1
|
Cherkaoui I, Du Q, Egli DM, Dion C, Leitch HG, Sachedina D, Misra S, Rutter GA. Investigating the pathogenicity of the recessive HNF1A p.A251T variant in monogenic diabetes using iPSC-derived beta-like cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.10.24318788. [PMID: 39711726 PMCID: PMC11661423 DOI: 10.1101/2024.12.10.24318788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Monogenic diabetes, formerly called Maturity-Onset Diabetes of the Young (MODY), involves single-gene mutations, typically with dominant inheritance, and has been associated with variants in 14 genes. Among these, HNF1A mutations are the most common, and their diagnosis allows the use of alternative therapies, including sulfonylureas. In an earlier study, we described a variant displaying recessive transmission, p.A251T (Misra, S et al, Diabetes Care, 2020). Initial functional studies revealed only a modest impact on protein function. We extend these earlier in vitro studies to demonstrate that beta-like cells derived from pluripotent stem cells from variant carriers show impaired differentiation into insulin-positive cells, whereas differentiation into alpha cells is significantly enhanced. Additionally, mutant cells showed impaired glucose-stimulated insulin secretion but partially preserved responsiveness to treatment with sulfonylureas. Our study provides proof of principle for the utility of using patient-derived stem cells as a platform to assess the pathogenicity of HNF1A variants, and to explore potential treatment strategies.
Collapse
Affiliation(s)
- Ines Cherkaoui
- Centre de Recherche du CHUM, and Faculty of Medicine, University of Montreal, QC, Canada
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, London, UK
| | - Qian Du
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Irving Medical Center, Columbia University, New York, USA
| | - Dieter M. Egli
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Irving Medical Center, Columbia University, New York, USA
| | - Camille Dion
- MRC Laboratory of Medical Sciences, West London, UK
| | - Harry G. Leitch
- MRC Laboratory of Medical Sciences, West London, UK
- Genetics & Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dilshad Sachedina
- Department of Diabetes, Imperial College Healthcare NHS Trust, London, UK
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, London, UK
- Department of Diabetes, Imperial College Healthcare NHS Trust, London, UK
| | - Guy A. Rutter
- Centre de Recherche du CHUM, and Faculty of Medicine, University of Montreal, QC, Canada
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, London, UK
- Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore
- Research Institute of the McGill University Hospital Centre, Montréal, QC, Canada
| |
Collapse
|
2
|
Ren XY, Xue MR, Yan ZL, Zhang SJ, Liu M, Li AZ. Clinical Characteristics and Gene Mutations of Two Families with MODY 3 in Inner Mongolia. Pharmgenomics Pers Med 2022; 15:1019-1027. [PMID: 36567880 PMCID: PMC9785186 DOI: 10.2147/pgpm.s371141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022] Open
Abstract
Objective This study aimed to analyze the clinical characteristics and gene mutations of two families with maturity-onset diabetes of the young 3 (MODY 3) in Inner Mongolia. Methods Fifty-three patients in Inner Mongolia suspected of having MODY 3 were enrolled in this study according to clinical manifestations. Blood samples were collected, and all exons of the HNF1α gene were analyzed; the second-generation DNA of the splicing regions of the gene was determined by direct sequencing. Results In Family 1, the proband, mother, and uncle all carried the missense heterozygous mutation on exon 2 of the HNF1α gene (c.512G>A, p.Arg171Gln), and both the proband and uncle had MODY 3. In Family 2, the proband, grandfather, father, uncle I, and uncle II all carried a missense mutation on exon 2 (c.391C>t, p.Arg131Trp), and all had MODY 3. The blood glucose control in these patients was stable while they were being treated with oral sulfonylurea hypoglycemic drugs alone or with insulin. Uncle II had serious macrovascular and microvascular complications. Conclusion Maturity-onset diabetes of the young 3 gene mutations (c.512G>A, p.Arg171Gln) and (c.391C>T, p.Arg131Trp) may be the main pathogenic genes of the two families with MODY 3. The two gene mutations found in this study have not been reported previously in China.
Collapse
Affiliation(s)
- Xiao-Yan Ren
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Meng-Ruo Xue
- Department of Interventional Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Zhao-Li Yan
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China,Correspondence: Zhao-Li Yan, Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, No. 1, North Tongdao Street, Huiming District, Hohhot, 010050, People’s Republic of China, Tel +86 13848177245, Email
| | - Shao-Jie Zhang
- Department of Anatomy, Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Min Liu
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Ai-Zhen Li
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| |
Collapse
|
3
|
Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant β cells. Nat Commun 2021; 12:3133. [PMID: 34035238 PMCID: PMC8149827 DOI: 10.1038/s41467-021-22843-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/04/2021] [Indexed: 12/13/2022] Open
Abstract
Heterozygous HNF1A gene mutations can cause maturity onset diabetes of the young 3 (MODY3), characterized by insulin secretion defects. However, specific mechanisms of MODY3 in humans remain unclear due to lack of access to diseased human pancreatic cells. Here, we utilize MODY3 patient-derived human induced pluripotent stem cells (hiPSCs) to study the effect(s) of a causal HNF1A+/H126D mutation on pancreatic function. Molecular dynamics simulations predict that the H126D mutation could compromise DNA binding and gene target transcription. Genome-wide RNA-Seq and ChIP-Seq analyses on MODY3 hiPSC-derived endocrine progenitors reveal numerous HNF1A gene targets affected by the mutation. We find decreased glucose transporter GLUT2 expression, which is associated with reduced glucose uptake and ATP production in the MODY3 hiPSC-derived β-like cells. Overall, our findings reveal the importance of HNF1A in regulating GLUT2 and several genes involved in insulin secretion that can account for the insulin secretory defect clinically observed in MODY3 patients. Heterozygous HNF1A mutations can give rise to maturity onset diabetes of the young 3 (MODY3), characterized by insulin secretion defects. Here the authors show that MODY3-related HNF1A mutation in patient hiPSCderived pancreatic cells decreases glucose transporter GLUT2 expression due to compromised DNA binding.
Collapse
|
4
|
Katashima R, Matsumoto M, Watanabe Y, Moritani M, Yokota I. Identification of Novel GCK and HNF4α Gene Variants in Japanese Pediatric Patients with Onset of Diabetes before 17 Years of Age. J Diabetes Res 2021; 2021:7216339. [PMID: 34746319 PMCID: PMC8570896 DOI: 10.1155/2021/7216339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is commonly misdiagnosed as type 1 or type 2 diabetes. Common reasons for misdiagnosis are related to limitations in genetic testing. A precise molecular diagnosis is essential for the optimal treatment of patients and allows for early diagnosis of their asymptomatic family members. OBJECTIVE The aim of this study was to identify rare monogenic variants of common MODY genes in Japanese pediatric patients. METHODS We investigated 45 Japanese pediatric patients based on the following clinical criteria: development of diabetes before 17 years of age, a family history of diabetes, testing negative for glutamate decarboxylase-65 (GAD 65) antibodies and insulinoma-2-associated autoantibodies (IA-2A), no significant obesity, and evidence of endogenous insulin production. Genetic screening for MODY1 (HNF4α), MODY2 (GCK), MODY3 (HNF1α), and MODY5 (HNF1β) was performed by direct sequencing followed by multiplex ligation amplification assays. RESULTS We identified 22 missense variants (3 novel variants) in 27 patients (60.0%) in the GCK, HNF4α, and HNF1α genes. We also detected a whole exon deletion in the HNF1β gene and an exon 5-6 aberration in the GCK gene, each in one proband (4.4%). There were a total of 29 variations (64.4%), giving a relative frequency of 53.3% (24/45) for GCK, 2.2% (1/45) for HNF4α, 6.7% (3/45) for HNF1α, and 2.2% (1/45) for HNF1β genes. CONCLUSIONS Clinicians should consider collecting and assessing detailed clinical information, especially regarding GCK gene variants, in young antibody-negative patients with diabetes. Correct molecular diagnosis of MODY better predicts the clinical course of diabetes and facilitates individualized management.
Collapse
Affiliation(s)
- Rumi Katashima
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| | - Mari Matsumoto
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yuka Watanabe
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| | - Maki Moritani
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| | - Ichiro Yokota
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
- Department of Pediatric Endocrinology and Metabolism, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1, Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| |
Collapse
|
5
|
Pace NP, Rizzo C, Abela A, Gruppetta M, Fava S, Felice A, Vassallo J. Identification of an HNF1A p.Gly292fs Frameshift Mutation Presenting as Diabetes During Pregnancy in a Maltese Family. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2019; 12:1179547619831034. [PMID: 30814848 PMCID: PMC6383084 DOI: 10.1177/1179547619831034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022]
Abstract
The diagnosis of maturity onset diabetes of the young (MODY) is a challenging
process in view of the extensive clinical and genetic heterogeneity of the
disease. Mutations in the gene encoding hepatocyte nuclear factor 1α
(HNF1A) are responsible for most forms of monogenic
diabetes in Northern European populations. Genetic analysis through a
combination of whole exome sequencing and Sanger sequencing in three Maltese
siblings and their father identified a rare duplication/frameshift mutation in
exon 4 of HNF1A that lies within a known mutational hotspot in
this gene. In this report, we provide the first description of an
HNF1A-MODY3 phenotype in a Maltese family. The findings
reported are relevant and new to a regional population, where the epidemiology
of atypical diabetes has never been studied before. This report is of clinical
interest as it highlights how monogenic diabetes can be misdiagnosed as either
type 1, type 2, or gestational diabetes. It also reinforces the need for a
better characterisation of monogenic diabetes in Mediterranean countries,
particularly in island populations such as Malta with a high prevalence of
diabetes.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | | | - Alexia Abela
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Mark Gruppetta
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Stephen Fava
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Alex Felice
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | | |
Collapse
|
6
|
Haliyur R, Tong X, Sanyoura M, Shrestha S, Lindner J, Saunders DC, Aramandla R, Poffenberger G, Redick SD, Bottino R, Prasad N, Levy SE, Blind RD, Harlan DM, Philipson LH, Stein RW, Brissova M, Powers AC. Human islets expressing HNF1A variant have defective β cell transcriptional regulatory networks. J Clin Invest 2018; 129:246-251. [PMID: 30507613 DOI: 10.1172/jci121994] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/24/2018] [Indexed: 01/06/2023] Open
Abstract
Using an integrated approach to characterize the pancreatic tissue and isolated islets from a 33-year-old with 17 years of type 1 diabetes (T1D), we found that donor islets contained β cells without insulitis and lacked glucose-stimulated insulin secretion despite a normal insulin response to cAMP-evoked stimulation. With these unexpected findings for T1D, we sequenced the donor DNA and found a pathogenic heterozygous variant in the gene encoding hepatocyte nuclear factor-1α (HNF1A). In one of the first studies of human pancreatic islets with a disease-causing HNF1A variant associated with the most common form of monogenic diabetes, we found that HNF1A dysfunction leads to insulin-insufficient diabetes reminiscent of T1D by impacting the regulatory processes critical for glucose-stimulated insulin secretion and suggest a rationale for a therapeutic alternative to current treatment.
Collapse
Affiliation(s)
- Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - May Sanyoura
- Departments of Medicine and Pediatrics-Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, Illinois, USA
| | - Shristi Shrestha
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Jill Lindner
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Diane C Saunders
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Radhika Aramandla
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sambra D Redick
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Raymond D Blind
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Departments of Pharmacology and Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - David M Harlan
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics-Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, Illinois, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Yorifuji T, Higuchi S, Kawakita R, Hosokawa Y, Aoyama T, Murakami A, Kawae Y, Hatake K, Nagasaka H, Tamagawa N. Genetic basis of early-onset, maturity-onset diabetes of the young-like diabetes in Japan and features of patients without mutations in the major MODY genes: Dominance of maternal inheritance. Pediatr Diabetes 2018; 19:1164-1172. [PMID: 29927023 DOI: 10.1111/pedi.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/05/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Causative mutations cannot be identified in the majority of Asian patients with suspected maturity-onset diabetes of the young (MODY). OBJECTIVES To elucidate the genetic basis of Japanese patients with MODY-like diabetes and gain insight into the etiology of patients without mutations in the major MODY genes. SUBJECTS A total of 263 Japanese patients with early-onset, non-obese, MODY-like diabetes mellitus referred to Osaka City General Hospital for diagnosis. METHODS Mutational analysis of the four major MODY genes (GCK, HNF1A, HNF4A, HNF1B) by Sanger sequencing. Mutation-positive and mutation-negative patients were further analyzed for clinical features. RESULTS Mutations were identified in 103 (39.2%) patients; 57 mutations in GCK; 29, HNF1A; 7, HNF4A; and 10, HNF1B. Contrary to conventional diagnostic criteria, 18.4% of mutation-positive patients did not have affected parents and 8.2% were in the overweight range (body mass index [BMI] >85th percentile). HOMA-IR at diagnosis was elevated (>2) in 15 of 66 (22.7%) mutation-positive patients. Compared with mutation-positive patients, mutation-negative patients were significantly older (P = 0.003), and had higher BMI percentile at diagnosis (P = 0.0006). Interestingly, maternal inheritance of diabetes was significantly more common in mutation-negative patients (P = 0.0332) and these patients had significantly higher BMI percentile as compared with mutation-negative patients with paternal inheritance (P = 0.0106). CONCLUSIONS Contrary to the conventional diagnostic criteria, de novo diabetes, overweight, and insulin-resistance are common in Japanese patients with mutation-positive MODY. A significant fraction of mutation-negative patients had features of early-onset type 2 diabetes common in Japanese, and non-Mendelian inheritance needs to be considered for these patients.
Collapse
Affiliation(s)
- Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan.,Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan.,Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Rie Kawakita
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan.,Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yuki Hosokawa
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Takane Aoyama
- Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | - Akiko Murakami
- Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yoshiko Kawae
- Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Kazue Hatake
- Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Nobuyoshi Tamagawa
- Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
8
|
Firdous P, Nissar K, Ali S, Ganai BA, Shabir U, Hassan T, Masoodi SR. Genetic Testing of Maturity-Onset Diabetes of the Young Current Status and Future Perspectives. Front Endocrinol (Lausanne) 2018; 9:253. [PMID: 29867778 PMCID: PMC5966560 DOI: 10.3389/fendo.2018.00253] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a global epidemic problem growing exponentially in Asian countries posing a serious threat. Among diabetes, maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic disorders that occurs due to β cell dysfunction. Genetic defects in the pancreatic β-cells result in the decrease of insulin production required for glucose utilization thereby lead to early-onset diabetes (often <25 years). It is generally considered as non-insulin dependent form of diabetes and comprises of 1-5% of total diabetes. Till date, 14 genes have been identified and mutation in them may lead to MODY. Different genetic testing methodologies like linkage analysis, restriction fragment length polymorphism, and DNA sequencing are used for the accurate and correct investigation of gene mutations associated with MODY. The next-generation sequencing has emerged as one of the most promising and effective tools to identify novel mutated genes related to MODY. Diagnosis of MODY is mainly relying on the sequential screening of the three marker genes like hepatocyte nuclear factor 1 alpha (HNF1α), hepatocyte nuclear factor 4 alpha (HNF4α), and glucokinase (GCK). Interestingly, MODY patients can be managed by diet alone for many years and may also require minimal doses of sulfonylureas. The primary objective of this article is to provide a review on current status of MODY, its prevalence, genetic testing/diagnosis, possible treatment, and future perspective.
Collapse
Affiliation(s)
- Parveena Firdous
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Kamran Nissar
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Sajad Ali
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
- *Correspondence: Bashir Ahmad Ganai,
| | - Uzma Shabir
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Toyeeba Hassan
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Shariq Rashid Masoodi
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| |
Collapse
|
9
|
Gong S, Guo J, Han X, Li M, Zhou L, Cai X, Zhu Y, Luo Y, Zhang S, Zhou X, Ma Y, Ji L. Clinical and Genetic Features of Patients With Type 2 Diabetes and Renal Glycosuria. J Clin Endocrinol Metab 2017; 102:1548-1556. [PMID: 28324025 DOI: 10.1210/jc.2016-2332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/19/2017] [Indexed: 02/13/2023]
Abstract
CONTEXT A sodium glucose cotransporter 2 (SGLT2) inhibitor, which increases urinary glucose excretion, was reported to decrease blood glucose levels and deaths among patients with type 2 diabetes mellitus (T2DM) and established cardiovascular disease. SLC5A2 and HNF1A mutations are associated with renal glycosuria, but their contributions to renal glycosuria in patients with T2DM are not well understood. OBJECTIVE To assess the clinical features of patients with T2DM and renal glycosuria and those with T2DM and low urinary glucose excretion (LUGE) and identify variants in the exons of SLC5A2 and HNF1A in patients with renal glycosuria and T2DM. DESIGN A total of 2044 Chinese patients with T2DM, including 64 patients with renal glycosuria and 58 patients with LUGE, were tested for their plasma and urine glucose concentrations after fasting. SLC5A2 and HNF1A exons were sequenced. RESULTS Compared with patients with LUGE, those with renal glycosuria were younger (P = 0.008), had lower body mass index (BMI) (P = 0.002) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) values (P < 0.0001), and were less likely to have hypertension (P = 0.006). HOMA-IR and BMI were negatively associated with renal glycosuria after adjusting for age, sex, hypertension, and insulin therapy. One novel mutation (V359G) of SLC5A2 in 32 patients with renal glycosuria and one known mutation (R131W) of HNF1A in 28 nonobese patients with renal glycosuria were identified. CONCLUSIONS These findings suggest that there are subtypes of T2DM characterized by different urinary glucose excretion and cardiovascular risk factors. SLC5A2 and HNF1A mutations partially explain renal glycosuria in patients with T2DM.
Collapse
Affiliation(s)
- Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
- Peking University Diabetes Center, Beijing 100044, China
| | - Jiandong Guo
- Department of Medicine, Beijing Yanqing Hospital, Beijing 102100, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
- Peking University Diabetes Center, Beijing 100044, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
10
|
P. S, D. TK, C. GPD, R. S, Zayed H. Determining the role of missense mutations in the POU domain of HNF1A that reduce the DNA-binding affinity: A computational approach. PLoS One 2017; 12:e0174953. [PMID: 28410371 PMCID: PMC5391926 DOI: 10.1371/journal.pone.0174953] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/18/2017] [Indexed: 12/21/2022] Open
Abstract
Maturity-onset diabetes of the young type 3 (MODY3) is a non-ketotic form of diabetes associated with poor insulin secretion. Over the past years, several studies have reported the association of missense mutations in the Hepatocyte Nuclear Factor 1 Alpha (HNF1A) with MODY3. Missense mutations in the POU homeodomain (POUH) of HNF1A hinder binding to the DNA, thereby leading to a dysfunctional protein. Missense mutations of the HNF1A were retrieved from public databases and subjected to a three-step computational mutational analysis to identify the underlying mechanism. First, the pathogenicity and stability of the mutations were analyzed to determine whether they alter protein structure and function. Second, the sequence conservation and DNA-binding sites of the mutant positions were assessed; as HNF1A protein is a transcription factor. Finally, the biochemical properties of the biological system were validated using molecular dynamic simulations in Gromacs 4.6.3 package. Two arginine residues (131 and 203) in the HNF1A protein are highly conserved residues and contribute to the function of the protein. Furthermore, the R131W, R131Q, and R203C mutations were predicted to be highly deleterious by in silico tools and showed lower binding affinity with DNA when compared to the native protein using the molecular docking analysis. Triplicate runs of molecular dynamic (MD) simulations (50ns) revealed smaller changes in patterns of deviation, fluctuation, and compactness, in complexes containing the R131Q and R131W mutations, compared to complexes containing the R203C mutant complex. We observed reduction in the number of intermolecular hydrogen bonds, compactness, and electrostatic potential, as well as the loss of salt bridges, in the R203C mutant complex. Substitution of arginine with cysteine at position 203 decreases the affinity of the protein for DNA, thereby destabilizing the protein. Based on our current findings, the MD approach is an important tool for elucidating the impact and affinity of mutations in DNA-protein interactions and understanding their function.
Collapse
Affiliation(s)
- Sneha P.
- School of BioSciences and Technology,Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thirumal Kumar D.
- School of BioSciences and Technology,Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - George Priya Doss C.
- School of BioSciences and Technology,Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Siva R.
- School of BioSciences and Technology,Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Santana LS, Caetano LA, Costa-Riquetto AD, Quedas EPS, Nery M, Collett-Solberg P, Boguszewski MCS, Vendramini MF, Crisostomo LG, Floh FO, Zarabia ZI, Kohara SK, Guastapaglia L, Passone CGB, Sewaybricker LE, Jorge AAL, Teles MG. Clinical application of ACMG-AMP guidelines in HNF1A and GCK variants in a cohort of MODY families. Clin Genet 2017; 92:388-396. [PMID: 28170077 DOI: 10.1111/cge.12988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/05/2023]
Abstract
Maturity-onset diabetes of the young (MODY) is a form of monogenic diabetes with autosomal dominant inheritance. GCK -MODY and HNF1A -MODY are the prevalent subtypes. Currently, there is growing concern regarding the correct interpretation of molecular genetic findings. The American College of Medical Genetics and Genomics (ACMG) updated guidelines to interpret and classify molecular variants. This study aimed to determine the prevalence of MODY ( GCK / HNF1A ) in a large cohort of Brazilian families, to report variants related to phenotype, and to classify them according to ACMG guidelines. One hundred and nine probands were investigated, 45% with clinical suspicion of GCK -MODY and 55% with suspicion of HNF1A -MODY. Twenty-five different variants were identified in GCK gene (30 probands-61% of positivity), and 7 variants in HNF1A (10 probands-17% of positivity). Fourteen of them were novel (12- GCK /2- HNF1A ). ACMG guidelines were able to classify a large portion of variants as pathogenic (36%- GCK /86%- HNF1A ) and likely pathogenic (44%- GCK /14%- HNF1A ), with 16% (5/32) as uncertain significance. This allows us to determine the pathogenicity classification more efficiently, and also reinforces the suspected associations with the phenotype among novel variants.
Collapse
Affiliation(s)
- L S Santana
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - L A Caetano
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.,Diabetes Unit, Clinics Hospital, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - A D Costa-Riquetto
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.,Diabetes Unit, Clinics Hospital, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - E P S Quedas
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - M Nery
- Diabetes Unit, Clinics Hospital, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - P Collett-Solberg
- Department of Endocrinology, University of Rio de Janeiro State (UERJ), Rio de Janeiro, RJ, Brazil
| | - M C S Boguszewski
- Departamento de Pediatria, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - M F Vendramini
- Serviço de Endocrinologia, Hospital do Servidor Público Estadual de São Paulo (HSPE-SP), Sao Paulo, SP, Brazil
| | - L G Crisostomo
- Serviço de Endocrinologia, Hospital Israelita Albert Eisntein, Sao Paulo, SP, Brazil.,Faculdade de Medicina, Centro Universitário São Camilo, Sao Paulo, SP, Brazil
| | - F O Floh
- Serviço de Endocrinologia, Hospital Israelita Albert Eisntein, Sao Paulo, SP, Brazil
| | - Z I Zarabia
- Serviço de Endocrinologia, Hospital Infantil Dr. Jeser Amarante Faria, Joinville, SC, Brazil
| | - S K Kohara
- Serviço de Endocrinologia, Universidade da Região de Joinville (UNIVILLE), Joinville, SC, Brazil
| | - L Guastapaglia
- Serviço de Endocrinologia, Hospital do Servidor Público Municipal de São Paulo (HSPM-SP), Sao Paulo, SP, Brazil
| | - C G B Passone
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, SP, Brazil
| | - L E Sewaybricker
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - A A L Jorge
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - M G Teles
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.,Diabetes Unit, Clinics Hospital, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| |
Collapse
|
12
|
Johansson BB, Irgens HU, Molnes J, Sztromwasser P, Aukrust I, Juliusson PB, Søvik O, Levy S, Skrivarhaug T, Joner G, Molven A, Johansson S, Njølstad PR. Targeted next-generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry. Diabetologia 2017; 60:625-635. [PMID: 27913849 DOI: 10.1007/s00125-016-4167-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS MODY can be wrongly diagnosed as type 1 diabetes in children. We aimed to find the prevalence of MODY in a nationwide population-based registry of childhood diabetes. METHODS Using next-generation sequencing, we screened the HNF1A, HNF4A, HNF1B, GCK and INS genes in all 469 children (12.1%) negative for both GAD and IA-2 autoantibodies and 469 antibody-positive matched controls selected from the Norwegian Childhood Diabetes Registry (3882 children). Variants were classified using clinical diagnostic criteria for pathogenicity ranging from class 1 (neutral) to class 5 (pathogenic). RESULTS We identified 58 rare exonic and splice variants in cases and controls. Among antibody-negative patients, 6.5% had genetic variants of classes 3-5 (vs 2.4% in controls; p = 0.002). For the stricter classification (classes 4 and 5), the corresponding number was 4.1% (vs 0.2% in controls; p = 1.6 × 10-5). HNF1A showed the strongest enrichment of class 3-5 variants, with 3.9% among antibody-negative patients (vs 0.4% in controls; p = 0.0002). Antibody-negative carriers of variants in class 3 had a similar phenotype to those carrying variants in classes 4 and 5. CONCLUSIONS/INTERPRETATION This is the first study screening for MODY in all antibody-negative children in a nationwide population-based registry. Our results suggest that the prevalence of MODY in antibody-negative childhood diabetes may reach 6.5%. One-third of these MODY cases had not been recognised by clinicians. Since a precise diagnosis is important for treatment and genetic counselling, molecular screening of all antibody-negative children should be considered in routine diagnostics.
Collapse
Affiliation(s)
- Bente B Johansson
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Henrik U Irgens
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
| | - Janne Molnes
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Paweł Sztromwasser
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild Aukrust
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Petur B Juliusson
- Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Oddmund Søvik
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
| | - Shawn Levy
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Torild Skrivarhaug
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Geir Joner
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Anders Molven
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway.
- Department of Paediatrics, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
13
|
Tang J, Tang CY, Wang F, Guo Y, Tang HN, Zhou CL, Tan SW, Liu SP, Zhou ZG, Zhou HD. Genetic diagnosis and treatment of a Chinese ketosis-prone MODY 3 family with depression. Diabetol Metab Syndr 2017; 9:5. [PMID: 28105082 PMCID: PMC5240193 DOI: 10.1186/s13098-016-0198-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To analyze the gene mutation and mental disorder of a Chinese ketosis-prone diabetes (KPD) family, and to make a precise diagnosis and give a treatment for them. METHODS We studied a Chinese family with a clinical diagnosis of maturity-onset diabetes of the young (MODY). The clinical data and the blood samples were collected. The promotor and coding regions inclusive intron exon boundaries of the HNF1A, HNF4A were detected by polymerase chain reaction (PCR) and direct sequencing. The missense mutation was also analyzed by bioinformatics. Genetic counseling was performed twice a month to relieve the mental disorder of the persons. RESULTS The missense mutation c.779 C>T (p.T260M) in exon4 of HNF1A gene was detected, and the symptom heterogenicity among persons in this family were found. All the members were retreated with Gliclazide and stopped to use other medicine, the blood glucose of them were well controlled. We also performed an active genetic counseling to them and the mental disorder of the proband's sister was relieved. CONCLUSIONS A missense mutation of HNF1A gene was first found in Chinese ketosis-prone MODY family with manifestations heterogenicity among the persons. Sulphonylureas medicine and genetic counseling are efficiency ways to treat MODY 3 and its' mental disorder respectively.
Collapse
Affiliation(s)
- Jun Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Chen-Yi Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Fang Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Yue Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Hao-Neng Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Ci-La Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Shu-Wen Tan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Shi-Ping Liu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Zhi-Guang Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| | - Hou-De Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiang-Ya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, China
| |
Collapse
|
14
|
Docena MK, Faiman C, Stanley CM, Pantalone KM. Mody-3: novel HNF1A mutation and the utility of glucagon-like peptide (GLP)-1 receptor agonist therapy. Endocr Pract 2016; 20:107-11. [PMID: 24014008 DOI: 10.4158/ep13254.or] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE An estimated 1 to 2% of cases of diabetes mellitus have a monogenic basis; however, delayed diagnosis and misdiagnosis as type 1 and 2 diabetes are common. Correctly identifying the molecular basis of an individual's diabetes may significantly alter the management approach to both the patient and his or her relatives. We describe a case of mature onset diabetes of the young (MODY) with sufficient evidence to support the classification of a novel HNF1A (hepatocyte nuclear factor-1-α) mutation as a cause of MODY-3. METHODS A 21-year-old Caucasian female presented to our office with a diagnosis of noninsulin-dependent diabetes mellitus (NIDDM) at age 10; glycemia was initially managed with oral antidiabetic (OAD) agents and insulin detemir. The patient reported a strong family history of early-onset NIDDM in both her mother and maternal grandmother, both of whom eventually required insulin therapy to control glycemia. The patient's medical and family history were highly suggestive of maturity-onset diabetes of the young (MODY), and genetic testing was performed. RESULTS Genetic screening detected a mutation p. Arg200Trp in the HNF1A gene in the patient, her mother, and maternal grandmother, suggesting a diagnosis of MODY-3. This finding resulted in a change of antidiabetic therapy in all 3 patients, including the addition of once-daily liraglutide therapy, which helped improve their glycemic control. CONCLUSION Our case report supports the classification of the p. Arg200Trp mutation as a cause of MODY-3. The findings also suggest that glucagon-like peptide-1 (GLP-1) receptor agonist therapy may be of value in managing glycemia in patients with MODY-3.
Collapse
Affiliation(s)
| | - Charles Faiman
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Kevin M Pantalone
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
15
|
Epidemiology and Inherited Predisposition for Sporadic Pancreatic Adenocarcinoma. Hematol Oncol Clin North Am 2016; 29:619-40. [PMID: 26226901 DOI: 10.1016/j.hoc.2015.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Given the changing demographics of Western populations, the numbers of pancreatic cancer cases are projected to increase during the next decade. Diabetes, recent cigarette smoking, and excess body weight are the cancer's most consistent risk factors. The search for common and rare germline variants that influence risk of pancreatic cancer through genome-wide association studies and high-throughput-sequencing-based studies is underway and holds the promise of increasing the knowledge of variants and genes that play a role in inherited susceptibility of this disease. Research reported in this review has advanced the understanding of pancreatic cancer.
Collapse
|
16
|
Ağladıoğlu SY, Aycan Z, Çetinkaya S, Baş VN, Önder A, Peltek Kendirci HN, Doğan H, Ceylaner S. Maturity onset diabetes of youth (MODY) in Turkish children: sequence analysis of 11 causative genes by next generation sequencing. J Pediatr Endocrinol Metab 2016; 29:487-96. [PMID: 26669242 DOI: 10.1515/jpem-2015-0039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 10/19/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Maturity-onset diabetes of the youth (MODY), is a genetically and clinically heterogeneous group of diseasesand is often misdiagnosed as type 1 or type 2 diabetes. The aim of this study is to investigate both novel and proven mutations of 11 MODY genes in Turkish children by using targeted next generation sequencing. METHODS A panel of 11 MODY genes were screened in 43 children with MODY diagnosed by clinical criterias. Studies of index cases was done with MISEQ-ILLUMINA, and family screenings and confirmation studies of mutations was done by Sanger sequencing. RESULTS We identified 28 (65%) point mutations among 43 patients. Eighteen patients have GCK mutations, four have HNF1A, one has HNF4A, one has HNF1B, two have NEUROD1, one has PDX1 gene variations and one patient has both HNF1A and HNF4A heterozygote mutations. CONCLUSIONS This is the first study including molecular studies of 11 MODY genes in Turkish children. GCK is the most frequent type of MODY in our study population. Very high frequency of novel mutations (42%) in our study population, supports that in heterogenous disorders like MODY sequence analysis provides rapid, cost effective and accurate genetic diagnosis.
Collapse
|
17
|
Abstract
Although relatively rare, pancreatic tumors are highly lethal [1]. In the United States, an estimated 48,960 individuals will be diagnosed with pancreatic cancer and 40,560 will die from this disease in 2015 [1]. Globally, 337,872 new pancreatic cancer cases and 330,391 deaths were estimated in 2012 [2]. In contrast to most other cancers, mortality rates for pancreatic cancer are not improving; in the US, it is predicted to become the second leading cause of cancer related deaths by 2030 [3, 4]. The vast majority of tumors arise in the exocrine pancreas, with pancreatic ductal adenocarcinoma (PDAC) accounting for approximately 95% of tumors. Tumors arising in the endocrine pancreas (pancreatic neuroendocrine tumors) represent less than 5% of all pancreatic tumors [5]. Smoking, type 2 diabetes mellitus (T2D), obesity and pancreatitis are the most consistent epidemiological risk factors for pancreatic cancer [5]. Family history is also a risk factor for developing pancreatic cancer with odds ratios (OR) ranging from 1.7-2.3 for first-degree relatives in most studies, indicating that shared genetic factors may play a role in the etiology of this disease [6-9]. This review summarizes the current knowledge of germline pancreatic cancer risk variants with a special emphasis on common susceptibility alleles identified through Genome Wide Association Studies (GWAS).
Collapse
Affiliation(s)
- Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Egan AM, Cunningham A, Jafar-Mohammadi B, Dunne FP. Diabetic ketoacidosis in the setting of HNF1A-maturity onset diabetes of the young. BMJ Case Rep 2015; 2015:bcr-2014-209163. [PMID: 25837654 DOI: 10.1136/bcr-2014-209163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A female patient was treated for type 1 diabetes following presentation at 12 years of age with hyperglycaemia, polydipsia and weight loss. Eleven years later, while screening relatives attending a genetic diabetes clinic, she was identified as potentially harbouring a mutation in the hepatocyte nuclear factor 1A (HNF1A) gene. Biochemical testing supported the diagnosis of HNF1A-maturity onset diabetes of the young (MODY) and genetic screening was positive for a heterozygous mutation in the HNF1A gene. The patient transitioned from insulin to sulfonylurea therapy. Three years later, in the setting of poor metabolic control, the patient presented to the emergency department with a history of nausea, vomiting and palpitations. A diagnosis of diabetic ketoacidosis (DKA) was confirmed and successfully treated. Although a diagnosis of HNF1A-MODY is rarely considered in a patient with a history of DKA, we demonstrate that DKA is possible in the setting of non-compliance with sulfonylurea therapy.
Collapse
Affiliation(s)
- Aoife M Egan
- Department of Endocrinology and Diabetes Mellitus, Galway Diabetes Research Centre, Galway, Ireland
| | - Aine Cunningham
- Department of Endocrinology and Diabetes Mellitus, Galway Diabetes Research Centre, Galway, Ireland
| | - Bahram Jafar-Mohammadi
- Department of Endocrinology and Diabetes Mellitus, Galway Diabetes Research Centre, Galway, Ireland King's College Hospital, London, UK
| | - Fidelma P Dunne
- Department of Endocrinology and Diabetes Mellitus, Galway Diabetes Research Centre, Galway, Ireland
| |
Collapse
|
19
|
Alkorta-Aranburu G, Carmody D, Cheng Y, Nelakuditi V, Ma L, Dickens JT, Das S, Greeley S, del Gaudio D. Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol Genet Metab 2014; 113:315-320. [PMID: 25306193 PMCID: PMC4756642 DOI: 10.1016/j.ymgme.2014.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
Single gene mutations that primarily affect pancreatic β-cell function account for approximately 1-2% of all cases of diabetes. Overlapping clinical features with common forms of diabetes makes diagnosis of monogenic diabetes challenging. A genetic diagnosis often leads to significant alterations in treatment, allows better prediction of disease prognosis and progression, and has implications for family members. Currently, genetic testing for monogenic diabetes relies on selection of appropriate individual genes for analysis based on the availability of often-limited phenotypic information, decreasing the likelihood of making a genetic diagnosis. We thus developed a targeted next-generation sequencing (NGS) assay for the detection of mutations in 36 genes known to cause monogenic forms of diabetes, including transient or permanent neonatal diabetes mellitus (TNDM or PNDM), maturity-onset diabetes of the young (MODY) and rare syndromic forms of diabetes. A total of 95 patient samples were analyzed: 19 with known causal mutations and 76 with a clinically suggestive phenotype but lacking a genetic diagnosis. All previously identified mutations were detected, validating our assay. Pathogenic sequence changes were identified in 19 out of 76 (25%) patients: 7 of 32 (22%) NDM cases, and 12 of 44 (27%) MODY cases. In 2 NDM patients the causal mutation was not expected as consanguinity was not reported and there were no clinical features aside from diabetes. A 3 year old patient with NDM diagnosed at 3 months of age, who previously tested negative for INS, KCNJ11 and ABCC8 mutations, was found to carry a novel homozygous mutation in EIF2AK3 (associated with Wolcott-Rallison syndrome), a gene not previously suspected because consanguinity, delayed growth, abnormal bone development and hepatic complications had not been reported. Similarly, another infant without a history of consanguinity was found to have a homozygous GCK mutation causing PNDM at birth. This study demonstrates the effectiveness of multi-gene panel analysis in uncovering molecular diagnoses in patients with monogenic forms of diabetes.
Collapse
Affiliation(s)
| | - D. Carmody
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
| | - Y.W. Cheng
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - V. Nelakuditi
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - L. Ma
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Jazzmyne T. Dickens
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
| | - S. Das
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - S.A.W. Greeley
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, The University of Chicago, Chicago, IL, USA
| | - D. del Gaudio
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Corresponding author at: University of Chicago, 5841 S. Maryland Ave. MC.0077, Chicago, IL 60637, USA. Fax: +1 773 834 0556. (D. del Gaudio)
| |
Collapse
|
20
|
Stanik J, Dusatkova P, Cinek O, Valentinova L, Huckova M, Skopkova M, Dusatkova L, Stanikova D, Pura M, Klimes I, Lebl J, Gasperikova D, Pruhova S. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia 2014; 57:480-4. [PMID: 24323243 DOI: 10.1007/s00125-013-3119-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/12/2013] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS MODY is mainly characterised by an early onset of diabetes and a positive family history of diabetes with an autosomal dominant mode of inheritance. However, de novo mutations have been reported anecdotally. The aim of this study was to systematically revisit a large collection of MODY patients to determine the minimum prevalence of de novo mutations in the most prevalent MODY genes (i.e. GCK, HNF1A, HNF4A). METHODS Analysis of 922 patients from two national MODY centres (Slovakia and the Czech Republic) identified 150 probands (16%) who came from pedigrees that did not fulfil the criterion of two generations with diabetes but did fulfil the remaining criteria. The GCK, HNF1A and HNF4A genes were analysed by direct sequencing. RESULTS Mutations in GCK, HNF1A or HNF4A genes were detected in 58 of 150 individuals. Parents of 28 probands were unavailable for further analysis, and in 19 probands the mutation was inherited from an asymptomatic parent. In 11 probands the mutations arose de novo. CONCLUSIONS/INTERPRETATION In our cohort of MODY patients from two national centres the de novo mutations in GCK, HNF1A and HNF4A were present in 7.3% of the 150 families without a history of diabetes and 1.2% of all of the referrals for MODY testing. This is the largest collection of de novo MODY mutations to date, and our findings indicate a much higher frequency of de novo mutations than previously assumed. Therefore, genetic testing of MODY could be considered for carefully selected individuals without a family history of diabetes.
Collapse
Affiliation(s)
- Juraj Stanik
- DIABGENE Laboratory, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, SK-833 06, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ekholm E, Nilsson R, Groop L, Pramfalk C. Alterations in bile acid synthesis in carriers of hepatocyte nuclear factor 1α mutations. J Intern Med 2013; 274:263-72. [PMID: 23607861 DOI: 10.1111/joim.12082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Heterozygous mutations in hepatocyte nuclear factor 1α (HNF1α) cause maturity onset diabetes of the young 3 (MODY3), an autosomal dominant form of diabetes. Deficiency of HNF1α in mice results in diabetes, hypercholesterolaemia and increased bile acid (BA) and cholesterol synthesis. Little is known about alterations in lipid metabolism in patients with MODY3. The aim of this study was to investigate whether patients with MODY3 have altered cholesterol and BA synthesis and intestinal cholesterol absorption. A secondary aim was to investigate the effects of HNF1α mutations on the transcriptional regulation of BA metabolism. METHODS Plasma biomarkers of BA and cholesterol synthesis and intestinal cholesterol absorption were measured in patients with MODY3 (n = 19) and in matched healthy control subjects (n = 15). Cotransfection experiments were performed with several promoters involved in BA metabolism along with expression vectors carrying the mutations found in these patients. RESULTS Plasma analysis showed higher levels of BA synthesis in patients with MODY3. No differences were observed in cholesterol synthesis or intestinal cholesterol absorption. Cotransfection experiments showed that one of the mutations (P379A) increased the induction of the cholesterol 7α-hydroxylase promoter compared with HNF1α, without further differences in other studied promoters. By contrast, the other four mutations (L107I, T260M, P291fsinsC and R131Q) reduced the induction of the farnesoid X receptor (FXR) promoter, which was followed by reduced repression of the small heterodimer partner promoter. In addition, these mutations also reduced the induction of the apical sodium-dependent bile salt transporter promoter. CONCLUSIONS BA synthesis is increased in patients with MODY3 compared with control subjects. Mutations in HNF1α affect promoters involved in BA metabolism.
Collapse
Affiliation(s)
- E Ekholm
- Department of Clinical Sciences, Diabetes and Endocrinology, Malmö University Hospital, Sweden
| | | | | | | |
Collapse
|
22
|
Li D, Duell EJ, Yu K, Risch HA, Olson SH, Kooperberg C, Wolpin BM, Jiao L, Dong X, Wheeler B, Arslan AA, Bueno-de-Mesquita HB, Fuchs CS, Gallinger S, Gross M, Hartge P, Hoover RN, Holly EA, Jacobs EJ, Klein AP, LaCroix A, Mandelson MT, Petersen G, Zheng W, Agalliu I, Albanes D, Boutron-Ruault MC, Bracci PM, Buring JE, Canzian F, Chang K, Chanock SJ, Cotterchio M, Gaziano J, Giovannucci EL, Goggins M, Hallmans G, Hankinson SE, Hoffman Bolton JA, Hunter DJ, Hutchinson A, Jacobs KB, Jenab M, Khaw KT, Kraft P, Krogh V, Kurtz RC, McWilliams RR, Mendelsohn JB, Patel AV, Rabe KG, Riboli E, Shu XO, Tjønneland A, Tobias GS, Trichopoulos D, Virtamo J, Visvanathan K, Watters J, Yu H, Zeleniuch-Jacquotte A, Amundadottir L, Stolzenberg-Solomon RZ. Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis 2012; 33:1384-90. [PMID: 22523087 PMCID: PMC3405651 DOI: 10.1093/carcin/bgs151] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/02/2012] [Accepted: 03/09/2012] [Indexed: 12/20/2022] Open
Abstract
Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case-control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P < 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 × 10(-6), 1.6 × 10(-5), 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 × 10(-5)), whereas the others did not. The most significant genes (P < 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H.pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer.
Collapse
Affiliation(s)
| | - Eric J. Duell
- Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Bill Wheeler
- Information Management Services, Silver Spring, MD, USA
| | - Alan A. Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
- New York University Cancer Institute, New York, NY, USA
| | - H. Bas Bueno-de-Mesquita
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Charles S. Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven Gallinger
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Myron Gross
- Department of Laboratory Medicine/Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Robert N. Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Elizabeth A. Holly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Eric J. Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Alison P. Klein
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, The Bloomberg School of Public Health, The Sol Goldman Pancreatic Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andrea LaCroix
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret T. Mandelson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Group Health Center for Health Studies, Seattle, WA, USA
| | - Gloria Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Julie E. Buring
- Department of Ambulatory Care and Prevention, Harvard Medical School, Boston, MA, USA
- Divisions of Preventive Medicine and Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Federico Canzian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kenneth Chang
- Comprehensive Digestive Disease Center, University of California, Irvine Medical Center, Orange, CA, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Core Genotyping Facility, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
| | - Michelle Cotterchio
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada
| | - J.Michael Gaziano
- Physicians’ Health Study, Divisions of Aging, Cardiovascular Medicine, and Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, and Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Edward L. Giovannucci
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Michael Goggins
- Departments of Oncology, Pathology and Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Susan E. Hankinson
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Judith A. Hoffman Bolton
- Department of Epidemiology, The Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - David J. Hunter
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Core Genotyping Facility, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
| | - Kevin B. Jacobs
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Core Genotyping Facility, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Bioinformed Consulting Services, Gaithersburg, MD, USA
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, Clinical Gerontology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Vittorio Krogh
- Nutritional Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Robert C. Kurtz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Julie B. Mendelsohn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Alpa V. Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Kari G. Rabe
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Elio Riboli
- Division of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Anne Tjønneland
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Geoffrey S. Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Dimitrios Trichopoulos
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece
| | - Jarmo Virtamo
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Kala Visvanathan
- Departments of Oncology, Pathology and Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joanne Watters
- Division of Cancer Prevention and Population Control, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Herbert Yu
- Yale University School of Public Health, New Haven, CT, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
- New York University Cancer Institute, New York, NY, USA
| | - Laufey Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Rachael Z. Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
23
|
Abstract
Type 2 diabetes mellitus is likely the third modifiable risk factor for pancreatic cancer after cigarette smoking and obesity. Epidemiological investigations have found that long-term type 2 diabetes mellitus is associated with a 1.5-fold to 2.0-fold increase in the risk of pancreatic cancer. A causal relationship between diabetes and pancreatic cancer is also supported by findings from prediagnostic evaluations of glucose and insulin levels in prospective studies. Insulin resistance and associated hyperglycemia, hyperinsulinemia, and inflammation have been suggested to be the underlying mechanisms contributing to development of diabetes-associated pancreatic cancer. Signaling pathways that regulate the metabolic process also play important roles in cell proliferation and tumor growth. Use of the antidiabetic drug metformin has been associated with reduced risk of pancreatic cancer in diabetics and recognized as an antitumor agent with the potential to prevent and treat this cancer. On the other hand, new-onset diabetes may indicate subclinical pancreatic cancer, and patients with new-onset diabetes may constitute a population in whom pancreatic cancer can be detected early. Biomarkers that help define high-risk individuals for clinical screening for pancreatic cancer are urgently needed. Why pancreatic cancer causes diabetes and how diabetes affects the clinical outcome of pancreatic cancer have yet to be fully determined. Improved understanding of the pathological mechanisms shared by diabetes and pancreatic cancer would be the key to the development of novel preventive and therapeutic strategies for this cancer.
Collapse
Affiliation(s)
- Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
24
|
Gardner DSL, Tai ES. Clinical features and treatment of maturity onset diabetes of the young (MODY). Diabetes Metab Syndr Obes 2012; 5:101-8. [PMID: 22654519 PMCID: PMC3363133 DOI: 10.2147/dmso.s23353] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maturity onset diabetes of the young (MODY) is a heterogeneous group of disorders that result in β-cell dysfunction. It is rare, accounting for just 1%-2% of all diabetes. It is often misdiagnosed as type 1 or type 2 diabetes, as it is often difficult to distinguish MODY from these two forms. However, diagnosis allows appropriate individualized care, depending on the genetic etiology, and allows prognostication in family members. In this review, we discuss features of the common causes of MODY, as well as the treatment and diagnosis of MODY.
Collapse
Affiliation(s)
- Daphne SL Gardner
- Department of Endocrinology, Singapore General Hospital, Singapore
- Correspondence: Daphne SL Gardner, Department of Endocrinology, Singapore General Hospital, Block 6, Level 6, Outram Road, Singapore 169608, Tel +65 6321 4523, Email
| | - E Shyong Tai
- Department of Endocrinology, National University Hospital, Singapore
| |
Collapse
|
25
|
Bazalová Z, Rypácková B, Broz J, Brunerová L, Polák J, Rusavý Z, Treslová L, Andel M. Three novel mutations in MODY and its phenotype in three different Czech families. Diabetes Res Clin Pract 2010; 88:132-8. [PMID: 20132997 DOI: 10.1016/j.diabres.2010.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 12/19/2009] [Accepted: 01/04/2010] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS MODY (Maturity Onset Diabetes of the Young) is an autosomal dominant inherited type of diabetes with significant genetic heterogeneity. New mutations causing MODY are still being found. A genetically confirmed diagnosis of MODY allows application of individualized treatment based on the underlying concrete genetic dysfunction. Detection of novel MODY mutations helps provide a more complete picture of the possible MODY genotypes. MATERIALS AND METHODS We tested 43 adult Czech patients with clinical characteristics of MODY, using direct sequencing of HNF1A (hepatocyte nuclear factor 1-alpha), HNF4A (hepatocyte nuclear factor 4-alpha) and GCK (glucokinase) genes. RESULTS In three Czech families we identified three novel mutations we believe causing MODY-two missense mutations in HNF1A [F268L (c.802T>C) and P291S (c.871C>T)] and one frame shift mutation in GCK V244fsdelG (c.729delG). Some of the novel HNF1A mutation carriers were successfully transferred from insulin to gliclazide, while some of the novel GCK mutation carriers had a good clinical response when switched from insulin or oral antidiabetic drugs to diet. CONCLUSION We describe three novel MODY mutations in three Czech families. The identification of MODY mutations had a meaningful impact on therapy on the mutation carriers.
Collapse
Affiliation(s)
- Z Bazalová
- 3rd Faculty of Medicine of Charles University, Centre of Research for Diabetes, Endocrinological Diseases and Clinical Nutrition, Ruská 87, 100 00 Prague 10, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lim DM, Huh N, Park KY. Hepatocyte nuclear factor 1-alpha mutation in normal glucose-tolerant subjects and early-onset type 2 diabetic patients. Korean J Intern Med 2008; 23:165-9. [PMID: 19119252 PMCID: PMC2687678 DOI: 10.3904/kjim.2008.23.4.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND/AIMS The prevalence of diabetes in Korea is reported to be approximately 10%, but cases of maturity-onset diabetes of the young (MODY) are rare in Korea. A diagnostic technique for autosomal dominant MODY is being actively sought. In this regard, we used a DNA chip to investigate the frequency of mutations of the MODY3 gene (hepatocyte nuclear factor-1alpha) in Korean patients with early-onset type 2 diabetes. METHODS The genomic DNA of 30 normal individuals [age, 24.9+/-8.6 years] and 25 patients with early-onset type 2 diabetes (age, 27+/-5.9 years) was extracted, and the MODY3 gene was amplified. The amplified DNA was hybridized onto a MODY3 chip, which has oligonucleotides of 15-25 bases, representing wild-type and mutant MODY3 sequences in both forward and reverse orientations, immobilized on its surface. RESULTS Among the normal subjects, there was no mutation of MODY3. Among those with early-onset type 2 diabetes, there was one case of MODY3 mutation. CONCLUSIONS Our results indicate that MODY3 mutations are not rare in Korean early-onset type 2 diabetes patients in Korea and suggest that MODY3 mutations in patients with early-onset type 2 diabetes need to be further evaluated.
Collapse
Affiliation(s)
- Dong Mee Lim
- Department of Internal Medicine, Konyang University College of Medicine, Daejon, Korea
| | | | | |
Collapse
|
27
|
Karlsson E, Shaat N, Groop L. Can complement factors 5 and 8 and transthyretin be used as biomarkers for MODY 1 (HNF4A-MODY) and MODY 3 (HNF1A-MODY)? Diabet Med 2008; 25:788-91. [PMID: 18513302 DOI: 10.1111/j.1464-5491.2008.02467.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIMS Genetic testing is needed for the formal diagnosis of maturity-onset diabetes of the young (MODY), but this is not widely available. If any MODY biomarkers were known, these could possibly be used as an alternative. Hepatocyte nuclear factor (HNF)-1alpha and HNF-4alpha regulate transcription of genes encoding complement 5 (C5), complement 8 (C8) and transthyretin (TTR), suggesting that these could be potential biomarkers for the disease. We therefore set out to determine whether serum concentrations of C5, C8 and TTR can be used as biomarkers for patients with HNF4A-MODY and HNF1A-MODY. METHODS The serum concentrations of C5, C8 and TTR were analysed in patients with mutations in the HNF-1alpha (n=29) and HNF-4alpha (N=13) genes. Type 2 diabetic (n = 14) and healthy subjects (n = 20), matched for body mass index (BMI), served as diabetic and non-diabetic control groups, respectively. RESULTS Type 2 diabetic patients had markedly increased levels of C5 and C8 compared with healthy control subjects. Levels of C5 and C8 correlated with glycated haemoglobin (C5: r = 0.48, P = 0.019). After adjustment for BMI, glycated haemoglobin, age and gender, HNF4A-MODY and HNF1A patients had reduced levels of C5 and C8 compared with Type 2 diabetic patients (C5: P = 0.001; C8: P = 0.004). In addition, patients with HNF4A-MODY, but not those with HNF1A-MODY, had decreased TTR compared with diabetic patients (P = 0.038). CONCLUSIONS Serum concentrations of C5 and C8 seem to distinguish HNF4A and HNF1A-MODY from other forms of diabetes. However, hyperglycaemia per se increases the serum concentrations, thereby attenuating their potential role as biomarkers for MODY.
Collapse
Affiliation(s)
- E Karlsson
- Department of Clinical Sciences/Diabetes and Endocrinology, Malmö University Hospital, Lund University, Malmö, Sweden.
| | | | | |
Collapse
|
28
|
Watanabe M, Umeyama K, Kawano HO, Izuno N, Nagashima H, Miki K. The Production of a Diabetic Mouse Using Constructs Encoding Porcine Insulin Promoter-Driven Mutant Human Hepatocyte Nuclear Factor-1.ALPHA. J Reprod Dev 2007; 53:189-200. [PMID: 17077577 DOI: 10.1262/jrd.18068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A diabetic mouse model was produced using a mutant human hepatocyte nuclear factor-1alpha gene (HNF1alphaP291fsinsC) regulated by the porcine insulin promoter. The functionality of two different constructs containing HNF1alphaP291fsinsC, termed PD1 and PD2 (cytomegalovirus enhancer minus and plus), were examined in transgenic mice. The blood glucose levels and body weights of the PD1 transgenic mice did not differ from their non-transgenic littermates over the period from 3 to 8 weeks of age. Conversely, the PD2 transgenic mice exhibited hyperglycemia and decreased body weight. Western blot analysis demonstrated that mutant HNF-1alpha protein (HNF1alphaP291), derived from the PD2 transgene, was expressed in the PD2 mice. Morphometric studies of the pancreas of a PD2 mouse revealed that the number of pancreatic islets present was less than that in the non-transgenic mice, indicating disturbed islet neogenesis. These results suggest that impaired insulin secretion in disrupted islets causes hyperglycemia. In addition, the phenotype of PD2 transgenic mice similar to that of the HNF-1alpha gene-deficient mouse, which displays growth retardation and impaired viability. These results indicate that HNF1alphaP291 expression driven by the porcine insulin promoter, together with the cytomegalovirus enhancer, induces a diabetic phenotype in transgenic mice.
Collapse
|
29
|
Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 2006; 27:854-69. [PMID: 16917892 DOI: 10.1002/humu.20357] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes mellitus characterized by autosomal dominant inheritance, early age of onset (often <25 years of age), and pancreatic beta-cell dysfunction. MODY is both clinically and genetically heterogeneous, with six different genes identified to date; glucokinase (GCK), hepatocyte nuclear factor-1 alpha (HNF1A, or TCF1), hepatocyte nuclear factor-4 alpha (HNF4A), insulin promoter factor-1 (IPF1 or PDX1), hepatocyte nuclear factor-1 beta (HNF1B or TCF2), and neurogenic differentiation 1 (NEUROD1). Mutations in the HNF1A gene are a common cause of MODY in the majority of populations studied. A total of 193 different mutations have been described in 373 families. The most common mutation is Pro291fs (P291fsinsC) in the polycytosine (poly C) tract of exon 4, which has been reported in 65 families. HNF4A mutations are rarer; 31 mutations reported in 40 families. Sensitivity to treatment with sulfonylurea tablets is a feature of both HNF1A and HNF4A mutations. The identification of an HNF1A or 4A gene mutation confirms a diagnosis of MODY and has important implications for clinical management.
Collapse
Affiliation(s)
- Sian Ellard
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom.
| | | |
Collapse
|
30
|
Ball EV, Stenson PD, Abeysinghe SS, Krawczak M, Cooper DN, Chuzhanova NA. Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum Mutat 2006; 26:205-13. [PMID: 16086312 DOI: 10.1002/humu.20212] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the Human Gene Mutation Database (www.hgmd.org), microdeletions and microinsertions causing inherited disease (both defined as involving < or = 20 bp of DNA) account for 8,399 (17%) and 3,345 (7%) logged mutations, in 940 and 668 genes, respectively. A positive correlation was noted between the microdeletion and microinsertion frequencies for 564 genes for which both microdeletions and microinsertions are reported in HGMD, consistent with the view that the propensity of a given gene/sequence to undergo microdeletion is related to its propensity to undergo microinsertion. While microdeletions and microinsertions of 1 bp constitute respectively 48% and 66% of the corresponding totals, the relative frequency of the remaining lesions correlates negatively with the length of the DNA sequence deleted or inserted. Many of the microdeletions and microinsertions of more than 1 bp are potentially explicable in terms of slippage mutagenesis, involving the addition or removal of one copy of a mono-, di-, or trinucleotide tandem repeat. The frequency of in-frame 3-bp and 6-bp microinsertions and microdeletions was, however, found to be significantly lower than that of mutations of other lengths, suggesting that some of these in-frame lesions may not have come to clinical attention. Various sequence motifs were found to be over-represented in the vicinity of both microinsertions and microdeletions, including the heptanucleotide CCCCCTG that shares homology with the complement of the 8-bp human minisatellite conserved sequence/chi-like element (GCWGGWGG). The previously reported indel hotspot GTAAGT and its complement ACTTAC were also found to be overrepresented in the vicinity of both microinsertions and microdeletions, thereby providing a first example of a mutational hotspot that is common to different types of gene lesion. Other motifs overrepresented in the vicinity of microdeletions and microinsertions included DNA polymerase pause sites and topoisomerase cleavage sites. Several novel microdeletion/microinsertion hotspots were noted and some of these exhibited sufficient similarity to one another to justify terming them "super-hotspot" motifs. Analysis of sequence complexity also demonstrated that a combination of slipped mispairing mediated by direct repeats, and secondary structure formation promoted by symmetric elements, can account for the majority of microdeletions and microinsertions. Thus, microinsertions and microdeletions exhibit strong similarities in terms of the characteristics of their flanking DNA sequences, implying that they are generated by very similar underlying mechanisms.
Collapse
Affiliation(s)
- Edward V Ball
- Institute of Medical Genetics, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Identification of four novel mutations in the HNF-1A gene in Chinese early-onset and/or multiplex diabetes pedigrees. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200607010-00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Liljeström B, Aktan-Collan K, Isomaa B, Sarelin L, Uutela A, Groop L, Kääriäinen H, Tuomi T. Genetic testing for maturity onset diabetes of the young: uptake, attitudes and comparison with hereditary non-polyposis colorectal cancer. Diabetologia 2005; 48:242-50. [PMID: 15660263 DOI: 10.1007/s00125-004-1629-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 08/31/2004] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS Mutations in hepatic nuclear factor 1alpha cause a monogenic form of diabetes, maturity onset diabetes of the young type 3 (MODY3). Our aim was (1) to assess the uptake of genetic testing for MODY3 and to determine factors affecting it, and (2) to compare attitudes to predictive genetic testing between families with MODY3 and a previously studied group at risk of hereditary non-polyposis colorectal cancer (HNPCC). METHODS Adult members of two extended MODY3 pedigrees, either with diabetes or a 50% risk of having inherited the mutation (n=144, age 18-60 years), were invited to an educational counselling session followed by a possibility to obtain the gene test result. Data were collected through questionnaires before counselling and 1 month after the test disclosure. RESULTS Eighty-nine out of 144 (62%) participated in counselling, and all but one wanted the test result disclosed. No significant sociodemographic differences were observed between the participants and non-participants. The counselling uptake was similar among diabetic and non-diabetic subjects. Uncertainty about the future and the risk for the children were the most common reasons to take the gene test. At follow-up, most subjects in both MODY3 (100%) and HNPCC (99%) families were satisfied with their decision to take the test and trusted the result. The majority of both diabetic and non-diabetic subjects considered that the MODY3 gene test should be offered either in childhood (50 and 37%) or as a teenager (30 and 37%). CONCLUSIONS Genetic testing for MODY3 was well accepted among both diabetic and non-diabetic participants. The subjects found the gene test reliable and they were satisfied with their decision regarding the predictive test.
Collapse
Affiliation(s)
- B Liljeström
- Department of Medicine, Helsinki University Hospital, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gloyn AL, Cummings EA, Edghill EL, Harries LW, Scott R, Costa T, Temple IK, Hattersley AT, Ellard S. Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 Gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel. J Clin Endocrinol Metab 2004; 89:3932-5. [PMID: 15292329 DOI: 10.1210/jc.2004-0568] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activating mutations in the KCNJ11 gene encoding for the Kir6.2 subunit of the beta-cell ATP-sensitive potassium channel have recently been shown to be a common cause of permanent neonatal diabetes. In 80% of probands, these are isolated cases resulting from de novo mutations. We describe a family in which two affected paternal half-siblings were found to be heterozygous for the previously reported R201C mutation. Direct sequencing of leukocyte DNA showed that their clinically unaffected mothers and father were genotypically normal. Quantitative real-time PCR analysis of the father's leukocyte DNA detected no trace of mutant DNA. These results are consistent with the father being a mosaic for the mutation, which is restricted to his germline. This is the first report of germline mosaicism in any form of monogenic diabetes. The high percentage of permanent neonatal diabetes cases due to de novo KCNJ11 mutations suggests that germline mosaicism may be common. The possibility of germline mosaicism should be considered when counseling recurrence risks for the parents of a child with an apparently de novo KCNJ11 activating mutation.
Collapse
Affiliation(s)
- Anna L Gloyn
- Diabetes and Vascular Medicine, Peninsula Medical School, Exeter EX2 5AX, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- William E Winter
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Box 100275, Gainesville, FL 32610-0275, USA.
| |
Collapse
|
35
|
Chi YI, Frantz JD, Oh BC, Hansen L, Dhe-Paganon S, Shoelson SE. Diabetes mutations delineate an atypical POU domain in HNF-1alpha. Mol Cell 2002; 10:1129-37. [PMID: 12453420 DOI: 10.1016/s1097-2765(02)00704-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in Hnf-1alpha are the most common Mendelian cause of diabetes mellitus. To elucidate the molecular function of a mutational hotspot, we cocrystallized human HNF-1alpha 83-279 with a high-affinity promoter and solved the structure of the complex. Two identical protein molecules are bound to the promoter. Each contains a homeodomain and a second domain structurally similar to POU-specific domains that was not predicted on the basis of amino acid sequence. Atypical elements in both domains create a stable interface that further distinguishes HNF-1alpha from other flexible POU-homeodomain proteins. The numerous diabetes-causing mutations in HNF-1alpha thus identified a previously unrecognized POU domain which was used as a search model to identify additional POU domain proteins in sequence databases.
Collapse
Affiliation(s)
- Young-In Chi
- Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
36
|
Owen KR, Shepherd M, Stride A, Ellard S, Hattersley AT. Heterogeneity in young adult onset diabetes: aetiology alters clinical characteristics. Diabet Med 2002; 19:758-61. [PMID: 12207813 DOI: 10.1046/j.1464-5491.2002.00766.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To describe the characteristics of hepatocyte nuclear factor (HNF) 1 alpha mutation carriers diagnosed with diabetes after 25 years and compare them with young-onset Type 2 diabetic patients (YT2D) diagnosed at the same age. SUBJECTS AND METHODS We studied 44 (21 male, 23 female) patients with HNF-1 alpha mutations diagnosed with diabetes at ages 25-45 years and 44 YT2D subjects matched for sex and age of diagnosis. RESULTS Median age of onset of diabetes was 35 years in both groups. The HNF-1 alpha group demonstrated: lower body mass index (25.1 vs. 30.7 kg/m2; P < 0.001) and lower fasting triglycerides (1.37 vs. 2.96 mmol/l; P = 0.001) with similar fasting cholesterol level. They had lower glycated haemoglobin A1c (7.3 vs. 8.5%; P = 0.015) despite greater duration of diabetes (24 vs. 16 years; P = 0.02) and less frequent treatment with insulin (21% vs. 55%; P = 0.002). They were less likely to be treated for hypertension (13.3% vs. 56.3%; P = 0.009). Importantly, no difference was observed in reported parental history of diabetes between the two groups (65.9% vs. 63.6%; P = 0.92). Logistic regression showed that triglyceride levels and presence of anti-hypertensive treatment were the most important independent variables. CONCLUSIONS Patients with HNF-1 alpha mutations may present with diabetes as young adults between the ages of 25-45 years. In this age range a wide differential diagnosis of diabetes is observed. Conventional criteria of age of onset and family history will not differentiate HNF-1 alpha mutation carriers from YT2D subjects in this age range, but features of the metabolic syndrome, in particular fasting triglycerides and hypertension, are helpful. In patients diagnosed before 45 years without features of insulin resistance the diagnosis of HNF-1 alpha should be considered.
Collapse
Affiliation(s)
- K R Owen
- Centre for Molecular Genetics, School of Postgraduate Medicine and Health Sciences, University of Exeter, Exeter, UK.
| | | | | | | | | |
Collapse
|
37
|
Narayana N, Hua Q, Weiss MA. The dimerization domain of HNF-1alpha: structure and plasticity of an intertwined four-helix bundle with application to diabetes mellitus. J Mol Biol 2001; 310:635-58. [PMID: 11439029 DOI: 10.1006/jmbi.2001.4780] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maturity-onset diabetes mellitus of the young (MODY) is a human genetic syndrome most commonly due to mutations in hepatocyte nuclear factor-1alpha (HNF-1alpha). Here, we describe the crystal structure of the HNF-1alpha dimerization domain at 1.7 A resolution and assess its structural plasticity. The crystal's low solvent content (23%, v/v) leads to tight packing of peptides in the lattice. Two independent dimers, similar in structure, are formed in the unit cell by a 2-fold crystallographic symmetry axis. The dimers define a novel intertwined four-helix bundle (4HB). Each protomer contains two alpha-helices separated by a sharp non-canonical turn. Dimer-related alpha-helices form anti-parallel coiled-coils, including an N-terminal "mini-zipper" complementary in structure, symmetry and surface characteristics to transcriptional coactivator dimerization cofactor of HNF-1 (DCoH). A confluence of ten leucine side-chains (five per protomer) forms a hydrophobic core. Isotope-assisted NMR studies demonstrate that a similar intertwined dimer exists in solution. Comparison of structures obtained in multiple independent crystal forms indicates that the mini-zipper is a stable structural element, whereas the C-terminal alpha-helix can adopt a broad range of orientations. Segmental alignment of the mini-zipper (mean pairwise root-mean-square difference (rmsd) in C(alpha) coordinates of 0.29 A) is associated with a 2.1 A mean C(alpha) rmsd displacement of the C-terminal coiled-coil. The greatest C-terminal structural variation (4.1 A C(alpha) rmsd displacement) is observed in the DCoH-bound peptide. Diabetes-associated mutations perturb distinct structural features of the HNF-1alpha domain. One mutation (L12H) destabilizes the domain but preserves structural specificity. Adjoining H12 side-chains in a native-like dimer are predicted to alter the functional surface of the mini-zipper involved in DCoH recognition. The other mutation (G20R), by contrast, leads to a dimeric molten globule, as indicated by its 1H-NMR features and fluorescent binding of 1-anilino-8-naphthalene sulfonate. We propose that a glycine-specific turn configuration enables specific interactions between the mini-zipper and the C-terminal coiled-coil.
Collapse
MESH Headings
- Amino Acid Sequence
- Circular Dichroism
- Crystallography, X-Ray
- DNA-Binding Proteins/chemistry
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Dimerization
- Guanidine/pharmacology
- Hepatocyte Nuclear Factor 1
- Hepatocyte Nuclear Factor 1-alpha
- Hepatocyte Nuclear Factor 1-beta
- Leucine Zippers
- Models, Molecular
- Molecular Sequence Data
- Mutation/genetics
- Mutation, Missense/genetics
- Nuclear Magnetic Resonance, Biomolecular
- Nuclear Proteins
- Pliability
- Polymorphism, Genetic/genetics
- Protein Denaturation/drug effects
- Protein Structure, Secondary/drug effects
- Protein Structure, Tertiary/drug effects
- Sequence Alignment
- Solutions
- Spectrometry, Fluorescence
- Static Electricity
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- N Narayana
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935, USA
| | | | | |
Collapse
|
38
|
Shepherd M, Ellis I, Ahmad AM, Todd PJ, Bowen-Jones D, Mannion G, Ellard S, Sparkes AC, Hattersley AT. Predictive genetic testing in maturity-onset diabetes of the young (MODY). Diabet Med 2001; 18:417-21. [PMID: 11472455 DOI: 10.1046/j.1464-5491.2001.00447.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Maturity-onset diabetes of the young (MODY) is characterized by autosomal dominant inheritance of young-onset non-insulin-dependent diabetes. It accounts for approximately 1% of Type 2 diabetes (approximately 20 000 people in the UK). Diagnostic and predictive genetic tests are now possible for 80% of MODY families. Diagnostic tests can be helpful as the diagnosis can be confirmed and the subtype defined which has implications for treatment and prognosis. However predictive genetic testing, particularly in children, raises many scientific, ethical and practical questions. METHODS This is a case report of a family with diabetes resulting from an hepatic nuclear factor (HNF)1alpha mutation, who request a predictive test in their 5-year-old daughter. The scientific issues arising from molecular genetic testing in MODY are discussed, along with the process of genetic counselling. The views of the family and the clinical genetics team involved are presented. RESULTS The implications of positive and negative predictive test results and the possibility of postponing the test were among many issues discussed during genetic counselling. The family remained convinced the test was appropriate for their daughter and the clinical genetics team fully supported this decision. The family, motivated by their family history of diabetes and personal experiences of the disease, wished to reduce uncertainty about their daughter's future irrespective of the result. CONCLUSIONS This case emphasizes that decisions on predictive testing are very personal and require appropriate counselling.
Collapse
Affiliation(s)
- M Shepherd
- Department of Diabetes and Vascular Medicine, School of Postgraduate Medicine and Health Sciences, University of Exeter, Exeter, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Soutoglou E, Viollet B, Vaxillaire M, Yaniv M, Pontoglio M, Talianidis I. Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO J 2001; 20:1984-92. [PMID: 11296231 PMCID: PMC125231 DOI: 10.1093/emboj/20.8.1984] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CREB-binding protein (CBP) and CBP-associated factor (P/CAF) are coactivators possessing an intrinsic histone acetyltransferase (HAT) activity. They are positioned at promoter regions via association with sequence-specific DNA-binding factors and stimulate transcription in a gene-specific manner. The current view suggests that coactivator function depends mainly on the strength and specificity of transcription factor-coactivator interactions. Here we show that two dominant-negative mutants of hepatocyte nuclear factor-1alpha (HNF-1alpha), P447L and P519L, occurring in maturity onset diabetes of the young (MODY3) patients, exhibit paradoxically stronger interactions than the wild-type protein with either CBP or P/CAF. However, CBP and P/CAF recruited by these mutants lack HAT activity. In contrast, wild-type HNF-1alpha and other transcription factors, such as Sp1 or HNF-4, stimulated the HAT activity of CBP. The results suggest a more dynamic role for DNA-binding proteins in the transcription process than was considered previously. They are not only required for the recruitment of coactivators to the promoter but they may also modulate their enzymatic activity.
Collapse
Affiliation(s)
| | - Benoit Viollet
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, PO Box 1527, 711 10 Heraklion, Crete, Greece and
Unite des Virus Oncogenes, CNRS, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France Present address: CNRS EP-10, Institut Pasteur de Lille, Lille, France Corresponding author e-mail: E.Soutoglou and B.Viollet contributed equally to this work
| | - Martine Vaxillaire
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, PO Box 1527, 711 10 Heraklion, Crete, Greece and
Unite des Virus Oncogenes, CNRS, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France Present address: CNRS EP-10, Institut Pasteur de Lille, Lille, France Corresponding author e-mail: E.Soutoglou and B.Viollet contributed equally to this work
| | - Moshe Yaniv
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, PO Box 1527, 711 10 Heraklion, Crete, Greece and
Unite des Virus Oncogenes, CNRS, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France Present address: CNRS EP-10, Institut Pasteur de Lille, Lille, France Corresponding author e-mail: E.Soutoglou and B.Viollet contributed equally to this work
| | - Marco Pontoglio
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, PO Box 1527, 711 10 Heraklion, Crete, Greece and
Unite des Virus Oncogenes, CNRS, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France Present address: CNRS EP-10, Institut Pasteur de Lille, Lille, France Corresponding author e-mail: E.Soutoglou and B.Viollet contributed equally to this work
| | - Iannis Talianidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, PO Box 1527, 711 10 Heraklion, Crete, Greece and
Unite des Virus Oncogenes, CNRS, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France Present address: CNRS EP-10, Institut Pasteur de Lille, Lille, France Corresponding author e-mail: E.Soutoglou and B.Viollet contributed equally to this work
| |
Collapse
|
40
|
Bjørkhaug L, Ye H, Horikawa Y, Søvik O, Molven A, Njølstad PR. MODY associated with two novel hepatocyte nuclear factor-1alpha loss-of-function mutations (P112L and Q466X). Biochem Biophys Res Commun 2000; 279:792-8. [PMID: 11162430 DOI: 10.1006/bbrc.2000.4024] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is an autosomal dominant form of diabetes characterized by early onset of pancreatic dysfunction. MODY type 3 is caused by mutations in the hepatocyte nuclear factor (HNF)-1alpha. During a screening of Norwegian patients with suspected MODY we identified two novel HNF-1alpha mutations, P112L and Q466X. The molecular mechanisms underlying the disease were studied by analyzing the DNA binding properties, transcriptional activation, and subcellular localization of HNF-1alpha P112L and Q466X compared to wild type HNF-1alpha. P112L had reduced ability to bind an HNF1 consensus sequence and to activate transcription. Q466X did not differ from wild type HNF-1alpha in DNA binding activity. Transactivation, however, was markedly reduced. When both mutants were coexpressed with wild type HNF-1alpha in HeLa cells, transcriptional activity appeared unaffected, suggesting that a dominant-negative mechanism was not present. Immunolocalization experiments showed that P112L HNF-1alpha was correctly targeted to nuclei in HeLa cells. In contrast, some Q466X HNF-1alpha protein was retained in the cytoplasm, which indicated that the mechanism for nuclear localization was disturbed. Thus, the HNF-1alpha mutations P112L and Q466X both seem to impair pancreatic beta-cell function by loss-of-function mechanisms; P112L by reduced DNA binding and reduced ability to transactivate, and Q466X by reduced transactivation and incomplete nuclear targeting.
Collapse
Affiliation(s)
- L Bjørkhaug
- Center for Medical Genetics and Molecular Medicine, University of Bergen, Bergen, N-5021, Norway
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes mellitus characterized by autosomal dominant inheritance, early age of onset (<25 years) and pancreatic beta-cell dysfunction. MODY is genetically heterogeneous with five different genes identified to date: hepatocyte nuclear factor-4 alpha (HNF-4 alpha) [MODY1]; glucokinase [MODY2]; hepatocyte nuclear factor-1 alpha (HNF-1 alpha) [MODY3]; insulin promoter factor-1 (IPF-1) [MODY4]; and hepatocyte nuclear factor-1 beta (HNF-1 beta) [MODY5]. Mutations in the HNF-1 alpha gene represent a common cause of MODY in the majority of populations studied. Sixty-five different mutations have been described in a total of 116 families. The most common mutation is a C-insertion (P291fsinsC) in the polyC tract of exon 4, which has been reported in 22 families. The identification of an HNF-1 alpha gene mutation in a patient with type 2 diabetes confirms the diagnosis of MODY and has important implications for clinical management.
Collapse
Affiliation(s)
- S Ellard
- Department of Vascular Medicine and Diabetes Research, School of Postgraduate Medicine and Health Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
42
|
Wang H, Antinozzi PA, Hagenfeldt KA, Maechler P, Wollheim CB. Molecular targets of a human HNF1 alpha mutation responsible for pancreatic beta-cell dysfunction. EMBO J 2000; 19:4257-64. [PMID: 10944108 PMCID: PMC302029 DOI: 10.1093/emboj/19.16.4257] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reverse tetracycline-dependent transactivator system was employed in insulinoma INS-1 cells to achieve controlled inducible expression of hepatocyte nuclear factor-1 alpha (HNF1 alpha)-P291fsinsC, the most common mutation associated with subtype 3 of maturity-onset diabetes of the young (MODY3). Nuclear localized HNF1 alpha-P291fsinsC protein exerts its dominant-negative effects by competing with endogenous HNF1 alpha for the cognate DNA-binding site. HNF1 alpha controls multiple genes implicated in pancreatic beta-cell function and notably in metabolism- secretion coupling. In addition to reduced expression of the genes encoding insulin, glucose transporter-2, L-pyruvate kinase, aldolase B and 3-hydroxy-3-methylglutaryl coenzyme A reductase, induction of HNF1 alpha-P291fsinsC also significantly inhibits expression of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) E1 subunit mRNA and protein. OGDH enzyme activity and [(14)C]pyruvate oxidation were also reduced. In contrast, the mRNA and protein levels of mitochondrial uncoupling protein-2 were dramatically increased by HNF1 alpha-P291fsinsC induction. As predicted from this altered gene expression profile, HNF1 alpha-P291fsinsC also inhibits insulin secretory responses to glucose and leucine, correlated with impaired nutrient-evoked mitochondrial ATP production and mitochondrial membrane hyperpolarization. These unprecedented results suggest the molecular mechanism of HNF1 alpha-P291fsinsC causing beta-cell dysfunction.
Collapse
Affiliation(s)
- H Wang
- Division de Biochimie Clinique et de Diabétologie Expérimentale, Départment de Médecine interne, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Jap TS, Wu YC, Chiou JY, Kwok CF. A novel mutation in the hepatocyte nuclear factor-1alpha/MODY3 gene in Chinese subjects with early-onset Type 2 diabetes mellitus in Taiwan. Diabet Med 2000; 17:390-3. [PMID: 10872540 DOI: 10.1046/j.1464-5491.2000.00285.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The goal of this study was to determine the frequency of mutation in hepatic nuclear factor (HNF)-1alpha, a gene recently implicated as causing maturity-onset diabetes of the young (MODY) and to analyse the respective clinical presentations in an ethnically Chinese population. METHODS Fifteen unrelated subjects (nine females and six males) aged less than 35 years who had early-onset diabetes were analysed to test the possibility that mutation of the HNF-1alpha gene was responsible for this disorder. Genomic DNA extraction, polymerase chain reaction and DNA sequence analysis were performed accordingly. RESULTS One patient with MODY had a novel missense mutation in exon 3 of the HNF-1alpha gene (Y218C) in a region of the protein that corresponds to a predicted DNA binding domain. CONCLUSIONS A Y218C mutation in HNF-1alpha gene was identified in one family in Taiwan.
Collapse
Affiliation(s)
- T S Jap
- Department of Pathology and Laboratory Medicine, Veterans General Hospital-Taipei, National Yang-Ming University, Taiwan, ROC.
| | | | | | | |
Collapse
|
44
|
Hua QX, Zhao M, Narayana N, Nakagawa SH, Jia W, Weiss MA. Diabetes-associated mutations in a beta-cell transcription factor destabilize an antiparallel "mini-zipper" in a dimerization interface. Proc Natl Acad Sci U S A 2000; 97:1999-2004. [PMID: 10696112 PMCID: PMC15743 DOI: 10.1073/pnas.97.5.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Maturity-onset diabetes of the young, a monogenic form of Type II diabetes mellitus, is most commonly caused by mutations in hepatic nuclear factor 1alpha (HNF-1alpha). Here, the dimerization motif of HNF-1alpha is shown to form an intermolecular four-helix bundle. One face contains an antiparallel coiled coil whereas the other contains splayed alpha-helices. The "mini-zipper" is complementary in structure and symmetry to the top surface of a transcriptional coactivator (dimerization cofactor of homeodomains). The bundle is destabilized by a subset of mutations associated with maturity-onset diabetes of the young. Impaired dimerization of a beta-cell transcription factor thus provides a molecular mechanism of metabolic deregulation in diabetes mellitus.
Collapse
Affiliation(s)
- Q X Hua
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935, USA
| | | | | | | | | | | |
Collapse
|
45
|
Godart F, Bellanné-Chantelot C, Clauin S, Gragnoli C, Abderrahmani A, Blanché H, Boutin P, Chèvre JC, Froguel P, Bailleul B. Identification of seven novel nucleotide variants in the hepatocyte nuclear factor-1alpha (TCF1) promoter region in MODY patients. Hum Mutat 2000; 15:173-80. [PMID: 10649494 DOI: 10.1002/(sici)1098-1004(200002)15:2<173::aid-humu6>3.0.co;2-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Maturity onset diabetes of the young (MODY) is a heterogeneous subtype of type II diabetes mellitus. To date, five MODY genes have been identified. Mutations in the hepatocyte nuclear factor-1alpha (HNF-1alpha) gene are associated with MODY3. In the present work, we implemented the HNF-1alpha promoter region in the screening of MODY-suspect patients and identified seven variants not detected in control subjects. The family was available for the -119delG variant, and segregration between MODY and the variant is observed. Most of these variants are located in highly conserved regions and may alter HNF-1alpha expression through binding alteration of nuclear factors or other mechanisms. We demonstrate by functional studies that the transcriptional activity of the -283A>C and -218T>C variant promoters were 30% and 70% of the wild type activity, respectively. These data suggest that HNF-1alpha promoter variants could be diabetogenic mutations, and emphasize that the accurate HNF-1alpha expression is important for the maintenance of normal pancreatic beta cell function.
Collapse
Affiliation(s)
- F Godart
- Institut de Biologie de Lille, Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hegele RA, Cao H, Harris SB, Hanley AJ, Zinman B, Connelly PW. The private hepatocyte nuclear factor-1alpha G319S variant is associated with plasma lipoprotein variation in Canadian Oji-Cree. Arterioscler Thromb Vasc Biol 2000; 20:217-22. [PMID: 10634821 DOI: 10.1161/01.atv.20.1.217] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously showed an extremely strong association between type 2 diabetes and a private polymorphism, namely G319S, in the hepatocyte nuclear transcription factor (HNF)-1alpha. Because HNF-1alpha is involved in the transcription of several apolipoprotein genes, we tested for an association between the private HNF1A G319S variant and plasma lipoproteins in a sample of 55 unrelated Oji-Cree subjects with type 2 diabetes and 175 unrelated Oji-Cree subjects without type 2 diabetes. In Oji-Cree subjects with type 2 diabetes, we found that the HNF1A G319S genotype was significantly associated with lower plasma concentrations of total cholesterol, low density lipoprotein cholesterol, and apolipoprotein (apo) B. In Oji-Cree subjects without type 2 diabetes, we found that the HNF1A G319S genotype was significantly associated with higher plasma concentrations of high density lipoprotein cholesterol and apo AI. There were no associations with plasma triglycerides or lipoprotein(a). Regression analysis indicated that the HNF1A genotype accounted for approximately 10% of the variation in the apo B-related traits in the diabetic subjects and for approximately 5% of the variation in the apo AI-related traits in the nondiabetic subjects. Furthermore, the regression model indicated that the HNF1A S319 allele affected these traits in a dominant manner in subjects with and without type 2 diabetes. These findings provide the first evidence that a rare variant in a nuclear transcription factor is associated with variation in plasma lipoprotein traits.
Collapse
|
47
|
Vaxillaire M, Abderrahmani A, Boutin P, Bailleul B, Froguel P, Yaniv M, Pontoglio M. Anatomy of a homeoprotein revealed by the analysis of human MODY3 mutations. J Biol Chem 1999; 274:35639-46. [PMID: 10585442 DOI: 10.1074/jbc.274.50.35639] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte nuclear factor 1alpha (HNF1alpha) is an atypical dimeric homeodomain-containing protein that is expressed in liver, intestine, stomach, kidney, and pancreas. Mutations in the HNF1alpha gene are associated with an autosomal dominant form of non-insulin-dependent diabetes mellitus called maturity-onset diabetes of the young (MODY3). More than 80 different mutations have been identified so far, many of which involve highly conserved amino acid residues among vertebrate HNF1alpha. In the present work, we investigated the molecular mechanisms by which MODY3 mutations could affect HNF1alpha function. For this purpose, we analyzed the properties of 10 mutants resulting in amino acid substitutions or protein truncation. Some mutants have a reduced protein stability, whereas others are either defective in the DNA binding or impaired in their intrinsic trans-activation potential. Three mutants, characterized by a complete loss of trans-activation, behave as dominant negatives when transfected with the wild-type protein. These data define a clear causative relationship between MODY3 mutations and functional defects in HNF1alpha trans-activation. In addition, our analysis sheds new light on the structure of a homeoprotein playing a key role in pancreatic beta cell function.
Collapse
Affiliation(s)
- M Vaxillaire
- Unité des Virus Oncogènes, Unité de Recherche Associée 1644, Centre National de la Recherche Scientifique, Département des Biotechnologies, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Yang Q, Yamagata K, Yamamoto K, Miyagawa J, Takeda J, Iwasaki N, Iwahashi H, Yoshiuchi I, Namba M, Miyazaki J, Hanafusa T, Matsuzawa Y. Structure/function studies of hepatocyte nuclear factor-1alpha, a diabetes-associated transcription factor. Biochem Biophys Res Commun 1999; 266:196-202. [PMID: 10581189 DOI: 10.1006/bbrc.1999.1747] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the transcription factor hepatocyte nuclear factor-1alpha (HNF-1alpha) cause maturity-onset diabetes of the young type 3 (MODY3), a form of diabetes mellitus characterized by autosomal dominant inheritance, early onset, and pancreatic beta-cell dysfunction. We have examined the effects of five diabetes-associated mutations (L12H, G191D, R263C, P379fsdelCT, and L584S585fsinsTC) on HNF-1alpha function including DNA binding ability, intracellular localization, and transactivation activity. L12H, P379fsdelCT, and L584S585fsinsTC mutations were found in patients with a clinical diagnosis of MODY, while G191D and R263C mutations were identified in patients diagnosed with type 2 diabetes. These mutations had diverse effects on the functional properties of HNF-1alpha. Comparison of the functional data with clinical information suggested that transactivation activity of mutant HNF-1alpha in beta cells like MIN6 may be the primary determinants of the phenotypic differences observed among diabetic patients with HNF-1alpha mutations.
Collapse
Affiliation(s)
- Q Yang
- Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hegele RA, Cao H, Harris SB, Hanley AJ, Zinman B. The hepatic nuclear factor-1alpha G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree. J Clin Endocrinol Metab 1999; 84:1077-82. [PMID: 10084598 DOI: 10.1210/jcem.84.3.5528] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in the gene encoding hepatic nuclear factor-1alpha (HNF-1alpha) have been found in patients with maturity-onset diabetes of the young. We identified a new variant in the HNF-1alpha gene, namely G319S, in Ontario Oji-Cree with type 2 diabetes. G319S is within the proline II-rich domain of the trans-activation site of HNF-1alpha and alters a glycine residue that is conserved throughout evolution. S319 was absent from 990 alleles taken from subjects representing six other ethnic groups, suggesting that it is private for Oji-Cree. We found that 1) the S319 allele was significantly more prevalent in diabetic than nondiabetic Oji-Cree (0.209 vs. 0.087; P = 0.000001); 2) S319/S319 homozygotes and S319/G319 heterozygotes, respectively, had odds ratios for type 2 diabetes of 4.00 (95% confidence interval, 2.65-6.03) and 1.97 (95% confidence interval, 1.44-2.70) compared with G319/G319 homozygotes; 3) there was a significant difference in the mean age of onset of type 2 diabetes, with G319/G319, S319/G319, and S319/S319 subjects affected in the fifth, fourth, and third decades of life, respectively. In subjects with type 2 diabetes, we also found significantly lower body mass index and significantly higher post-challenge plasma glucose in S319/S319 and S319/G319 compared with G319/G319 subjects. Finally, among nondiabetic subjects, S319/G319 heterozygotes had significantly lower plasma insulin than G319/G319 homozygotes. The presence of the private HNF-1alpha G319S variant in a large number of Oji-Cree with type 2 diabetes and its strong association with type 2 diabetes susceptibility are unique among human populations. Also, G319S is associated with a distinct form of type 2 diabetes, characterized by onset at an earlier age, lower body mass, and a higher postchallenge plasma glucose.
Collapse
Affiliation(s)
- R A Hegele
- Robarts Research Institute, University of Western Ontario, London, Canada.
| | | | | | | | | |
Collapse
|
50
|
Wang H, Maechler P, Hagenfeldt KA, Wollheim CB. Dominant-negative suppression of HNF-1alpha function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreatic beta-cell line. EMBO J 1998; 17:6701-13. [PMID: 9822613 PMCID: PMC1171015 DOI: 10.1093/emboj/17.22.6701] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the hepatocyte nuclear factor-1alpha (HNF-1alpha) have been linked to subtype 3 of maturity-onset diabetes of the young (MODY3), which is characterized by a primary defect in insulin secretion. The role of HNF-1alpha in the regulation of pancreatic beta-cell function was investigated. Gene manipulation allowed graded overexpression of HNF-1alpha and controlled dominant-negative suppression of HNF-1alpha function in insulinoma INS-1 cells. We show that HNF-1alpha is essential for insulin gene transcription, as demonstrated by a pronounced decrease in insulin mRNA expression and in insulin promoter activity under dominant-negative conditions. The expression of genes involved in glucose transport and metabolism including glucose transporter-2 and L-type pyruvate kinase is also regulated by HNF-1alpha. Loss of HNF-1alpha function leads to severe defects in insulin secretory responses to glucose and leucine, resulting from impaired glucose utilization and mitochondrial oxidation. The nutrient-evoked ATP production and subsequent changes in plasma membrane potential and intracellular Ca2+ were diminished by suppression of HNF-1alpha function. These results suggest that HNF-1alpha function is essential for maintaining insulin storage and nutrient-evoked release. The defective mitochondrial oxidation of metabolic substrates causes impaired insulin secretion, indicating a molecular basis for the diabetic phenotype of MODY3 patients.
Collapse
Affiliation(s)
- H Wang
- Division de Biochimie Clinique et de Diabétologie Expérimentale, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|