1
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 487] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Glucose and lipid metabolism in the pancreas of rainbow trout is regulated at the molecular level by nutritional status and carbohydrate intake. J Comp Physiol B 2011; 182:507-16. [PMID: 22203338 DOI: 10.1007/s00360-011-0636-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
Glucose and lipid metabolism in pancreatic islet organs is poorly characterized. In the present study, using as a model the carnivorous rainbow trout, a glucose-intolerant fish, we assessed mRNA expression levels of several genes involved in glucose and lipid metabolism (including ATP-citrate lyase; carnitine palmitoyltransferase-1 isoforms, CPT; the mitochondrial isoform of the phosphoenolpyrutave carboxykinase, mPEPCK and pyruvate kinase, PK) and glucosensing (glucose transporter type 2, Glut2; glucokinase, GK and the potassium channel, K(ATP)) in Brockmann bodies. We evaluated the response of these parameters to changes in feeding status (food deprived vs. fed fish) as well as to changes in the amount of carbohydrate (dextrin) in the diet. A general inhibition of the glycolytic (including the glucosensing marker GK) and β-oxidation pathways was found when comparing fed versus food-deprived fish. When comparing fish feeding on either low- or high-carbohydrate diets, we found that some genes related to lipid metabolism were more controlled by the feeding status than by the carbohydrate content (fatty acid synthase, CPTs). Findings are discussed in the context of pancreatic regulation of glucose and lipid metabolism in fish, and show that while trout pancreatic metabolism can partially adapt to a high-carbohydrate diet, some of the molecular actors studied seem to be poorly regulated (K(ATP)) and may contribute to the glucose intolerance observed in this species when fed high-carbohydrate diets.
Collapse
|
4
|
Abstract
Type 2 diabetes is a chronic metabolic disease that adversely affects both the quality and longevity of life. The disease is characterised by elevated blood glucose (hyperglycaemia) that is associated with microvascular complications and increased macrovascular risk. Existing oral agents, either alone or in combination, do not exhibit adequate or sustained glucose lowering efficacy in Type 2 diabetics. Consequently, there is an unmet medical need for improved antidiabetic agents which are both more effective at lowering glucose and which display sustained efficacy over a number of years. Such agents would allow present glycaemic treatment targets to be achieved with greater success. Glucokinase activators (GKAs) represent a novel class of glucose-lowering agents. Preclinical data supports the notion that these agents act to lower blood glucose through effects in both the liver and pancreas. It is predicted that this dual compartment mechanism of action of GKAs will translate to robust glucose lowering in diabetic patients. The potential benefits and risks associated with the pharmacological activation of glucokinase are evaluated. The status of GKAs in preclinical and clinical development is assessed are the future prospects of these agents.
Collapse
Affiliation(s)
- Matthew Coghlan
- AstraZeneca Pharmaceuticals, Diabetes and Obesity Drug Discovery, Cardiovascular and Gastrointestinal Research Area, Mereside, Alderley Park, Macclesfi eld SK10 4TG, UK.
| | | |
Collapse
|
5
|
Carobbio S, Maechler P. Sustained glucose-stimulated insulin secretion in mouse islets is not culture-dependent. Diabetologia 2004; 47:1856-7. [PMID: 15502918 DOI: 10.1007/s00125-004-1536-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
|
6
|
Massa L, Baltrusch S, Okar DA, Lange AJ, Lenzen S, Tiedge M. Interaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) with glucokinase activates glucose phosphorylation and glucose metabolism in insulin-producing cells. Diabetes 2004; 53:1020-9. [PMID: 15047617 DOI: 10.2337/diabetes.53.4.1020] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) was recently identified as a new intracellular binding partner for glucokinase (GK). Therefore, we studied the importance of this interaction for the activity status of GK and glucose metabolism in insulin-producing cells by overexpression of the rat liver and pancreatic islet isoforms of PFK-2/FBPase-2. PFK-2/FBPase-2 overexpression in RINm5F-GK cells significantly increased the GK activity by 78% in cells expressing the islet isoform, by 130% in cells expressing the liver isoform, and by 116% in cells expressing a cAMP-insensitive liver S32A/H258A double mutant isoform. Only in cells overexpressing the wild-type liver PFK-2/FBPase-2 isoform was the increase of GK activity abolished by forskolin, apparently due to the regulatory site for phosphorylation by a cAMP-dependent protein kinase. In cells overexpressing any isoform of the PFK-2/FBPase-2, the increase of the GK enzyme activity was antagonized by treatment with anti-FBPase-2 antibody. Increasing the glucose concentration from 2 to 10 mmol/l had a significant stimulatory effect on the GK activity in RINm5F-GK cells overexpressing any isoform of PFK-2/FBPase-2. The interaction of GK with PFK-2/FBPase-2 takes place at glucose concentrations that are physiologically relevant for the activation of GK and the regulation of glucose-induced insulin secretion. This new mechanism of posttranslational GK regulation may also represent a new site for pharmacotherapeutic intervention in type 2 diabetes treatment.
Collapse
Affiliation(s)
- Laura Massa
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Khoo S, Griffen SC, Xia Y, Baer RJ, German MS, Cobb MH. Regulation of insulin gene transcription by ERK1 and ERK2 in pancreatic beta cells. J Biol Chem 2003; 278:32969-77. [PMID: 12810726 DOI: 10.1074/jbc.m301198200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show that the mitogen-activated protein kinases ERK1/2 are components of the mechanism by which glucose stimulates insulin gene expression. ERK1/2 activity is required for glucose-dependent transcription from both the full-length rat insulin I promoter and the glucose-sensitive isolated E2A3/4 promoter element in intact islets and beta cell lines. Dominant negative ERK2 and MEK inhibitors suppress glucose stimulation of the rat insulin I promoter and the E2A3/4 element. Overexpression of ERK2 is sufficient to stimulate transcription from the E2A3/4 element. The glucose-induced response is dependent upon ERK1/2 phosphorylation of a subset of transcription factors that include Beta2 (also known as NeuroD1) and PDX-1. Phosphorylation increases their functional activity and results in a cumulative transactivation of the promoter. Thus, ERK1/2 act at multiple points to transduce a glucose signal to insulin gene transcription.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cells, Cultured
- Cricetinae
- Dimerization
- Dose-Response Relationship, Drug
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Enzymologic
- Genes, Dominant
- Genetic Vectors
- Glucose/metabolism
- Glutathione Transferase/metabolism
- Insulin/metabolism
- Islets of Langerhans/metabolism
- Male
- Mice
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Mutagenesis, Site-Directed
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Recombinant Proteins/metabolism
- Retroviridae/genetics
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Shih Khoo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
8
|
Baltrusch S, Lenzen S, Okar DA, Lange AJ, Tiedge M. Characterization of glucokinase-binding protein epitopes by a phage-displayed peptide library. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel interaction partner. J Biol Chem 2001; 276:43915-23. [PMID: 11522786 DOI: 10.1074/jbc.m105470200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low affinity glucose-phosphorylating enzyme glucokinase shows the phenomenon of intracellular translocation in beta cells of the pancreas and the liver. To identify potential binding partners of glucokinase by a systematic strategy, human beta cell glucokinase was screened by a 12-mer random peptide library displayed by the M13 phage. This panning procedure revealed two consensus motifs with a high binding affinity for glucokinase. The first consensus motif, LSAXXVAG, corresponded to the glucokinase regulatory protein of the liver. The second consensus motif, SLKVWT, showed a complete homology to the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), which acts as a key regulator of glucose metabolism. Through yeast two-hybrid analysis it became evident that the binding of glucokinase to PFK-2/FBPase-2 is conferred by the bisphosphatase domain, whereas the kinase domain is responsible for dimerization. 5'-Rapid amplification of cDNA ends analysis and Northern blot analysis revealed that rat pancreatic islets express the brain isoform of PFK-2/FBPase-2. A minor portion of the islet PFK-2/FBPase-2 cDNA clones comprised a novel splice variant with 8 additional amino acids in the kinase domain. The binding of the islet/brain PFK-2/ FBPase-2 isoform to glucokinase was comparable with that of the liver isoform. The interaction between glucokinase and PFK-2/FBPase-2 may provide the rationale for recent observations of a fructose-2,6-bisphosphate level-dependent partial channeling of glycolytic intermediates between glucokinase and glycolytic enzymes. In pancreatic beta cells this interaction may have a regulatory function for the metabolic stimulus-secretion coupling. Changes in fructose-2,6-bisphosphate levels and modulation of PFK-2/FBPase-2 activities may participate in the physiological regulation of glucokinase-mediated glucose-induced insulin secretion.
Collapse
Affiliation(s)
- S Baltrusch
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | | | | | | | | |
Collapse
|
9
|
Schuit FC, Huypens P, Heimberg H, Pipeleers DG. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 2001; 50:1-11. [PMID: 11147773 DOI: 10.2337/diabetes.50.1.1] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nutrient homeostasis is known to be regulated by pancreatic islet tissue. The function of islet beta-cells is controlled by a glucose sensor that operates at physiological glucose concentrations and acts in synergy with signals that integrate messages originating from hypothalamic neurons and endocrine cells in gut and pancreas. Evidence exists that the extrapancreatic cells producing and secreting these (neuro)endocrine signals also exhibit a glucose sensor and an ability to integrate nutrient and (neuro)hormonal messages. Similarities in these cellular and molecular pathways provide a basis for a network of coordinated functions between distant cell groups, which is necessary for an appropriate control of nutrient homeostasis. The glucose sensor seems to be a fundamental component of these control mechanisms. Its molecular characterization is most advanced in pancreatic beta-cells, with important roles for glucokinase and mitochondrial oxidative fluxes in the regulation of ATP-sensitive K+ channels. Other glucose-sensitive cells in the endocrine pancreas, hypothalamus, and gut were found to share some of these molecular characteristics. We propose that similar metabolic signaling pathways influence the function of pancreatic alpha-cells, hypothalamic neurons, and gastrointestinal endocrine and neural cells.
Collapse
Affiliation(s)
- F C Schuit
- Diabetes Research Center, Faculty of Medicine, Vrije Universiteit Brussel, Belgium.
| | | | | | | |
Collapse
|
10
|
Herrera PL. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 2000; 127:2317-22. [PMID: 10804174 DOI: 10.1242/dev.127.11.2317] [Citation(s) in RCA: 488] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To analyze cell lineage in the pancreatic islets, we have irreversibly tagged all the progeny of cells through the activity of Cre recombinase. Adult glucagon alpha and insulin beta cells are shown to derive from cells that have never transcribed insulin or glucagon, respectively. Also, the beta-cell progenitors, but not alpha-cell progenitors, transcribe the pancreatic polypeptide (PP) gene. Finally, the homeodomain gene PDX1, which is expressed by adult beta-cells, is also expressed by alpha-cell progenitors. Thus the islet alpha- and beta-cell lineages appear to arise independently during ontogeny, probably from a common precursor.
Collapse
Affiliation(s)
- P L Herrera
- Department of Morphology, University of Geneva Medical School, rue Michel-Servet, Switzerland.
| |
Collapse
|
11
|
Niswender KD, Shiota M, Postic C, Cherrington AD, Magnuson MA. Effects of increased glucokinase gene copy number on glucose homeostasis and hepatic glucose metabolism. J Biol Chem 1997; 272:22570-5. [PMID: 9278411 DOI: 10.1074/jbc.272.36.22570] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The relationship between glucokinase (GK) gene copy number and glucose homeostasis was studied in transgenic mice with additional copies of the entire GK gene locus (Niswender, K. D., Postic, C., Jetton, T. L., Bennett, B. D., Piston, D. W., Efrat, S., and Magnuson, M. A. (1997) J. Biol. Chem. 272, 22564-22569). The plasma glucose concentration was reduced by 25 +/- 3% and 37 +/- 4% in mice with one or two extra copies of the gene locus, respectively. The basis for the hypoglycemic phenotype was determined using metabolic tracer techniques in chronically cannulated, conscious mice with one extra GK gene copy. Under basal conditions (6-h fasted) transgenic mice had a lower blood glucose concentration (-12 +/- 1%) and a slightly higher glucose turnover rate (+8 +/- 3%), resulting in a significantly higher glucose clearance rate (+21 +/- 2%). Plasma insulin levels were not different, suggesting that increased glucose clearance was due to augmented hepatic, not islet, GK gene expression. Under hyperglycemic clamp conditions the transgenic mice had glucose turnover and clearance rates similar to the controls, but showed a lower plasma insulin response (-48 +/- 5%). Net hepatic glycogen synthesis was markedly elevated (+360%), whereas skeletal muscle glycogen synthesis was decreased (-40%). These results indicate that increased GK gene dosage leads to increased hepatic glucose metabolism and, consequently, a lower plasma glucose concentration. Increased insulin secretion was not observed, even though the transgene is expressed in islets, because hypoglycemia causes a down-regulation in islet GK content (Niswender, K. D., Postic, C., Jetton, T. L., Bennett, B. D., Piston, D. W., Efrat, S., and Magnuson, M. A. (1997) J. Biol. Chem. 272, in press).
Collapse
Affiliation(s)
- K D Niswender
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
12
|
Niswender KD, Postic C, Jetton TL, Bennett BD, Piston DW, Efrat S, Magnuson MA. Cell-specific expression and regulation of a glucokinase gene locus transgene. J Biol Chem 1997; 272:22564-9. [PMID: 9278410 DOI: 10.1074/jbc.272.36.22564] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transgenic mice containing one or more extra copies of the entire glucokinase (GK) gene locus were generated and characterized. The GK transgene, an 83-kilobase pair mouse genomic DNA fragment containing both promoter regions, was expressed and regulated in a cell-specific manner, and rescued GK null lethality when crossed into mice bearing a targeted mutation of the endogenous GK gene. Livers from the transgenic mice had elevated GK mRNA, protein, and activity levels, compared with controls, and the transgene was regulated in liver by dietary manipulations. The amount of GK immunoreactivity in hepatocyte nuclei, where GK binds to the GK regulatory protein, was also increased. Pancreatic islets displayed increased GK immunoreactivity and NAD(P)H responses to glucose, but only when isolated and cultured in 20 mM glucose, as a result of the hypoglycemic phenotype of these mice (Niswender, K. D., Shiota, M., Postic, C., Cherrington, A. D., and Magnuson, M. A. (1997) J. Biol. Chem. 272, 22604-22609). Together, these results indicate that the region of the gene from -55 to +28 kilobase pairs (relative to the liver GK transcription start site) contains all the regulatory sequences necessary for expression of both GK isoforms, thereby placing an upper limit on the size of the GK gene locus.
Collapse
Affiliation(s)
- K D Niswender
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Tiedge M, Krug U, Lenzen S. Modulation of human glucokinase intrinsic activity by SH reagents mirrors post-translational regulation of enzyme activity. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1337:175-90. [PMID: 9048894 DOI: 10.1016/s0167-4838(96)00162-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The low-affinity glucose phosphorylating enzyme glucokinase plays a key role in the process of glucose recognition in pancreatic B-cells. To evaluate mechanisms of intrinsic regulation of enzyme activity human pancreatic B-cell and liver glucokinase and for comparison rat liver glucokinase were expressed in E. coli bacteria. A one-step purification procedure through metal chelate affinity chromatography revealed 58 kDa proteins with high specific activities in the range of 50 U/mg protein and K(m) values around 8 mM for the substrate D-glucose with a preference for the alpha-anomer. There were no tissue specific differences, no species differences in the electrophoretic mobility, and no differences of the kinetic properties of these well conserved enzymes. The deletion of the 15 tissue-specific NH2-terminal amino acids of the human glucokinase resulted in a catalytically active enzyme whose kinetic properties were not significantly different from those of the wild-type enzymes. The human and rat glucokinase isoforms were non-competitively inhibited by the sulfhydryl group reagents alloxan and ninhydrin with Ki values in the range of 1 microM. The inhibition of glucokinase enzyme activity was reversed by dithiothreitol with an EC50 value of 9 microM for alloxan and of 50 microM for ninhydrin. D-Glucose provided protection against alloxan-induced inhibition of human and rat glucokinase isoenzymes with half-maximal effective concentrations between 11 and 16 mM. The enzyme inhibition by alloxan was accompanied by a change in the electrophoretic mobility with a second lower molecular 49 kDa glucokinase band which can be interpreted as a compact glucokinase molecule locked by disulfide bonds. Quantification of free sulfhydryl groups revealed an average number of 3.6 free sulfhydryl groups per enzyme molecule for the native human glucokinase isoforms. Alloxan decreased the average number of free sulfhydryl groups to 1.9 per enzyme molecule indicating that more than one SH side group is oxidized by this compound. The extraordinary sensitivity of the SH side groups of the glucokinase may be a possible mechanism of enzyme regulation by interconversion of stable (active) and unstable (inactive) conformations of the enzyme. In pancreatic B-cells the glucose-dependent increase of reduced pyridine nucleotides may stabilize the enzyme in the 58 kDa form and provide optimal conditions for glucose recognition and glucose-induced insulin secretion.
Collapse
Affiliation(s)
- M Tiedge
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | | | | |
Collapse
|
14
|
Odagiri H, Wang J, German MS. Function of the human insulin promoter in primary cultured islet cells. J Biol Chem 1996; 271:1909-15. [PMID: 8567638 DOI: 10.1074/jbc.271.4.1909] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pancreatic islet beta cells regulate the rate of insulin gene transcription in response to a number of nutrients, the most potent of which is glucose. To test for its regulation by glucose, the promoter sequence was isolated from the human insulin gene. When linked to chloramphenicol acetyltransferase and transfected into primary islet cultures, the human insulin promoter is activated by glucose. In parallel islet transfections, glucose also activates the L-pyruvate kinase and islet amyloid chain ketoacid dehydrogenase E1a promoter, but it does not affect the beta cell glucose kinase promoter. Using deletion and substitution mutations of the proximal human insulin promoter, we mapped a metabolic response element to the E box, E1, at -100 base pairs relative to the transcription start site. Although the isolated E1 element responds to glucose, inclusion of either of two AT-rich sequences, A1 or A2/C1 on either side of E1, results in dramatic synergistic activation. Inclusion of A2/C1 also increases the response to glucose. The A2-E1-A1 region alone, however, does not explain all of the activity of the human insulin promoter in cultured islets, and other transcriptionally important elements likely to contribute to the glucose response as well.
Collapse
Affiliation(s)
- H Odagiri
- Hormone Research Institute, University of California at San Francisco 94143-0534, USA
| | | | | |
Collapse
|