, San Diego, La Jolla, CA, USA
| | - Brittany Serences
- Department of Nursing Education,
Development and Research, University of California, San Diego, La Jolla, CA,
USA
| | - Kristen Kulasa
- Division of Endocrinology and
Metabolism, Department of Medicine, University of California, San Diego, La Jolla,
CA, USA
| | - Amit R. Majithia
- Division of Endocrinology and
Metabolism, Department of Medicine, University of California, San Diego, La Jolla,
CA, USA
| |
Collapse
|
27
|
Sreedharan R, Khanna S, Shaw A. Perioperative glycemic management in adults presenting for elective cardiac and non-cardiac surgery. Perioper Med (Lond) 2023; 12:13. [PMID: 37120562 PMCID: PMC10149003 DOI: 10.1186/s13741-023-00302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/19/2023] [Indexed: 05/01/2023] Open
Abstract
Perioperative dysglycemia is associated with adverse outcomes in both cardiac and non-cardiac surgical patients. Hyperglycemia in the perioperative period is associated with an increased risk of postoperative infections, length of stay, and mortality. Hypoglycemia can induce neuronal damage, leading to significant cognitive deficits, as well as death. This review endeavors to summarize existing literature on perioperative dysglycemia and provides updates on pharmacotherapy and management of perioperative hyperglycemia and hypoglycemia in surgical patients.
Collapse
Affiliation(s)
- Roshni Sreedharan
- Department of Intensive Care & Resuscitation, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of General Anesthesiology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sandeep Khanna
- Department of General Anesthesiology, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Outcomes Research, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Andrew Shaw
- Department of Intensive Care & Resuscitation, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
28
|
Faulds ER, Dungan KM, McNett M. Implementation of Continuous Glucose Monitoring in Critical Care: A Scoping Review. Curr Diab Rep 2023; 23:69-87. [PMID: 37052790 PMCID: PMC10098233 DOI: 10.1007/s11892-023-01503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to identify the implementation approaches, strategies, and outcomes for continuous glucose monitoring (CGM) in the intensive care unit (ICU). Medline and Web of Science databases were searched to report relevant literature published between September 12, 2016 and September 12, 2021. Implementation outcomes and strategies, defined by the Expert Recommendations for Implementing Change (ERIC) project, were extracted. RECENT FINDINGS Of the 324 titles reviewed, 16 articles were included in the review. While no studies were identified as implementation research, 14 of 16 identified implementation strategies that aligned with ERIC definitions. Included studies described a multi-disciplinary approach. Clinical outcomes included Mean Absolute Relative Difference (MARD), ranging from 7.5 to 15.3%, and 33-71% reduction in frequency of point-of-care (POC) blood glucose monitoring (BGM) using hybrid protocols. This scoping review provides valuable insight into the process of CGM implementation in the ICU. Continued research should include implementation outcomes to inform widespread utilization.
Collapse
Affiliation(s)
- Eileen R Faulds
- The Ohio State University College of Nursing, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Kathleen M Dungan
- Department of Internal Medicine, Division of Endocrinology, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Diabetes & Metabolism, Columbus, OH, USA
| | - Molly McNett
- Implementation Science, Helene Fuld Health Trust National Institute for EBP, The Ohio State University College of Nursing, Columbus, OH, USA
| |
Collapse
|
29
|
Avari P, O'Regan A, Preechasuk L, Oliver N, Agha-Jaffar R. Adjustment of Maternal Variable Rate Insulin Infusions Using Real-Time Continuous Glucose Monitoring in Pregnant Women with Type 1 Diabetes. Diabetes Technol Ther 2023; 25:293-297. [PMID: 36695715 DOI: 10.1089/dia.2022.0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Real-time continuous glucose monitoring (CGM) in hospital holds promise; however, further evidence is required on its use to guide adjustment of variable rate intravenous insulin infusion (VRIII). We retrospectively analyzed data from 20 women with type 1 diabetes during the peripartum period who were commenced on VRIII. Data were analyzed for CGM accuracy (Dexcom G6) using point-of-care glucose-CGM matched pairs. The study was entirely observational, with no deviation from standard clinical care. Twenty women were included; median age 30 (26-35) years with first glycated hemoglobin in pregnancy of 57 (49-60) mmol/mol. Overall median absolute relative difference was 6.1 (1.6-17.3)%. The total simulated CGM-adjusted VRIII was 2.5 U per hour, compared with 2.4 U per hour with capillary blood glucose-adjusted VRIII. In this retrospective analysis of CGM adjustment of maternal VRIII, we demonstrate early feasibility and considerable accuracy. Further prospective studies are required to confirm the safety and potential efficacy of CGM-based insulin titration.
Collapse
Affiliation(s)
- Parizad Avari
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alice O'Regan
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Lukana Preechasuk
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Siriraj Diabetes Center of Excellence, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nick Oliver
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Rochan Agha-Jaffar
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Espinoza J, Xu NY, Nguyen KT, Klonoff DC. The Need for Data Standards and Implementation Policies to Integrate CGM Data into the Electronic Health Record. J Diabetes Sci Technol 2023; 17:495-502. [PMID: 34802286 PMCID: PMC10012359 DOI: 10.1177/19322968211058148] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current lack of continuous glucose monitor (CGM) data integration into the electronic health record (EHR) is holding back the use of this wearable technology for patient-generated health data (PGHD). This failure to integrate with other healthcare data inside the EHR disrupts workflows, removes the data from critical patient context, and overall makes the CGM data less useful than it might otherwise be. Many healthcare organizations (HCOs) are either struggling with or delaying designing and implementing CGM data integrations. In this article, the current status of CGM integration is reviewed, goals for integration are proposed, and a consensus plan to engage key stakeholders to facilitate integration is presented.
Collapse
Affiliation(s)
- Juan Espinoza
- Division of General Pediatrics,
Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA,
USA
- Juan Espinoza, MD, FAAP, Division of
General Pediatrics, Department of Pediatrics, Children’s Hospital Los Angeles,
University of Southern California, 4650 Sunset Boulevard, Los Angeles, CA 90027,
USA.
| | - Nicole Y. Xu
- Diabetes Technology Society,
Burlingame, CA, USA
| | | | | |
Collapse
|
31
|
Dhatariya KK, Umpierrez G. Gaps in our knowledge of managing inpatient dysglycaemia and diabetes in non-critically ill adults: A call for further research. Diabet Med 2023; 40:e14980. [PMID: 36256494 PMCID: PMC10100017 DOI: 10.1111/dme.14980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/28/2022]
Abstract
AIMS To describe the gaps in knowledge for the care of people in the hospital who have dysglycaemia or diabetes. METHODS A review of the current literature and the authors' knowledge of the subject. RESULTS Recent data has suggested that the prevalence of hospitalised people with diabetes is approximately three times the prevalence in the general population and is growing annually. A wealth of observational data over the last 4 decades has shown that people with hyperglycaemia, severe hypoglycaemia or diabetes, all experience more harm whilst in the hospital than those who do not have the condition. This often equates to a longer length of stay and thus higher costs. To date, the proportion of federal funding aimed at addressing the harms that people with dysglycaemia experience in hospitals has been very small compared to outpatient studies. National organisations, such as the Joint British Diabetes Societies for Inpatient Care, the American Diabetes Association and the Endocrine Society have produced guidelines or consensus statements on the management of various aspects of inpatient care. However, whilst a lot of these have been based on evidence, much remains based on expert opinion and thus low-quality evidence. CONCLUSIONS This review highlights that inpatient diabetes is an underfunded and under-researched area.
Collapse
Affiliation(s)
- Ketan K. Dhatariya
- Elsie Bertram Diabetes CentreNorfolk and Norwich University Hospitals NHS Foundation TrustNorfolkUK
- Norwich Medicine SchoolUniversity of East AngliaNorfolkUK
| | - Guillermo Umpierrez
- Department of Medicine, Division of EndocrinologyEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
32
|
Mader JK, Brix JM, Aberer F, Vonbank A, Resl M, Hochfellner DA, Ress C, Pieber TR, Stechemesser L, Sourij H. [Hospital diabetes management (Update 2023)]. Wien Klin Wochenschr 2023; 135:242-255. [PMID: 37101046 PMCID: PMC10133359 DOI: 10.1007/s00508-023-02177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/28/2023]
Abstract
This position statement presents the recommendations of the Austrian Diabetes Association for diabetes management of adult patients during inpatient stay. It is based on the current evidence with respect to blood glucose targets, insulin therapy and treatment with oral/injectable antidiabetic drugs during inpatient hospitalization. Additionally, special circumstances such as intravenous insulin therapy, concomitant therapy with glucocorticoids and use of diabetes technology during hospitalization are discussed.
Collapse
Affiliation(s)
- Julia K Mader
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Auenbruggerplatz 15, 8036, Graz, Österreich.
| | - Johanna M Brix
- Medizinische Abteilung mit Diabetologie, Endokrinologie und Nephrologie, Klinik Landstraße, Wien, Österreich
| | - Felix Aberer
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Auenbruggerplatz 15, 8036, Graz, Österreich
| | - Alexander Vonbank
- Innere Medizin I mit Kardiologie, Angiologie, Endokrinologie, Diabetologie und Intensivmedizin, Akademisches Lehrkrankenhaus Feldkirch, Feldkirch, Österreich
| | - Michael Resl
- Abteilung für Innere Medizin, Konventhospital der Barmherzigen Brüder Linz, Linz, Österreich
| | - Daniel A Hochfellner
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Auenbruggerplatz 15, 8036, Graz, Österreich
| | - Claudia Ress
- Innere Medizin, Department I, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Thomas R Pieber
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Auenbruggerplatz 15, 8036, Graz, Österreich
| | - Lars Stechemesser
- Universitätsklinik für Innere Medizin I, Paracelsus Medizinische Privatuniversität - Landeskrankenhaus, Salzburg, Österreich
| | - Harald Sourij
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Auenbruggerplatz 15, 8036, Graz, Österreich
| |
Collapse
|
33
|
Avari P, Lumb A, Flanagan D, Rayman G, Misra S, Dhatariya K, Choudhary P. Continuous Glucose Monitoring Within Hospital: A Scoping Review and Summary of Guidelines From the Joint British Diabetes Societies for Inpatient Care. J Diabetes Sci Technol 2022; 17:611-624. [PMID: 36444418 DOI: 10.1177/19322968221137338] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Increasing numbers of people, particularly with type 1 diabetes (T1D), are using wearable technologies. That is, continuous subcutaneous insulin infusion (CSII) pumps, continuous glucose monitoring (CGM) systems, and hybrid closed-loop systems, which combine both these elements. Given over a quarter of all people admitted to hospital have diabetes, there is a need for clinical guidelines for when people using them are admitted to hospital. The Joint British Diabetes Societies for Inpatient Care (JBDS-IP) provide a scoping review and summary of guidelines on the use of diabetes technology in people with diabetes admitted to hospital.JBDS-IP advocates enabling people who can self-manage and use their own diabetes technology to continue doing so as they would do out of hospital. Whilst people with diabetes are recommended to achieve a target of 70% time within range (3.9-10.0 mmol/L [70-180 mg/dL]), this can be very difficult to achieve whilst unwell. We therefore recommend targeting hypoglycemia prevention as a priority, keeping time below 3.9 mmol/L (70 mg/dL) at < 1%, being aware of looming hypoglycemia if glucose is between 4.0 and 5.9 mmol/L (72-106 mg/dL), and consider intervening, particularly if there is a downward CGM trend arrow.Health care organizations need clear local policies and guidance to support individuals using diabetes technologies, and ensure the relevant workforce is capable and skilled enough to ensure their safe use within the hospital setting. The current set of guidelines is divided into two parts. Part 1, which follows below, outlines the guidance for use of CGM in hospital. The second part outlines guidance for use of CSII and hybrid closed-loop in hospital.
Collapse
Affiliation(s)
- Parizad Avari
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alistair Lumb
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Daniel Flanagan
- Department of Endocrinology, University Hospital Plymouth, Plymouth, UK
| | - Gerry Rayman
- Ipswich Diabetes Centre, East Suffolk and North East Essex Foundation Trust, Ipswich, UK
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ketan Dhatariya
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Pratik Choudhary
- Diabetes Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
34
|
Longo RR, Joshi R. The Devil Is in the Details: Use, Limitations, and Implementation of Continuous Glucose Monitoring in the Inpatient Setting. Diabetes Spectr 2022; 35:405-419. [PMID: 36561647 PMCID: PMC9668728 DOI: 10.2337/dsi22-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Until recently, continuous glucose monitoring (CGM) systems were reserved for use in the outpatient setting or for investigational purposes in hospitalized patients. However, during the coronavirus disease 2019 pandemic, use of CGM in the inpatient setting has grown rapidly. This review outlines important details related to the accuracy, limitations, and implementation of, as well as necessary staff education for, inpatient CGM use and offers a glimpse into the future of CGM in the inpatient setting.
Collapse
Affiliation(s)
- Rebecca Rick Longo
- Lahey Hospital and Medical Center–Beth Israel Lahey Health, Burlington, MA
| | - Renu Joshi
- University of Pittsburgh Medical Center, Harrisburg, PA
| |
Collapse
|
35
|
Spanakis EK, Urrutia A, Galindo RJ, Vellanki P, Migdal AL, Davis G, Fayfman M, Idrees T, Pasquel FJ, Coronado WZ, Albury B, Moreno E, Singh LG, Marcano I, Lizama S, Gothong C, Munir K, Chesney C, Maguire R, Scott WH, Perez-Guzman MC, Cardona S, Peng L, Umpierrez GE. Continuous Glucose Monitoring-Guided Insulin Administration in Hospitalized Patients With Diabetes: A Randomized Clinical Trial. Diabetes Care 2022; 45:2369-2375. [PMID: 35984478 PMCID: PMC9643134 DOI: 10.2337/dc22-0716] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/02/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The efficacy and safety of continuous glucose monitoring (CGM) in adjusting inpatient insulin therapy have not been evaluated. RESEARCH DESIGN AND METHODS This randomized trial included 185 general medicine and surgery patients with type 1 and type 2 diabetes treated with a basal-bolus insulin regimen. All subjects underwent point-of-care (POC) capillary glucose testing before meals and bedtime. Patients in the standard of care (POC group) wore a blinded Dexcom G6 CGM with insulin dose adjusted based on POC results, while in the CGM group, insulin adjustment was based on daily CGM profile. Primary end points were differences in time in range (TIR; 70-180 mg/dL) and hypoglycemia (<70 mg/dL and <54 mg/dL). RESULTS There were no significant differences in TIR (54.51% ± 27.72 vs. 48.64% ± 24.25; P = 0.14), mean daily glucose (183.2 ± 40 vs. 186.8 ± 39 mg/dL; P = 0.36), or percent of patients with CGM values <70 mg/dL (36% vs. 39%; P = 0.68) or <54 mg/dL (14 vs. 24%; P = 0.12) between the CGM-guided and POC groups. Among patients with one or more hypoglycemic events, compared with POC, the CGM group experienced a significant reduction in hypoglycemia reoccurrence (1.80 ± 1.54 vs. 2.94 ± 2.76 events/patient; P = 0.03), lower percentage of time below range <70 mg/dL (1.89% ± 3.27 vs. 5.47% ± 8.49; P = 0.02), and lower incidence rate ratio <70 mg/dL (0.53 [95% CI 0.31-0.92]) and <54 mg/dL (0.37 [95% CI 0.17-0.83]). CONCLUSIONS The inpatient use of real-time Dexcom G6 CGM is safe and effective in guiding insulin therapy, resulting in a similar improvement in glycemic control and a significant reduction of recurrent hypoglycemic events compared with POC-guided insulin adjustment.
Collapse
Affiliation(s)
- Elias K. Spanakis
- University of Maryland Medical Center, Baltimore, MD
- Baltimore VA Medical Center, Baltimore, MD
| | | | | | | | | | | | - Maya Fayfman
- Emory University School of Medicine, Atlanta, GA
| | - Thaer Idrees
- Emory University School of Medicine, Atlanta, GA
| | | | | | | | | | | | | | - Sergio Lizama
- University of Maryland Medical Center, Baltimore, MD
| | | | - Kashif Munir
- University of Maryland Medical Center, Baltimore, MD
| | | | | | | | | | | | - Limin Peng
- Emory University Rollins School of Public Health, Atlanta, GA
| | | |
Collapse
|
36
|
Longo RR, Elias H, Khan M, Seley JJ. Use and Accuracy of Inpatient CGM During the COVID-19 Pandemic: An Observational Study of General Medicine and ICU Patients. J Diabetes Sci Technol 2022; 16:1136-1143. [PMID: 33971753 PMCID: PMC9445343 DOI: 10.1177/19322968211008446] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Continuous glucose monitoring (CGM) is widely used in the outpatient setting for people with diabetes and has been limited to investigational use only for the inpatient population. In April 2020, the US FDA exercised enforcement discretion for the temporary use of inpatient CGM during the pandemic, thus hospitals were presented the opportunity to implement this technology. METHODS We sought to investigate the accuracy of CGM in hospitalized patients on general care floors and the intensive care unit (ICU) in attempts to decrease healthcare professional exposure to COVID-19 and ultimately improve glycemic management of patients affected by COVID-19. Point of care (POC) and laboratory (Lab) glucose values were matched with simultaneous CGM glucose values and measures of accuracy were performed to evaluate the safety and usability of CGM in this population. Our data are presented drawing a distinction between POC and Lab as reference glucose sources. RESULTS In 808 paired samples obtained from 28 patients (10 ICU, 18 general floor), overall mean absolute relative difference (MARD) for all patients using either POC or Lab as reference was 13.2%. When using POC as the reference glucose MARD was 13.9% and using Lab glucose as reference 10.9%. Using both POC and Lab reference glucose pairs the overall MARD for critical care patients was 12.1% and for general floor patients 14%. CONCLUSION We determined, with proper protocols and safeguards in place, use of CGM in the hospitalized patient is a reasonable alternative to standard of care to achieve the goal of reducing healthcare professional exposure. Further study is necessary to validate safety, accuracy, and efficacy of this technology. Investigation and analysis are necessary for the development of protocols to utilize CGM trend arrows, alerts, and alarms.
Collapse
Affiliation(s)
- Rebecca Rick Longo
- Lahey Hospital and Medical Center, Burlington, MA, USA
- Rebecca Rick Longo, ACNP-BC, MSN, CDCES, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA.
| | - Heather Elias
- Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Mehvish Khan
- Lahey Hospital and Medical Center, Burlington, MA, USA
| | | |
Collapse
|
37
|
Buschur EO, Faulds E, Dungan K. CGM in the Hospital: Is It Ready for Prime Time? Curr Diab Rep 2022; 22:451-460. [PMID: 35796882 PMCID: PMC9261155 DOI: 10.1007/s11892-022-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The use of continuous glucose monitoring (CGM) in the hospital setting is growing with more patients using these devices at home and when admitted to the hospital, especially during the COVID-19 pandemic. RECENT FINDINGS Historically, most evidence for CGM use in the inpatient setting was limited to small studies utilizing outdated CGM technology and analyzing accuracy of sensor measurements. Previous studies have shown reduced sensor accuracy during extreme hypo- or hyperglycemia, rapid fluctuations of glucose, compression of the sensor itself, and in those who are critically ill. Studies that are more recent have shown CGM to have adequate accuracy and may be effective in reducing hypoglycemia in hospitalized patients; some studies have also showed improvement in time in target glycemic range. Furthermore, CGM may reduce nursing workload, cost of inpatient care, and use of personal protective equipment and face-to-face patient care especially for patients during the COVID-19 pandemic. This review will describe the evidence for use of CGM in hospitalized critically ill or non-critically ill patients, address accuracy and safety considerations, and outline paths for future implementation.
Collapse
Affiliation(s)
- Elizabeth O. Buschur
- grid.261331.40000 0001 2285 7943Division of Endocrinology, Diabetes & Metabolism, The Ohio State University College of Medicine, 5th Floor McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210-1296 USA
| | - Eileen Faulds
- grid.261331.40000 0001 2285 7943Division of Endocrinology, Diabetes & Metabolism, The Ohio State University College of Medicine, 5th Floor McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210-1296 USA
- grid.261331.40000 0001 2285 7943The Ohio State University College of Nursing, Columbus, OH USA
| | - Kathleen Dungan
- grid.261331.40000 0001 2285 7943Division of Endocrinology, Diabetes & Metabolism, The Ohio State University College of Medicine, 5th Floor McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210-1296 USA
| |
Collapse
|
38
|
Huang J, Yeung AM, Nguyen KT, Xu NY, Preiser JC, Rushakoff RJ, Seley JJ, Umpierrez GE, Wallia A, Drincic AT, Gianchandani R, Lansang MC, Masharani U, Mathioudakis N, Pasquel FJ, Schmidt S, Shah VN, Spanakis EK, Stuhr A, Treiber GM, Klonoff DC. Hospital Diabetes Meeting 2022. J Diabetes Sci Technol 2022; 16:1309-1337. [PMID: 35904143 PMCID: PMC9445340 DOI: 10.1177/19322968221110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The annual Virtual Hospital Diabetes Meeting was hosted by Diabetes Technology Society on April 1 and April 2, 2022. This meeting brought together experts in diabetes technology to discuss various new developments in the field of managing diabetes in hospitalized patients. Meeting topics included (1) digital health and the hospital, (2) blood glucose targets, (3) software for inpatient diabetes, (4) surgery, (5) transitions, (6) coronavirus disease and diabetes in the hospital, (7) drugs for diabetes, (8) continuous glucose monitoring, (9) quality improvement, (10) diabetes care and educatinon, and (11) uniting people, process, and technology to achieve optimal glycemic management. This meeting covered new technology that will enable better care of people with diabetes if they are hospitalized.
Collapse
Affiliation(s)
| | | | | | - Nicole Y. Xu
- Diabetes Technology Society, Burlingame, CA, USA
| | | | | | | | | | - Amisha Wallia
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | - Umesh Masharani
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - Viral N. Shah
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | | | | | | | - David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
- David C. Klonoff, MD, FACP, FRCP (Edin), Fellow AIMBE, Diabetes Research Institute, Mills-Peninsula Medical Center, 100 South San Mateo Drive, Room 5147, San Mateo, CA 94401, USA.
| |
Collapse
|
39
|
Korytkowski MT, Muniyappa R, Antinori-Lent K, Donihi AC, Drincic AT, Hirsch IB, Luger A, McDonnell ME, Murad MH, Nielsen C, Pegg C, Rushakoff RJ, Santesso N, Umpierrez GE. Management of Hyperglycemia in Hospitalized Adult Patients in Non-Critical Care Settings: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2022; 107:2101-2128. [PMID: 35690958 PMCID: PMC9653018 DOI: 10.1210/clinem/dgac278] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Adult patients with diabetes or newly recognized hyperglycemia account for over 30% of noncritically ill hospitalized patients. These patients are at increased risk for adverse clinical outcomes in the absence of defined approaches to glycemic management. OBJECTIVE To review and update the 2012 Management of Hyperglycemia in Hospitalized Patients in Non-Critical Care Settings: An Endocrine Society Clinical Practice Guideline and to address emerging areas specific to the target population of noncritically ill hospitalized patients with diabetes or newly recognized or stress-induced hyperglycemia. METHODS A multidisciplinary panel of clinician experts, together with a patient representative and experts in systematic reviews and guideline development, identified and prioritized 10 clinical questions related to inpatient management of patients with diabetes and/or hyperglycemia. The systematic reviews queried electronic databases for studies relevant to the selected questions. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make recommendations. RESULTS The panel agreed on 10 frequently encountered areas specific to glycemic management in the hospital for which 15 recommendations were made. The guideline includes conditional recommendations for hospital use of emerging diabetes technologies including continuous glucose monitoring and insulin pump therapy; insulin regimens for prandial insulin dosing, glucocorticoid, and enteral nutrition-associated hyperglycemia; and use of noninsulin therapies. Recommendations were also made for issues relating to preoperative glycemic measures, appropriate use of correctional insulin, and diabetes self-management education in the hospital. A conditional recommendation was made against preoperative use of caloric beverages in patients with diabetes. CONCLUSION The recommendations are based on the consideration of important outcomes, practicality, feasibility, and patient values and preferences. These recommendations can be used to inform system improvement and clinical practice for this frequently encountered inpatient population.
Collapse
Affiliation(s)
- Mary T Korytkowski
- University of Pittsburgh, Division of Endocrinology, Department of Medicine, Pittsburgh, PA, USA
| | - Ranganath Muniyappa
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Amy C Donihi
- University of Pittsburgh School of Pharmacy, Department of Pharmacy and Therapeutics, Pittsburgh, PA, USA
| | - Andjela T Drincic
- University of Nebraska Medical Center, Endocrinology & Metabolism, Omaha, NE, USA
| | - Irl B Hirsch
- University of Washington Diabetes Institute, Seattle, WA, USA
| | - Anton Luger
- Medical University and General Hospital of Vienna, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marie E McDonnell
- Brigham and Women’s Hospital and Harvard Medical School, Division of Endocrinology Diabetes and Hypertension, Boston, MA, USA
| | - M Hassan Murad
- Mayo Clinic Evidence-Based Practice Center, Rochester, MN, USA
| | | | - Claire Pegg
- Diabetes Patient Advocacy Coalition, Tampa, FL, USA
| | - Robert J Rushakoff
- University of California, San Francisco, Department of Medicine, Division of Endocrinology and Metabolism, San Francisco, CA, USA
| | | | | |
Collapse
|
40
|
Seisa MO, Saadi S, Nayfeh T, Muthusamy K, Shah SH, Firwana M, Hasan B, Jawaid T, Abd-Rabu R, Korytkowski MT, Muniyappa R, Antinori-Lent K, Donihi AC, Drincic AT, Luger A, Torres Roldan VD, Urtecho M, Wang Z, Murad MH. A Systematic Review Supporting the Endocrine Society Clinical Practice Guideline for the Management of Hyperglycemia in Adults Hospitalized for Noncritical Illness or Undergoing Elective Surgical Procedures. J Clin Endocrinol Metab 2022; 107:2139-2147. [PMID: 35690929 PMCID: PMC9653020 DOI: 10.1210/clinem/dgac277] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/21/2022]
Abstract
CONTEXT Individuals with diabetes or newly recognized hyperglycemia account for over 30% of noncritically ill hospitalized patients. Management of hyperglycemia in these patients is challenging. OBJECTIVE To support development of the Endocrine Society Clinical Practice Guideline for management of hyperglycemia in adults hospitalized for noncritical illness or undergoing elective surgical procedures. METHODS We searched several databases for studies addressing 10 questions provided by a guideline panel from the Endocrine Society. Meta-analysis was conducted when feasible. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess certainty of evidence. RESULTS We included 94 studies reporting on 135 553 patients. Compared with capillary blood glucose, continuous glucose monitoring increased the number of patients identified with hypoglycemia and decreased mean daily blood glucose (BG) (very low certainty). Data on continuation of insulin pump therapy in hospitalized adults were sparse. In hospitalized patients receiving glucocorticoids, combination neutral protamine hagedorn (NPH) and basal-bolus insulin was associated with lower mean BG compared to basal-bolus insulin alone (very low certainty). Data on NPH insulin vs basal-bolus insulin in hospitalized adults receiving enteral nutrition were inconclusive. Inpatient diabetes education was associated with lower HbA1c at 3 and 6 months after discharge (moderate certainty) and reduced hospital readmissions (very low certainty). Preoperative HbA1c level < 7% was associated with shorter length of stay, lower postoperative BG and a lower number of neurological complications and infections, but a higher number of reoperations (very low certainty). Treatment with glucagon-like peptide-1 agonists or dipeptidyl peptidase-4 inhibitors in hospitalized patients with type 2 diabetes and mild hyperglycemia was associated with lower frequency of hypoglycemic events than insulin therapy (low certainty). Caloric oral fluids before surgery in adults with diabetes undergoing surgical procedures did not affect outcomes (very low certainty). Counting carbohydrates for prandial insulin dosing did not affect outcomes (very low certainty). Compared with scheduled insulin (basal-bolus or basal insulin + correctional insulin), correctional insulin was associated with higher mean daily BG and fewer hypoglycemic events (low certainty). CONCLUSION The certainty of evidence supporting many hyperglycemia management decisions is low, emphasizing importance of shared decision-making and consideration of other decisional factors.
Collapse
Affiliation(s)
- Mohamed O Seisa
- Correspondence: Mohamed Seisa, M.D., Mayo Clinic Rochester, Rochester, MN 55902, USA.
| | - Samer Saadi
- Mayo Clinic Evidence-Based Practice Center, Rochester, MN, USA
| | - Tarek Nayfeh
- Mayo Clinic Evidence-Based Practice Center, Rochester, MN, USA
| | | | - Sahrish H Shah
- Mayo Clinic Evidence-Based Practice Center, Rochester, MN, USA
| | | | - Bashar Hasan
- Mayo Clinic Evidence-Based Practice Center, Rochester, MN, USA
| | - Tabinda Jawaid
- Mayo Clinic Evidence-Based Practice Center, Rochester, MN, USA
| | - Rami Abd-Rabu
- Mayo Clinic Evidence-Based Practice Center, Rochester, MN, USA
| | | | - Ranganath Muniyappa
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - Amy C Donihi
- University of Pittsburgh School of Pharmacy,Pittsburgh, PA 15261, USA
| | | | - Anton Luger
- Medical University and General Hospital of Vienna, Austria
| | | | | | - Zhen Wang
- Mayo Clinic Evidence-Based Practice Center, Rochester, MN, USA
| | - M Hassan Murad
- Mayo Clinic Evidence-Based Practice Center, Rochester, MN, USA
| |
Collapse
|
41
|
A Comprehensive Assessment of The Eight Vital Signs. THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The term “vital sign” has been assigned to various phenomena with the presumptive intent to emphasize their importance in health care resulting in the emergence of eight vital signs with multiple designations and overlapping terms. This review developed a case definition for vital signs and identified and described the fifth through eighth vital signs. PubMed/Medline, Google and biographical databases were searched using the individual Medical Subject Headings (MeSH) terms, vital sign and fifth, vital sign and sixth, vital sign and seventh, and vital sign eighth. The search was limited to human clinical studies written in English literature from 1957 up until November 30, 2021. Excluded were articles containing the term vital sign if used alone without the qualifier fifth, sixth, seventh, or eighth or about temperature, blood pressure, pulse, and respiratory rate. One hundred ninety-six articles (122 for the fifth vital sign, 71 for the sixth vital sign, two for the seventh vital sign, and one for the eighth vital sign) constituted the final dataset. The vital signs consisted of 35 terms, classified into 17 categories compromising 186 unique papers for each primary authored article with redundant numbered vital signs for glucose, weight, body mass index, and medication compliance. Eleven terms have been named the fifth vital sign, 25 the sixth vital sign, three the seventh, and one as the eighth vital sign. There are four time-honored vital signs based on the case definition, and they represent an objective bedside measurement obtained noninvasively that is essential for life. Based on this case definition, pulse oximetry qualifies as the fifth while end-tidal CO2 and cardiac output as the sixth. Thus, these terms have been misappropriated 31 times. Although important to emphasize in patient care, the remainder are not vital signs and should not be construed in this manner.
Collapse
|
42
|
Piya MK, Fletcher T, Myint KP, Zarora R, Yu D, Simmons D. The impact of nursing staff education on diabetes inpatient glucose management: a pilot cluster randomised controlled trial. BMC Endocr Disord 2022; 22:61. [PMID: 35272649 PMCID: PMC8911103 DOI: 10.1186/s12902-022-00975-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND An increasing number of patients in hospital have diabetes, with most of them cared for by non-specialist staff. The effect of diabetes education for staff on patient outcomes, as well as the most effective method of staff education is unclear. Therefore, the aim of this study was to compare diabetes outcomes in medical wards where nursing staff were offered one face-to-face (F2F) session followed by access to online education (online), F2F education only, or standard care (control). METHODS We conducted a pilot cluster randomised controlled trial involving 16-weeks baseline/rollout followed by a 28-week post-intervention period across three medical wards (clusters) in a Sydney Teaching Hospital. The online ward provided an online competency-based diabetes education program and 1-h F2F teaching from a diabetes nurse educator (DNE), the F2F ward provided four separate 1-h teaching sessions by a DNE, with no additional sessions in the control ward. The primary outcome was length of stay (LOS); secondary outcomes included good diabetes days (GDD), hypoglycaemia and medication errors. Poisson and binary logistic regression were used to compare clusters. RESULTS Staff attendance/completion of ≥ 2 topics was greater with online than F2F education [39/48 (81%) vs 10/33 (30%); p < 0.001]. Among the 827/881 patients, there was no difference in LOS change between online [Median(IQR) 5(2-8) to 4(2-7) days], F2F [7(4-14) to 5(3-13) days] or control wards [5(3-9) to 5(3-7) days]. GDD improved only in the online ward 4.7(2.7-7.0) to 6.0(2.3-7.0) days; p = 0.038. Total patients with hypoglycaemia and appropriately treated hypoglycaemia increased in the online ward. CONCLUSIONS The inclusion of online education increased diabetes training uptake among nursing staff. GDD and appropriate hypoglycaemia management increased in the online education wards. TRIAL REGISTRATION Prospectively registered on the Australia New Zealand Clinical Trials Registry (ANZCTR) on 24/05/2017: ACTRN12617000762358 .
Collapse
Affiliation(s)
- Milan K Piya
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
- Macarthur Diabetes Endocrinology and Metabolism Service, Camden and Campbelltown Hospitals, Campbelltown, NSW, Australia.
| | - Therese Fletcher
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Macarthur Diabetes Endocrinology and Metabolism Service, Camden and Campbelltown Hospitals, Campbelltown, NSW, Australia
| | - Kyaw P Myint
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Reetu Zarora
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Dahai Yu
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Staffordshire, UK
| | - David Simmons
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Macarthur Diabetes Endocrinology and Metabolism Service, Camden and Campbelltown Hospitals, Campbelltown, NSW, Australia
| |
Collapse
|
43
|
Sweeney AT, Pena S, Sandeep J, Hernandez B, Chen Y, Breeze JL, Bulut A, Feghali K, Abdelrehim M, Abdelazeem M, Srivoleti P, Salvucci L, Cann SB, Norman C. Use of a Continuous Glucose Monitoring System in High Risk Hospitalized Non-critically ill Patients with Diabetes after Cardiac Surgery and during their Transition of Care from the Intensive Care Unit during Covid-19-A Pilot Study. Endocr Pract 2022; 28:615-621. [PMID: 35276324 PMCID: PMC8902897 DOI: 10.1016/j.eprac.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Continuous glucose monitoring (CGM) has demonstrated benefits in managing inpatient diabetes. We initiated this single-arm pilot feasibility study during the COVID-19 pandemic in 11 patients to determine the feasibility and accuracy of real-time CGM in cardiac surgery patients with diabetes after their transition of care from the intensive care unit(ICU). METHODS Clarke Error Grid(CEG) analysis was used to compare CGM and point-of-care(POC) measurements. Mean absolute relative difference(MARD) of the paired measurements was calculated to assess the accuracy of the CGM for glucose measurements during the first 24 hours on CGM, the remainder of time on the CGM as well as for different chronic kidney disease(CKD) strata. RESULTS Overall MARD between POC and CGM measurements was 14.80%. MARD for patients without CKD IV and V with eGFR < 20 ml/min/1.73m2 was 12.13%. Overall, 97% of the CGM values were within the no-risk zone of the CEG analysis. For the first 24 hours, a sensitivity analysis of the overall MARD for all subjects and for those with eGFR > 20 ml/min/1.73m2 was 15.42% (+/- 14.44) and 12.80% (+/- 7.85) respectively. Beyond the first 24 hours, overall MARD for all subjects and for those with eGFR > 20 ml/min/1.73m2 was 14.54% (+/- 13.21) and 11.86% (+/- 7.64) respectively. CONCLUSIONS CGM has great promise to optimize inpatient diabetes management in the noncritical care setting and after the transition of care from the ICU with high clinical reliability, and accuracy. More studies are needed to further assess CGM in patients with advanced CKD.
Collapse
Affiliation(s)
- Ann T Sweeney
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA.
| | - Samara Pena
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Jeena Sandeep
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Bryan Hernandez
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Ye Chen
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, MA
| | - Janis L Breeze
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, MA
| | - Aysegul Bulut
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Karen Feghali
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Moaz Abdelrehim
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Mohamed Abdelazeem
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Padmavathi Srivoleti
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Linda Salvucci
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Susan Berry Cann
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Catalina Norman
- Department of Medicine, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
44
|
Gothong C, Singh LG, Satyarengga M, Spanakis EK. Continuous glucose monitoring in the hospital: an update in the era of COVID-19. Curr Opin Endocrinol Diabetes Obes 2022; 29:1-9. [PMID: 34845159 PMCID: PMC8711300 DOI: 10.1097/med.0000000000000693] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Continuous glucose monitoring (CGM) systems are Food and Drug Administration approved devices for the ambulatory setting; however, they remain investigational systems for inpatient use. This review summarizes the most recent and relevant literature on the use of continuous glucose monitoring in the hospital setting. RECENT FINDINGS CGM provides real-time glucose data that enable healthcare professionals to make proactive and timelier clinical decisions with regards to diabetes management. CGM devices appear to be safe and accurate systems for glucose monitoring in the hospital setting. Real-time CGM systems and glucose telemetry can decrease hypoglycemia and reduce hyperglycemia in hospitalized patients with diabetes. Remote glucose monitoring decreases the need of frequent Point-of-care checks and personal protective equipment use while also mitigating staff exposure risk which is timely in the advent of the COVID-19 pandemic. Although most nursing staff have limited exposure and training on CGM technology, early studies show that CGM use in the hospital is well received by nurses. SUMMARY Given the evidence in the current literature regarding CGM use in the hospital, CGM devices may be incorporated in the inpatient setting.
Collapse
Affiliation(s)
- Chikara Gothong
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine
| | - Lakshmi G. Singh
- Division of Endocrinology, Baltimore Veterans Affairs Medical Center, Baltimore
| | - Medha Satyarengga
- Center for Diabetes and Endocrinology, University of Maryland Shore Regional Health, Easton, Maryland, USA
| | - Elias K. Spanakis
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine
- Division of Endocrinology, Baltimore Veterans Affairs Medical Center, Baltimore
| |
Collapse
|
45
|
Robbins T, Hopper A, Brophy J, Pearson E, Suthantirakumar R, Vankad M, Igharo N, Baitule S, Clark CCT, Arvanitis TN, Sankar S, Kyrou I, Randeva H. Digitally enabled flash glucose monitoring for inpatients with COVID-19: Feasibility and pilot implementation in a teaching NHS Hospital in the UK. Digit Health 2022; 8:20552076211059350. [PMID: 35024157 PMCID: PMC8744149 DOI: 10.1177/20552076211059350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND COVID-19 placed significant challenges on healthcare systems. People with diabetes are at high risk of severe COVID-19 with poor outcomes. We describe the first reported use of inpatient digital flash glucose monitoring devices in a UK NHS hospital to support management of people with diabetes hospitalized for COVID-19. METHODS Inpatients at University Hospitals Coventry & Warwickshire (UHCW) NHS Trust with COVID-19 and diabetes were considered for digitally enabled flash glucose monitoring during their hospitalization. Glucose monitoring data were analysed, and potential associations were explored between relevant parameters, including time in hypoglycaemia, hyperglycaemia, and in range, glycated haemoglobin (HbA1c), average glucose, body mass index (BMI), and length of stay. RESULTS During this pilot, digital flash glucose monitoring devices were offered to 25 inpatients, of whom 20 (type 2/type 1: 19/1; mean age: 70.6 years; mean HbA1c: 68.2 mmol/mol; mean BMI: 28.2 kg/m2) accepted and used these (80% uptake). In total, over 2788 h of flash glucose monitoring were recorded for these inpatients with COVID-19 and diabetes. Length of stay was not associated with any of the studied variables (all p-values >0.05). Percentage of time in hyperglycaemia exhibited significant associations with both percentage of time in hypoglycaemia and percentage of time in range, as well as with HbA1c (all p-values <0.05). The average glucose was significantly associated with percentage of time in hypoglycaemia, percentage of time in range, and HbA1c (all p-values <0.05). DISCUSSION We report the first pilot inpatient use of digital flash glucose monitors in an NHS hospital to support care of inpatients with diabetes and COVID-19. Overall, there are strong arguments for the inpatient use of these devices in the COVID-19 setting, and the findings of this pilot demonstrate feasibility of this digitally enabled approach and support wider use for inpatients with diabetes and COVID-19.
Collapse
Affiliation(s)
- Tim Robbins
- University Hospitals Coventry & Warwickshire NHS Trust,
Coventry, UK
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, UK
| | - Adam Hopper
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Jack Brophy
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Elle Pearson
- Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | - Natalie Igharo
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Sud Baitule
- University Hospitals Coventry & Warwickshire NHS Trust,
Coventry, UK
| | | | | | - Sailesh Sankar
- University Hospitals Coventry & Warwickshire NHS Trust,
Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Ioannis Kyrou
- University Hospitals Coventry & Warwickshire NHS Trust,
Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Coventry University, UK
- Aston Medical Research Institute, Aston Medical School, College of
Health and Life Sciences, Aston University, Birmingham, UK
- * Ioannis Kyrou and Harpal Randeva have contributed
equally to this work and are joint senior co-authors
| | - Harpal Randeva
- University Hospitals Coventry & Warwickshire NHS Trust,
Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Aston Medical Research Institute, Aston Medical School, College of
Health and Life Sciences, Aston University, Birmingham, UK
- * Ioannis Kyrou and Harpal Randeva have contributed
equally to this work and are joint senior co-authors
| |
Collapse
|
46
|
Baker M, Musselman ME, Rogers R, Hellman R. Practical implementation of remote continuous glucose monitoring in hospitalized patients with diabetes. Am J Health Syst Pharm 2021; 79:452-458. [PMID: 34849550 PMCID: PMC8767852 DOI: 10.1093/ajhp/zxab456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Purpose Inpatient diabetes management involves frequent assessment of glucose levels for treatment decisions. Here we describe a program for inpatient real-time continuous glucose monitoring (rtCGM) at a community hospital and the accuracy of rtCGM-based glucose estimates. Methods Adult inpatients with preexisting diabetes managed with intensive insulin therapy and a diagnosis of coronavirus disease 2019 (COVID-19) were monitored via rtCGM for safety. An rtCGM system transmitted glucose concentration and trending information at 5-minute intervals to nearby smartphones, which relayed the data to a centralized monitoring station. Hypoglycemia alerts were triggered by rtCGM values of ≤85 mg/dL, but rtCGM data were otherwise not used in management decisions; insulin dosing adjustments were based on blood glucose values measured via fingerstick blood sampling. Accuracy was evaluated retrospectively by comparing rtCGM values to contemporaneous point-of-care (POC) blood glucose values. Results A total of 238 pairs of rtCGM and POC data points from 10 patients showed an overall mean absolute relative difference (MARD) of 10.3%. Clarke error grid analysis showed 99.2% of points in the clinically acceptable range, and surveillance error grid analysis showed 89.1% of points in the lowest risk category. It was determined that for 25% of the rtCGM values, discordances in rtCGM and POC values would likely have resulted in different insulin doses. Insulin dose recommendations based on rtCGM values differed by 1 to 3 units from POC-based recommendations. Conclusion rtCGM for inpatient diabetes monitoring is feasible. Evaluation of individual rtCGM-POC paired values suggested that using rtCGM data for management decisions poses minimal risks to patients. Further studies to establish the safety and cost implications of using rtCGM data for inpatient diabetes management decisions are warranted.
Collapse
Affiliation(s)
- Matt Baker
- North Kansas City Hospital, North Kansas City, MO, USA
| | | | - Rachel Rogers
- North Kansas City Hospital, North Kansas City, MO, USA
| | - Richard Hellman
- Heart of America Research Foundation, North Kansas City MO, USA
| |
Collapse
|
47
|
Abstract
Diabetes mellitus (DM) is one of the most common comorbid conditions in persons with COVID-19 and a risk factor for poor prognosis. The reasons why COVID-19 is more severe in persons with DM are currently unknown although the scarce data available on patients with DM hospitalized because of COVID-19 show that glycemic control is inadequate. The fact that patients with COVID-19 are usually cared for by health professionals with limited experience in the management of diabetes and the need to prevent exposure to the virus may also be obstacles to glycemic control in patients with COVID-19. Effective clinical care should consider various aspects, including screening for the disease in at-risk persons, education, and monitoring of control and complications. We examine the effect of COVID-19 on DM in terms of glycemic control and the restrictions arising from the pandemic and assess management of diabetes and drug therapy in various scenarios, taking into account factors such as physical exercise, diet, blood glucose monitoring, and pharmacological treatment. Specific attention is given to patients who have been admitted to hospital and critically ill patients. Finally, we consider the role of telemedicine in the management of DM patients with COVID-19 during the pandemic and in the future.
Collapse
|
48
|
Murray-Bachmann R, Leung TM, Myers AK, Murthi S, Sarbanes M, Ziskovich K, Lesser M, Poretsky L. Reliability of continuous glucose monitoring system in the inpatient setting. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2021; 25:100262. [PMID: 34336598 PMCID: PMC8318984 DOI: 10.1016/j.jcte.2021.100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/09/2021] [Accepted: 07/04/2021] [Indexed: 01/18/2023]
Abstract
Aims/Hypothesis Hyperglycemia and hypoglycemia are associated with increased morbidity and mortality in the inpatient setting. Standard point of care capillary glucose testing (POCT) is commonly used in hospitalized patients to monitor their glucose levels. The goal of this study was to examine the relationships between the glucose readings obtained by a continuous glucose monitoring system (CGMS) (Freestyle Libre) and the capillary blood glucose results obtained by the inpatient glucose POCT meter (Accuchek Inform II) as well as between CGMS readings and the serum glucose values obtained by the hospital laboratory. Study participants had either primary or secondary diagnosis of diabetes mellitus and were admitted to non-critical units. We hypothesized that there exists an acceptable agreement between the capillary blood glucose results obtained by the inpatient glucose POCT meter (Accuchek Inform II) and the readings obtained by the CGMS (Freestyle Libre); and that there exists an acceptable agreement between the serum glucose levels and the glucose values obtained by the CGMS. Methods This was an Institutional Review Board approved prospective cohort study for the non– critical inpatient setting. Fifty-two hospitalized patients with diabetes were recruited. After informed consent was obtained, patients were instructed on the application and use of the CGMS. The data were assessed using a standard regression analysis and modified Bland Altman analysis. All analyses were conducted using SAS, release 3.8 Enterprise Edition (SAS Institute Inc., Cary, NC). Results Fifty-two subjects recruited into the study represented a sample of convenience. There were a total of 467 AccuChek-Libre pairs, The regression analysis showed a negative bias between. Libre and AccuChek, R2 = 0.83, with Libre glucose readings on average being lower than those of AccuChek. Using Bland-Altman analysis, 42% of the 467 Libre-AccuChek pairs had a difference in glucose reading more than 15%. Mean absolute relative difference (MARD) between Libre and AccuChek was 15.6%; mean relative difference (MRD) between Libre and AccuChek was −11.4%. The regression analysis showed a negative bias between Libre and serum glucose, R2 = 0.89. Using Bland Altman analysis, 36% of the 44 Libre-serum pairs had a difference in glucose reading more than 15%. Mean absolute relative difference (MARD) between Libre and serum glucose was 13.2%; mean relative difference (MRD) between Libre and serum glucose was −12.5%. A review of the data pairs showed that 71/467 Accuchek-Libre pairs had one result that was either below 70 mg/dl or above 200 mg/dl (combined American Diabetes Association-ADA-, American College of Physicians-ACP- and American College of Endocrinology-AACE- goals). Thus 85%, of these pairs would have yielded results that engendered the same intervention (e.g. treatment for hypoglycemia or hyperglycemia). Likewise 5/45 Serum-Libre pairs had one result that was either below 70 mg/dl or above 200 mg/dl; thus 89% of these pairs would have yielded results requiring the same intervention. Conclusion/Interpretation These findings confirm the existent literature and indicate acceptable agreement between the standard POCT and the CGMS as well as between serum glucose and the CGMS values. Because of the advantages of the CGMS over capillary blood glucose testing (reduced patient discomfort and reduced staff exposure to patients in isolation) CGMS use may be preferable to the current bedside capillary blood glucose testing in hospitalized patients with diabetes mellitus. As with other laboratory measures, clinical judgement needs to be exercised when the laboratory values are used to guide patient care.
Collapse
Affiliation(s)
| | - Tung Ming Leung
- Biostatistics Unit - Feinstein Institutes for Medical Research, Northwell Health, Great Neck, New York, USA
| | - Alyson K Myers
- Department of Medicine, Division of Endocrinology, North Shore University Hospital, Manhasset, New York, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.,Center for Health Innovations and Outcomes Research, Northwell Health, Manhasset, New York, USA
| | - Swetha Murthi
- Division of Endocrinology, Friedman Diabetes Institute Department of Medicine, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| | - Mulugeta Sarbanes
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Karina Ziskovich
- Division of Endocrinology, Friedman Diabetes Institute Department of Medicine, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| | - Martin Lesser
- Biostatistics Unit - Feinstein Institutes for Medical Research, Northwell Health, Great Neck, New York, USA
| | - Leonid Poretsky
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.,Division of Endocrinology, Friedman Diabetes Institute Department of Medicine, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| |
Collapse
|
49
|
Bode BW, Battelino T, Dovc K. Continuous and Intermittent Glucose Monitoring in 2020. Diabetes Technol Ther 2021; 23:S16-S31. [PMID: 34061633 DOI: 10.1089/dia.2021.2502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Bruce W Bode
- Atlanta Diabetes Associates and Emory University School of Medicine, Atlanta, GA
| | - Tadej Battelino
- UMC-University Children's Hospital Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dovc
- UMC-University Children's Hospital Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
50
|
Grunberger G, Sherr J, Allende M, Blevins T, Bode B, Handelsman Y, Hellman R, Lajara R, Roberts VL, Rodbard D, Stec C, Unger J. American Association of Clinical Endocrinology Clinical Practice Guideline: The Use of Advanced Technology in the Management of Persons With Diabetes Mellitus. Endocr Pract 2021; 27:505-537. [PMID: 34116789 DOI: 10.1016/j.eprac.2021.04.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the use of advanced technology in the management of persons with diabetes mellitus to clinicians, diabetes-care teams, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology (AACE) conducted literature searches for relevant articles published from 2012 to 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established AACE protocol for guideline development. MAIN OUTCOME MEASURES Primary outcomes of interest included hemoglobin A1C, rates and severity of hypoglycemia, time in range, time above range, and time below range. RESULTS This guideline includes 37 evidence-based clinical practice recommendations for advanced diabetes technology and contains 357 citations that inform the evidence base. RECOMMENDATIONS Evidence-based recommendations were developed regarding the efficacy and safety of devices for the management of persons with diabetes mellitus, metrics used to aide with the assessment of advanced diabetes technology, and standards for the implementation of this technology. CONCLUSIONS Advanced diabetes technology can assist persons with diabetes to safely and effectively achieve glycemic targets, improve quality of life, add greater convenience, potentially reduce burden of care, and offer a personalized approach to self-management. Furthermore, diabetes technology can improve the efficiency and effectiveness of clinical decision-making. Successful integration of these technologies into care requires knowledge about the functionality of devices in this rapidly changing field. This information will allow health care professionals to provide necessary education and training to persons accessing these treatments and have the required expertise to interpret data and make appropriate treatment adjustments.
Collapse
Affiliation(s)
| | - Jennifer Sherr
- Yale University School of Medicine, New Haven, Connecticut
| | - Myriam Allende
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | - Bruce Bode
- Atlanta Diabetes Associates, Atlanta, Georgia
| | | | - Richard Hellman
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | | | | | - David Rodbard
- Biomedical Informatics Consultants, LLC, Potomac, Maryland
| | - Carla Stec
- American Association of Clinical Endocrinology, Jacksonville, Florida
| | - Jeff Unger
- Unger Primary Care Concierge Medical Group, Rancho Cucamonga, California
| |
Collapse
|