1
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
2
|
Control of pancreatic β-cell bioenergetics. Biochem Soc Trans 2018; 46:555-564. [PMID: 29666215 DOI: 10.1042/bst20170505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
The canonical model of glucose-stimulated insulin secretion (GSIS) by pancreatic β-cells predicts a glucose-induced rise in the cytosolic ATP/ADP ratio. Such bioenergetic sensitivity to metabolic fuel is unusual as it implies that ATP flux is governed, to a significant extent, by ATP supply, while it is predominantly demand-driven in other cell types. Metabolic control is generally shared between different processes, but potential control of ATP consumption over β-cell bioenergetics has been largely ignored to date. The present paper offers a brief overview of experimental evidence that demonstrates ATP flux control by glucose-fuelled oxidative phosphorylation. Based on old and new data, it is argued that ATP supply does not hold exclusive control over ATP flux, but shares it with ATP demand, and that the distribution of control is flexible. Quantification of the bioenergetic control distribution will be important from basic and clinical perspectives, but precise measurement of the cytosolic ATP/ADP ratio is complicated by adenine nucleotide compartmentalisation. Metabolic control analysis of β-cell bioenergetics will likely clarify the mechanisms by which glucose and fatty acids amplify and potentiate GSIS, respectively. Moreover, such analysis may offer hints as to how ATP flux control shifts from ATP supply to ATP demand during the development of type 2 diabetes, and why prolonged sulfonylurea treatment causes β-cell deterioration.
Collapse
|
3
|
Wilson DF, Cember ATJ, Matschinsky FM. The thermodynamic basis of glucose-stimulated insulin release: a model of the core mechanism. Physiol Rep 2018; 5:5/12/e13327. [PMID: 28655753 PMCID: PMC5492210 DOI: 10.14814/phy2.13327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 11/24/2022] Open
Abstract
A model for glucose sensing by pancreatic β-cells is developed and compared with the available experimental data. The model brings together mathematical representations for the activities of the glucose sensor, glucokinase, and oxidative phosphorylation. Glucokinase produces glucose 6-phosphate (G-6-P) in an irreversible reaction that determines glycolytic flux. The primary products of glycolysis are NADH and pyruvate. The NADH is reoxidized and the reducing equivalents transferred to oxidative phosphorylation by the glycerol phosphate shuttle, and some of the pyruvate is oxidized by pyruvate dehydrogenase and enters the citric acid cycle. These reactions are irreversible and result in a glucose concentration-dependent reduction of the intramitochondrial NAD pool. This increases the electrochemical energy coupled to ATP synthesis and thereby the cellular energy state ([ATP]/[ADP][Pi]). ATP and Pi are 10-100 times greater than ADP, so the increase in energy state is primarily through decrease in ADP The decrease in ADP is considered responsible for altering ion channel conductance and releasing insulin. Applied to the reported glucose concentration-dependent release of insulin by perifused islet preparations (Doliba et al. 2012), the model predicts that the dependence of insulin release on ADP is strongly cooperative with a threshold of about 30 μmol/L and a negative Hill coefficient near -5.5. The predicted cellular energy state, ADP, creatine phosphate/creatine ratio, and cytochrome c reduction, including their dependence on glucose concentration, are consistent with experimental data. The ability of the model to predict behavior consistent with experiment is an invaluable resource for understanding glucose sensing and planning experiments.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abigail T J Cember
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
5
|
Proks P, de Wet H, Ashcroft FM. Sulfonylureas suppress the stimulatory action of Mg-nucleotides on Kir6.2/SUR1 but not Kir6.2/SUR2A KATP channels: a mechanistic study. ACTA ACUST UNITED AC 2015; 144:469-86. [PMID: 25348414 PMCID: PMC4210431 DOI: 10.1085/jgp.201411222] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sulfonylureas suppress the stimulatory effect of Mg-nucleotides on recombinant β-cell (Kir6.2/SUR1) but not cardiac (Kir6.2/SUR2A) KATP channels. Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K+ (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas.
Collapse
Affiliation(s)
- Peter Proks
- Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK
| | - Heidi de Wet
- Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK
| | - Frances M Ashcroft
- Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK
| |
Collapse
|
6
|
Papaetis GS. Incretin-based therapies in prediabetes: Current evidence and future perspectives. World J Diabetes 2014; 5:817-834. [PMID: 25512784 PMCID: PMC4265868 DOI: 10.4239/wjd.v5.i6.817] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/10/2014] [Accepted: 11/10/2014] [Indexed: 02/05/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) is evolving globally at an alarming rate. Prediabetes is an intermediate state of glucose metabolism that exists between normal glucose tolerance (NGT) and the clinical entity of T2D. Relentless β-cell decline and failure is responsible for the progression from NGT to prediabetes and eventually T2D. The huge burden resulting from the complications of T2D created the need of therapeutic strategies in an effort to prevent or delay its development. The beneficial effects of incretin-based therapies, dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists, on β-cell function in patients with T2D, together with their strictly glucose-depended mechanism of action, suggested their possible use in individuals with prediabetes when greater β-cell mass and function are preserved and the possibility of β-cell salvage is higher. The present paper summarizes the main molecular intracellular mechanisms through which GLP-1 exerts its activity on β-cells. It also explores the current evidence of incretin based therapies when administered in a prediabetic state, both in animal models and in humans. Finally it discusses the safety of incretin-based therapies as well as their possible role in order to delay or prevent T2D.
Collapse
|
7
|
Ranawana V, Kaur B. Role of proteins in insulin secretion and glycemic control. ADVANCES IN FOOD AND NUTRITION RESEARCH 2013; 70:1-47. [PMID: 23722093 DOI: 10.1016/b978-0-12-416555-7.00001-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dietary proteins are essential for the life of all animals and humans at all stages of the life cycle. They serve many structural and biochemical functions and have significant effects on health and wellbeing. Dietary protein consumption has shown an upward trend in developed countries in the past two decades primarily due to greater supply and affordability. Consumption is also on the rise in developing countries as affluence is increasing. Research shows that proteins have a notable impact on glucose homeostasis mechanisms, predominantly through their effects on insulin, incretins, gluconeogenesis, and gastric emptying. Since higher protein consumption and impaired glucose tolerance can be commonly seen in the same population demographics, a thorough understanding of the former's role in glucose homeostasis is crucial both toward the prevention and management of the latter. This chapter reviews the current state of the art on proteins, amino acids, and their effects on blood glucose and insulin secretion.
Collapse
Affiliation(s)
- Viren Ranawana
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Singapore, Singapore.
| | | |
Collapse
|
8
|
Gunnerud UJ, Heinzle C, Holst JJ, Östman EM, Björck IME. Effects of pre-meal drinks with protein and amino acids on glycemic and metabolic responses at a subsequent composite meal. PLoS One 2012; 7:e44731. [PMID: 23028596 PMCID: PMC3446992 DOI: 10.1371/journal.pone.0044731] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/07/2012] [Indexed: 12/25/2022] Open
Abstract
Background Whey proteins have insulinogenic properties and the effect appears to originate from a specific postprandial plasma amino acid pattern. The insulinogenic effect can be mimicked by a specific mixture of the five amino acids iso, leu, lys, thr and val. Objective The objective was to evaluate the efficacy of pre-meal boluses of whey or soy protein with or without added amino acids on glycaemia, insulinemia as well as on plasma responses of incretins and amino acids at a subsequent composite meal. Additionally, plasma ghrelin and subjective appetite responses were studied. Design In randomized order, fourteen healthy volunteers were served a standardized composite ham sandwich meal with either water provided (250 ml) during the time course of the meal, or different pre-meal protein drinks (PMPD) (100 ml provided as a bolus) with additional water (150 ml) served to the meal. The PMPDs contained 9 g protein and were based on either whey or soy protein isolates, with or without addition of the five amino acids (iso, leu, lys, thr and val) or the five amino acids + arg. Results All PMPD meals significantly reduced incremental area for plasma glucose response (iAUC) during the first 60 min. All whey based PMPD meals displayed lower glycemic indices compared to the reference meal. There were no significant differences for the insulinemic indices. The early insulin response (iAUC 0–15 min) correlated positively to plasma amino acids, GIP and GLP-1 as well as to the glycemic profile. Additionally, inverse correlations were found between insulin iAUC 0–15 min and the glucose peak. Conclusion The data suggests that a pre-meal drink containing specific proteins/amino acids significantly reduces postprandial glycemia following a composite meal, in absence of elevated insulinemic excursions. An early phase insulinemic response induced by plasma amino acids and incretins appears to mediate the effect. Trial Registration ClinicalTrials.gov NCT01586780<NCT01586780>
Collapse
Affiliation(s)
- Ulrika J Gunnerud
- Department of Applied Nutrition and Food Chemistry, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
9
|
Salehi A, Gunnerud U, Muhammed SJ, Östman E, Holst JJ, Björck I, Rorsman P. The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutr Metab (Lond) 2012; 9:48. [PMID: 22647249 PMCID: PMC3471010 DOI: 10.1186/1743-7075-9-48] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/18/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Whey protein increases postprandial serum insulin levels. This has been associated with increased serum levels of leucine, isoleucine, valine, lysine, threonine and the incretin hormone glucose-dependent insulinotropic polypeptide (GIP). We have examined the effects of these putative mediators of whey's action on insulin secretion from isolated mouse Langerhans islets. METHODS Mouse pancreatic islets were incubated with serum drawn from healthy individuals after ingestion of carbohydrate equivalent meals of whey protein (whey serum), or white wheat bread (control serum). In addition the effect of individual amino acid combinations on insulin secretion was also tested. Furthermore, the stimulatory effects of whey serum on insulin secretion was tested in vitro in the absence and presence of a GIP receptor antagonist ((Pro(3))GIP[mPEG]). RESULTS Postprandial amino acids, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) responses were higher after whey compared to white wheat bread. A stimulatory effect on insulin release from isolated islets was observed with serum after whey obtained at 15 min (+87%, P < 0.05) and 30 min (+139%, P < 0.05) postprandially, compared with control serum. The combination of isoleucine, leucine, valine, lysine and threonine exerted strong stimulatory effect on insulin secretion (+270%, P < 0.05), which was further augmented by GIP (+558% compared to that produced by glucose, P < 0.05). The stimulatory action of whey on insulin secretion was reduced by the GIP-receptor antagonist (Pro(3))GIP[mPEG]) at both 15 and 30 min (-56% and -59%, P < 0.05). CONCLUSIONS Compared with white wheat bread meal, whey causes an increase of postprandial insulin, plasma amino acids, GIP and GLP-1 responses. The in vitro data suggest that whey protein exerts its insulinogenic effect by preferential elevation of the plasma concentrations of certain amino acids, GIP and GLP-1.
Collapse
Affiliation(s)
- Albert Salehi
- Lund University Diabetes Centre, Clinical Research Centre, University Hospital, Lund University, Lund, Sweden
| | - Ulrika Gunnerud
- Department of Applied Nutrition and Food Chemistry, Lund University, Lund, Sweden
- Applied Nutrition and Food Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Sarheed J Muhammed
- Lund University Diabetes Centre, Clinical Research Centre, University Hospital, Lund University, Lund, Sweden
| | - Elin Östman
- Department of Applied Nutrition and Food Chemistry, Lund University, Lund, Sweden
| | - Jens J Holst
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Inger Björck
- Department of Applied Nutrition and Food Chemistry, Lund University, Lund, Sweden
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford University, Oxford, OX3 7LJ, UK
| |
Collapse
|
10
|
Gao X, Wang H, Yang JJ, Liu X, Liu ZR. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 2012; 45:598-609. [PMID: 22306293 DOI: 10.1016/j.molcel.2012.01.001] [Citation(s) in RCA: 578] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/15/2011] [Accepted: 12/29/2011] [Indexed: 10/14/2022]
Abstract
Pyruvate kinase isoform M2 (PKM2) is a glycolysis enzyme catalyzing conversion of phosphoenolpyruvate (PEP) to pyruvate by transferring a phosphate from PEP to ADP. We report here that PKM2 localizes to the cell nucleus. The levels of nuclear PKM2 correlate with cell proliferation. PKM2 activates transcription of MEK5 by phosphorylating stat3 at Y705. In vitro phosphorylation assays show that PKM2 is a protein kinase using PEP as a phosphate donor. ADP competes with the protein substrate binding, indicating that the substrate may bind to the ADP site of PKM2. Our experiments suggest that PKM2 dimer is an active protein kinase, while the tetramer is an active pyruvate kinase. Expression of a PKM2 mutant that exists as a dimer promotes cell proliferation, indicating that protein kinase activity of PKM2 plays a role in promoting cell proliferation. Our study reveals an important link between metabolism alteration and gene expression during tumor transformation and progression.
Collapse
Affiliation(s)
- Xueliang Gao
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | |
Collapse
|
11
|
Soty M, Visa M, Soriano S, Carmona MDC, Nadal Á, Novials A. Involvement of ATP-sensitive potassium (K(ATP)) channels in the loss of beta-cell function induced by human islet amyloid polypeptide. J Biol Chem 2011; 286:40857-66. [PMID: 21984830 DOI: 10.1074/jbc.m111.232801] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) is a major component of amyloid deposition in pancreatic islets of patients with type 2 diabetes. It is known that IAPP can inhibit glucose-stimulated insulin secretion; however, the mechanisms of action have not yet been established. In the present work, using a rat pancreatic beta-cell line, INS1E, we have created an in vitro model that stably expressed human IAPP gene (hIAPP cells). These cells showed intracellular oligomers and a strong alteration of glucose-stimulated insulin and IAPP secretion. Taking advantage of this model, we investigated the mechanism by which IAPP altered beta-cell secretory response and contributed to the development of type 2 diabetes. We have measured the intracellular Ca(2+) mobilization in response to different secretagogues as well as mitochondrial metabolism. The study of calcium signals in hIAPP cells demonstrated an absence of response to glucose and also to tolbutamide, indicating a defect in ATP-sensitive potassium (K(ATP)) channels. Interestingly, hIAPP showed a greater maximal respiratory capacity than control cells. These data were confirmed by an increased mitochondrial membrane potential in hIAPP cells under glucose stimulation, leading to an elevated reactive oxygen species level as compared with control cells. We concluded that the hIAPP overexpression inhibits insulin and IAPP secretion in response to glucose affecting the activity of K(ATP) channels and that the increased mitochondrial metabolism is a compensatory response to counteract the secretory defect of beta-cells.
Collapse
Affiliation(s)
- Maud Soty
- Diabetes and Obesity Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Geng X, Li L, Bottino R, Balamurugan AN, Bertera S, Densmore E, Su A, Chang Y, Trucco M, Drain P. Antidiabetic sulfonylurea stimulates insulin secretion independently of plasma membrane KATP channels. Am J Physiol Endocrinol Metab 2007; 293:E293-301. [PMID: 17405830 DOI: 10.1152/ajpendo.00016.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding mechanisms by which glibenclamide stimulates insulin release is important, particularly given recent promising treatment by glibenclamide of permanent neonatal diabetic subjects. Antidiabetic sulfonylureas are thought to stimulate insulin secretion solely by inhibiting their high-affinity ATP-sensitive potassium (K(ATP)) channel receptors at the plasma membrane of beta-cells. This normally occurs during glucose stimulation, where ATP inhibition of plasmalemmal K(ATP) channels leads to voltage activation of L-type calcium channels for rapidly switching on and off calcium influx, governing the duration of insulin secretion. However, growing evidence indicates that sulfonylureas, including glibenclamide, have additional K(ATP) channel receptors within beta-cells at insulin granules. We tested nonpermeabilized beta-cells in mouse islets for glibenclamide-stimulated insulin secretion mediated by granule-localized K(ATP) channels by using conditions that bypass glibenclamide action on plasmalemmal K(ATP) channels. High-potassium stimulation evoked a sustained rise in beta-cell calcium level but a transient rise in insulin secretion. With continued high-potassium depolarization, addition of glibenclamide dramatically enhanced insulin secretion without affecting calcium. These findings support the hypothesis that glibenclamide, or an increased ATP/ADP ratio, stimulates insulin secretion in part by binding at granule-localized K(ATP) channels that functionally contribute to sustained second-phase insulin secretion.
Collapse
Affiliation(s)
- Xuehui Geng
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace St., Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Doliba NM, Wehrli SL, Vatamaniuk MZ, Qin W, Buettger CW, Collins HW, Matschinsky FM. Metabolic and ionic coupling factors in amino acid-stimulated insulin release in pancreatic beta-HC9 cells. Am J Physiol Endocrinol Metab 2007; 292:E1507-19. [PMID: 17264232 DOI: 10.1152/ajpendo.00282.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fuel stimulation of insulin secretion from pancreatic beta-cells is thought to be mediated by metabolic coupling factors that are generated by energized mitochondria, including protons, adenine nucleotides, and perhaps certain amino acids (AA), as for instance aspartate, glutamate, or glutamine (Q). The goal of the present study was to evaluate the role of such factors when insulin release (IR) is stimulated by glucose or AA, alone or combined, using (31)P, (23)Na and (1)H NMR technology, respirometry, and biochemical analysis to study the metabolic events that occur in continuously superfused mouse beta-HC9 cells contained in agarose beads and enhanced by the phosphodiesterase inhibitor IBMX. Exposing beta-HC9 cells to high glucose or 3.5 mM of a physiological mixture of 18 AA (AAM) plus 2 mM glutamine caused a marked stimulation of insulin secretion associated with increased oxygen consumption, cAMP release, and phosphorylation potential as evidenced by higher phosphocreatine and lower P(i) peak areas of (31)P NMR spectra. Diazoxide blocked stimulation of IR completely, suggesting involvement of ATP-dependent potassium (K(ATP)) channels in this process. However, levels of MgATP and MgADP concentrations, which regulate channel activity, changed only slowly and little, whereas the rate of insulin release increased fast and very markedly. The involvement of other candidate coupling factors was therefore considered. High glucose or AAM + Q increased pH(i). The availability of temporal pH profiles allowed the precise computation of the phosphate potential (ATP/P(i) x ADP) in fuel-stimulated IR. Intracellular Na+ levels were greatly elevated by AAM + Q. However, glutamine alone or together with 2-amino-2-norbornanecarboxylic acid (which activates glutamate dehydrogenase) decreased beta-cell Na levels. Stimulation of beta-cells by glucose in the presence of AAM + Q (0.5 mM) was associated with rising cellular concentrations of glutamate and glutamine and strikingly lower aspartate levels. Methionine sulfoximine, an inhibitor of glutamine synthetase, blocked the glucose enhancement of AMM + Q-induced IR and associated changes in glutamine and aspartate but did not prevent the accumulation of glutamate. The results of this study demonstrate again that an increased phosphate potential and a functional K(ATP) channel are essential for metabolic coupling during fuel-stimulated insulin release but illustrate that determining the identity and relative importance of all participating coupling factors and second messengers remains a challenge largely unmet.
Collapse
Affiliation(s)
- Nicolai M Doliba
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Affourtit C, Brand MD. Stronger control of ATP/ADP by proton leak in pancreatic beta-cells than skeletal muscle mitochondria. Biochem J 2006; 393:151-9. [PMID: 16137248 PMCID: PMC1383673 DOI: 10.1042/bj20051280] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pancreatic beta cells respond to rising blood glucose concentrations by increasing their oxidative metabolism, which leads to an increased ATP/ADP ratio, closure of K(ATP) channels, depolarization of the plasma membrane potential, influx of calcium and the eventual secretion of insulin. Such a signalling mechanism implies that the ATP/ADP ratio is flexible in beta cells (beta-cells), which is in contrast with other cell types (e.g. muscle and liver) that maintain a stable ATP/ADP poise while respiring at widely varying rates. To determine whether this difference in flexibility is accounted for by mitochondrial peculiarities, we performed a top-down metabolic control analysis to quantitatively assess how ATP/ADP is controlled in mitochondria isolated from rat skeletal muscle and cultured beta cells. We show that the ATP/ADP ratio is more strongly controlled (approx. 7.5-fold) by proton leak in beta cells than in muscle. The comparatively high importance of proton leak in beta cell mitochondria (relative to phosphorylation) is evidenced furthermore by its relatively high level of control over membrane potential and overall respiratory activity. Modular-kinetic analysis of oxidative phosphorylation reveals that these control differences can be fully explained by a higher relative leak activity in beta cell mitochondria, which results in a comparatively high contribution of proton leak to the overall respiratory activity in this system.
Collapse
|
15
|
Fridlyand LE, Ma L, Philipson LH. Adenine nucleotide regulation in pancreatic beta-cells: modeling of ATP/ADP-Ca2+ interactions. Am J Physiol Endocrinol Metab 2005; 289:E839-48. [PMID: 15985450 DOI: 10.1152/ajpendo.00595.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucose metabolism stimulates insulin secretion in pancreatic beta-cells. A consequence of metabolism is an increase in the ratio of ATP to ADP ([ATP]/[ADP]) that contributes to depolarization of the plasma membrane via inhibition of ATP-sensitive K+ (K(ATP)) channels. The subsequent activation of calcium channels and increased intracellular calcium leads to insulin exocytosis. Here we evaluate new data and review the literature on nucleotide pool regulation to determine the utility and predictive value of a new mathematical model of ion and metabolic flux regulation in beta-cells. The model relates glucose consumption, nucleotide pool concentration, respiration, Ca2+ flux, and K(ATP) channel activity. The results support the hypothesis that beta-cells maintain a relatively high [ATP]/[ADP] value even in low glucose and that dramatically decreased free ADP with only modestly increased ATP follows from glucose metabolism. We suggest that the mechanism in beta-cells that leads to this result can simply involve keeping the total adenine nucleotide concentration unchanged during a glucose elevation if a high [ATP]/[ADP] ratio exits even at low glucose levels. Furthermore, modeling shows that independent glucose-induced oscillations of intracellular calcium can lead to slow oscillations in nucleotide concentrations, further predicting an influence of calcium flux on other metabolic oscillations. The results demonstrate the utility of comprehensive mathematical modeling in understanding the ramifications of potential defects in beta-cell function in diabetes.
Collapse
Affiliation(s)
- Leonid E Fridlyand
- Dept. of Medicine, The Univ. of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | | | | |
Collapse
|
16
|
Riedel MJ, Steckley DC, Light PE. Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes. Hum Genet 2004; 116:133-45. [PMID: 15565284 DOI: 10.1007/s00439-004-1216-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 10/13/2004] [Indexed: 12/22/2022]
Abstract
The ATP-sensitive potassium (KATP) channel couples membrane excitability to cellular metabolism and is a critical mediator in the process of glucose-stimulated insulin secretion. Increasing numbers of KATP channel polymorphisms are being described and linked to altered insulin secretion indicating that genes encoding this ion channel could be susceptibility markers for type-2 diabetes. Genetic variation of KATP channels may result in altered beta-cell electrical activity, glucose homeostasis, and increased susceptibility to type-2 diabetes. Of particular interest is the Kir6.2 E23K polymorphism, which is linked to increased susceptibility to type-2 diabetes in Caucasian populations and may also be associated with weight gain and obesity, both of which are major diabetes risk factors. This association highlights the potential contribution of both genetic and environmental factors to the development and progression of type-2 diabetes. In addition, the common occurrence of the E23K polymorphism in Caucasian populations may have conferred an evolutionary advantage to our ancestors. This review will summarize the current status of the association of KATP channel polymorphisms with type-2 diabetes, focusing on the possible mechanisms by which these polymorphisms alter glucose homeostasis and offering insights into possible evolutionary pressures that may have contributed to the high prevalence of KATP channel polymorphisms in the Caucasian population.
Collapse
Affiliation(s)
- Michael J Riedel
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | | | | |
Collapse
|
17
|
Jekabsons MB, Echtay KS, Arechaga I, Brand MD. Molecular properties of purified human uncoupling protein 2 refolded from bacterial inclusion bodies. J Bioenerg Biomembr 2004; 35:409-18. [PMID: 14740889 DOI: 10.1023/a:1027335713635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One way to study low-abundance mammalian mitochondrial carriers is by ectopically expressing them as bacterial inclusion bodies. Problems encountered with this approach include protein refolding, homogeneity, and stability. In this study, we investigated protein refolding and homogeneity properties of inclusion body human uncoupling protein 2 (UCP2). N-methylanthraniloyl-tagged ATP (Mant-ATP) experiments indicated two independent inclusion body UCP2 binding sites with dissociation constants (Kd) of 0.3-0.5 and 23-92 microM. Dimethylanthranilate, the fluorescent tag without nucleotide, bound with a Kd of greater than 100 microM, suggesting that the low affinity site reflected binding of the tag. By direct titration, UCP2 bound [8-(14)C] ATP and [8-(14)C] ADP with Kds of 4-5 and 16-18 microM, respectively. Mg2+ (2 mM) reduced the apparent ATP affinity to 53 microM, an effect entirely explained by chelation of ATP; with Mg2+, Kd using calculated free ATP was 3 microM. A combination of gel filtration, Cu2+-phenanthroline cross-linking, and ultracentrifugation indicated that 75-80% of UCP2 was in a monodisperse, 197 kDa form while the remainder was aggregated. We conclude that (a) Mant-tagged nucleotides are useful fluorescent probes with isolated UCP2 when used with dimethylanthranilate controls; (b) UCP2 binds Mg2+-free nucleotides: the Kd for ATP is about 3-5 microM and for Mant-ATP it is about 10 times lower; and (c) in C12E9 detergent, the monodisperse protein may be in dimeric form.
Collapse
Affiliation(s)
- Mika B Jekabsons
- Medical Research Council, Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom.
| | | | | | | |
Collapse
|
18
|
Fridlyand LE, Philipson LH. Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic beta-cells? Diabetes 2004; 53:1942-8. [PMID: 15277370 DOI: 10.2337/diabetes.53.8.1942] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucose-dependent insulin secretion (GDIS), reactive oxygen species (ROS) production, and oxidative stress in pancreatic beta-cells may be tightly linked processes. Here we suggest that the same pathways used in the activation of GDIS (increased glycolytic flux, ATP-to-ADP ratio, and intracellular Ca2+ concentration) can dramatically enhance ROS production and manifestations of oxidative stress and, possibly, apoptosis. The increase in ROS production and oxidative stress produced by GDIS activation itself suggests a dual role for metabolic insulin secretagogues, as an initial sharp increase in insulin secretion rate can be accompanied by progressive beta-cell injury. We propose that therapeutic strategies targeting enhancement of GDIS should be carefully considered in light of possible loss of beta-cell function and mass.
Collapse
Affiliation(s)
- Leonid E Fridlyand
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
19
|
Abstract
ATP and ADP levels are critical regulators of glucose-stimulated insulin secretion. In many aerobic cell types, the phosphorylation potential (ATP/ADP/P(i)) is controlled by sensing mechanisms inherent in mitochondrial metabolism that feed back and induce compensatory changes in electron transport. To determine whether such regulation may contribute to stimulus-secretion coupling in islet cells, we used a recently developed flow culture system to continuously and noninvasively measure cytochrome c redox state and oxygen consumption as indexes of electron transport in perifused isolated rat islets. Increasing substrate availability by increasing glucose increased cytochrome c reduction and oxygen consumption, whereas increasing metabolic demand with glibenclamide increased oxygen consumption but not cytochrome c reduction. The data were analyzed using a kinetic model of the dual control of electron transport and oxygen consumption by substrate availability and energy demand, and ATP/ADP/P(i) was estimated as a function of time. ATP/ADP/P(i) increased in response to glucose and decreased in response to glibenclamide, consistent with what is known about the effects of these agents on energy state. Therefore, a simple model representing the hypothesized role of mitochondrial coupling in governing phosphorylation potential correctly predicted the directional changes in ATP/ADP/P(i). Thus, the data support the notion that mitochondrial-coupling mechanisms, by virtue of their role in establishing ATP and ADP levels, may play a role in mediating nutrient-stimulated insulin secretion. Our results also offer a new method for continuous noninvasive measures of islet cell phosphorylation potential, a critical metabolic variable that controls insulin secretion by ATP-sensitive K(+)-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Ian R Sweet
- Robert H. Williams Laboratory, Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ. Hyperinsulinism in Infancy: From Basic Science to Clinical Disease. Physiol Rev 2004; 84:239-75. [PMID: 14715916 DOI: 10.1152/physrev.00022.2003] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dunne, Mark J., Karen E. Cosgrove, Ruth M. Shepherd, Albert Aynsley-Green, and Keith J. Lindley. Hyperinsulinism in Infancy: From Basic Science to Clinical Disease. Physiol Rev 84: 239–275, 2004; 10.1152/physrev.00022.2003.—Ion channelopathies have now been described in many well-characterized cell types including neurons, myocytes, epithelial cells, and endocrine cells. However, in only a few cases has the relationship between altered ion channel function, cell biology, and clinical disease been defined. Hyperinsulinism in infancy (HI) is a rare, potentially lethal condition of the newborn and early childhood. The causes of HI are varied and numerous, but in almost all cases they share a common target protein, the ATP-sensitive K+channel. From gene defects in ion channel subunits to defects in β-cell metabolism and anaplerosis, this review describes the relationship between pathogenesis and clinical medicine. Until recently, HI was generally considered an orphan disease, but as parallel defects in ion channels, enzymes, and metabolic pathways also give rise to diabetes and impaired insulin release, the HI paradigm has wider implications for more common disorders of the endocrine pancreas and the molecular physiology of ion transport.
Collapse
Affiliation(s)
- Mark J Dunne
- Research Division of Physiology and Pharmacology, The School of Biological Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | |
Collapse
|
21
|
MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AMF, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 2002; 51 Suppl 3:S434-42. [PMID: 12475787 DOI: 10.2337/diabetes.51.2007.s434] [Citation(s) in RCA: 378] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The physiological effects of glucagon-like peptide-1 (GLP-1) are of immense interest because of the potential clinical relevance of this peptide. Produced in intestinal L-cells through posttranslational processing of the proglucagon gene, GLP-1 is released from the gut in response to nutrient ingestion. Peripherally, GLP-1 is known to affect gut motility, inhibit gastric acid secretion, and inhibit glucagon secretion. In the central nervous system, GLP-1 induces satiety, leading to reduced weight gain. In the pancreas, GLP-1 is now known to induce expansion of insulin-secreting beta-cell mass, in addition to its most well-characterized effect: the augmentation of glucose-stimulated insulin secretion. GLP-1 is believed to enhance insulin secretion through mechanisms involving the regulation of ion channels (including ATP-sensitive K(+) channels, voltage-dependent Ca(2+) channels, voltage-dependent K(+) channels, and nonselective cation channels) and by the regulation of intracellular energy homeostasis and exocytosis. The present article will focus principally on the mechanisms proposed to underlie the glucose dependence of GLP-1's insulinotropic effect.
Collapse
|
22
|
Wollheim CB, Maechler P. Beta-cell mitochondria and insulin secretion: messenger role of nucleotides and metabolites. Diabetes 2002; 51 Suppl 1:S37-42. [PMID: 11815456 DOI: 10.2337/diabetes.51.2007.s37] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The beta-cell mitochondria are known to generate metabolic coupling factors, or messengers, that mediate plasma membrane depolarization and the increase in cytosolic Ca(2+), the triggering event in glucose-stimulated insulin secretion. Accordingly, ATP closes nucleotide-sensitive K(+) channels necessary for the opening of voltage-gated Ca(2+) channels. ATP also exerts a permissive action on insulin exocytosis. In contrast, GTP directly stimulates the exocytotic process. cAMP is considered to have a dual function: on the one hand, it renders the beta-cell more responsive to glucose; on the other, it mediates the effect of glucagon and other hormones that potentiate insulin secretion. Mitochondrial shuttles contribute to the formation of pyridine nucleotides, which may also participate in insulin exocytosis. Among the metabolic factors generated by glucose, citrate-derived malonyl-CoA has been endorsed, but recent results have questioned its role. We have proposed that glutamate, which is also formed by mitochondrial metabolism, stimulates insulin exocytosis in conditions of permissive, clamped cytosolic Ca(2+) concentrations. The evidence for the implication of these and other putative messengers in metabolism-secretion coupling is discussed in this review.
Collapse
Affiliation(s)
- Claes B Wollheim
- Division of Clinical Biochemistry, Department of Internal Medicine, University Medical Center, Geneva, Switzerland.
| | | |
Collapse
|
23
|
Anello M, Ucciardello V, Piro S, Patané G, Frittitta L, Calabrese V, Giuffrida Stella AM, Vigneri R, Purrello F, Rabuazzo AM. Chronic exposure to high leucine impairs glucose-induced insulin release by lowering the ATP-to-ADP ratio. Am J Physiol Endocrinol Metab 2001; 281:E1082-7. [PMID: 11595666 DOI: 10.1152/ajpendo.2001.281.5.e1082] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exposure of rat pancreatic islets to 20 mM leucine for 24 h reduced insulin release in response to glucose (16.7 and 22.2 mM). Insulin release was normal when the same islets were stimulated with leucine (40 mM) or glyburide (1 microM). To investigate the mechanisms responsible for the different effect of these secretagogues, we studied several steps of glucose-induced insulin secretion. Glucose utilization and oxidation rates in leucine-precultured islets were similar to those of control islets. Also, the ATP-sensitive K(+) channel-independent pathway of glucose-stimulated insulin release, studied in the presence of 30 mM K(+) and 250 microM diazoxide, was normal. In contrast, the ATP-to-ADP ratio after stimulation with 22.2 mM glucose was reduced in leucine-exposed islets with respect to control islets. The decrease of the ATP-to-ADP ratio was due to an increase of ADP levels. In conclusion, prolonged exposure of pancreatic islets to high leucine levels selectively impairs glucose-induced insulin release. This secretory abnormality is associated with (and might be due to) a reduced ATP-to-ADP ratio. The abnormal plasma amino acid levels often present in obesity and diabetes may, therefore, affect pancreatic islet insulin secretion in these patients.
Collapse
Affiliation(s)
- M Anello
- Institute of Internal Medicine, Endocrinology, and Metabolism and S. Signorelli Diabetes Center, Ospedale Garibaldi, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|