1
|
de Jongh D, Lapré S, Özcan B, Zietse R, Bunnik EM, Massey EK. Clinical Translation and Implementation of a Bioartificial Pancreas Therapy: A Qualitative Study Exploring the Perspectives of People With Type 1 Diabetes. Transplant Direct 2024; 10:e1711. [PMID: 39328250 PMCID: PMC11427030 DOI: 10.1097/txd.0000000000001711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 09/28/2024] Open
Abstract
Background The development of a hybrid beta-cell replacement approach, referred to as a personalized, transplantable bioartificial pancreas (BAP), holds promise to treat type 1 diabetes (T1D). This interview study aimed to explore patients' expectations, needs, concerns, and considerations when considering to undergo a BAP transplantation. Research Design and Methods Semistructured interviews were conducted with 24 participants diagnosed with T1D. Data collection stopped once data saturation was reached. Audio recordings of the interviews were transcribed verbatim. The interviews were independently analyzed by 2 researchers. A qualitative content analysis using an inductive approach was used. Results Three main themes emerged as follow: (1) hoped-for benefits, (2) concerns and decision-making considerations, and (3) procedural aspects. First, the participants expected benefits across medical, psychological, and social domains. Over these 3 domains, 9 subthemes were identified, including improved clinical outcomes, a cure for diabetes, more headspace, emotional relief, a shift in responsibility, protection of privacy, improved flexibility in daily life, less visible diseases, and improved relationships with others. Second, concerns and considerations about undergoing a BAP transplant comprised adverse events, the functionality of the BAP, the surgery procedure, the biological materials used, the transplant location, and the intrusiveness associated with follow-up care. Finally, procedural considerations included equitable access, patient prioritization, and trust and control. Conclusions Incorporating insights from this study into the clinical development and implementation of the BAP is crucial to ensure alignment of the product and procedures with the needs and expectations of people with T1D.
Collapse
Affiliation(s)
- Dide de Jongh
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Silke Lapré
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Behiye Özcan
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Eline M Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Emma K Massey
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Kubota S, Sato A, Hosokawa M, Okubo Y, Takayama S, Kaneko A, Shimada Y, Asano Y, Sato Y, Yamazaki M, Komatsu M. Improving glycemic control by transitioning from the MiniMed TM 640G to 770G in Japanese adults with type 1 diabetes mellitus: a prospective, single-center, observational study. Endocr J 2024; 71:955-963. [PMID: 38897943 DOI: 10.1507/endocrj.ej24-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The effectiveness of a hybrid closed-loop (HCL) system in improving glycemic control is unclear in Japanese individuals. Therefore, we assessed the effect impact of the MiniMed 770G HCL system on glycemic control in this population. This prospective, single-center, 24-week observational study (registration number: UMIN000047394) enrolled 23 individuals with type 1 diabetes mellitus using the Medtronic MiniMed 640G system. The primary endpoint was the improvement in time in the range of 70-180 mg/dL after transitioning to the MiniMed 770G HCL system. We observed an increase in time in range (from 64.1 [55.8-69.5] to 70.9 [67.1-74.4] %, interquartile range 25-75%, p < 0.001) and a decrease in glycated hemoglobin level (from 7.4 [7.0-7.9] to 7.1 [6.8-7.4] %, p = 0.003). There was a significant reduction in time above the range (181-250 mg/dL: 25.8 [20.9-28.6] to 19.5 [17.1-22.1] %, p < 0.001; >251 mg/dL: 8.7 [4.0-13.0] to 4.7 [3.6-9.1] %, p < 0.001). Time below the range remained unchanged (54-69 mg/dL: 1.8 [0.4-2.4] to 2.1 [0.4-3.9] %, p = 0.24; <54 mg/dL: 0.2 [0.0-1.0] to 0.5 [0.1-1.3] %, p = 0.14). In a subgroup of 12 patients with a high HCL implementation rate, the basal insulin infusion decreased immediately after mealtime insulin administration and increased after approximately 120 minutes. The ratings from questionnaires assessing treatment burden, satisfaction, and quality of life remained unchanged. The MiniMed 770G HCL system improved glycemic control and optimized insulin delivery, particularly in patients with high implementation rates.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Diabetes, Endocrinology and Metabolism, Division of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Ai Sato
- Department of Diabetes, Endocrinology and Metabolism, Division of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Center of Diabetes, Okaya City Hospital, Okaya 394-8512, Japan
| | - Manami Hosokawa
- Department of Diabetes, Endocrinology and Metabolism, Division of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yosuke Okubo
- Department of Diabetes, Endocrinology and Metabolism, Division of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shohei Takayama
- Department of Diabetes, Endocrinology and Metabolism, Division of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Atsuko Kaneko
- Department of Diabetes, Endocrinology and Metabolism, Division of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yasuho Shimada
- Department of Diabetes, Endocrinology and Metabolism, Division of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yuki Asano
- Department of Diabetes, Endocrinology and Metabolism, Division of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yoshihiko Sato
- Department of Diabetes, Endocrinology and Metabolism, Division of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Internal of Medicine, Matsumoto City Hospital, Matsumoto 390-1401, Japan
| | - Masanori Yamazaki
- Department of Diabetes, Endocrinology and Metabolism, Division of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Mitsuhisa Komatsu
- Department of Diabetes, Endocrinology and Metabolism, Division of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| |
Collapse
|
3
|
Boucsein A, Zhou Y, Michaels V, Haszard JJ, Jefferies C, Wiltshire E, Paul RG, Parry-Strong A, Pasha M, Petrovski G, de Bock MI, Wheeler BJ. Automated Insulin Delivery for Young People with Type 1 Diabetes and Elevated A1c. NEJM EVIDENCE 2024; 3:EVIDoa2400185. [PMID: 39315863 DOI: 10.1056/evidoa2400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND Automated insulin delivery is the treatment of choice in adults with type 1 diabetes. Data are needed on the efficacy and safety of automated insulin delivery for children and youth with diabetes and elevated glycated hemoglobin levels. METHODS In this multicenter, open-label randomized controlled trial, we assigned patients with type 1 diabetes in a 1:1 ratio either to use an automated insulin delivery system (MiniMed 780G) or to receive usual diabetes care of multiple daily injections or non--automated pump therapy (control). The patients were children and youth (defined as 7 to 25 years of age) with elevated glycemia (glycated hemoglobin ≥8.5% with no upper limit). The primary outcome was the baseline-adjusted between-group difference in glycated hemoglobin at 13 weeks. RESULTS A total of 80 patients underwent randomization (37 to automated insulin delivery and 43 to control) and all patients completed the trial. At 13 weeks, the mean (±SD) glycated hemoglobin decreased from 10.5±1.9% to 8.1±1.8% in the automated insulin delivery group but remained relatively consistent in the control group, changing from 10.4±1.6% to 10.6±1.8% (baseline-adjusted between-group difference, -2.5 percentage points; 95% confidence interval [CI], -3.1 to -1.8; P<0.001). Patients in the automated insulin delivery group spent on average 8.4 hours more in the target glucose range of 70 to 180 mg/dl than those in the control group. One severe hypoglycemia event and two diabetic ketoacidosis events occurred in the control group, with no such events in the automated insulin delivery group. CONCLUSIONS In this trial of 80 children and youth with elevated glycated hemoglobin, automated insulin delivery significantly reduced glycated hemoglobin compared with usual diabetes care, without resulting in severe hypoglycemia or diabetic ketoacidosis events. (Funded by Lions Clubs New Zealand District 202F and others; Australian New Zealand Clinical Trials Registry number, ACTRN12622001454763.).
Collapse
Affiliation(s)
- Alisa Boucsein
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Yongwen Zhou
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Venus Michaels
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | | | - Craig Jefferies
- Starship Child Health, Te Whatu Ora Te Toka Tumai Auckland, Auckland, New Zealand
- Liggins Institute and Department of Paediatrics, University of Auckland, Auckland, New Zealand
| | - Esko Wiltshire
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
- Te Whatu Ora Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - Ryan G Paul
- Te Huatakia Waiora School of Health, University of Waikato, Hamilton, New Zealand
- Waikato Regional Diabetes Service, Te Whatu Ora Waikato, Hamilton, New Zealand
| | - Amber Parry-Strong
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | | | | | - Martin I de Bock
- Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand
- Te Whatu Ora Waitaha Canterbury, Christchurch, New Zealand
| | - Benjamin J Wheeler
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
- Te Whatu Ora Southern, Dunedin, New Zealand
| |
Collapse
|
4
|
Kadiyala N, Hovorka R, Boughton CK. Closed-loop systems: recent advancements and lived experiences. Expert Rev Med Devices 2024; 21:927-941. [PMID: 39390689 PMCID: PMC11493052 DOI: 10.1080/17434440.2024.2406901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Hybrid closed loop systems are now commercially available for people with type 1 diabetes and are increasingly being adopted into clinical practice. Real-world data reflect both the glycemic and quality of life benefits reported in trials. AREAS COVERED In this review, we summarize the key clinical efficacy and safety evidence for hybrid closed-loop systems, and the lived experience of users with type 1 diabetes across different age groups and during pregnancy. We comment on recent and emerging advancements addressing performance limitations and user experience, as well as the use of closed-loop systems in other types of diabetes. EXPERT OPINION Emerging technological developments in closed-loop systems focus on improving performance and increasing automation to further optimize glycemic outcomes and improve quality of life for users. Workforce developments are now urgently required to ensure widespread equitable access to this life-changing technology. Future applications of closed-loop technology are expected to expand into other types of diabetes including type 2 diabetes.
Collapse
Affiliation(s)
- Nithya Kadiyala
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Roman Hovorka
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Charlotte K. Boughton
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Suganuma Y, Ishiguro M, Ohno T, Nishimura R. Elevated urinary albumin predicts increased time in range after initiation of SGLT2 inhibitors in individuals with type 1 diabetes on sensor-augmented pump therapy. Diabetol Int 2024; 15:806-813. [PMID: 39469555 PMCID: PMC11512966 DOI: 10.1007/s13340-024-00743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/10/2024] [Indexed: 10/30/2024]
Abstract
Aims We aimed to investigate potential predictors of effectiveness of SGLT2 inhibitors (SGLT2i) in individuals with type 1 diabetes (T1D) on sensor-augmented pump (SAP) therapy. Methods We included individuals with T1D receiving SAP therapy at our hospital who were newly initiated on SGLT2i between 2019 and 2020 and were followed for at least 1 year. Data on BMI, blood tests, and continuous glucose monitoring (CGM) were compared before and 12 months after initiation of SGLT2i. Predictors of incremental increases in time in range (ΔTIR) were explored using a multiple regression analysis. Cutoff values for the predictors were determined using an ROC curve analysis. Results A total of 17 individuals (females, 70.6%; median age, 44.0 years) were included, excluding three individuals who discontinued SGLT2i due to side effects. During follow-up, their median BMI decreased significantly (P = 0.013), while no significant change was seen in their total daily dose of insulin, basal-to-total insulin ratio. Again, their HbA1c, TIR, and time above range (TAR) improved significantly (P = 0.004, P = 0.003, and P = 0.003, respectively), while their time below range (TBR) showed no significant change. The predictor of increased ΔTIR was high urinary albumin-to-creatinine ratio (UACR) at baseline (P = 0.026) only, with the cutoff value determined to be 28.0 mg/g Cr or higher (AUC = 0.82, P = 0.003). Conclusions It may be suggested that individuals with T1D on SAP therapy and having near-microalbuminuria or higher could be expected to show significant improvement in TIR. Supplementary Information The online version contains supplementary material available at 10.1007/s13340-024-00743-4.
Collapse
Affiliation(s)
- Yuka Suganuma
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Mizuki Ishiguro
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Takayuki Ohno
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461 Japan
| |
Collapse
|
6
|
Johannesdottir F, Tedtsen T, Cooke LM, Mahar S, Zhang M, Nustad J, Garrahan MA, Gehman SE, Yu EW, Bouxsein ML. Microvascular disease and early diabetes onset are associated with deficits in femoral neck bone density and structure among older adults with longstanding type 1 diabetes. J Bone Miner Res 2024; 39:1454-1463. [PMID: 39151032 PMCID: PMC11425704 DOI: 10.1093/jbmr/zjae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Adults with type 1 diabetes (T1D) have increased hip fracture risk, yet no studies have assessed volumetric bone density or structure at the hip in older adults with T1D. Here, we used previously collected 3D CT scans of the proximal femur from older adults with longstanding T1D and non-diabetic controls to identify bone deficits that may contribute to hip fracture in T1D. In this retrospective cohort study, we identified 101 adults with T1D and 181 age-, sex-, and race-matched non-diabetic controls (CON) who received abdominal or pelvis CT exams from 2010 to 2020. Among adults with T1D, 33 (33%) had mild-to-moderate nephropathy, 61 (60%) had neuropathy, and 71 (70%) had retinopathy. Within the whole cohort, adults with T1D tended to have lower FN density, though differences did not reach statistical significance. The subset of the T1D group who were diagnosed before age 15 had lower total BMC (-14%, TtBMC), cortical BMC (-19.5%, CtBMC), and smaller Ct cross-sectional area (-12.6, CtCSA) than their matched controls (p<.05 for all). Individuals with T1D who were diagnosed at a later age did not differ from controls in any bone outcome (p>.21). Furthermore, adults with T1D and nephropathy had lower FN aBMD (-10.6%), TtBMC (-17%), CtBMC (-24%), and smaller CtCSA (-15.4%) compared to matched controls (p<.05 for all). Adults with T1D and neuropathy had cortical bone deficits (8.4%-12%, p<.04). In summary, among older adults with T1D, those who were diagnosed before the age of 15 yr, as well as those with nephropathy and neuropathy had unfavorable bone outcomes at the FN, which may contribute to the high risk of hip fractures among patients with T1D. These novel observations highlight the longstanding detrimental impact of T1D when present during bone accrual and skeletal fragility as an additional complication of microvascular disease in individuals with T1D.
Collapse
Affiliation(s)
- Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02215, United States
| | - Trinity Tedtsen
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Laura M Cooke
- Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Sarah Mahar
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Meng Zhang
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Jordan Nustad
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Margaret A Garrahan
- Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Sarah E Gehman
- Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Elaine W Yu
- Harvard Medical School, Boston, MA 02215, United States
- Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02215, United States
- Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
7
|
Quintanilha M, Yamamoto JM, Aylward B, Feig DS, Lemieux P, Murphy HR, Sigal RJ, Ho J, Virtanen H, Crawford S, Donovan LE, Bell RC. Women's and Partners' Experiences With a Closed-loop Insulin Delivery System to Manage Type 1 Diabetes in the Postpartum Period. Can J Diabetes 2024:S1499-2671(24)00176-X. [PMID: 39236999 DOI: 10.1016/j.jcjd.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Closed-loop insulin delivery has the potential to offer women with type 1 diabetes a break from intense diabetes self-care efforts postpartum. Our aim in this study was to explore the views and opinions of hybrid closed-loop users and their partners in the first 24 weeks postpartum. METHODS This qualitative study was embedded in a controlled study of women with type 1 diabetes randomized to closed-loop insulin delivery (MiniMed™ 670G or 770G) or sensor-augmented pump use for 1 to 11 weeks 6 days postpartum, with all on closed-loop delivery from 12 to 24 weeks postpartum. Semistructured interviews were conducted with 16 study participants and their partners at 12 and 24 weeks postpartum. Thematic analyses were used to examine participants' and partners' experiences. RESULTS Participants' positive perceptions of closed-loop use related to reduced hypoglycemia, in contrast to previous experiences with nonautomated insulin delivery. These perceptions were balanced against frustrations with the system, allowing blood glucose levels to be higher than desired. Closed-loop use did not influence infant feeding choice, but infant feeding and care impacted participants' diabetes management. Partners expressed uncertainty about the closed loop taking away control from participants who were highly skilled with diabetes self-management. CONCLUSIONS Participants reported that closed-loop insulin delivery resulted in less time spent in hypoglycemia when compared with the previously used nonautomated delivery. Yet, participants desired a greater understanding of the workings of the closed-loop algorithm. Our study provides potential users with realistic expectations about the experience with the MiniMed 670G or 770G closed-loop system in the postpartum period.
Collapse
Affiliation(s)
- Maira Quintanilha
- Division of Human Nutrition, Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer M Yamamoto
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Breanne Aylward
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Denice S Feig
- Department of Medicine University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada; Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Patricia Lemieux
- Department of Medicine, University Laval, Québec City, Québec, Canada
| | - Helen R Murphy
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Ronald J Sigal
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Josephine Ho
- Department of Pediatrics, Endocrinology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Heidi Virtanen
- Department of Pediatrics, Endocrinology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Susan Crawford
- Alberta Perinatal Health Program, Alberta Health Services, Calgary, Alberta, Canada
| | - Lois E Donovan
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| | - Rhonda C Bell
- Li Ka Shing Centre for Health Research Innovation, Division of Human Nutrition, Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Rubin-Falcone H, Lee JM, Wiens J. Learning control-ready forecasters for Blood Glucose Management. Comput Biol Med 2024; 180:108995. [PMID: 39126789 PMCID: PMC11426357 DOI: 10.1016/j.compbiomed.2024.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Type 1 diabetes (T1D) presents a significant health challenge, requiring patients to actively manage their blood glucose (BG) levels through regular bolus insulin administration. Automated control solutions based on machine learning (ML) models could reduce the need for manual patient intervention. However, the accuracy of current models falls short of what is needed. This is due in part to the fact that these models are often trained on data collected using a basal bolus (BB) strategy, which results in substantial entanglement between bolus insulin and carbohydrate intake. Under standard training approaches, this entanglement can lead to inaccurate forecasts in a control setting, ultimately resulting in poor BG management. To address this, we propose a novel algorithm for training BG forecasters that disentangles the effects of insulin and carbohydrates. By exploiting correction bolus values and leveraging the monotonic effect of insulin on BG, our method accurately captures the independent effects of insulin and carbohydrates on BG. Using an FDA-approved simulator, we evaluated our approach on 10 individuals across 30 days of data. Our approach achieved on average higher time in range compared to standard approaches (81.1% [95% confidence interval (CI) 80.3,81.9] vs 53.6% [95%CI 52.7,54.6], p<0.001), indicating that our approach is able to reliably maintain healthy BG levels in simulated individuals, while baseline approaches are not. Utilizing proxy metrics, our approach also demonstrates potential for improved control on three real world datasets, paving the way for advancements in ML-based BG management.
Collapse
Affiliation(s)
- Harry Rubin-Falcone
- Division of Computer Science and Engineering, University of Michigan, 2260 Hayward St, Ann Arbor, 48109, MI, USA.
| | - Joyce M Lee
- Division of Pediatric Endocrinology, University of Michigan, 1540 E Hospital Dr, Ann Arbor, 48109, MI, USA
| | - Jenna Wiens
- Division of Computer Science and Engineering, University of Michigan, 2260 Hayward St, Ann Arbor, 48109, MI, USA
| |
Collapse
|
9
|
de Jong LA, Li X, Emamipour S, van der Werf S, Postma MJ, van Dijk PR, Feenstra TL. Evaluating the Cost-Utility of Continuous Glucose Monitoring in Individuals with Type 1 Diabetes: A Systematic Review of the Methods and Quality of Studies Using Decision Models or Empirical Data. PHARMACOECONOMICS 2024; 42:929-953. [PMID: 38904911 PMCID: PMC11343921 DOI: 10.1007/s40273-024-01388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION This review presents a critical appraisal of differences in the methodologies and quality of model-based and empirical data-based cost-utility studies on continuous glucose monitoring (CGM) in type 1 diabetes (T1D) populations. It identifies key limitations and challenges in health economic evaluations on CGM and opportunities for their improvement. METHODS The review and its documentation adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews. Searches for articles published between January 2000 and January 2023 were conducted using the MEDLINE, Embase, Web of Science, Cochrane Library, and Econlit databases. Published studies using models and empirical data to evaluate the cost utility of all CGM devices used by T1D patients were included in the search. Two authors independently extracted data on interventions, populations, model settings (e.g., perspectives and time horizons), model types and structures, clinical outcomes used to populate the model, validation, and uncertainty analyses. They subsequently met to confirm consensus. Quality was assessed using the Philips checklist for model-based studies and the Consensus Health Economic Criteria (CHEC) checklist for empirical studies. Model validation was assessed using the Assessment of the Validation Status of Health-Economic decision models (AdViSHE) checklist. The extracted data were used to generate summary tables and figures. The study protocol is registered with PROSPERO (CRD42023391284). RESULTS In total, 34 studies satisfied the selection criteria, two of which only used empirical data. The remaining 32 studies applied 10 different models, with a substantial majority adopting the CORE Diabetes Model. Model-based studies often lacked transparency, as their assumptions regarding the extrapolation of treatment effects beyond available evidence from clinical studies and the selection and processing of the input data were not explicitly stated. Initial scores for disagreements concerning checklists were relatively high, especially for the Philips checklist. Following their resolution, overall quality scores were moderate at 56%, whereas model validation scores were mixed. Strikingly, costing approaches differed widely across studies, resulting in little consistency in the elements included in intervention costs. DISCUSSION AND CONCLUSION The overall quality of studies evaluating CGM was moderate. Potential areas of improvement include developing systematic approaches for data selection, improving uncertainty analyses, clearer reporting, and explaining choices for particular modeling approaches. Few studies provided the assurance that all relevant and feasible options had been compared, which is required by decision makers, especially for rapidly evolving technologies such as CGM and insulin administration. High scores for disagreements indicated that several checklists contained questions that were difficult to interpret consistently for quality assessment. Therefore, simpler but comprehensive quality checklists may be needed for model-based health economic evaluation studies.
Collapse
Affiliation(s)
- Lisa A de Jong
- Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xinyu Li
- Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Sajad Emamipour
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjoukje van der Werf
- Central Medical Library, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten J Postma
- Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Economics, Econometrics and Finance, Faculty of Economics and Business, University of Groningen, Groningen, The Netherlands
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Peter R van Dijk
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Internal Medicine, Diabetes Center, Isala, Zwolle, The Netherlands
| | - Talitha L Feenstra
- Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
10
|
Martin-Payo R, Fernandez-Alvarez MDM, García-García R, Pérez-Varela Á, Surendran S, Riaño-Galán I. Effectiveness of a hybrid closed-loop system for children and adolescents with type 1 diabetes during physical exercise: A cross-sectional study in real life. An Pediatr (Barc) 2024; 101:183-189. [PMID: 39112134 DOI: 10.1016/j.anpede.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE The aim of the study was to describe how physical exercise affects metabolic control, insulin requirements and carbohydrate intake in children who use hybrid closed-loop systems. METHODS Cross-sectional study design. The sample included 21 children and adolescents diagnosed with type 1 diabetes. During the study, participants were monitored for a period of 7 days to gather comprehensive data on these factors. RESULTS Nine participants (42.9%) had switched to exercise mode to raise the target glucose temporarily to 150 mg/dL. The HbA1c values ranged from 5.5% to 7.9% (median, 6.5%; IQR, 0.75). The percentage of time within the target range of 70-180 mg/dL was similar; however, there was an increased duration of hyperglycaemia and more autocorrections on exercise days. The time spent in severe hyperglycaemia (>250 mg/dL) increased by 2.7% in exercise compared to non-exercise days (P = .02). It is worth noting that hypoglycaemic episodes did not increase during the exercise days compared with non-exercise days. CONCLUSION The hybrid closed-loop system was effective and safe in children and adolescents with type 1 diabetes during the performance of competitive sports in real life.
Collapse
Affiliation(s)
- Ruben Martin-Payo
- Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Maria Del Mar Fernandez-Alvarez
- Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Rebeca García-García
- Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Endocrinología Pediátrica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ángela Pérez-Varela
- Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Oviedo, Spain
| | - Shelini Surendran
- Departamento de Biociencias, Facultad de Ciencias Médicas y de La Salud, University of Surrey, United Kingdom
| | - Isolina Riaño-Galán
- Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Endocrinología Pediátrica, Hospital Universitario Central de Asturias, Oviedo, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
11
|
Goncharov A, Gorocs Z, Pradhan R, Ko B, Ajmal A, Rodriguez A, Baum D, Veszpremi M, Yang X, Pindrys M, Zheng T, Wang O, Ramella-Roman JC, McShane MJ, Ozcan A. Insertable Glucose Sensor Using a Compact and Cost-Effective Phosphorescence Lifetime Imager and Machine Learning. ACS NANO 2024; 18:23365-23379. [PMID: 39137319 PMCID: PMC11363142 DOI: 10.1021/acsnano.4c06527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Optical continuous glucose monitoring (CGM) systems are emerging for personalized glucose management owing to their lower cost and prolonged durability compared to conventional electrochemical CGMs. Here, we report a computational CGM system, which integrates a biocompatible phosphorescence-based insertable biosensor and a custom-designed phosphorescence lifetime imager (PLI). This compact and cost-effective PLI is designed to capture phosphorescence lifetime images of an insertable sensor through the skin, where the lifetime of the emitted phosphorescence signal is modulated by the local concentration of glucose. Because this phosphorescence signal has a very long lifetime compared to tissue autofluorescence or excitation leakage processes, it completely bypasses these noise sources by measuring the sensor emission over several tens of microseconds after the excitation light is turned off. The lifetime images acquired through the skin are processed by neural network-based models for misalignment-tolerant inference of glucose levels, accurately revealing normal, low (hypoglycemia) and high (hyperglycemia) concentration ranges. Using a 1 mm thick skin phantom mimicking the optical properties of human skin, we performed in vitro testing of the PLI using glucose-spiked samples, yielding 88.8% inference accuracy, also showing resilience to random and unknown misalignments within a lateral distance of ∼4.7 mm with respect to the position of the insertable sensor underneath the skin phantom. Furthermore, the PLI accurately identified larger lateral misalignments beyond 5 mm, prompting user intervention for realignment. The misalignment-resilient glucose concentration inference capability of this compact and cost-effective PLI makes it an appealing wearable diagnostics tool for real-time tracking of glucose and other biomarkers.
Collapse
Affiliation(s)
- Artem Goncharov
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, California 90095, United States
| | - Zoltan Gorocs
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, California 90095, United States
| | - Ridhi Pradhan
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Brian Ko
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Ajmal Ajmal
- Department
of Biomedical Engineering, Florida International
University, Miami, Florida 33199, United States
| | - Andres Rodriguez
- Department
of Biomedical Engineering, Florida International
University, Miami, Florida 33199, United States
| | - David Baum
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
| | - Marcell Veszpremi
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
| | - Xilin Yang
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, California 90095, United States
| | - Maxime Pindrys
- Department
of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianle Zheng
- Department
of Computer Science, University of California, Los Angeles, California 90095, United States
| | - Oliver Wang
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
| | - Jessica C. Ramella-Roman
- Department
of Biomedical Engineering, Florida International
University, Miami, Florida 33199, United States
| | - Michael J. McShane
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| | - Aydogan Ozcan
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, California 90095, United States
- Department
of Surgery, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Elbarbary N, Alguwaihes A, Zarif H, Hassanein M, Deeb A, Petrovski G, Al Dahash R, Alamoudi R, Hussain S, Ibrahim M, Shaikh S, Zainudin SB, Chaar W, van den Heuvel T, Al-Sofiani ME. MiniMed 780G System Use in Type 1 Diabetes During Ramadan Intermittent Fasting: A Systematic Literature Review and Expert Recommendations. Diabetes Technol Ther 2024. [PMID: 39052333 DOI: 10.1089/dia.2024.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
This article offers a systematic literature review (SLR) on the use of the MiniMed 780G automated insulin delivery system (MM780G) in people with type 1 diabetes (PwT1D) during Ramadan intermittent fasting. It also presents consensus recommendations on the use of MM780G during the Ramadan period. The SLR was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology. The recommendations resulted from a consensus-forming process involving a panel of experts. The process considered evidence found in the SLR as well as the expert opinions. In total, six studies were included in the SLR. The evidence and expert opinions led to recommendations related to (a) pre-Ramadan counseling of MM780G users who plan to fast; (b) suggested MM780G settings, meal announcement strategy, and safety aspects during Ramadan (including a contingency plan); and (c) post-Ramadan transition into and out of Eid-al-Fitr festivities. The SLR findings showed that the MM780G maintains glycemic control at target in PwT1D during Ramadan (meeting continuous glucose monitoring-based clinical targets proposed by the International Consensus on Time-in-Range) while ensuring low rates of hypoglycemia and diabetic ketoacidosis. Automated insulin delivery also helps PwT1D fast more days of Ramadan compared with users of other less advanced modalities of treatment. Pre-Ramadan guidance on specific aspects of the MM780G along with the International Diabetes Federation and Diabetes and Ramadan International Alliance counseling guidelines is recommended. There is still a challenge with post-Iftar hyperglycemia, which could potentially be mitigated by following the recommendations outlined in this article.
Collapse
Affiliation(s)
- Nancy Elbarbary
- Diabetes and Endocrinology Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abdullah Alguwaihes
- Division of Endocrinology, Department of Internal Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Diabetes Center, Dallah Hospital, Riyadh, Saudi Arabia
| | - Hawazen Zarif
- Endocrinology section, Department of Medicine, King Abdulaziz Medical City, King Abdullah International Medical Research Centre, Ministry of National Guards Health Affairs, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mohamed Hassanein
- Endocrine Department, Dubai Hospital, Dubai Academic Health Cooperation, Dubai, United Arab Emirates
- College of Medicine, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | - Asma Deeb
- Paediatric Endocrinology Division, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Goran Petrovski
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
- College of Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Raed Al Dahash
- Department of medicine, king Abdulaziz medical city-National Guard health Affairs, Riyadh, Saudi Arabia
- Department of medicine, King Saud Bin Abdulaziz for Health Science University, Riyadh, Saudi Arabia
| | - Reem Alamoudi
- Department of Medicine, King Abdulaziz Medical City, King Abdullah International Research Centre, Ministry of National Guards Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sufyan Hussain
- Department of Diabetes and Endocrinology, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Diabetes, School of Cardiovascular, Metabolic Medicine and Sciences, King's College London, London, United Kingdom
- Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, United Kingdom
| | - Mahmoud Ibrahim
- EDC Center for Diabetes Education, Charlotte, North Carolina, USA
| | - Shehla Shaikh
- Department of Diabetology & Endocrinology, Saifee Hospital, Mumbai, India
| | - Sueziani Binte Zainudin
- Department of Endocrinology, Department of General Medicine, Sengkang General Hospital, Singapore, Singapore
| | - Wael Chaar
- Clinical Research and Medical Science, Medtronic Saudi Arabia, Riyadh, Saudi Arabia
| | - Tim van den Heuvel
- Diabetes Operating Unit, Medtronic International Trading Sarl, Tolochenaz, Switzerland
| | - Mohammed E Al-Sofiani
- Division of Endocrinology, Department of Internal Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Mazzotta FA, Lucaccini Paoli L, Rizzi A, Tartaglione L, Leo ML, Popolla V, Barberio A, Viti L, Di Leo M, Pontecorvi A, Pitocco D. Unmet needs in the treatment of type 1 diabetes: why is it so difficult to achieve an improvement in metabolic control? Nutr Diabetes 2024; 14:58. [PMID: 39095349 PMCID: PMC11297181 DOI: 10.1038/s41387-024-00319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The development of advanced diabetes technology has permitted persons with type 1 diabetes mellitus to improve metabolic control significantly, particularly with the development of advanced hybrid closed-loop systems which have improved the quality of life by reducing hypoglycemia, decreasing macroangiopathy and microangiopathy-related complications, ameliorating HbA1c and improving glycemic variability. Despite the progression made over the past few decades, there is still significant margin for improvement to be made in terms of attaining appropriate metabolic control. Various factors are responsible for poor glycemic control including inappropriate carbohydrate counting, repeated bouts of hypoglycemia, hypoglycemia unawareness, cutaneous manifestations due to localized insulin use and prolonged use of diabetes technology, psychosocial comorbidities such as eating disorders or 'diabulimia', the coexistence of insulin resistance among people with type 1 diabetes and the inability to mirror physiological endogenous pancreatic insulin secretion appropriately. Hence, the aim of this review is to highlight and overcome the barriers in attaining appropriate metabolic control among people with type 1 diabetes by driving research into adjunctive treatment for coexistent insulin resistance and developing new advanced diabetic technologies to preserve β cell function and mirror as much as possible endogenous pancreatic functions.
Collapse
Affiliation(s)
- Francesco Antonio Mazzotta
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lorenzo Lucaccini Paoli
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Alessandro Rizzi
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Linda Tartaglione
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Laura Leo
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Valentina Popolla
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Annarita Barberio
- Department of Internal Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Viti
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mauro Di Leo
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Dario Pitocco
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
14
|
Sheng B, Pushpanathan K, Guan Z, Lim QH, Lim ZW, Yew SME, Goh JHL, Bee YM, Sabanayagam C, Sevdalis N, Lim CC, Lim CT, Shaw J, Jia W, Ekinci EI, Simó R, Lim LL, Li H, Tham YC. Artificial intelligence for diabetes care: current and future prospects. Lancet Diabetes Endocrinol 2024; 12:569-595. [PMID: 39054035 DOI: 10.1016/s2213-8587(24)00154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
Artificial intelligence (AI) use in diabetes care is increasingly being explored to personalise care for people with diabetes and adapt treatments for complex presentations. However, the rapid advancement of AI also introduces challenges such as potential biases, ethical considerations, and implementation challenges in ensuring that its deployment is equitable. Ensuring inclusive and ethical developments of AI technology can empower both health-care providers and people with diabetes in managing the condition. In this Review, we explore and summarise the current and future prospects of AI across the diabetes care continuum, from enhancing screening and diagnosis to optimising treatment and predicting and managing complications.
Collapse
Affiliation(s)
- Bin Sheng
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China; Key Laboratory of Artificial Intelligence, Ministry of Education, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Krithi Pushpanathan
- Centre of Innovation and Precision Eye Health, Department of Ophthalmology, National University of Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhouyu Guan
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Quan Hziung Lim
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhi Wei Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Samantha Min Er Yew
- Centre of Innovation and Precision Eye Health, Department of Ophthalmology, National University of Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Yong Mong Bee
- Department of Endocrinology, Singapore General Hospital, Singapore; SingHealth Duke-National University of Singapore Diabetes Centre, Singapore Health Services, Singapore
| | - Charumathi Sabanayagam
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Nick Sevdalis
- Centre for Behavioural and Implementation Science Interventions, National University of Singapore, Singapore
| | | | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore; Institute for Health Innovation and Technology, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore
| | - Jonathan Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Weiping Jia
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Elif Ilhan Ekinci
- Australian Centre for Accelerating Diabetes Innovations, Melbourne Medical School and Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Department of Endocrinology, Austin Health, Melbourne, VIC, Australia
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron University Hospital and Vall d'Hebron Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lee-Ling Lim
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Asia Diabetes Foundation, Hong Kong Special Administrative Region, China
| | - Huating Li
- Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China.
| | - Yih-Chung Tham
- Centre of Innovation and Precision Eye Health, Department of Ophthalmology, National University of Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| |
Collapse
|
15
|
Teixeira T, Godoi A, Romeiro P, Novaes JVLC, de Freitas Faria FM, Pereira S, Lamounier RN. Efficacy of automated insulin delivery in pregnant women with type 1 diabetes: a meta-analysis and trial sequential analysis of randomized controlled trials. Acta Diabetol 2024; 61:831-840. [PMID: 38700546 DOI: 10.1007/s00592-024-02284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Automated insulin delivery (AID) devices have shown to be a promising treatment to improve glycemic control in patients with type 1 diabetes mellitus (T1DM). However, its efficacy in pregnant women with T1DM remains uncertain. METHODS PubMed, Scopus, Cochrane Central and ClinicalTrials.gov were systematically searched for randomized controlled trials (RCTs) comparing AID to standard care (SC), defined as use of sensor-augmented pump and multiple daily insulin injections. Outcomes included time in range (TIR), nocturnal TIR, time in hypoglycemic and hyperglycemic ranges, among others. Sensitivity and trial sequential analyses (TSA) were performed. PROSPERO ID CRD42023474398. RESULTS We included five RCTs with a total of 236 pregnant women, of whom 117 (50.6%) received AID. There was a significant increase in nocturnal TIR (mean difference [MD] 12.69%; 95% CI 8.74-16.64; p < 0.01; I2 = 0%) and a decrease in glucose variability (standard deviation of glucose; MD -2.91; 95% CI -5.13 to -0.69; p = 0.01; I2 = 0%). No significant differences were observed for TIR, HBGI, LGBI, mean glucose and time spent in hyperglycemia and hypoglycemia. Regarding TSA, the statistical significance obtained in nocturnal TIR was conclusive and with minimal risk of a type I error. CONCLUSION Our findings suggest that AID systems can significantly improve nocturnal glycemic control and potentially reduce glycemic variability in pregnant women with T1DM, with no effect in the risk of hypoglycemia and hyperglycemia compared with current insulin treatments.
Collapse
Affiliation(s)
- Tamara Teixeira
- Hospital of Clinics, UFMG, Belo Horizonte, Minas Gerais, Brazil.
| | - Amanda Godoi
- Cardiff University School of Medicine, Neuadd Meirionnydd, Cardiff, UK
| | - Pedro Romeiro
- University Center of Maceió, UNIMA, AFYA, Maceió, Alagoas, Brazil
| | | | | | - Sacha Pereira
- Faculty of Medical Sciences of Paraiba, AFYA, João Pessoa, FCM, Paraíba, Brazil
| | - Rodrigo Nunes Lamounier
- Internal Medicine Department, Federal University of Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
16
|
Jalilova A, Pilan BŞ, Demir G, Özbaran B, Balkı HG, Arslan E, Köse SG, Özen S, Darcan Ş, Gökşen D. The psychosocial outcomes of advanced hybrid closed-loop system in children and adolescents with type 1 diabetes. Eur J Pediatr 2024; 183:3095-3103. [PMID: 38661816 PMCID: PMC11192657 DOI: 10.1007/s00431-024-05551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/26/2024]
Abstract
The study was carried out to determine the psychosocial outcomes of advanced hybrid closed-loop (AHCL) systems in children and adolescents with type 1 diabetes (T1D). Single-center and cohort study with a duration 6 months consisted of 60 children and adolescents with T1D. Standard clinical procedures, including both glycemic indicators, e.g., sensor-measured time within the 70-180 mg/dL range and glycated hemoglobin (HbA1c) levels, and psychosocial metrics were used for data collection. The psychosocial metrics included the Pediatric Quality of Life Inventory (PedsQL) 3.0 Diabetes Module for both children (8-12 years) and parents; the Quality of Life for Youth scale for adolescents (13-18 years); the Strengths and Difficulties Questionnaire (SDQ); the Hypoglycemia Fear Survey for Children (HFS-C); the Revised Child Anxiety and Depression Scale (R-CADS); and AHCLS-specific DTSEQ satisfaction and expectation survey. These metrics were evaluated at the baseline and after 6 months of AHCL use. Of the 60 children and adolescents with T1D for whom the AHCL system was utilized, 41 of them, 23 female and 18 male, completed the surveys. The mean age of the 41 children and adolescents was 12.5 ± 3.2 (min. 6.7, max. 18) years. The time spent within the target glycemic range, i.e., time-in-range (TIR), improved from 76.9 ± 9% at the baseline to 80.4 ± 5% after 6 months of AHCL system use (p = 0.03). Additionally, HbA1c levels reduced from 7.1% ± 0.7% at the baseline to 6.8% ± 0.8% after 6 months of AHCL system use (p = 0.03). The most notable decline in HbA1c was observed in participants with higher baseline HbA1c levels. All patients' HFS-C and AHCL system-specific DTSEQ satisfaction and expectation survey scores were within the normal range at the baseline and remained unchanged during the follow-up period. No significant difference was found in the R-CADS scores of children and adolescents between baseline and after 6 months of AHCL system use. However, there was a significant decrease in the R-CADS scores of the parents. Patients' PedsQL scores were high both at the baseline and after 6 months. The SDQ scores were high at baseline, and there was no significant improvement at the end of 6 months. Conclusion: This is the first study to investigate in detail the psychosocial outcomes of AHCL system use in T1D patients and their parents. Although state-of-the-art technologies such as AHCL provide patients with more flexibility in their daily lives and information about glucose fluctuations, the AHCL resulted in a TIR above the recommended target range without a change in QOL, HFS-C, SDQ, and R-CADS scores. The scores obtained from the R-CADS conducted by the parents of the children indicated that the use of pumps caused a psychological improvement in the long term, with a significant decrease in the R-CADS scores of the children and adolescents with T1D. What is Known: • Previous studies focused on clinical outcomes of AHCL systems in pediatric T1D patients, showing glycemic control improvements. • Limited attention given to psychosocial outcomes of AHCL systems in children and adolescents with T1D. • Crucial psychosocial factors like quality of life, emotional well-being, and fear of hypoglycemia underexplored in AHCL system context. What is New: • First study to comprehensively examine psychosocial outcomes of AHCL systems in pediatric T1D patients. • Study's robust methodology sets new standard for diabetes technology research and its impact on qualiy of life.
Collapse
Affiliation(s)
- Arzu Jalilova
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey.
| | - Birsen Şentürk Pilan
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Günay Demir
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Burcu Özbaran
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Hanife Gul Balkı
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Emrullah Arslan
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sezen Gökcen Köse
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Samim Özen
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Şükran Darcan
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Damla Gökşen
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
17
|
Galindo RJ, Aleppo G, Parkin CG, Baidal DA, Carlson AL, Cengiz E, Forlenza GP, Kruger DF, Levy C, McGill JB, Umpierrez GE. Increase Access, Reduce Disparities: Recommendations for Modifying Medicaid CGM Coverage Eligibility Criteria. J Diabetes Sci Technol 2024; 18:974-987. [PMID: 36524477 PMCID: PMC11307217 DOI: 10.1177/19322968221144052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Numerous studies have demonstrated the clinical value of continuous glucose monitoring (CGM) in type 1 diabetes (T1D) and type 2 diabetes (T2D) populations. However, the eligibility criteria for CGM coverage required by the Centers for Medicare & Medicaid Services (CMS) ignore the conclusive evidence that supports CGM use in various diabetes populations that are currently deemed ineligible. In an earlier article, we discussed the limitations and inconsistencies of the agency's CGM eligibility criteria relative to current scientific evidence and proposed practice solutions to address this issue and improve the safety and care of Medicare beneficiaries with diabetes. Although Medicaid is administered through CMS, there is no consistent Medicaid policy for CGM coverage in the United States. This article presents a rationale for modifying and standardizing Medicaid CGM coverage eligibility across the United States.
Collapse
Affiliation(s)
- Rodolfo J. Galindo
- Emory University School of Medicine, Atlanta, GA, USA
- Center for Diabetes Metabolism Research, Emory University Hospital Midtown, Atlanta, GA, USA
- Hospital Diabetes Taskforce, Emory Healthcare System, Atlanta, GA, USA
| | - Grazia Aleppo
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - David A. Baidal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anders L. Carlson
- International Diabetes Center, Minneapolis, MN, USA
- Regions Hospital & HealthPartners Clinics, St. Paul, MN, USA
- Diabetes Education Programs, HealthPartners and Stillwater Medical Group, Stillwater, MN, USA
- University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eda Cengiz
- Pediatric Diabetes Program, Division of Pediatric Endocrinology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Gregory P. Forlenza
- Barbara Davis Center, Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado Denver, Denver, CO, USA
| | - Davida F. Kruger
- Division of Endocrinology, Diabetes, Bone & Mineral, Henry Ford Health System, Detroit, MI, USA
| | - Carol Levy
- Division of Endocrinology, Diabetes, and Metabolism, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Diabetes Center and T1D Clinical Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janet B. McGill
- Division of Endocrinology, Metabolism & Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Guillermo E. Umpierrez
- Division of Endocrinology, Metabolism, Emory University School of Medicine, Atlanta, GA, USA
- Diabetes and Endocrinology, Grady Memorial Hospital, Atlanta, GA, USA
| |
Collapse
|
18
|
Atik-Altinok Y, Mansuroglu Y, Demir G, Balki HG, Ozen S, Darcan S, Goksen D. Does minimed 780G TM insulin pump system affect energy and nutrient intake?: long-term follow-up study. Eur J Clin Nutr 2024; 78:615-621. [PMID: 38459160 PMCID: PMC11230892 DOI: 10.1038/s41430-024-01422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE We evaluate the energy and nutrient intake of children, adolescents, and young adults with type 1 diabetes (T1D) who started to use automated insulin delivery (AID) systems before the transition and during follow-up for 6 months in a real-world setting. RESEARCH DESIGN AND METHODS Twenty-nine people with T1D (PwD) who started to use MiniMed 780GTM participated in the study. Participants' 3-day food diaries and glycemic outcomes were analyzed at baseline and after (the 3rd and 6th month) switching to an advanced hybrid closed-loop system (a-HCL). RESULTS Mean carbohydrate, protein, and fat intake (energy %) at baseline were 49.1 ± 4.5, 17.8 ± 2.3, and 33.0 ± 3.9, respectively, and there were no statistically significant differences during the follow-up period. However, low fiber (<14 g/1000 kcal) and high saturated fat (>10 energy %) intake in PwD, both baseline and follow-up period. The median auto-correction bolus ratio was 14.0 (9.5)% at auto mode after 14 days, 18.0 (11.0)% at the 3rd month, and 19.0 (7.5)% at the 6th month (p < 0.05). A negative correlation was present between auto-correction boluses with TIR in both the 3rd (r:-0.747, p < 0.01) and 6th month (r:-0.395, p < 0.05). A negative correlation was present between auto-correction boluses with TIR in both the 3rd (r:-0.747, p < 0.01) and 6th month (r:-0.395, p < 0.05). CONCLUSIONS a-HCLS systems offer better glycemic control. Using the Minimed 780 GTM insulin pump system didn't change the energy and nutrient intake of PwD. This real-world follow-up study suggests that children, adolescents, and young adults with T1D consume saturated fat above and fiber intake lower than recommendations independent of the use of a-HCLS. CLINICAL TRIALS REGISTRATION NUMBER NCT05666596.
Collapse
Affiliation(s)
- Yasemin Atik-Altinok
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Ege University, İzmir, Turkey.
| | - Yelda Mansuroglu
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Gunay Demir
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Hanife Gul Balki
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Samim Ozen
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Sukran Darcan
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Damla Goksen
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Ege University, İzmir, Turkey
| |
Collapse
|
19
|
Laugesen C, Ritschel T, Ranjan AG, Hsu L, Jørgensen JB, Svensson J, Ekhlaspour L, Buckingham B, Nørgaard K. Impact of Missed and Late Meal Boluses on Glycemic Outcomes in Automated Insulin Delivery-Treated Children and Adolescents with Type 1 Diabetes: A Two-Center, Population-Based Cohort Study. Diabetes Technol Ther 2024. [PMID: 38805311 DOI: 10.1089/dia.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Objective: To evaluate the impact of missed or late meal boluses (MLBs) on glycemic outcomes in children and adolescents with type 1 diabetes using automated insulin delivery (AID) systems. Research Design and Methods: AID-treated (Tandem Control-IQ or Medtronic MiniMed 780G) children and adolescents (aged 6-21 years) from Stanford Medical Center and Steno Diabetes Center Copenhagen with ≥10 days of data were included in this two-center, binational, population-based, retrospective, 1-month cohort study. The primary outcome was the association between the number of algorithm-detected MLBs and time in target glucose range (TIR; 70-180 mg/dL). Results: The study included 189 children and adolescents (48% females with a mean ± standard deviation age of 13 ± 4 years). Overall, the mean number of MLBs per day in the cohort was 2.2 ± 0.9. For each additional MLB per day, TIR decreased by 9.7% points (95% confidence interval [CI] 11.3; 8.1), and compared with the quartile with fewest MLBs (Q1), the quartile with most (Q4) had 22.9% less TIR (95% CI: 27.2; 18.6). The age-, sex-, and treatment modality-adjusted probability of achieving a TIR of >70% in Q4 was 1.4% compared with 74.8% in Q1 (P < 0.001). Conclusions: MLBs significantly impacted glycemic outcomes in AID-treated children and adolescents. The results emphasize the importance of maintaining a focus on bolus behavior to achieve a higher TIR and support the need for further research in technological or behavioral support tools to handle MLBs.
Collapse
Affiliation(s)
- Christian Laugesen
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Tobias Ritschel
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ajenthen G Ranjan
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Liana Hsu
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - John Bagterp Jørgensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jannet Svensson
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Gentofte, Denmark
| | - Laya Ekhlaspour
- Division of Endocrinology, Department of Pediatrics, University of San Francisco, San Francisco, California, USA
| | - Bruce Buckingham
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Kirsten Nørgaard
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
20
|
Baxter F, Baillie N, Dover A, Stimson RH, Gibb F, Forbes S. A cross-sectional questionnaire study: Impaired awareness of hypoglycaemia remains prevalent in adults with type 1 diabetes and is associated with the risk of severe hypoglycaemia. PLoS One 2024; 19:e0297601. [PMID: 38875308 PMCID: PMC11178233 DOI: 10.1371/journal.pone.0297601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
OBJECTIVE Impaired awareness of hypoglycaemia (IAH) is a risk factor for severe hypoglycaemia (SH) in type 1 diabetes (T1D). Much of the IAH prevalence data comes from older studies where participants did not have the benefit of the latest insulins and technologies. This study surveyed the prevalence of IAH and SH in a tertiary adult clinic population and investigated the associated factors. METHODS Adults (≥18 years) attending a tertiary T1D clinic completed a questionnaire, including a Gold and Clarke score. Background information was collected from health records. RESULTS 189 people (56.1% female) with T1D (median [IQR] disease duration 19.3 [11.5, 29.1] years and age of 41.0 [29.0, 52.0] years) participated. 17.5% had IAH and 16.0% reported ≥1 episode of SH in the previous 12 months. Those with IAH were more likely to report SH (37.5% versus 11.7%, p = 0.001) a greater number of SH episodes per person (median [IQR] 0 [0,2] versus 0 [0,0] P<0.001) and be female (72.7% versus 52.6%, p = 0.036). Socio-economic deprivation was associated with IAH (p = 0.032) and SH (p = 0.005). Use of technology was the same between IAH vs aware groups, however, participants reporting SH were more likely to use multiple daily injections (p = 0.026). Higher detectable C-peptide concentrations were associated with a reduced risk of SH (p = 0.04). CONCLUSION Insulin pump and continuous glucose monitor use was comparable in IAH versus aware groups. Despite this, IAH remains a risk factor for SH and is prevalent in females and in older people. Socioeconomic deprivation was associated with IAH and SH, making this an important population to target for interventions.
Collapse
Affiliation(s)
- Faye Baxter
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicola Baillie
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Dover
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Roland H Stimson
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Fraser Gibb
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Shareen Forbes
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Passanisi S, Salzano G, Bombaci B, Minuto N, Bassi M, Bonfanti R, Scialabba F, Mozzillo E, Di Candia F, Monti S, Graziani V, Maffeis C, Piona CA, Arnaldi C, Tosini D, Felappi B, Roppolo R, Zanfardino A, Delvecchio M, Lo Presti D, Calzi E, Ripoli C, Franceschi R, Reinstadler P, Rabbone I, Maltoni G, Alibrandi A, Zucchini S, Marigliano M, Lombardo F. Sustained Effectiveness of an Advanced Hybrid Closed-Loop System in a Cohort of Children and Adolescents With Type 1 Diabetes: A 1-Year Real-World Study. Diabetes Care 2024; 47:1084-1091. [PMID: 38626260 DOI: 10.2337/dc23-2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE To investigate glucose metrics and identify potential predictors of the achievement of glycemic outcomes in children and adolescents during their first 12 months of MiniMed 780G use. RESEARCH DESIGN AND METHODS This multicenter, longitudinal, real-world study recruited 368 children and adolescents with type 1 diabetes (T1D) starting SmartGuard technology between June 2020 and June 2022. Ambulatory glucose profile data were collected during a 15-day run-in period (baseline), 2 weeks after automatic mode activation, and every 3 months. The influence of covariates on glycemic outcomes after 1 year of MiniMed 780G use was assessed. RESULTS After 15 days of automatic mode use, all glucose metrics improved compared with baseline (P < 0.001), except for time below range (P = 0.113) and coefficient of variation (P = 0.330). After 1 year, time in range (TIR) remained significantly higher than at baseline (75.3% vs. 62.8%, P < 0.001). The mean glycated hemoglobin (HbA1c) over the study duration was lower than the previous year (6.9 ± 0.6% vs. 7.4 ± 0.9%, P < 0.001). Time spent in tight range (70-140 mg/dL) was 51.1%, and the glycemia risk index was 27.6. Higher TIR levels were associated with a reduced number of automatic correction boluses (P < 0.001), fewer SmartGuard exits (P = 0.021), and longer time in automatic mode (P = 0.030). Individuals with baseline HbA1c >8% showed more relevant improvement in TIR levels (from 54.3% to 72.3%). CONCLUSIONS Our study highlights the sustained effectiveness of MiniMed 780G among youth with T1D. Findings suggest that even children and adolescents with low therapeutic engagement may benefit from SmartGuard technology.
Collapse
Affiliation(s)
- Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," University of Messina, Messina, Italy
| | - Giuseppina Salzano
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," University of Messina, Messina, Italy
| | - Bruno Bombaci
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," University of Messina, Messina, Italy
| | - Nicola Minuto
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Bassi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Riccardo Bonfanti
- Pediatric Diabetology Unit, Department of Pediatrics, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Vita Salute San Raffaele University, Milan, Italy
| | - Francesco Scialabba
- Pediatric Diabetology Unit, Department of Pediatrics, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Vita Salute San Raffaele University, Milan, Italy
| | - Enza Mozzillo
- Section of Pediatrics, Department of Translational Medical Science, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
| | - Francesca Di Candia
- Section of Pediatrics, Department of Translational Medical Science, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
| | - Sara Monti
- Pediatrics Unit, Department of Woman's and Child and Adolescent Health, Azienda Unità Sanitaria Locale (AUSL) Romagna, Bufalini Hospital, Cesena, Italy
| | - Vanna Graziani
- Pediatrics Unit, Department of Woman's and Child and Adolescent Health, AUSL Romagna, S. Maria delle Croci Hospital, Ravenna Italy
| | - Claudio Maffeis
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, University City Hospital, Verona, Italy
| | - Claudia Anita Piona
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, University City Hospital, Verona, Italy
| | - Claudia Arnaldi
- Unitá Operativa Semplice Diabetologia Pediatrica ASL Viterbo, Viterbo, Italy
| | - Davide Tosini
- Unitá Operativa Semplice Diabetologia Pediatrica ASL Viterbo, Viterbo, Italy
| | - Barbara Felappi
- U.S. Auxoendocrinologia Pediatrica, Unitá Operativa Complessa Pediatria-Clinica Pediatrica, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Rosalia Roppolo
- Unitá Operativa Semplice Dipartimentale Diabetologia Pediatrica, Dipartimento di Pediatria, Ospedale dei Bambini, Palermo, Italia
| | - Angela Zanfardino
- Department of Pediatrics, Regional Center of Pediatric Diabetology "G.Stoppoloni," University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, L'Aquila, Italy
| | - Donatella Lo Presti
- Regional Referral Centre of Pediatric Diabetes, University Hospital "Policlinico," Catania, Italy
| | - Elena Calzi
- Department of Pedatrics and Neonatology, ASST Crema Hospital, Crema, Italy
| | - Carlo Ripoli
- Pediatric Diabetology Unit, Department of Pediatrics, ASL 8 Cagliari, Cagliari, Italy
| | - Roberto Franceschi
- Department of Pediatrics, S. Chiara Hospital of Trento, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Petra Reinstadler
- Ospedale di Bolzano - Azienda Sanitaria dell'Alto Adige, Bolzano, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Giulio Maltoni
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Angela Alibrandi
- Unit of Statistical and Mathematical Sciences, Department of Economics, University of Messina, Messina, Italy
| | | | - Marco Marigliano
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, University City Hospital, Verona, Italy
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," University of Messina, Messina, Italy
| |
Collapse
|
22
|
Kovatchev B, Castillo A, Pryor E, Kollar LL, Barnett CL, DeBoer MD, Brown SA. Neural-Net Artificial Pancreas: A Randomized Crossover Trial of a First-in-Class Automated Insulin Delivery Algorithm. Diabetes Technol Ther 2024; 26:375-382. [PMID: 38277161 PMCID: PMC11305265 DOI: 10.1089/dia.2023.0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Background: Automated insulin delivery (AID) is now integral to the clinical practice of type 1 diabetes (T1D). The objective of this pilot-feasibility study was to introduce a new regulatory and clinical paradigm-a Neural-Net Artificial Pancreas (NAP)-an encoding of an AID algorithm into a neural network that approximates its action and assess NAP versus the original AID algorithm. Methods: The University of Virginia Model-Predictive Control (UMPC) algorithm was encoded into a neural network, creating its NAP approximation. Seventeen AID users with T1D were recruited and 15 participated in two consecutive 20-h hotel sessions, receiving in random order either NAP or UMPC. Their demographic characteristics were ages 22-68 years old, duration of diabetes 7-58 years, gender 10/5 female/male, White Non-Hispanic/Black 13/2, and baseline glycated hemoglobin 5.4%-8.1%. Results: The time-in-range (TIR) difference between NAP and UMPC, adjusted for entry glucose level, was 1 percentage point, with absolute TIR values of 86% (NAP) and 87% (UMPC). The two algorithms achieved similar times <70 mg/dL of 2.0% versus 1.8% and coefficients of variation of 29.3% (NAP) versus 29.1 (UMPC)%. Under identical inputs, the average absolute insulin-recommendation difference was 0.031 U/h. There were no serious adverse events on either controller. NAP had sixfold lower computational demands than UMPC. Conclusion: In a randomized crossover study, a neural-network encoding of a complex model-predictive control algorithm demonstrated similar performance, at a fraction of the computational demands. Regulatory and clinical doors are therefore open for contemporary machine-learning methods to enter the AID field. Clinical Trial Registration number: NCT05876273.
Collapse
Affiliation(s)
- Boris Kovatchev
- Address correspondence to: Boris Kovatchev, PhD, Center for Diabetes Technology, University of Virginia School of Medicine, 560 Ray C Hunt Drive, Charlottesville, VA 22903, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Boucsein A, Zhou Y, Haszard JJ, Jefferies CA, Wiltshire EJ, Styles SE, Crocket HR, Galland BC, Pasha M, Petrovski G, Paul RG, de Bock MI, Wheeler BJ. Protocol for a prospective, multicenter, parallel-group, open-label randomized controlled trial comparing standard care with Closed lOoP In chiLdren and yOuth with Type 1 diabetes and high-risk glycemic control: the CO-PILOT trial. J Diabetes Metab Disord 2024; 23:1397-1407. [PMID: 38932805 PMCID: PMC11196497 DOI: 10.1007/s40200-024-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/04/2024] [Indexed: 06/28/2024]
Abstract
Purpose Advanced hybrid closed loop (AHCL) systems have the potential to improve glycemia and reduce burden for people with type 1 diabetes (T1D). Children and youth, who are at particular risk for out-of-target glycemia, may have the most to gain from AHCL. However, no randomized controlled trial (RCT) specifically targeting this age group with very high HbA1c has previously been attempted. Therefore, the CO-PILOT trial (Closed lOoP In chiLdren and yOuth with Type 1 diabetes and high-risk glycemic control) aims to evaluate the efficacy and safety of AHCL in this group. Methods A prospective, multicenter, parallel-group, open-label RCT, comparing MiniMed™ 780G AHCL to standard care (multiple daily injections or continuous subcutaneous insulin infusion). Eighty participants aged 7-25 years with T1D, a current HbA1c ≥ 8.5% (69 mmol/mol), and naïve to automated insulin delivery will be randomly allocated to AHCL or control (standard care) for 13 weeks. The primary outcome is change in HbA1c between baseline and 13 weeks. Secondary outcomes include standard continuous glucose monitor glycemic metrics, psychosocial factors, sleep, platform performance, safety, and user experience. This RCT will be followed by a continuation phase where the control arm crosses over to AHCL and all participants use AHCL for a further 39 weeks to assess longer term outcomes. Conclusion This study will evaluate the efficacy and safety of AHCL in this population and has the potential to demonstrate that AHCL is the gold standard for children and youth with T1D experiencing out-of-target glucose control and considerable diabetes burden. Trial registration This trial was prospectively registered with the Australian New Zealand Clinical Trials Registry on 14 November 2022 (ACTRN12622001454763) and the World Health Organization International Clinical Trials Registry Platform (Universal Trial Number U1111-1284-8452). Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01397-4.
Collapse
Affiliation(s)
- Alisa Boucsein
- Department of Women’s and Children’s Health, University of Otago, Dunedin, New Zealand
| | - Yongwen Zhou
- Department of Women’s and Children’s Health, University of Otago, Dunedin, New Zealand
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China (USTC), 230001 Hefei, Anhui China
| | | | - Craig A. Jefferies
- Starship Child Health, Te Whatu Ora Te Toka Tumai Auckland, Auckland, New Zealand
- Liggins Institute, Department of Paediatrics, The University of Auckland, Auckland, New Zealand
| | - Esko J. Wiltshire
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
- Te Whatu Ora Capital, Coast and Hutt Valley, Wellington, New Zealand
| | - Sara E. Styles
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Hamish R. Crocket
- Te Huatakia Waiora School of Health, University of Waikato, Hamilton, New Zealand
| | - Barbara C. Galland
- Department of Women’s and Children’s Health, University of Otago, Dunedin, New Zealand
| | | | | | - Ryan G. Paul
- Te Huatakia Waiora School of Health, University of Waikato, Hamilton, New Zealand
- Waikato Regional Diabetes Service, Te Whatu Ora Waikato, Hamilton, New Zealand
| | - Martin I. de Bock
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
- Te Whatu Ora Waitaha Canterbury, Christchurch, New Zealand
| | - Benjamin J. Wheeler
- Department of Women’s and Children’s Health, University of Otago, Dunedin, New Zealand
- Te Whatu Ora Southern, Dunedin, New Zealand
| |
Collapse
|
24
|
Gruber N, Wittenberg A, Brener A, Abiri S, Mazor-Aronovitch K, Yackobovitch-Gavan M, Averbuch S, Ben Ari T, Levek N, Levran N, Landau Z, Rachmiel M, Pinhas-Hamiel O, Lebenthal Y. Real-Life Achievements of MiniMed 780G Advanced Closed-Loop System in Youth with Type 1 Diabetes: AWeSoMe Study Group Multicenter Prospective Trial. Diabetes Technol Ther 2024. [PMID: 38758194 DOI: 10.1089/dia.2024.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Background: We assessed real-life glycemic outcomes and predictors of composite measures of optimal glycemic control in children and adolescents with type 1 diabetes (T1D) during their initial 12 months of the MiniMed™ 780G use. Methods: This prospective observational multicenter study collected demographic, clinical, and 2-week 780G system data at five time points. Optimal glycemic control was defined as a composite glycemic control (CGC) score requiring the attainment of four recommended continuous glucose monitoring (CGM) targets, as well as the glycemia risk index (GRI) of hypoglycemia and hyperglycemia and composite CGM index (COGI). Outcome measures included longitudinal changes in multiple glycemic parameters and CGC, GRI, and COGI scores, as well as predictors of these optimal measures. Results: The cohort included 93 children, 43% girls, with a median age of 15.1 years (interquartile range [IQR] 12.9,17.0). A longitudinal analysis adjusted for age and socioeconomic index yielded a significant improvement in glycemic control for the entire cohort (ptime < 0.001) after the transition to 780G. The mean hemoglobin A1c (HbA1c) (SE) was 8.65% (0.12) at baseline and dropped by >1% after 1 year to 7.54% (0.14) (ptime < 0.001). Optimal glycemic control measures improved at 12 months post 780G; CGC improved by 5.6-fold (P < 0.001) and was attained by 24% of the participants, the GRI score improved by 10-fold (P = 0.009) and was achieved by 10% of them, and the COGI improved by 7.6-fold (P < 0.001) and was attained by 20% of them. Lower baseline HbA1c levels and increased adherence to Advanced Hybrid Closed-Loop (AHCL) usage were predictors of achieving optimal glycemic control. Conclusions: The AHCL 780G system enhances glycemic control in children and adolescents with T1D, demonstrating improvements in HbA1c and CGM metrics, albeit most participants did not achieve optimal glycemic control. This highlights yet ongoing challenges in diabetes management, emphasizing the need for continued proactive efforts on the part of health care professionals, youth, and caregivers.
Collapse
Affiliation(s)
- Noah Gruber
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat-Gan, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avigail Wittenberg
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Institute, Shamir (Assaf Harofeh) Medical Center, Beer Yakov, Israel
| | - Avivit Brener
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Institute of Pediatric Endocrinology, Diabetes, and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shirli Abiri
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrine and Diabetes Unit, E. Wolfson Medical Center, Holon, Israel
| | - Kineret Mazor-Aronovitch
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat-Gan, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- National Juvenile Diabetes Center, Maccabi Health Care Services, Raanana, Israel
| | - Michal Yackobovitch-Gavan
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shay Averbuch
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ben Ari
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Institute of Pediatric Endocrinology, Diabetes, and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noah Levek
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat-Gan, Israel
- National Juvenile Diabetes Center, Maccabi Health Care Services, Raanana, Israel
| | - Neriya Levran
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat-Gan, Israel
- National Juvenile Diabetes Center, Maccabi Health Care Services, Raanana, Israel
| | - Zohar Landau
- National Juvenile Diabetes Center, Maccabi Health Care Services, Raanana, Israel
| | - Marianna Rachmiel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Institute, Shamir (Assaf Harofeh) Medical Center, Beer Yakov, Israel
| | - Orit Pinhas-Hamiel
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat-Gan, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- National Juvenile Diabetes Center, Maccabi Health Care Services, Raanana, Israel
| | - Yael Lebenthal
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Institute of Pediatric Endocrinology, Diabetes, and Metabolism, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
25
|
Adolfsson P, Hanas R, Zaharieva DP, Dovc K, Jendle J. Automated Insulin Delivery Systems in Pediatric Type 1 Diabetes: A Narrative Review. J Diabetes Sci Technol 2024:19322968241248404. [PMID: 38785359 DOI: 10.1177/19322968241248404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
This narrative review assesses the use of automated insulin delivery (AID) systems in managing persons with type 1 diabetes (PWD) in the pediatric population. It outlines current research, the differences between various AID systems currently on the market and the challenges faced, and discusses potential opportunities for further advancements within this field. Furthermore, the narrative review includes various expert opinions on how different AID systems can be used in the event of challenges with rapidly changing insulin requirements. These include examples, such as during illness with increased or decreased insulin requirements and during physical activity of different intensities or durations. Case descriptions give examples of scenarios with added user-initiated actions depending on the type of AID system used. The authors also discuss how another AID system could have been used in these situations.
Collapse
Affiliation(s)
- Peter Adolfsson
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, The Hospital of Halland Kungsbacka, Kungsbacka, Sweden
| | - Ragnar Hanas
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, NU Hospital Group, Uddevalla, Sweden
| | - Dessi P Zaharieva
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Klemen Dovc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, Ljubljana, Slovenia
| | - Johan Jendle
- School of Medicine, Institute of Medical Sciences, Örebro University, Örebro, Sweden
- Diabetes Endocrinology and Metabolism Research Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
26
|
Hamidi V, Pettus JH. Time in Tight Range for Patients With Type 1 Diabetes: The Time Is Now, or Is It Too Soon? Diabetes Care 2024; 47:782-784. [PMID: 38640413 DOI: 10.2337/dci23-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/23/2024] [Indexed: 04/21/2024]
Affiliation(s)
- Vala Hamidi
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jeremy H Pettus
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
27
|
Gardner D, Lakkad M, Qiu Z, Inoue Y, Rama Chandran S, Wherry K. The Cost-Effectiveness of an Advanced Hybrid Closed-Loop System Compared to Standard Management of Type 1 Diabetes in a Singapore Setting. Diabetes Technol Ther 2024; 26:324-334. [PMID: 38215206 PMCID: PMC11058413 DOI: 10.1089/dia.2023.0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Background: Despite advances in technology, glycemic outcomes in people with type 1 diabetes (T1D) remain suboptimal. The MiniMed 780G (MM780G) advanced hybrid closed-loop (AHCL) system is the latest technology for T1D management with established safety and efficacy. This study explores the cost-effectiveness of MM780G AHCL compared against multiple daily injections (MDI) plus intermittently scanned continuous glucose monitor (isCGM). Methods: A cost-utility analysis was conducted, simulating lifetime outcomes for 1000 T1D individuals, with baseline hemoglobin A1c of 8.4%, using the IQVIA Core Diabetes Model (CDM) v9.5. A Singapore health care payer perspective was taken with 2023 costs applied. Treatment effects were taken from the ADAPT study and treatment-related events from a combination of sources. T1D complication costs were derived from local literature, and health state utilities and disutilities from published literature. Scenario analyses and probabilistic sensitivity analyses (PSAs) explored uncertainty. Cost-effectiveness was assessed based on willingness-to-pay (WTP) thresholds set to Singapore Dollars (SGD) 45,000 (United States Dollars [USD] 33,087) per quality-adjusted life year (QALY) and Singapore's gross domestic product (GDP) per capita of SGD 114,165 (USD 83,941) per QALY. Results: A switch from MDI plus isCGM to MM780G resulted in expected gains in life-years (+0.78) and QALYs (+1.45). Cost savings through reduction in T1D complications (SGD 25,465; USD 18,723) partially offset the higher treatment costs in the AHCL arm (+SGD 74,538; +USD 54,805), resulting in an estimated incremental cost-effectiveness ratio of SGD 33,797 (USD 24,850) per QALY gained. Findings were robust, with PSA outputs indicating 81% and 99% probabilities of cost-effectiveness at the stated WTP thresholds. Conclusion: MM780G is a cost-effective option for people with T1D managed in a Singapore setting.
Collapse
Affiliation(s)
- Daphne Gardner
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | | | - Zhiyu Qiu
- Medtronic Singapore, Singapore, Singapore
| | - Yuta Inoue
- Medtronic Diabetes, Northridge, California, USA
| | | | - Kael Wherry
- Medtronic Diabetes, Northridge, California, USA
| |
Collapse
|
28
|
Oliva Morgado Ferreira R, Trevisan T, Pasqualotto E, Schmidt P, Pedrotti Chavez M, Figueiredo Watanabe JM, van de Sande-Lee S. Efficacy of the hybrid closedloop insulin delivery system in children and adolescents with type 1 diabetes: a meta-analysis with trial sequential analysis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230280. [PMID: 38602747 PMCID: PMC11081057 DOI: 10.20945/2359-4292-2023-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/11/2023] [Indexed: 04/12/2024]
Abstract
The aim of this study was to assess the efficacy and safety of hybrid closed-loop (HCL) systems for insulin delivery in children and adolescents with type 1 diabetes (T1D). We searched Embase, PubMed, and Cochrane Library for randomized controlled trials (RCTs) published until March 2023 comparing the HCL therapy with control therapies for children and adolescents with T1D. We computed weighted mean differences (WMDs) for continuous outcomes and risk ratios (RRs) with 95% confidence intervals (CIs) for binary endpoints. Four RCTs and 501 patients were included, of whom 323 were randomized to HCL therapy. Compared with control therapies, HCL significantly improved the period during which glucose level was 70-180 mg/dL (WMD 10.89%, 95% CI 8.22-13.56%) and the number of participants with glycated hemoglobin (HbA1c) level < 7% (RR 2.61, 95% CI 1.29-5.28). Also, HCL significantly reduced the time during which glucoselevel was > 180 mg/dL (WMD-10.46%, 95% CI-13.99 to-6.93%) and the mean levels of glucose (WMD-16.67 mg/dL, 95% CI-22.25 to-11.09 mg/dL) and HbA1c (WMD-0.50%, 95% CI-0.68 to-0.31). There were no significant differences between therapies regarding time during which glucose level was < 70 mg/dL or <54 mg/dL or number of episodes of ketoacidosis, hyperglycemia, and hypoglycemia. In this meta-analysis, HCL compared with control therapies was associated with improved time in range and HbA1c control in children and adolescents with T1D and a similar profile of side effects. These findings support the efficacy of HCL in the treatment of T1D in this population.
Collapse
Affiliation(s)
| | - Talita Trevisan
- Clínica particular, Talita Trevisan Endocrinologia, Itajaí, SC, Brasil
| | - Eric Pasqualotto
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Pedro Schmidt
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | | | | | | |
Collapse
|
29
|
Christensen MB, Ranjan AG, Rytter K, McCarthy OM, Schmidt S, Nørgaard K. Automated Insulin Delivery in Adults With Type 1 Diabetes and Suboptimal HbA 1c During Prior Use of Insulin Pump and Continuous Glucose Monitoring: A Randomized Controlled Trial. J Diabetes Sci Technol 2024:19322968241242399. [PMID: 38600822 DOI: 10.1177/19322968241242399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
BACKGROUND Automated insulin delivery (AID) systems offer promise in improving glycemic outcomes for individuals with type 1 diabetes. However, data on those who struggle with suboptimal glycemic levels despite insulin pump and continuous glucose monitoring (CGM) are limited. We conducted a randomized controlled trial to assess the effects of an AID system in this population. METHODS Participants with hemoglobin A1c (HbA1c) ≥ 58 mmol/mol (7.5%) were allocated 1:1 to 14 weeks of treatment with the MiniMed 780G system (AID) or continuation of usual care (UC). The primary endpoint was change in time in range (TIR: 3·9-10·0 mmol/L) from baseline to week 14. After this trial period, the UC group switched to AID treatment while the AID group continued using the system. Both groups were monitored for a total of 28 weeks. RESULTS Forty adults (mean ± SD: age 52 ± 11 years, HbA1c 67 ± 7 mmol/mol [8.3% ± 0.6%], diabetes duration 29 ±13 years) were included. After 14 weeks, TIR increased by 18.7% (95% confidence interval [CI] = 14.5, 22.9%) in the AID group and remained unchanged in the UC group (P < .0001). Hemoglobin A1c decreased by 10.0 mmol/mol (95% CI = 7.0, 13.0 mmol/mol) (0.9% [95% CI = 0.6%, 1.2%]) in the AID group but remained unchanged in the UC group (P < .0001). The glycemic benefits of AID treatment were reproduced after the 14-week extension phase. There were no episodes of severe hypoglycemia or diabetic ketoacidosis during the study. CONCLUSIONS For adults with type 1 diabetes not meeting glycemic targets despite use of insulin pump and CGM, transitioning to an AID system confers considerable glycemic benefits.
Collapse
Affiliation(s)
- Merete B Christensen
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Ajenthen G Ranjan
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Karen Rytter
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Olivia M McCarthy
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Applied Sports, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, UK
| | - Signe Schmidt
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kirsten Nørgaard
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Kinzel C, Manfras B. The Influence of Digital Affinity on the Continuous Glucose Monitoring System Choice by People With Type 1 Diabetes. J Diabetes Sci Technol 2024; 18:438-444. [PMID: 35856406 PMCID: PMC10973859 DOI: 10.1177/19322968221113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Since several years, continuous glucose monitoring (CGM) systems became a standard of care in patients with intensified conventional treatment (ICT) in many countries. CGM results in an ongoing record of digital information that provides an added value to patients with type 1 diabetes (T1D) and healthcare providers, among others. This implies the patient's acceptance of data analyses and storage and an adjustment on self-management. The aim of the study was to investigate the influence of digital affinity on the CGM use and the choice of a particular system. METHODS In a quantitative survey 2102 patients with T1D were interviewed via an online questionnaire. The study is based on the technology acceptance model (TAM). Self-assessment of digital affinity was correlated with various features of CGM use and preferences. Significance of associations and correlations was tested. RESULTS Digital affinity correlated positively with CGM use for the self-management with ICT. Significant differences were found regarding the use of a particular system suggesting a correlation between digital affinity and the complexity of CGM data portrayal and interconnectivity with smart devices (eg, smartwatches). CONCLUSIONS While suppliers of CGM systems focus on progress regarding the ease of use of their systems, they also provide a developing interconnectivity with smart devices and cloud-based data storage. This requires a higher digital affinity among users. While factors such as recommendations by physicians and coverage by health insurance companies have an impact on the system choice, the data demonstrate a correlation between digital affinity and particular CGM systems.
Collapse
Affiliation(s)
- Carolin Kinzel
- Faculty of Health Management, University of Applied Sciences Neu-Ulm, Neu-Ulm, Germany
| | - Burkhard Manfras
- Internal Medicine, Endocrinology and Diabetology, Medicover MVZ, Ulm, Germany
| |
Collapse
|
31
|
Passanisi S, Piona C, Salzano G, Marigliano M, Bombaci B, Morandi A, Alibrandi A, Maffeis C, Lombardo F. Aiming for the Best Glycemic Control Beyond Time in Range: Time in Tight Range as a New Continuous Glucose Monitoring Metric in Children and Adolescents with Type 1 Diabetes Using Different Treatment Modalities. Diabetes Technol Ther 2024; 26:161-166. [PMID: 37902743 DOI: 10.1089/dia.2023.0373] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Introduction: To evaluate time in tight range (TITR) 70-140 mg/dL (3.9-7.8 mmol/L), its correlation with standard continuous glucose monitoring (CGM) metrics and the clinical variables that possibly have a substantial impact on its value, in a large cohort of pediatric subjects using different treatment strategies. Materials and Methods: A total of 854 children and adolescents with type 1 diabetes were consecutively recruited in this real world, dual center, cross-sectional study. Participants were categorized into four treatment groups (multiple daily injections [MDI] + real-time CGM, MDI + intermittently scanned CGM, sensor augmented pump, and hybrid closed loop [HCL]). Demographical and clinical data, including CGM data, were collected and analyzed. Results: The overall study population exhibited an average TITR of 36.4% ± 12.8%. HCL users showed higher TITR levels compared to the other treatment groups (P < 0.001). A time in range (TIR) cut-off value of 71.9% identified subjects achieving a TITR ≥50% (area under curve [AUC] 0.98; 95% confidence interval 0.97-0.99, P < 0.001), and a strong positive correlation between these two metrics was observed (r = 0.95, P < 0.001). An increase in TIR of 1% was associated with 1.84 (R2 Nagelkerke = 0.35, P < 0.001) increased likelihood of achieving TITR ≥50%. Use of HCL systems (B = 7.78; P < 0.001), disease duration (B = -0.26, P = 0.006), coefficient of variation (B = -0.30, P = 0.004), and glycated hemoglobin (B = -8.82; P < 0.001) emerged as significant predictors of TITR levels. Conclusions: Our study highlights that most children and adolescents with type 1 diabetes present TITR levels below 50%, except those using HCL. Tailored interventions and strategies should be implemented to increase TITR.
Collapse
Affiliation(s)
- Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," University of Messina, Messina, Italy
| | - Claudia Piona
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, University City Hospital, Verona, Italy
| | - Giuseppina Salzano
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," University of Messina, Messina, Italy
| | - Marco Marigliano
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, University City Hospital, Verona, Italy
| | - Bruno Bombaci
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," University of Messina, Messina, Italy
| | - Anita Morandi
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, University City Hospital, Verona, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Claudio Maffeis
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, University City Hospital, Verona, Italy
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," University of Messina, Messina, Italy
| |
Collapse
|
32
|
Considine EG, Sherr JL. Real-World Evidence of Automated Insulin Delivery System Use. Diabetes Technol Ther 2024; 26:53-65. [PMID: 38377315 PMCID: PMC10890954 DOI: 10.1089/dia.2023.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Objective: Pivotal trials of automated insulin delivery (AID) closed-loop systems have demonstrated a consistent picture of glycemic benefit, supporting approval of multiple systems by the Food and Drug Administration or Conformité Européenne mark receipt. To assess how pivotal trial findings translate to commercial AID use, a systematic review of retrospective real-world studies was conducted. Methods: PubMed and EMBASE were searched for articles published after 2018 with more than five nonpregnant individuals with type 1 diabetes (T1D). Data were screened/extracted in duplicate for sample size, AID system, glycemic outcomes, and time in automation. Results: Of 80 studies identified, 20 met inclusion criteria representing 171,209 individuals. Time in target range 70-180 mg/dL (3.9-10.0 mmol/L) was the primary outcome in 65% of studies, with the majority of reports (71%) demonstrating a >10% change with AID use. Change in hemoglobin A1c (HbA1c) was reported in nine studies (range 0.1%-0.9%), whereas four reported changes in glucose management indicator (GMI) with a 0.1%-0.4% reduction noted. A decrease in HbA1c or GMI of >0.2% was achieved in two-thirds of the studies describing change in HbA1c and 80% of articles where GMI was described. Time below range <70 mg/dL (<3.9 mmol/L) was reported in 16 studies, with all but 1 study showing stable or reduced levels. Most systems had >90% time in automation. Conclusion: With larger and more diverse populations, and follow-up periods of longer duration (∼9 months vs. 3-6 months for pivotal trials), real-world retrospective analyses confirm pivotal trial findings. Given the glycemic benefits demonstrated, AID is rapidly becoming the standard of care for all people living with T1D. Individuals should be informed of these systems and differences between them, have access to and coverage for these technologies, and receive support as they integrate this mode of insulin delivery into their lives.
Collapse
Affiliation(s)
| | - Jennifer L. Sherr
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
33
|
Garg SK, McVean JJ. Development and Future of Automated Insulin Delivery (AID) Systems. Diabetes Technol Ther 2024; 26:1-6. [PMID: 38377322 DOI: 10.1089/dia.2023.0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Satish K Garg
- Department of Medicine and Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
34
|
Marks BE, Grundman JB, Meighan S, Monaghan M, Streisand R, Perkins A. Hybrid Closed Loop Systems Improve Glycemic Control and Quality of Life in Historically Minoritized Youth with Diabetes. Diabetes Technol Ther 2024; 26:167-175. [PMID: 38444316 PMCID: PMC11071108 DOI: 10.1089/dia.2023.0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Background: We assessed changes in glycemic control and person-reported outcome measures (PROMs) with t:slim X2 insulin pump with Control-IQ technology use among historically minoritized youth who are least likely to access hybrid closed loop (HCL) technology. Methods: This single-arm, prospective pilot study enrolled 15 publicly insured, insulin pump-naïve, non-Hispanic Black youth ages 6 to <21 years with type 1 diabetes and hemoglobin A1c (HbA1c) ≥10% in a 6-month study of HCL use. The primary outcome was absolute change in time in range (TIR) (70-180 mg/dL). Secondary outcomes included other continuous glucose monitor metrics, PROMs, and diabetic ketoacidosis (DKA) incidence. Results: For 13 youth (median 14.8 years, 53.3% female, HbA1c 11.7%) who completed the study, baseline TIR of 12.3% (6.3-27.1%) increased 23.7%-points (16.9, 30.5%; P < 0.001) or 5.7 h per day. Percent time >250 mg/dL decreased 33.9%-points (-44.8, -23.1%; P < 0.001) or 8.1 h per day from a baseline of 69.4% (51.6, 84.0%). Median time in HCL was 78.3% (59.7, 87.3%). Youth received 10.1 (9.2, 11.9) boluses per day, 71.7% (63.8, 79.3%) of which were HCL-initiated autoboluses. Diabetes-specific quality of life increased among parents (P < 0.001) and youth (P = 0.004), and diabetes distress decreased in both groups (P < 0.001, P = 0.005). Improvements in glycemia did not correlate with any baseline youth or parent PROMs. DKA was high at baseline (67 episodes/100-person years) and did not increase during the intervention (72 episodes/100-person years, P = 0.78). Conclusion: Improvements in glycemic control and quality of life exceeding pivotal trial findings without increased safety risks among historically minoritized youth emphasize the need for equitable access to HCL systems. ClinicalTrials.gov: clinicaltrials.gov ID (NCT04807374).
Collapse
Affiliation(s)
- Brynn E. Marks
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jody B. Grundman
- Division of Endocrinology, Children's National Medical Center, Washington, District of Columbia, USA
| | - Seema Meighan
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Maureen Monaghan
- Division of Endocrinology, Children's National Medical Center, Washington, District of Columbia, USA
| | - Randi Streisand
- Division of Endocrinology, Children's National Medical Center, Washington, District of Columbia, USA
| | - Amanda Perkins
- Division of Endocrinology, Children's National Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
35
|
Wilkinson T, Tomic D, Boyle E, Burren D, Elghattis Y, Jenkins A, Keesing C, Middleton S, Nanayakkara N, Williman J, de Bock M, Cohen ND. Study protocol for a randomised open-label clinical trial examining the safety and efficacy of the Android Artificial Pancreas System (AAPS) with advanced bolus-free features in adults with type 1 diabetes: the 'CLOSE IT' (Closed Loop Open SourcE In Type 1 diabetes) trial. BMJ Open 2024; 14:e078171. [PMID: 38382954 PMCID: PMC10882371 DOI: 10.1136/bmjopen-2023-078171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/20/2023] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION Multiple automated insulin delivery (AID) systems have become commercially available following randomised controlled trials demonstrating benefits in people with type 1 diabetes (T1D). However, their real-world utility may be undermined by user-associated burdens, including the need to carbohydrate count and deliver manual insulin boluses. There is an important need for a 'fully automated closed loop' (FCL) AID system, without manual mealtime boluses. The (Closed Loop Open SourcE In Type 1 diabetes) trial is a randomised trial comparing an FCL AID system to the same system used as a hybrid closed loop (HCL) in people with T1D, in an outpatient setting over an extended time frame. METHODS AND ANALYSIS Randomised, open-label, parallel, non-inferiority trial comparing the Android Artificial Pancreas System (AAPS) AID algorithm used as FCL to the same algorithm used as HCL. Seventy-five participants aged 18-70 will be randomised (1:1) to one of two treatment arms for 12 weeks: (a) FCL-participants will be advised not to bolus for meals and (b) HCL-participants will use the AAPS AID algorithm as HCL with announced meals. The primary outcome is the percentage of time in target sensor glucose range (3.9-10.0 mmol/L). Secondary outcomes include other glycaemic metrics, safety, psychosocial factors, platform performance and user dietary factors. Twenty FCL arm participants will participate in a 4-week extension phase comparing glycaemic and dietary outcomes using NovoRapid (insulin aspart) to Fiasp (insulin aspart and niacinamide). ETHICS AND DISSEMINATION Approvals are by the Alfred Health Ethics Committee (615/22) (Australia) and Health and Disability Ethics Committees (2022 FULL 13832) (New Zealand). Each participant will provide written informed consent. Data protection and confidentiality will be ensured. Study results will be disseminated by publications, conferences and patient advocacy groups. TRIAL REGISTRATION NUMBERS ACTRN12622001400752 and ACTRN12622001401741.
Collapse
Affiliation(s)
- Tom Wilkinson
- University of Otago Christchurch, Christchurch, New Zealand
| | - Dunya Tomic
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Erin Boyle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David Burren
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yasser Elghattis
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alicia Jenkins
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Sonia Middleton
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | - Martin de Bock
- University of Otago Christchurch, Christchurch, New Zealand
| | - Neale D Cohen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Passanisi S, Lombardo F, Mameli C, Bombaci B, Macedoni M, Zuccotti G, Dovc K, Battelino T, Salzano G, Delvecchio M. Safety, Metabolic and Psychological Outcomes of Medtronic MiniMed 780G™ in Children, Adolescents and Young Adults: A Systematic Review. Diabetes Ther 2024; 15:343-365. [PMID: 38038896 PMCID: PMC10838896 DOI: 10.1007/s13300-023-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
The MiniMed™ 780G is a second-generation automated insulin delivery system that implements a modified proportional-integral-derivative algorithm with some features of an MD-Logic artificial pancreas algorithm. The system may deliver automatic correction boluses up to every 5 min, and it allows the user to choose between three glucose target setpoints (100, 110 and 120 mg/dL). We aimed to review the current evidence on this device in children, adolescents, and young adults living with type 1 diabetes. We screened 783 papers, but only 31 manuscripts were included in this review. Data on metabolic outcomes show that this system is safe as regards severe hypoglycaemia and diabetic ketoacidosis. The glycated haemoglobin may drop to levels about 7%, with CGM reports showing a time in range of 75-80%. The time above range and the time below range are within the recommended target in most of the subjects. Few studies evaluated the psychological outcomes. This system seems to be more effective than the first-generation automated insulin delivery systems. The MiniMed™ 780G has been associated with an improvement in sleep quality in subjects living with diabetes and their caregivers, along with an improvement in treatment satisfaction. Psychological distress is as reduced as the glucose control is improved. We also discuss some case reports describing particular situations in clinical practice. Finally, we think that data show that this system is a further step towards the improvement of the treatment of diabetes as concerns both metabolic and psychological outcomes.
Collapse
Affiliation(s)
- Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Chiara Mameli
- Department of Pediatrics, Buzzi Children's Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Bruno Bombaci
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Maddalena Macedoni
- Department of Pediatrics, Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Buzzi Children's Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Klemen Dovc
- University Medical Center Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- University Medical Center Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Giuseppina Salzano
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
- Metabolic Disorders and Clinical Genetics, "Giovanni XXIII" Children's Hospital, AOU Policlinico-Giovanni XXIII, Via Giovanni Amendola 207, 70126, Bari, BA, Italy.
| |
Collapse
|
37
|
Akiyama T, Yamakawa T, Orime K, Ichikawa M, Harada M, Netsu T, Akamatsu R, Nakamura K, Shinoda S, Terauchi Y. Effects of hybrid closed-loop system on glycemic control and psychological aspects in persons with type 1 diabetes treated with sensor-augmented pump: A prospective single-center observational study. J Diabetes Investig 2024; 15:219-226. [PMID: 37934090 PMCID: PMC10804894 DOI: 10.1111/jdi.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
AIMS/INTRODUCTION This study evaluated the effects of the Medtronic MiniMed 770G hybrid closed-loop system on glycemic control and psychological aspects in persons with type 1 diabetes mellitus. MATERIALS AND METHODS This 3-month prospective observational study included 22 participants with type 1 diabetes mellitus who used the Medtronic MiniMed 640G predictive low-glucose suspend system and were switched to the 770G system. Time in the range of 70-180 mg/dL and glycated hemoglobin levels were evaluated; satisfaction, emotional distress and quality of life were assessed using self-reported questionnaires, including the Diabetes Treatment Satisfaction Questionnaire Status, Problem Area in Diabetes and Diabetes Therapy-Related Quality of Life. RESULTS Time in the range of 70-180 mg/dL increased (63.5 ± 13.4 to 73.0 ± 10.9% [mean ± standard deviation], P = 0.0010), and time above the range of 181-250 mg/dL decreased (26.9 ± 8.9 to 19.6 ± 7.1%, P < 0.0005). Glycated hemoglobin levels decreased (7.7 ± 1.0 to 7.2 ± 0.8%, P = 0.0021). The percentage of participants with time below the range of 54-69 mg/dL <4% of readings increased from 91% to 100% (P < 0.0005). No significant changes were detected in the satisfaction, emotional distress and quality of life levels, but increased sensor calibration might be related to worsened emotional distress and quality of life. CONCLUSIONS The hybrid closed-loop system decreased hyperglycemia and minimized hypoglycemia, but did not improve psychological aspects compared with the predictive low-glucose suspend system, probably because sensor calibration was increased.
Collapse
Affiliation(s)
- Tomoaki Akiyama
- Department of Endocrinology and DiabetesYokohama City University Medical CenterYokohamaJapan
| | - Tadashi Yamakawa
- Department of Endocrinology and DiabetesYokohama City University Medical CenterYokohamaJapan
- Kanazawa Medical ClinicYokohamaJapan
| | - Kazuki Orime
- Department of Endocrinology and DiabetesYokohama City University Medical CenterYokohamaJapan
| | - Masahiro Ichikawa
- Department of Endocrinology and DiabetesYokohama City University Medical CenterYokohamaJapan
| | - Marina Harada
- Department of Endocrinology and DiabetesYokohama City University Medical CenterYokohamaJapan
| | - Takumi Netsu
- Department of Endocrinology and DiabetesYokohama City University Medical CenterYokohamaJapan
| | - Ryoichi Akamatsu
- Department of Endocrinology and DiabetesYokohama City University Medical CenterYokohamaJapan
| | - Keita Nakamura
- Department of Endocrinology and DiabetesYokohama City University Medical CenterYokohamaJapan
| | - Satoru Shinoda
- Department of BiostatisticsYokohama City University School of MedicineYokohamaJapan
| | - Yasuo Terauchi
- Department of Endocrinology and MetabolismYokohama City University School of MedicineYokohamaJapan
| |
Collapse
|
38
|
Guerlich K, Patro-Golab B, Dworakowski P, Fraser AG, Kammermeier M, Melvin T, Koletzko B. Evidence from clinical trials on high-risk medical devices in children: a scoping review. Pediatr Res 2024; 95:615-624. [PMID: 37758865 PMCID: PMC10899114 DOI: 10.1038/s41390-023-02819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Meeting increased regulatory requirements for clinical evaluation of medical devices marketed in Europe in accordance with the Medical Device Regulation (EU 2017/745) is challenging, particularly for high-risk devices used in children. METHODS Within the CORE-MD project, we performed a scoping review on evidence from clinical trials investigating high-risk paediatric medical devices used in paediatric cardiology, diabetology, orthopaedics and surgery, in patients aged 0-21 years. We searched Medline and Embase from 1st January 2017 to 9th November 2022. RESULTS From 1692 records screened, 99 trials were included. Most were multicentre studies performed in North America and Europe that mainly had evaluated medical devices from the specialty of diabetology. Most had enrolled adolescents and 39% of trials included both children and adults. Randomized controlled trials accounted for 38% of the sample. Other frequently used designs were before-after studies (21%) and crossover trials (20%). Included trials were mainly small, with a sample size <100 participants in 64% of the studies. Most frequently assessed outcomes were efficacy and effectiveness as well as safety. CONCLUSION Within the assessed sample, clinical trials on high-risk medical devices in children were of various designs, often lacked a concurrent control group, and recruited few infants and young children. IMPACT In the assessed sample, clinical trials on high-risk medical devices in children were mainly small, with variable study designs (often without concurrent control), and they mostly enrolled adolescents. We provide a systematic summary of methodologies applied in clinical trials of medical devices in the paediatric population, reflecting obstacles in this research area that make it challenging to conduct adequately powered randomized controlled trials. In view of changing European regulations and related concerns about shortages of high-risk medical devices for children, our findings may assist competent authorities in setting realistic requirements for the evidence level to support device conformity certification.
Collapse
Affiliation(s)
- Kathrin Guerlich
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
- Child Health Foundation - Stiftung Kindergesundheit, c/o Dr. von Hauner Children's Hospital, Munich, Germany
| | - Bernadeta Patro-Golab
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
| | | | - Alan G Fraser
- Department of Cardiology, University Hospital of Wales, Cardiff, Wales, UK
| | - Michael Kammermeier
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
| | - Tom Melvin
- Department of Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Berthold Koletzko
- LMU-Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany.
- Child Health Foundation - Stiftung Kindergesundheit, c/o Dr. von Hauner Children's Hospital, Munich, Germany.
- European Academy of Paediatrics, Brussels, Belgium.
| |
Collapse
|
39
|
Michaels VR, Boucsein A, Watson AS, Frewen CM, Sanders OJ, Haszard JJ, Jones SD, Milford-Hughes PJ, de Bock MI, Wheeler BJ. Glucose and Psychosocial Outcomes 12 Months Following Transition from Multiple Daily Injections to Advanced Hybrid Closed Loop in Youth with Type 1 Diabetes and Suboptimal Glycemia. Diabetes Technol Ther 2024; 26:40-48. [PMID: 37823890 DOI: 10.1089/dia.2023.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Objective: To investigate 12-month glycemic and psychosocial changes following transition from multiple daily injections (MDI) to advanced hybrid closed-loop (AHCL) therapy in youth (aged 13-25 years) with type 1 diabetes and suboptimal glycemia (glycated hemoglobin [HbA1c] ≥8.5% [69 mmol/mol]). Research Design and Methods: Prospective, single arm, dual-center study in 20 participants. Extension phase outcomes reported after 12 months, including HbA1c, time in glycemic ranges, AHCL system performance, and psychosocial questionnaires assessing quality of life, diabetes treatment, and sleep. Results: After 12 months, 19 out of 20 participants continued to use AHCL. Average time-in-range 70-180 mg/dL (3.9-10.0 mmol/L) improved from 27.6% ± 13.2% to 62.5% ± 11.4%. This translated to an average 2.5 percentage-point (27.1 mmol/mol) improvement in HbA1c from 10.5% ± 2.1% (91.2 mmol/mol) at baseline to 8.0% ± 0.9% (64.1 mmol/mol) at 12 months. Psychosocial questionnaires and very high HbA1c at study entry indicated significant diabetes-associated burden for both individuals and parents. After 12 months, improvements were observed in general and diabetes-specific health-related quality of life, as well as in diabetes treatment satisfaction. Safety data were reassuring with a diabetic ketoacidosis rate of 0.15 per participant-year after 12 months of AHCL (compared to 0.25 per participant-year in the 12 months before the study). Conclusions: After 12 months of AHCL usage, this study highlights the potential for substantial and sustained glycemic and psychosocial improvements among individuals experiencing considerable diabetes burden and suboptimal glycemia, following their switch from MDI to AHCL.
Collapse
Affiliation(s)
- Venus R Michaels
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Alisa Boucsein
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Antony S Watson
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Carla M Frewen
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Olivia J Sanders
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | | | - Shirley D Jones
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | | | - Martin I de Bock
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
- Te Whatu Ora-Health New Zealand, Christchurch, New Zealand
| | - Benjamin J Wheeler
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
- Te Whatu Ora-Health New Zealand, Dunedin, New Zealand
| |
Collapse
|
40
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Gaglia JL, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S158-S178. [PMID: 38078590 PMCID: PMC10725810 DOI: 10.2337/dc24-s009] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
41
|
Benioudakis ES, Karlafti E, Kalaitzaki A, Kalpou MA, Georgiou ED, Savopoulos C, Didangelos T. Comparison of the Sensor-Augmented Pump System with the Advanced Hybrid Closed-Loop Delivery System: Quality of Life, Diabetes Distress, and Glycaemic Outcomes in a Real-Life Context. Curr Diabetes Rev 2024; 20:e310523217505. [PMID: 37259938 DOI: 10.2174/1573399820666230531161858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Type 1 diabetes mellitus (T1D) is a chronic disease that requires exogenous insulin administration and intensive management to prevent any complications. Recent innovations in T1D management technologies include the Advanced Hybrid Closed-Loop delivery system (AHCL). The pioneer AHCL system provides automated basal and automated bolus corrections when needed. OBJECTIVE This study aimed to compare the Advanced Hybrid Closed-Loop (AHCL) system and the Sensor-Augmented Pump (SAP) with Predictive Low Glucose Management (PLGM) system, in relation to glycaemic outcomes, general and diabetes-related Quality of Life (QoL), and diabetes distress. METHODS General and diabetes-related QoL were assessed with the Diabetes Quality of Life Brief Clinical Inventory (DQOL-BCI) and the World Health Organization Quality of Life-BREF (WHOQOL-BREF), respectively. Diabetes distress was assessed with the Diabetes Distress Scale for Type 1 diabetes (T1-DDS). RESULTS Eighty-nine T1D adults participated in the study, mostly females (65.2%), with a mean age of 39.8 (± 11.5 years). They had on average 23 years of diabetes (± 10.7) and they were on continuous subcutaneous insulin infusion therapy. Significant differences favoring the AHCL over the SAP + PLGM system were demonstrated by lower mean glucose levels, less time above range, lower scores on DQOL-BCI, T1-DDS, and higher scores on WHOQOL-BREF. Finally, the linear regression models revealed the association of time in range in most of the above aspects. CONCLUSION This study highlighted the advantages of the AHCL system over the SAP + PLGM system in the real-world setting in relation to general and diabetes-related QoL, diabetes distress, and glycaemic outcomes.
Collapse
Affiliation(s)
- Emmanouil S Benioudakis
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, "AHEPA" General University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Karlafti
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, "AHEPA" General University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Argyroula Kalaitzaki
- Department of Social Work, Laboratory of Interdisciplinary Approaches to the Enhancement of Quality of Life, Health Sciences Faculty, Hellenic Mediterranean University, Heraklion, Crete, Greece
| | - Maria-Alexandra Kalpou
- Department of Psychology, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos D Georgiou
- Department of Psychology, University of Cyprus Centre for Field Studies, University of Cyprus, Nicosia, Cyprus
| | - Christos Savopoulos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, "AHEPA" General University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Triantafyllos Didangelos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, "AHEPA" General University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
42
|
Lepore G, Borella ND, Castagna G, Ippolito S, Bonfadini S, Corsi A, Scaranna C, Dodesini AR, Bellante R, Trevisan R. Advanced Hybrid Closed-Loop System Achieves and Maintains Recommended Time in Range Levels for Up To 2 Years: Predictors of Best Efficacy. Diabetes Technol Ther 2024; 26:49-58. [PMID: 37902785 DOI: 10.1089/dia.2023.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Aim: To evaluate the long-term efficacy, up to 2 years, of an advanced hybrid closed-loop (AHCL) system and to assess predictors of best results of the therapy. Methods: We retrospectively evaluated 296 adults with type 1 diabetes mellitus [mean age 42.8 ± 16.5 years, men 42.9%, duration of diabetes 22.5 ± 12.8 years, body mass index 24.9 ± 4.7 kg/m2, baseline glycated hemoglobin (HbA1c) 63.4 ± 12.2 mmol/mol (8.0 ± 1.1%) ] who used the MiniMed™ 780G system. Demographic and clinical data were recorded. Continuous glucose monitoring (CGM)-derived metrics and insulin requirement were analyzed from the 4 weeks before and from every quarter after the switch to the AHCL system. Results: In the first quarter of AHCL treatment, all CGM metrics improved. Time in range (TIR) increased from 58.1 ± 17.5% to 70.3 ± 9.5% (P < 0.0001). The improvement lasted for up to 2 years of observation regardless of previous insulin therapies. Throughout the period of observation, 53.4% of participants achieved mean TIR >70%, 92.6% mean time below range <4%, and 46% mean glucose management indicator <53 mmol/mol (7.0%). At univariable logistic regression older age, lower baseline HbA1c and insulin requirement were associated with mean TIR >70%. At multivariable analysis, lower HbA1c remained independently associated with a better glycemic control. However, mean TIR increased more in participants with a higher baseline HbA1c. Conclusions: Switching to an AHCL leads to a rapid improvement in glycemic control lasting for up to 24 months along with a low risk for hypoglycemia, confirming the safety of the system. Lower baseline HbA1c was the main predictor of better efficacy of therapy, although higher baseline HbA1c was associated with the greatest improvement in mean TIR.
Collapse
Affiliation(s)
- Giuseppe Lepore
- Unit of Endocrine Diseases and Diabetology, Department of Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Nicolò Diego Borella
- Unit of Endocrine Diseases and Diabetology, Department of Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giona Castagna
- Unit of Endocrine Diseases and Diabetology, Department of Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
- Department of Medicine, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Silvia Ippolito
- Unit of Endocrine Diseases and Diabetology, Department of Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Silvia Bonfadini
- Unit of Endocrine Diseases and Diabetology, Department of Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Corsi
- Unit of Endocrine Diseases and Diabetology, Department of Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Cristiana Scaranna
- Unit of Endocrine Diseases and Diabetology, Department of Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Roberto Dodesini
- Unit of Endocrine Diseases and Diabetology, Department of Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Rosalia Bellante
- Unit of Endocrine Diseases and Diabetology, Department of Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Roberto Trevisan
- Unit of Endocrine Diseases and Diabetology, Department of Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
- Department of Medicine, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
43
|
Rossi A, Montefusco L, Reseghetti E, Pastore IF, Rossi G, Usuelli V, Loretelli C, Boci D, Ben Nasr M, D'Addio F, Bucciarelli L, Argenti S, Morpurgo P, Lunati ME, Fiorina P. Daytime hypoglycemic episodes during the use of an advanced hybrid closed loop system. Diabetes Res Clin Pract 2023; 206:111011. [PMID: 37956944 DOI: 10.1016/j.diabres.2023.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
AIMS The use of advanced hybrid closed loop systems is spreading due to the beneficial effects on glycometabolic control obtained in patients with type 1 diabetes. However, hypoglycemic episodes can be sometimes a matter of concern. We aim to compare the hypoglycemic risk of an advanced hybrid closed loop system and a predictive low glucose suspend sensor augmented pump. METHODS In this retrospective three months observational study, we included 30 patients using Medtronic Minimed™ 780G advanced hybrid closed loop system and 30 patients using a Medtronic Minimed™ predictive low glucose suspend sensor augmented pump. RESULTS The advanced hybrid closed loop system reduced the time spent above 180 mg/dL threshold and increased the time in range as compared to the predictive low glucose suspend. No severe hypoglycemia occurred in both groups and no differences were observed in the percentage of time spent below 70 mg/dl and 54 mg/dl glucose threshold. Nevertheless, more hypoglycemic episodes were recorded during daytime, but not in nighttime, with the use of the advanced hybrid closed loop system. CONCLUSIONS Our results confirmed the general improvement of glycemic outcomes obtained with the advanced hybrid closed loop system; however more hypoglycemic episodes during daytime were evident.
Collapse
Affiliation(s)
- Antonio Rossi
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Elia Reseghetti
- Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | | | - Giada Rossi
- Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Vera Usuelli
- Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Cristian Loretelli
- Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; International Center for T1D - Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Milan, Italy
| | - Denisa Boci
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Moufida Ben Nasr
- Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; International Center for T1D - Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Milan, Italy
| | - Francesca D'Addio
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy; Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; International Center for T1D - Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Milan, Italy
| | | | - Sabrina Argenti
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paola Morpurgo
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy; Dept. Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; International Center for T1D - Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
44
|
Gómez Medina AM, Henao Carrillo DC, Silva León JD, Gómez González JA, Muñoz Velandia OM, Conde Brahim L, Mecón Prada GA, Rondón Sepúlveda M. Results From a Virtual Clinic for the Follow-up of Patients Using the Advanced Hybrid Closed-Loop System. J Diabetes Sci Technol 2023:19322968231204376. [PMID: 37942633 DOI: 10.1177/19322968231204376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
BACKGROUND Evidence regarding the implementation of medium-term strategies in advanced hybrid closed-loop (AHCL) system users is limited. Therefore, this study aimed to describe the efficacy and safety of the AHCL system in patients with type 1 diabetes (T1D) on a six-month follow-up in a virtual diabetes clinic (VDC). METHOD A prospective cohort of adult patients with T1D treated using the AHCL system (Mini Med 780G; Medtronic, Northridge, California) in a VDC follow-up. Standardized training and follow-up were conducted virtually. Clinical data and metabolic control outcomes were reported at baseline, and at three and six months. RESULTS Sixty-four patients (mean age = 42 ± 14.6 years, 65% men, 54% with graduate education) were included. Percentage time in range (%TIR) increased significantly regardless of prior therapy with intermittently scanned continuous glucose monitoring + multiple daily injections and sensor-augmented pump therapy with predictive low-glucose management after starting AHCL and persisted during the follow-up period with no hypoglycemic events. The %TIR 70 to 180 mg/dL according to socioeconomic strata was 73.4% ± 5.3%, 78.1% ± 8.1%, and 84.2% ± 7.5% for the lower, middle, and upper strata, respectively. The sensor was used more frequently in the population with a higher education level. Adherence to sensor use and SmartGuard retention were higher in patients who underwent the VDC follow-up. CONCLUSIONS Medium-term follow-up of users of AHCL systems in a VDC contributes to safely achieving %TIR goals. Virtual diabetes clinic follow-up favored adherence to sensor use and continuous SmartGuard use. Socioeconomic strata were associated with a better glycemic profile and education level was associated with better adherence to sensor use.
Collapse
Affiliation(s)
- Ana María Gómez Medina
- Endocrinology Unit, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Julio David Silva León
- Endocrinology Unit, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Oscar Mauricio Muñoz Velandia
- Department of Internal Medicine, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | - Martin Rondón Sepúlveda
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
45
|
Nørgaard K, Ranjan AG, Laugesen C, Tidemand KG, Green A, Selmer C, Svensson J, Andersen HU, Vistisen D, Carstensen B. Glucose Monitoring Metrics in Individuals With Type 1 Diabetes Using Different Treatment Modalities: A Real-World Observational Study. Diabetes Care 2023; 46:1958-1964. [PMID: 37610784 DOI: 10.2337/dc23-1137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE This study aimed to investigate the association between continuous glucose monitoring (CGM)-derived glycemic metrics and different insulin treatment modalities using real-world data. RESEARCH DESIGN AND METHODS A cross-sectional study at Steno Diabetes Center Copenhagen, Denmark, included individuals with type 1 diabetes using CGM. Data from September 2021 to August 2022 were analyzed if CGM was used for at least 20% of a 4-week period. Individuals were divided into four groups: multiple daily injection (MDI) therapy, insulin pumps with unintegrated CGM (SUP), sensor-augmented pumps with low glucose management (SAP), and automated insulin delivery (AID). The MDI and SUP groups were further subdivided based on CGM alarm features. The primary outcome was percentage of time in range (TIR: 3.9-10.0 mmol/L) for each treatment group. Secondary outcomes included other glucose metrics and HbA1c. RESULTS Out of 6,314 attendees, 3,184 CGM users were included in the analysis. Among them, 1,622 used MDI, 504 used SUP, 354 used SAP, and 561 used AID. Median TIR was 54.0% for MDI, 54.9% for SUP, 62,9% for SAP, and 72,1% for AID users. The proportion of individuals achieving all recommended glycemic targets (TIR >70%, time above range <25%, and time below range <4%) was significantly higher in SAP (odds ratio [OR] 2.4 [95% CI 1.6-3.5]) and AID (OR 9.4 [95% CI 6.7-13.0]) compared with MDI without alarm features. CONCLUSIONS AID appears superior to other insulin treatment modalities with CGM. Although bias may be present because of indications, AID should be considered the preferred choice for insulin pump therapy.
Collapse
Affiliation(s)
- Kirsten Nørgaard
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ajenthen G Ranjan
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Christian Laugesen
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Katrine G Tidemand
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Allan Green
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Christian Selmer
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Jannet Svensson
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik U Andersen
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Dorte Vistisen
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Bendix Carstensen
- Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
46
|
Pihoker C, Shulman DI, Forlenza GP, Kaiserman KB, Sherr JL, Thrasher JR, Buckingham BA, Kipnes MS, Bode BW, Carlson AL, Lee SW, Latif K, Liljenquist DR, Slover RH, Dai Z, Niu F, Shin J, Jonkers RAM, Roy A, Grosman B, Vella M, Cordero TL, McVean J, Rhinehart AS, Vigersky RA. Safety and Glycemic Outcomes During the MiniMed TM Advanced Hybrid Closed-Loop System Pivotal Trial in Children and Adolescents with Type 1 Diabetes. Diabetes Technol Ther 2023; 25:755-764. [PMID: 37782145 DOI: 10.1089/dia.2023.0255] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Background: During MiniMed™ advanced hybrid closed-loop (AHCL) use by adolescents and adults in the pivotal trial, glycated hemoglobin (A1C) was significantly reduced, time spent in range (TIR) was significantly increased, and there were no episodes of severe hypoglycemia or diabetic ketoacidosis (DKA). The present study investigated the same primary safety and effectiveness endpoints during AHCL use by a younger cohort with type 1 diabetes (T1D). Methods: An intention-to-treat population (N = 160, aged 7-17 years) with T1D was enrolled in a single-arm study at 13 investigational centers. There was a run-in period (∼25 days) using HCL or sensor-augmented pump with/without predictive low-glucose management, followed by a 3-month study period with AHCL activated at two glucose targets (GTs; 100 and 120 mg/dL) for ∼45 days each. The mean ± standard deviation values of A1C, TIR, mean sensor glucose (SG), coefficient of variation (CV) of SG, time at SG ranges, and insulin delivered between run-in and study were analyzed (Wilcoxon signed-rank test or t-test). Results: Compared with baseline, AHCL use was associated with reduced A1C from 7.9 ± 0.9% (N = 160) to 7.4 ± 0.7% (N = 136) (P < 0.001) and overall TIR increased from the run-in 59.4 ± 11.8% to 70.3 ± 6.5% by end of study (P < 0.001), without change in CV, time spent below range (TBR) <70 mg/dL, or TBR <54 mg/dL. Relative to longer active insulin time (AIT) settings (N = 52), an AIT of 2 h (N = 19) with the 100 mg/dL GT increased mean TIR to 73.4%, reduced TBR <70 mg/dL from 3.5% to 2.2%, and reduced time spent above range (TAR) >180 mg/dL from 28.7% to 24.4%. During AHCL use, there was no severe hypoglycemia or DKA. Conclusions: In children and adolescents with T1D, MiniMed AHCL system use was safe, A1C was lower, and TIR was increased. The lowest GT and shortest AIT were associated with the highest TIR and lowest TBR and TAR, all of which met consensus-recommended glycemic targets. ClinicalTrials.gov ID: NCT03959423.
Collapse
Affiliation(s)
- Catherine Pihoker
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Dorothy I Shulman
- University of South Florida, Pediatric Diabetes and Endocrinology, Tampa, Florida, USA
| | - Gregory P Forlenza
- Department of Pediatrics, Barbara Davis Center of Childhood Diabetes, Aurora, Colorado, USA
| | | | - Jennifer L Sherr
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James R Thrasher
- Arkansas Diabetes and Endocrinology Center, Little Rock, Arkansas, USA
| | - Bruce A Buckingham
- Stanford University School of Medicine, Pediatric Diabetes and Endocrinology, Stanford, California, USA
| | - Mark S Kipnes
- Diabetes and Glandular Disease Clinic, San Antonio, Texas, USA
| | - Bruce W Bode
- Atlanta Diabetes Associates, Atlanta, Georgia, USA
| | - Anders L Carlson
- International Diabetes Center, HealthPartners Institute, Minneapolis, Minnesota, USA
| | - Scott W Lee
- Department of Endocrinology, Loma Linda University, Loma Linda, California, USA
| | - Kashif Latif
- AM Diabetes and Endocrinology Center, Bartlett, Tennessee, USA
| | | | - Robert H Slover
- Department of Pediatrics, Barbara Davis Center of Childhood Diabetes, Aurora, Colorado, USA
| | - Zheng Dai
- Medtronic, Northridge, California, USA
| | - Fang Niu
- Medtronic, Northridge, California, USA
| | - John Shin
- Medtronic, Northridge, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Marks BE, Meighan S, Zehra A, Douvas JL, Rearson A, Suresh R, Brown EA, Wolf RM. Real-World Glycemic Outcomes with Early Omnipod 5 Use in Youth with Type 1 Diabetes. Diabetes Technol Ther 2023; 25:782-789. [PMID: 37646634 PMCID: PMC10771875 DOI: 10.1089/dia.2023.0337] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Background: Pivotal trials of diabetes technologies have demonstrated glycemic improvements; however, these trials include patients of limited diversity and ranges of glycemic control. We assessed changes in glycemic control during the first 90 days of Omnipod 5 use in a real-world cohort of youth with type 1 diabetes (T1D). Methods: Youth 2-21 years with T1D initiating Omnipod 5 at two pediatric academic centers were included. Fourteen days of baseline (BL) continuous glucose monitoring (CGM) data were compared against data from the first 90 days of Omnipod 5 use. Outcome measures included changes in time in range (TIR), hemoglobin A1c (HbA1c), and CGM and insulin pump metrics based on the duration of Omnipod 5 use. Results: Among 195 youth (78.9% non-Hispanic White, 15.4% publicly insured, age 11.7 years, T1D duration 3.3 years) TIR increased 11%-points, from 49% to 61% (P < 0.001), and HbA1c decreased 0.5%-points, from 7.5% to 6.9% (P < 0.001). TIR improved within the first 9 days of Omnipod 5 use (p < 0.001) and did not change significantly thereafter (P = 0.1) despite decreases in user-initiated boluses (5.1 vs. 5.0, P = 0.01) and carbohydrate entries (4.2 vs. 4.1, P = 0.005) from days 1-9 to days 1-90. TIR improved 15%-points among youth with BL TIR <60% compared to a 5%-point increase for youth with BL TIR ≥60% (P < 0.001). Conclusions: Glycemic control improved within 9 days of Omnipod 5 initiation in this real-world cohort, and improvements were sustained over the first 90 days of use despite concomitant decreases in user-initiated boluses. These improvements were comparable to those observed in the pivotal trial.
Collapse
Affiliation(s)
- Brynn E. Marks
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seema Meighan
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anum Zehra
- Division of Endocrinology and Diabetes, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Julia L. Douvas
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Andrew Rearson
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Reshma Suresh
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Brown
- Division of Endocrinology and Diabetes, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Risa M. Wolf
- Division of Endocrinology and Diabetes, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Elbarbary NS, Ismail EAR. MiniMed 780G™ advanced hybrid closed-loop system performance in Egyptian patients with type 1 diabetes across different age groups: evidence from real-world users. Diabetol Metab Syndr 2023; 15:205. [PMID: 37845757 PMCID: PMC10580510 DOI: 10.1186/s13098-023-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Advanced hybrid closed loop (AHCL) system provides both automated basal rate and correction boluses to keep glycemic values in a target range. OBJECTIVES To evaluate the real-world performance of the MiniMed™ 780G system among different age groups of Egyptian patients with type 1diabetes. METHODS One-hundred seven AHCL system users aged from 3 to 71 years were enrolled. Data uploaded by patients were aggregated and analyzed. The mean glucose management indicator (GMI), percentage of time spent within glycemic ranges (TIR), time below range (TBR) and time above range (TAR) were determined. RESULTS Six months after initiating Auto Mode, patients spent a mean of 85.31 ± 22.04% of the time in Auto Mode (SmartGuard) and achieved a mean GMI of 6.95 ± 0.58% compared with 7.9 ± 2.1% before AHCL initiation (p < 0.001). TIR 70-180 mg/dL was increased post-AHCL initiation from 63.48 ± 10.14% to 81.54 ± 8.43% (p < 0.001) while TAR 180-250 mg/dL, TAR > 250 mg/dL, TBR < 70 mg/dL and TBR < 54 mg/dL were significantly decreased (p < 0.001). After initiating AHCL, TIR was greater in children and adults compared with adolescents (82.29 ± 7.22% and 83.86 ± 9.24% versus 78.4 ± 7.34%, respectively; p < 0.05). The total daily dose of insulin was increased in all age groups primarily due to increased system-initiated insulin delivery including auto correction boluses and basal insulin. CONCLUSIONS MiniMed™ 780G system users across different age groups achieved international consensus-recommended glycemic control with no serious adverse effects even in challenging age group as children and adolescents.
Collapse
Affiliation(s)
- Nancy Samir Elbarbary
- Department of Pediatrics, Faculty of medicine, Ain shams University, 25 Ahmed Fuad St. Saint Fatima, Cairo, 11361, Egypt.
| | | |
Collapse
|
49
|
Santova A, Plachy L, Neuman V, Pavlikova M, Petruzelkova L, Konecna P, Venhacova P, Skvor J, Pomahacova R, Neumann D, Vosahlo J, Strnadel J, Kocourkova K, Obermannova B, Pruhova S, Cinek O, Sumnik Z. Are all HCL systems the same? long term outcomes of three HCL systems in children with type 1 diabetes: real-life registry-based study. Front Endocrinol (Lausanne) 2023; 14:1283181. [PMID: 37908748 PMCID: PMC10613700 DOI: 10.3389/fendo.2023.1283181] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Objective To compare parameters of glycemic control among three types of hybrid closed loop (HCL) systems in children with T1D (CwD) using population-wide data from the national pediatric diabetes registry ČENDA. Methods CwD aged <19 years treated with Medtronic MiniMed 780G (780G), Tandem t:slim X2 (Control-IQ) or do-it-yourself AndroidAPS (AAPS) systems for >12 months and monitored by CGM >70% of the time were included. HbA1c, times in glycemic ranges, and Glycemia Risk Index (GRI) were used for cross-sectional comparison between the HCL systems. Results Data from 512 CwD were analyzed. 780G, Control-IQ and AAPS were used by 217 (42.4%), 211 (41.2%), and 84 (16.4%) CwD, respectively. The lowest HbA1c value was observed in the AAPS group (44 mmol/mol; IQR 8.0, p<0.0001 vs any other group), followed by Control-IQ and 780G groups (48 (IQR 11) and 52 (IQR 10) mmol/mol, respectively). All of the systems met the recommended criteria for time in range (78% in AAPS, 76% in 780G, and 75% in Control-IQ users). CwD using AAPS spent significantly more time in hypoglycemia (5% vs 2% in 780G and 3% in Control-IQ) and scored the highest GRI (32, IQR 17). The lowest GRI (27, IQR 15) was seen in 780G users. Conclusion Although all HCL systems proved effective in maintaining recommended long-term glycemic control, we observed differences that illustrate strengths and weaknesses of particular systems. Our findings could help in individualizing the choice of HCL systems.
Collapse
Affiliation(s)
- Alzbeta Santova
- Department of Pediatrics, Motol University Hospital and 2 Faculty of Medicine, Prague, Czechia
- 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Lukas Plachy
- Department of Pediatrics, Motol University Hospital and 2 Faculty of Medicine, Prague, Czechia
| | - Vit Neuman
- Department of Pediatrics, Motol University Hospital and 2 Faculty of Medicine, Prague, Czechia
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Lenka Petruzelkova
- Department of Pediatrics, Motol University Hospital and 2 Faculty of Medicine, Prague, Czechia
| | - Petra Konecna
- Department of Pediatrics, University Hospital Brno, Brno, Czechia
| | - Petra Venhacova
- Department of Pediatrics, University Hospital Olomouc, Olomouc, Czechia
| | - Jaroslav Skvor
- Department of Pediatrics, Masaryk Hospital, Usti nad Labem, Czechia
| | | | - David Neumann
- Department of Pediatrics, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Jan Vosahlo
- Department of Pediatrics, University Hospital Kralovske Vinohrady, Prague, Czechia
| | - Jiri Strnadel
- Department of Pediatrics, University Hospital Ostrava, Ostrava, Czechia
| | - Kamila Kocourkova
- Department of Pediatrics, Hospital Ceske Budejovice, Ceske Budejovice, Czechia
| | - Barbora Obermannova
- Department of Pediatrics, Motol University Hospital and 2 Faculty of Medicine, Prague, Czechia
| | - Stepanka Pruhova
- Department of Pediatrics, Motol University Hospital and 2 Faculty of Medicine, Prague, Czechia
| | - Ondrej Cinek
- Department of Pediatrics, Motol University Hospital and 2 Faculty of Medicine, Prague, Czechia
| | - Zdenek Sumnik
- Department of Pediatrics, Motol University Hospital and 2 Faculty of Medicine, Prague, Czechia
| |
Collapse
|
50
|
Schoemaker M, Martensson A, Mader JK, Nørgaard K, Freckmann G, Benhamou PY, Diem P, Heinemann L. Combining Glucose Monitoring and Insulin Infusion in an Integrated Device: A Narrative Review of Challenges and Proposed Solutions. J Diabetes Sci Technol 2023:19322968231203237. [PMID: 37798963 DOI: 10.1177/19322968231203237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The introduction of automated insulin delivery (AID) systems has enabled increasing numbers of individuals with type 1 diabetes (T1D) to improve their glycemic control largely. However, use of AID systems is limited due to their complexity and costs associated. The user must wear both a continuously monitoring glucose system and an insulin infusion pump. The glucose sensor and the insulin catheter must be inserted at two different body sites using different insertion devices. In addition, the user must pair and manage the different systems. These communicate with the AID software implemented on the pump or on a third device such as a dedicated display device or smart phone application. These components might be developed and commercialized by different manufacturers, which in turn can cause difficulties for patients seeking technical support. A possible solution to these challenges would be to integrate the glucose sensor and insulin catheter into a single device. This would allow the glucose sensor and insulin catheter to be inserted simultaneously, eliminating the need for pairing, and simplifying system management. In recent years, different technologies have been developed and evaluated in clinical investigations that combine the glucose sensor and the insulin catheter in one platform. The consistent finding of all these studies is that integration has no adverse effect on insulin infusion and glucose measurements provided that certain conditions are met. In this review, we discuss the perceived challenges of such an approach and discuss possible solutions that have been proposed.
Collapse
Affiliation(s)
| | | | | | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Guido Freckmann
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Pierre-Yves Benhamou
- Department of Endocrinology, Grenoble University Hospital, Grenoble Alpes University, Grenoble, France
| | - Peter Diem
- Artificial Intelligence in Health and Nutrition, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Lutz Heinemann
- Science-Consulting in Diabetes GmbH, Düsseldorf, Germany
| |
Collapse
|