1
|
Sarkar S, Osman N, Thrimawithana T, Wann SB, Kalita J, Manna P. Alleviation of Diabetic Retinopathy by Glucose-Triggered Delivery of Vitamin D via Dextran-Gated Functionalized Mesoporous Silica Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:1260-1270. [PMID: 38315019 DOI: 10.1021/acsabm.3c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Diabetic retinopathy (DR) is the most common retinal disorder, developed in 35% of patients with diabetes mellitus. Lower serum levels of 25-hydroxyvitamin D are associated with the increased risk of developing DR. High doses of the active form of vitamin D (VD), on the contrary, for a long period of time may lead to hypercalcemia and an imbalance in the regulation of bone metabolism. Herein, we studied the efficacy of dextran-gated carboxyphenylboronic acid (CPBA)-functionalized mesoporous silica nanoparticles (MSNs) for glucose-sensitive delivery of 1,25-dihydroxyvitamin D3 to modulate cellular oxidative stress and inflammation for managing DR. The physical adsorption technique was employed to load VD onto nanoparticles (263.63 μg/mg (w/w)). In the presence of glucose, the dextran molecules detach from pores, allowing VD to release since glucose has 1,2-cis diol groups which have very high affinity to CPBA. Approximately 75% of VD was released upon exposure to 25 mM glucose at a time point of 10 h, demonstrating glucose-responsive delivery. Furthermore, MSN-CPBA was able to deliver VD in a glucose-dependent manner and improve the bioavailability of VD. In high-glucose-supplemented human retinal cells, MSN-CPBA increased the bioavailability of VD and reduced cellular oxidative stress and inflammation. The results suggested that the VD-loaded nanocarrier exerted remarkable therapeutic capacity in reducing the risk of developing DR. By using MSN-CPBA as a delivery platform with dextran gating, the research proposes an effective treatment approach for improving the bioavailability and effectiveness of a hydrophobic molecule in the treatment of DR.
Collapse
Affiliation(s)
- Sanjib Sarkar
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3084, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Department of Immunology, Monash University, Melbourne, VIC 3004, Australia
| | - Thilini Thrimawithana
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3084, Australia
| | - Sawlang Borsingh Wann
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jatin Kalita
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Prasenjit Manna
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Wang N, Wei L, Liu D, Zhang Q, Xia X, Ding L, Xiong S. Identification and Validation of Autophagy-Related Genes in Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:867600. [PMID: 35574010 PMCID: PMC9098829 DOI: 10.3389/fendo.2022.867600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes, which is associated with damage of blood-retinal barrier and ischemia of retinal vasculature. It devastates visual acuity due to leakage of retinal vessels and aberrant pathological angiogenesis in diabetic patients. The etiology of DR is complex, accumulated studies have shown that autophagy plays an important role in the pathogenesis of DR, but its specific mechanism needs to be further studied. METHODS This study chose the online Gene Expression Omnibus (GEO) microarray expression profiling dataset GSE146615 to carry on the research. Autophagy-related genes that were potentially differentially expressed in DR were screened by R software. Then, the differentially expressed autophagy-related genes were analyzed by correlation analysis, tissue-specific gene expression, gene-ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and protein-protein interaction (PPI) network analysis. Finally, retinal pigment epithelial cell line (ARPE-19) incubated with high glucose (HG) was used to mimic the DR model, and the mRNA level of key genes was verified by quantitative real-time polymerase chain reaction (qRT-PCR) in vitro. RESULTS A total of 23 differentially expressed autophagy-related genes (9 up-regulated genes and 14 down-regulated genes) were identified by differential expression analysis. The analysis of tissue-specific gene expression showed that these differentially expressed autophagy-related genes were enriched in the retina. GO and KEGG enrichment analysis showed that differentially expressed autophagy-related genes were significantly enriched in autophagy-related pathways such as regulation of autophagy and macroautophagy. Then 10 hub genes were identified by PPI network analysis and construction of key modules. Finally, qRT-PCR confirmed that the expression of MAPK3 in the DR model was consistent with the results of bioinformatics analysis of mRNA chip. CONCLUSION Through bioinformatics analysis, we identified 23 potential DR autophagy-related genes, among which the down-regulated expression of MAPK3 may affect the occurrence and development of DR by regulating autophagy. It provides a novel insight into the pathogenesis of DR.
Collapse
Affiliation(s)
- Nan Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
| | - Linfeng Wei
- Department of General Surgery, Zhongshan Hospital of Dalian University, Dalian, China
| | - Die Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
| | - Quyan Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
| | - Lexi Ding
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
- *Correspondence: Siqi Xiong, ; Lexi Ding,
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Opthalmology, Central South University, Changsha, China
- *Correspondence: Siqi Xiong, ; Lexi Ding,
| |
Collapse
|
3
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
4
|
Sahajpal NS, Goel RK, Chaubey A, Aurora R, Jain SK. Pathological Perturbations in Diabetic Retinopathy: Hyperglycemia, AGEs, Oxidative Stress and Inflammatory Pathways. Curr Protein Pept Sci 2018; 20:92-110. [DOI: 10.2174/1389203719666180928123449] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/10/2018] [Accepted: 08/29/2017] [Indexed: 01/02/2023]
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness in working-aged adults
around the world. The proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME) are
the severe vision threatening stages of the disorder. Although, a huge body of research exists in elaborating
the pathological mechanisms that lead to the development of DR, the certainty and the correlation
amongst these pathways remain ambiguous. The complexity of DR lies in the multifactorial pathological
perturbations that are instrumental in both the disease development and its progression. Therefore, a holistic
perspective with an understanding of these pathways and their correlation may explain the pathogenesis
of DR as a unifying mechanism. Hyperglycemia, oxidative stress and inflammatory pathways
are the crucial components that are implicated in the pathogenesis of DR. Of these, hyperglycemia appears
to be the initiating central component around which other pathological processes operate. Thus,
this review discusses the role of hyperglycemia, oxidative stress and inflammation in the pathogenesis of
DR, and highlights the cross-talk amongst these pathways in an attempt to understand the complex interplay
of these mechanisms. Further, an effort has been made to identify the knowledge gap and the key
players in each pathway that may serve as potential therapeutic drug targets.
Collapse
Affiliation(s)
- Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Alka Chaubey
- Cytogenetics Laboratory, Greenwood Genetic Center, Greenwood, South Carolina, SC, United States
| | - Rohan Aurora
- The International School Bangalore, Karnataka, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
5
|
Jayashree K, Yasir M, Senthilkumar GP, Ramesh Babu K, Mehalingam V, Mohanraj PS. Circulating matrix modulators (MMP-9 and TIMP-1) and their association with severity of diabetic retinopathy. Diabetes Metab Syndr 2018; 12:869-873. [PMID: 29752166 DOI: 10.1016/j.dsx.2018.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
AIMS Diabetic Retinopathy (DR) is the leading cause of vision loss in the working age population. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1), are molecules involved in extracellular tissue matrix remodelling. They are implicated in the loss of retinal tissue integrity, a major cause of DR, that leads to retinal tissue degradation and apoptosis. This study is therefore, conducted to compare the serum levels of MMP-9 and TIMP-1 in T2DM patients without and with retinopathy, and to evaluate their association with the severity of DR. MATERIALS AND METHODS Our study comprised of 2 groups of 41 each. Group A (cases) included T2DM patients with retinopathy and Group B (controls) included T2DM patients without retinopathy. Routine parameters, mainly, fasting blood glucose, and lipid profile were measured using autoanalyzer. Serum MMP-9, TIMP-1, and insulin levels were assessed using ELISA method. RESULTS AND CONCLUSION Statistically significant increase in the levels of MMP-9, insulin, fasting blood glucose and lipid profile were observed in the serum of T2DM patients with retinopathy, as compared with those without retinopathy. These results help to conclude that rise in MMP-9, and associated serum markers promote disease progress in DR. These findings suggest that the elevations of our study markers in the serum of the type 2 diabetic patients with retinopathy, as compared to those without retinopathy, play important roles in aggravating tissue matrix degradation, supporting DR disease progression.
Collapse
Affiliation(s)
- Kuppuswami Jayashree
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Md Yasir
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | | | - K Ramesh Babu
- Department of Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Vadivelan Mehalingam
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Palani Selvam Mohanraj
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| |
Collapse
|
6
|
Qorri B, Kalaydina RV, Velickovic A, Kaplya Y, Decarlo A, Szewczuk MR. Agonist-Biased Signaling via Matrix Metalloproteinase-9 Promotes Extracellular Matrix Remodeling. Cells 2018; 7:cells7090117. [PMID: 30149671 PMCID: PMC6162445 DOI: 10.3390/cells7090117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/12/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic noncellular structure that is crucial for maintaining tissue architecture and homeostasis. The dynamic nature of the ECM undergoes constant remodeling in response to stressors, tissue needs, and biochemical signals that are mediated primarily by matrix metalloproteinases (MMPs), which work to degrade and build up the ECM. Research on MMP-9 has demonstrated that this proteinase exists on the cell surface of many cell types in complex with G protein-coupled receptors (GPCRs), and receptor tyrosine kinases (RTKs) or Toll-like receptors (TLRs). Through a novel yet ubiquitous signaling platform, MMP-9 is found to play a crucial role not only in the direct remodeling of the ECM but also in the transactivation of associated receptors to mediate and recruit additional remodeling proteins. Here, we summarize the role of MMP-9 as it exists in a tripartite complex on the cell surface and discuss how its association with each of the TrkA receptor, Toll-like receptors, epidermal growth factor receptor, and the insulin receptor contributes to various aspects of ECM remodeling.
Collapse
Affiliation(s)
- Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | | - Aleksandra Velickovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Yekatrina Kaplya
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Alexandria Decarlo
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
7
|
Li C, Miao X, Li F, Wang S, Liu Q, Wang Y, Sun J. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9702820. [PMID: 28265339 PMCID: PMC5317113 DOI: 10.1155/2017/9702820] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/27/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes and is the leading cause of blindness in young adults. Oxidative stress has been implicated as a critical cause of DR. Metabolic abnormalities induced by high-glucose levels are involved in the development of DR and appear to be influenced by oxidative stress. The imbalance between reactive oxygen species (ROS) production and the antioxidant defense system activates several oxidative stress-related mechanisms that promote the pathogenesis of DR. The damage caused by oxidative stress persists for a considerable time, even after the blood glucose concentration has returned to a normal level. Animal experiments have proved that the use of antioxidants is a beneficial therapeutic strategy for the treatment of DR, but more data are required from clinical trials. The aims of this review are to highlight the improvements to our understanding of the oxidative stress-related mechanisms underlying the development of DR and provide a summary of the main antioxidant therapy strategies used to treat the disease.
Collapse
Affiliation(s)
- Cheng Li
- The First Hospital of Jilin University, Changchun 130021, China
| | - Xiao Miao
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Fengsheng Li
- General Hospital of the PLA Rocket Force, Beijing 100088, China
| | - Shudong Wang
- The First Hospital of Jilin University, Changchun 130021, China
| | - Quan Liu
- The First Hospital of Jilin University, Changchun 130021, China
| | - Yonggang Wang
- The First Hospital of Jilin University, Changchun 130021, China
| | - Jian Sun
- The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Mohanan Nair M, Zhao R, Xie X, Shen GX. Impact of glycated LDL on endothelial nitric oxide synthase in vascular endothelial cells: involvement of transmembrane signaling and endoplasmic reticulum stress. J Diabetes Complications 2016; 30:391-7. [PMID: 26853630 DOI: 10.1016/j.jdiacomp.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/23/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023]
Abstract
Cardiovascular diseases are the major cause of mortality in diabetes patients. Increased levels of glycated low density lipoprotein (glyLDL) are detected in diabetic patients. Endothelial nitric oxide synthase (eNOS) generates nitric oxide, which is responsible to endothelium-dependent vasodilation. The impact of glyLDL on the expression and activity of eNOS in vascular endothelial cells (EC) remains unknown. The present study investigated the effect of glyLDL on the levels of protein, mRNA and activity of eNOS in cultured human umbilical vein EC. The results demonstrated that incubation of EC with physiological concentrations of glyLDL significantly reduced the abundances of eNOS protein in EC with the maximal inhibition at 100μg/ml for 24h. At the optimized condition, glyLDL decreased eNOS mRNA and reduced its activity in EC. Blocking antibody against the receptor for advanced glycation end products (RAGE) prevented glyLDL-induced downregulation of eNOS in EC. GlyLDL increased the translocation of H-Ras from cytoplasm to membrane in EC. Farnesyl-transferase inhibitor-276, an H-Ras antagonist, normalized glyLDL-induced downregulation of eNOS and prevented glyLDL-induced upregulation of H-Ras in EC membrane. Treatment with 4-phenylbutyric acid, an endoplasmic reticulum (ER) stress antagonist, prevented glyLDL-induced eNOS downregulation in EC. The results suggest that diabetes-associated metabolic stress inhibits the production and activity of eNOA in cultured human vascular EC through the activation of RAGE/H-Ras mediated upstream signaling pathway. ER stress induced by glyLDL is possibly involved in eNOS downregulation.
Collapse
Affiliation(s)
- Manoj Mohanan Nair
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Ruozhi Zhao
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Xueping Xie
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Garry X Shen
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
9
|
Veenstra A, Liu H, Lee CA, Du Y, Tang J, Kern TS. Diabetic Retinopathy: Retina-Specific Methods for Maintenance of Diabetic Rodents and Evaluation of Vascular Histopathology and Molecular Abnormalities. ACTA ACUST UNITED AC 2015; 5:247-270. [PMID: 26331759 DOI: 10.1002/9780470942390.mo140190] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diabetic retinopathy is a major cause of visual impairment, which continues to increase in prevalence as more and more people develop diabetes. Despite the importance of vision, the retina is one of the smallest tissues in the body, and specialized techniques have been developed to study retinopathy. This article summarizes several methods used to (i) induce diabetes in mice, (ii) maintain the diabetic animals throughout the months required for development of typical vascular histopathology, (iii) evaluate vascular histopathology of diabetic retinopathy, and (iv) quantitate abnormalities implicated in the development of the retinopathy.
Collapse
Affiliation(s)
- Alexander Veenstra
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio.,Veterans Administration Medical Center Research Service 151, Cleveland, Ohio.,These authors contributed equally to this work
| | - Haitao Liu
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio.,These authors contributed equally to this work
| | - Chieh Allen Lee
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio
| | - Yunpeng Du
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio
| | - Jie Tang
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio.,Veterans Administration Medical Center Research Service 151, Cleveland, Ohio
| | - Timothy S Kern
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio.,Veterans Administration Medical Center Research Service 151, Cleveland, Ohio
| |
Collapse
|
10
|
Veluthakal R, Kumar B, Mohammad G, Kowluru A, Kowluru RA. Tiam1-Rac1 Axis Promotes Activation of p38 MAP Kinase in the Development of Diabetic Retinopathy: Evidence for a Requisite Role for Protein Palmitoylation. Cell Physiol Biochem 2015; 36:208-20. [PMID: 25967961 PMCID: PMC4435616 DOI: 10.1159/000374065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 01/14/2023] Open
Abstract
Background/Aims Evidence in multiple tissues, including retina, suggests generation of reactive oxygen species (ROS) and the ensuing oxidative stress as triggers for mitochondrial defects and cell apoptosis. We recently reported novel roles for Tiam1-Rac1-Nox2 axis in retinal mitochondrial dysfunction and cell death leading to the development of diabetic retinopathy. Herein, we tested the hypothesis that activation of p38 MAP kinase, a stress kinase, represents the downstream signaling event to Rac1-Nox2 activation in diabetes-induced metabolic stress leading to capillary cell apoptosis. Methods Activation of p38 MAP kinase was quantified by Western blotting in retinal endothelial cells incubated with high glucose (20 mM) for up to 96 hours, a duration where mitochondrial dysfunction and capillary cell apoptosis can be observed. NSC23766 and 2-bromopalmitate (2-BP) were used to assess the roles of Tiam1-Rac1 and palmitoylation pathways, respectively. Results Activation of p38 MAP kinase was observed as early as 3 hours after high glucose exposure, and continued until 96 hours. Consistent with this, p38 MAP kinase activation was significantly higher in the retina from diabetic mice compared to age-matched normal mice. NSC23766 markedly attenuated hyperglycemia-induced activation of p38 MAP kinase. Lastly, 2-BP inhibited glucose-induced Rac1, Nox2 and p38 MAP kinase activation in endothelial cells. Conclusions Tiam1-Rac1-mediated activation of Nox2 and p38 MAP kinase constitutes early signaling events leading to mitochondrial dysfunction and the development of diabetic retinopathy. Our findings also provide the first evidence to implicate novel roles for protein palmitoylation in this signaling cascade.
Collapse
|
11
|
Zhong Q, Kowluru RA. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy. Diabetes 2013; 62:2559-68. [PMID: 23423566 PMCID: PMC3712057 DOI: 10.2337/db12-1141] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes activates retinal matrix metalloproteinase-9 (MMP-9), and MMP-9 damages the mitochondria and augments capillary cell apoptosis. Our aim is to elucidate the mechanism responsible for MMP-9 activation. Histone modifications and recruitment of the nuclear transcriptional factor-κB (p65 subunit) at the MMP-9 promoter and the activity of lysine-specific demethylase 1 (LSD1) were measured in the retina from streptozotocin-induced diabetic rats. The role of LSD1 in MMP-9 activation was investigated in isolated retinal endothelial cells transfected with LSD1 small interfering RNA (siRNA). The results were confirmed in the retina from human donors with diabetic retinopathy. Diabetes decreased histone H3 dimethyl lysine 9 (H3K9me2) and increased acetyl H3K9 (Ac-H3K9) and p65 at the retinal MMP-9 promoter. LSD1 enzyme activity and its transcripts were elevated. LSD1 siRNA ameliorated the glucose-induced decrease in H3K9me2 and increase in p65 at the MMP-9 promoter, and prevented MMP-9 activation, mitochondrial damage, and cell apoptosis. Human donors with diabetic retinopathy had similar epigenetic changes at the MMP-9 promoter. Thus, activated LSD1 hypomethylates H3K9 at the MMP-9 promoter and this frees up that lysine 9 for acetylation. Increased Ac-H3K9 facilitates the recruitment of p65, resulting in MMP-9 activation and mitochondrial damage. Thus, the regulation of LSD1 by molecular or pharmacological means has the potential to retard the development of diabetic retinopathy.
Collapse
|
12
|
Role of matrix metalloproteinase-2 and -9 in the development of diabetic retinopathy. J Ocul Biol Dis Infor 2012; 5:1-8. [PMID: 23833698 DOI: 10.1007/s12177-012-9091-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/07/2012] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy represents the most common causes of vision loss in patients affected by diabetes mellitus. The cause of vision loss in diabetic retinopathy is complex and remains incompletely understood. One of the earliest changes in the development of retinopathy is the accelerated apoptosis of retinal microvascular cells and the formation of acellular capillaries by unknown mechanism. Results of a recent research suggest an important role of matrix metalloproteinases (MMPs) in the development of diabetic retinopathy. MMPs are a large family of proteinases that remodel extracellular matrix components, and under pathological condition, its induction is considered as a negative regulator of cell survival; and in diabetes, latent MMPs are activated in the retina and its capillary cells, and activation of MMP-2 and -9 induces apoptosis of retinal capillary cells. This review will focus on the MMP-2 and MMP-9 in the diabetic retina with special reference to oxidative stress, mitochondria dysfunction, inflammation and angiogenesis, as well as summarizing the current information linking these proteins to pathogenesis of diabetic retinopathy.
Collapse
|
13
|
Mohammad G, Kowluru RA. Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinase-9. J Cell Physiol 2012; 227:1052-61. [PMID: 21567393 DOI: 10.1002/jcp.22822] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the pathogenesis of diabetic retinopathy, H-Ras (a small molecular weight G-protein) and matrix metalloproteinase-9 (MMP9) act as pro-apoptotic, accelerating the apoptosis of retinal capillary cells, a phenomenon that predicts its development and the activation of MMP9 is under the control of H-Ras. The goal of this study is to elucidate the cellular mechanism by which H-Ras activates MMP9 culminating in the development of diabetic retinopathy. Using isolated retinal endothelial cells, the effect of regulation of H-Ras downstream signaling cascade, Raf-1, MEK, and ERK, was investigated on glucose-induced activation of MMP9. In vitro results were confirmed in the retina obtained from diabetic mice manipulated for MMP9 gene, and also in the retinal microvasculature obtained from human donors with diabetic retinopathy. Regulation of Raf-1/MEK/ERK by their specific siRNAs and pharmacologic inhibitors prevented glucose-induced activation of MMP9 in retinal endothelial cells. In MMP9-KO mice, diabetes had no effect on retinal MMP9 activation, and H-Ras/Raf-1/MEK signaling cascade remained normal. Similarly, donors with diabetic retinopathy had increased MMP9 activity in their retinal microvessels, the site of histopathology associated with diabetic retinopathy, and this was accompanied by activated H-Ras signaling pathway (Raf-1/ERK). Collectively, these results suggest that Ras/Raf-1/MEK/ERK cascade has an important role in the activation of retinal MMP9 resulting in the apoptosis of its capillary cells. Understanding the upstream mechanism responsible for the activation of MMP9 should help identify novel molecular targets for future pharmacological interventions to inhibit the development/progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Kresge Eye Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
14
|
Abstract
Many metabolic pathways, including oxidative stress, PKC and the polyol pathway have been implicated in the development of diabetic retinopathy, but despite extensive research, its pathogenesis remains unclear. Recent studies have shown the role of a low-molecular-weight GTP-binding protein (H-Ras)-mediated signaling pathway in its development. The key effector protein of Ras function is a threonine/serine kinase-Raf kinase, and this kinase is involved in a variety of functions, including the cell cycle and proliferation and apoptosis. In animal models of diabetic retinopathy, Raf kinase is activated in the retina and its microvasculature. Activated Raf kinase is associated with increased apoptosis of retinal capillary cells, the process that precedes the development of retinal histopathology, and inhibition of Raf kinase ameliorates apoptosis. In clinical settings, inhibitors of Raf kinase have shown promising results in cancer treatment, and Raf kinase antisense oligonucleotides, iCo 007, is now in Phase II trial for macular edema, a chronic ocular disease associated with retinal neovascularization. Further elucidating the role of Raf kinase in diabetic retinopathy, and advances in the generation of antisense therapy for chronic diseases, should help test Raf antisense oligonucleotides for the treatment of this blinding complication that diabetic patients fear the most.
Collapse
|
15
|
Truong A, Wong TY, Khachigian LM. Emerging therapeutic approaches in the management of retinal angiogenesis and edema. J Mol Med (Berl) 2010; 89:343-61. [DOI: 10.1007/s00109-010-0709-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 10/22/2010] [Accepted: 11/10/2010] [Indexed: 12/16/2022]
|
16
|
Sangle GV, Zhao R, Mizuno TM, Shen GX. Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Endocrinology 2010; 151:4455-66. [PMID: 20630999 DOI: 10.1210/en.2010-0323] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Atherothrombotic cardiovascular diseases are the predominant causes of mortality of diabetic patients. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor for fibrinolysis, and it is also implicated in inflammation and tissue remodeling. Increased levels of PAI-1 and glycated low-density lipoprotein (glyLDL) were detected in patients with diabetes. Previous studies in our laboratory demonstrated that heat shock factor-1 (HSF1) is involved in glyLDL-induced PAI-1 overproduction in vascular endothelial cells (EC). The present study investigated transmembrane signaling mechanisms involved in glyLDL-induced HSF1 and PAI-1 up-regulation in cultured human vascular EC and streptozotocin-induced diabetic mice. Receptor for advanced glycation end products (RAGE) antibody prevented glyLDL-induced increase in the abundance of PAI-1 in EC. GlyLDL significantly increased the translocation of V-Ha-Ras Harvey rat sarcoma viral oncogene homologue (H-Ras) from cytoplasm to membrane compared with LDL. Farnesyltransferase inhibitor-277 or small interference RNA against H-Ras inhibited glyLDL-induced increases in HSF1 and PAI-1 in EC. Treatment with diphenyleneiodonium, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor, blocked glyLDL-induced translocation of H-Ras, elevated abundances of HSF1 and PAI-1 in EC, and increased release of hydrogen peroxide from EC. Small interference RNA for p22(phox) prevented glyLDL-induced expression of NOX2, HSF1, and PAI-1 in EC. GlyLDL significantly increased V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) phosphorylation. Treatment with Raf-1 inhibitor blocked glyLDL-induced increase of PAI-1 mRNA in EC. The levels of RAGE, H-Ras, NOX4, HSF1, and PAI-1 were increased in hearts of streptozotocin-diabetic mice and positively correlated with plasma glucose. The results suggest that RAGE, NOX, and H-Ras/Raf-1 are implicated in the up-regulation of HSF1 or PAI-1 in vascular EC under diabetes-associated metabolic stress.
Collapse
Affiliation(s)
- Ganesh V Sangle
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | | | | | | |
Collapse
|
17
|
Sangle GV, Shen GX. Signaling mechanisms for oxidized LDL-induced oxidative stress and the upregulation of plasminogen activator inhibitor-1 in vascular cells. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Kowluru RA. Role of matrix metalloproteinase-9 in the development of diabetic retinopathy and its regulation by H-Ras. Invest Ophthalmol Vis Sci 2010; 51:4320-6. [PMID: 20220057 DOI: 10.1167/iovs.09-4851] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Diabetes activates a small molecular weight G-protein, H-Ras, in the retina and its capillary cells, and H-Ras activation is implicated in the apoptosis of retinal capillary cells. Matrix metalloproteinase (MMP)-9 is regulated by H-Ras, and in diabetes its activation is associated with increased vascular permeability. The goal of this study was to investigate the role of sustained activation of MMP-9 in the pathogenesis of diabetic retinopathy and to illustrate the mechanism through which it is upregulated in diabetes. METHODS Retinal MMP-9 activation and its tissue inhibitor, TIMP-1, were quantified in streptozotocin-induced diabetic rats. Inhibition of H-Ras by simvastatin on diabetes-induced activation of H-Ras was evaluated. The mechanism by which diabetes regulates retinal MMP-9 was confirmed by determining the effect of genetic or pharmacologic regulation of H-Ras on its activation in retinal endothelial cells. RESULTS In rats, MMP-9 was activated and expression of TIMP-1 was decreased in the retina and its microvasculature at both 2 months and 12 months of diabetes. In retinal endothelial cells, high glucose activated MMP-9, and inhibition of its activation (by pharmacologic inhibitor or siRNA) ameliorated accelerated apoptosis. Inhibition of H-Ras, both in diabetic rats (simvastatin) and in isolated endothelial cells (H-Ras siRNA), abrogated the activation of MMP-9 and prevented the reduction of TIMP-1. CONCLUSIONS Hyperglycemia-induced activation of MMP-9 accelerates apoptosis of retinal capillary cells, a phenomenon that predicts the development of diabetic retinopathy, and the activation of MMP-9 is downstream of H-Ras. Characterizing the role of MMP-9 in the development of diabetic retinopathy will help explore novel molecular targets for future pharmacological interventions.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Kresge Eye Institute, Detroit, Michigan 48201, USA.
| |
Collapse
|
19
|
Kowluru RA, Kanwar M. Translocation of H-Ras and its implications in the development of diabetic retinopathy. Biochem Biophys Res Commun 2009; 387:461-6. [PMID: 19607814 DOI: 10.1016/j.bbrc.2009.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 12/26/2022]
Abstract
H-Ras, a small molecular weight G-protein, undergoes post-translational modifications enabling its translocation from cytosol to the membrane. Hyperglycemia increases apoptosis of retinal capillary cells via activation of H-Ras, which can be ameliorated by farnesylation inhibitors. Our aim is to investigate the mechanism of retinal H-Ras activation in diabetes. H-Ras and Raf-1 were quantified in the retinal membrane and cytosol fractions obtained from streptozotocin-induced diabetes rats, and the role of post-translation modification was determined by investigating the effect of simvastatin on diabetes-induced alterations. The effect of H-Ras-siRNA on membrane translocation and apoptosis was also determined in bovine retinal endothelial cells (BRECs). Diabetes increased expressions of H-Ras and Raf-1 in the retinal membranes, and simvastatin prevented such translocation. Glucose-exposure of BRECs increased membrane H-Ras expression and H-Ras-siRNA prevented this translocation, and also decreased their apoptosis. Thus, membrane translocation of H-Ras is a plausible mechanism responsible for accelerated apoptosis of retinal capillary cells in diabetes.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA.
| | | |
Collapse
|
20
|
Effect of different antihypertensive treatments on Ras, MAPK and Akt activation in hypertension and diabetes. Clin Sci (Lond) 2009; 116:165-73. [PMID: 18588512 DOI: 10.1042/cs20080119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras GTPases function as transducers of extracellular signals regulating many cell functions, and they appear to be involved in the development of hypertension. In the present study, we have investigated whether antihypertensive treatment with ARBs (angiotensin II receptor blockers), ACEi (angiotensin-converting enzyme inhibitors) and diuretics induce changes in Ras activation and in some of its effectors [ERK (extracellular-signal-regulated kinase) and Akt] in lymphocytes from patients with hypertension without or with diabetes. ACEi treatment transiently reduced Ras activation in the first month of treatment, but diuretics induced a sustained increase in Ras activation throughout the 3 months of the study. In patients with hypertension and diabetes, ARB, ACEi and diuretic treatment increased Ras activation only during the first week. ACEi treatment increased phospho-ERK expression during the first week and also in the last 2 months of the study; however, diuretic treatment reduced phospho-ERK expression during the last 2 months of the study. In patients with hypertension and diabetes, antihypertensive treatments did not induce changes in phospho-ERK expression in lymphocytes. ACEi treatment reduced phospho-Akt expression in patients with hypertension and diabetes only in the first month of treatment. In conclusion, these findings show that antihypertensive treatments with ACEi, and diuretics to a lesser extent, modify Ras activation and some of its signalling pathways, although in different directions, whereas ARBs do not appear to have any influence on Ras signalling pathways.
Collapse
|
21
|
Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 2008; 9:315-27. [PMID: 18654858 DOI: 10.1007/s11154-008-9090-4] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Retinopathy is one of the most severe ocular complications of diabetes and is a leading cause of acquired blindness in young adults. The cellular components of the retina are highly coordinated but very susceptible to the hyperglycemic environment. The microvasculature of the retina responds to hyperglycemic milieu through a number of biochemical changes, including increased oxidative stress and polyol pathway, PKC activation and advanced glycation end product formation. Oxidative stress is considered as one of the crucial contributors in the pathogenesis of diabetic retinopathy, but oxidative stress appears to be highly interrelated with other biochemical imbalances that lead to structural and functional changes and accelerated loss of capillary cells in the retinal microvasculature and, ultimately, pathological evidence of the disease. One such potential connection that links oxidative stress to metabolic alterations is gyceraldehyde-3-phosphate dehydrogenase whose activity is impaired in diabetes, and that results in activation of other major pathways implicated in the pathogenesis of diabetic retinopathy. Alterations associated with oxidative stress offer many potential therapeutic targets making this an area of great interest to the development of safe and effective treatments for diabetic retinopathy. Animal models of diabetic retinopathy have shown beneficial effects of antioxidants on the development of retinopathy, but clinical trials (though very limited in numbers) have provided somewhat ambiguous results. Although antioxidants are being used for other chronic diseases, controlled clinical trials are warranted to investigate potential beneficial effects of antioxidants in the development of retinopathy in diabetic patients.
Collapse
Affiliation(s)
- Sally A Madsen-Bouterse
- K-404, Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI, 48201, USA
| | | |
Collapse
|
22
|
Sangle GV, Zhao R, Shen GX. Transmembrane signaling pathway mediates oxidized low-density lipoprotein-induced expression of plasminogen activator inhibitor-1 in vascular endothelial cells. Am J Physiol Endocrinol Metab 2008; 295:E1243-54. [PMID: 18796547 DOI: 10.1152/ajpendo.90415.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerotic cardiovascular disease is the number one cause of death for adults in Western society. Plasminogen activator inhibitor-1 (PAI-1), the major physiological inhibitor of plasminogen activators, has been implicated in both thrombogenesis and atherogenesis. Previous studies demonstrated that copper-oxidized low-density lipoprotein (C-oLDL) stimulated production of PAI-1 in vascular endothelial cells (EC). The present study examined the involvement of lectin-like oxidized LDL receptor-1 (LOX-1) and Ras/Raf-1/ERK1/2 pathway in the upregulation of PAI-1 in cultured EC induced by oxidized LDLs. The results demonstrated that C-oLDL or FeSO(4)-oxidized LDL (F-oLDL) increased the expression of PAI-1 or LOX-1 in human umbilical vein EC (HUVEC) or coronary artery EC (HCAEC). Treatment with C-oLDL significantly increased the levels of H-Ras mRNA, protein, and the translocation of H-Ras to membrane fraction in EC. LOX-1 blocking antibody, Ras farnesylation inhibitor (FTI-277), or small interference RNA against H-Ras significantly reduced C-oLDL or LDL-induced expression of H-Ras and PAI-1 in EC. Incubation with C-oLDL or F-oLDL increased the phosphorylation of Raf-1 and ERK1/2 in EC compared with LDL or vehicle. Treatment with Raf-1 inhibitor blocked Raf-1 phosphorylation and the elevation of PAI-1 mRNA level in EC induced by C-oLDL or LDL. Treatment with PD-98059, an ERK1/2 inhibitor, blocked C-oLDL or LDL-induced ERK1/2 phosphorylation or PAI-1 expression in EC. The results suggest that LOX-1, H-Ras, and Raf-1/ERK1/2 are implicated in PAI-1 expression induced by oxidized LDLs or LDL in cultured EC.
Collapse
Affiliation(s)
- Ganesh V Sangle
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
23
|
Kanwar M, Kowluru RA. Diabetes regulates small molecular weight G-protein, H-Ras, in the microvasculature of the retina: implication in the development of retinopathy. Microvasc Res 2008; 76:189-93. [PMID: 18514235 PMCID: PMC2695828 DOI: 10.1016/j.mvr.2008.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 03/03/2008] [Accepted: 04/03/2008] [Indexed: 01/13/2023]
Abstract
Retinopathy, a largely microvascular complication, affects over 80% of patients with diabetes for 20 years. The purpose of this study is to investigate the effect of diabetes on the activation of H-Ras, a small molecular weight G-protein that regulates cell fate, in the retinal microvessels. Microvessels were prepared from freshly isolated retina from streptozotocin diabetic rats or 30% galactose-fed rats by hypotonic lysis method. Ras activation was quantified by Raf-1 binding assay, and the activation of the signaling proteins, Raf-1 and mitogen activated protein (MAP) kinase, by quantifying their gene transcripts (RTPCR) and/or by protein expression (western blot). Two months of diabetes or experimental galactosemia activated H-Ras (Raf-binding assay) in the retinal microvessels by over 40% and 70% respectively compared to the values obtained from normal rat retinal microvessels. In the same diabetic rats the gene transcripts of H-Ras and its effector protein Raf-1 were elevated by 30% and 135% respectively with their protein expressions elevated by about 25% each, and this was paralleled by similar increases in the protein expressions of H-Ras and Raf-1 in experimentally galactosemic rats. Diabetes increased the gene expression of Ras-Raf-1 downstream signaling protein MAP kinase by over 50%, and that of nuclear transcriptional factor by 25-30%. This activation of H-Ras in retinal microvessels implies that its signaling pathway, in part, could be contributing to the microvascular pathology characteristic of diabetic retinopathy. Comparable activation of H-Ras and its signaling cascade in the retinal microvessels from experimentally galactosemic rats suggests that H-Ras activation is not due to insulin deficiency. Regulation of Ras function could provide important target in the complex approach to inhibit the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Mamta Kanwar
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
24
|
Yousif MH, Benter IF, Abul AH, Abraham S, Walther T, Akhtar S. Inhibition of Ras-GTPase signaling by FPTIII ameliorates development of cardiovascular dysfunction in diabetic–hypertensive rats. Vascul Pharmacol 2008; 49:151-7. [DOI: 10.1016/j.vph.2008.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 05/05/2008] [Accepted: 05/21/2008] [Indexed: 12/11/2022]
|
25
|
Stirban A, Rösen P, Tschoepe D. Complications of type 1 diabetes: new molecular findings. ACTA ACUST UNITED AC 2008; 75:328-51. [DOI: 10.1002/msj.20057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Mather A, Chen XM, McGinn S, Field MJ, Sumual S, Mangiafico S, Zhang Y, Kelly DJ, Pollock CA. High glucose induced endothelial cell growth inhibition is associated with an increase in TGFbeta1 secretion and inhibition of Ras prenylation via suppression of the mevalonate pathway. Int J Biochem Cell Biol 2008; 41:561-9. [PMID: 18692592 DOI: 10.1016/j.biocel.2008.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/26/2008] [Accepted: 07/10/2008] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Ras proteins are known to affect cellular growth and function. The influence of the prenylation status of Ras on the observed changes in endothelial cell growth under high glucose conditions has not previously been examined. METHODS Human umbilical vein endothelial cells were exposed to normal or high glucose conditions for 72 h. They were then examined for proliferative and hypertrophic effects, transforming growth factor beta(1) (TGFbeta(1)) release, and phosphorylated p38 expression. The importance of prenylation was explored by the addition of mevalonate, isoprenoids or farnesyltransferase inhibitors to control the high glucose media and by measuring changes induced by high glucose and exogenous TGFbeta(1) in Ras prenylation and farnesyltransferase activity. Kidneys from diabetic rats treated with atorvastatin were also compared to specimens from untreated animals and the expression of the Ras effector p-Akt examined. RESULTS High glucose conditions caused a reduction in cell number. This was reversed in the presence of mevalonate or farnesylpyrophosphate (FPP), suggesting that the cell growth abnormalities observed are due to high glucose induced inhibition of the mevalonate pathway and subsequent prenylation of proteins. Endothelial cells exposed to high glucose increased their secretion of TGFbeta(1) and the phosphorylation of p38 both of which were reversed by concurrent exposure to FPP. A reduction in farnesyltransferase activity was observed after exposure to both high glucose and TGFbeta(1). Exposure to a farnesyltransferase inhibitor in control conditions mimicked the growth response observed with high glucose exposure and prenylated Ras was reduced by exposure to both high glucose and TGFbeta(1). Finally, interruption of the mevalonate pathway with a statin reduced the expression of p-Akt in diabetic rat kidneys. CONCLUSION This study demonstrates that high glucose induced significant alterations in endothelial cell growth by inhibition of the mevalonate pathway, which subsequently mediates the increase in TGFbeta(1) and inhibition of Ras prenylation.
Collapse
Affiliation(s)
- A Mather
- Renal Research Laboratory, Kolling Institute, Royal North Shore Hospital, University of Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. EXPERIMENTAL DIABETES RESEARCH 2008; 2007:43603. [PMID: 17641741 PMCID: PMC1880867 DOI: 10.1155/2007/43603] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 02/08/2007] [Indexed: 12/11/2022]
Abstract
Oxygen metabolism is essential for sustaining aerobic life, and normal cellular homeostasis works on a fine balance between the formation and elimination of reactive oxygen species (ROS). Oxidative stress, a cytopathic consequence of excessive production of ROS and the suppression of ROS removal by antioxidant defense system, is implicated in the development of many diseases, including Alzheimer's disease, and diabetes and its complications. Retinopathy, a debilitating microvascular complication of diabetes, is the leading cause of acquired blindness in developed countries. Many diabetes-induced metabolic abnormalities are implicated in its development, and appear to be influenced by elevated oxidative stress; however the exact mechanism of its development remains elusive. Increased superoxide concentration is considered as a causal link between elevated glucose and the other metabolic abnormalities important in the pathogenesis of diabetic complications. Animal studies have shown that antioxidants have beneficial effects on the development of retinopathy, but the results from very limited clinical trials are somewhat ambiguous. Although antioxidants are being used for other chronic diseases, controlled clinical trials are warranted to investigate potential beneficial effects of antioxidants in the development of retinopathy in diabetic patients.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
28
|
Kimura T, Takagi H, Suzuma K, Kita M, Watanabe D, Yoshimura N. Comparisons between the beneficial effects of different sulphonylurea treatments on ischemia-induced retinal neovascularization. Free Radic Biol Med 2007; 43:454-61. [PMID: 17602961 DOI: 10.1016/j.freeradbiomed.2007.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 11/21/2022]
Abstract
The aim of this study was to assess the potential beneficial effects of gliclazide and other sulphonylureas on ischemia-induced retinal neovascularization. To produce an animal model of oxygen-induced ischemic retinopathy, 7-day-old (P7) mice were exposed to a 75% oxygen environment for 5 days. On their return to ambient air at P12, these mice were then treated with gliclazide, glibenclamide, glimepiride, or N-acetylcysteine. Gliclazide, but not glibenclamide or glimepiride, markedly suppresses retinal neovascularization. N-Acetylcysteine, however, only moderately suppresses retinal neovascularization. The number of neovascular nuclei in the retinal cross sections decreased by 29% in the gliclazide-treated mice (P<0.05 vs control). The induction of VEGF mRNA expression at P13 is significantly suppressed in the gliclazide group, relative to the control group (-44%, P<0.05). The VEGF protein expression levels at P15 were also suppressed in the gliclazide group (-43%, P<0.01). The 8-isoprostane production levels at P15 were suppressed in both the gliclazide group (-20%, P<0.05) and the N-acetylcysteine-treated group (-31%, P<0.01). Gliclazide inhibits ischemia-induced retinal neovascularization, and this is likely to be mediated in part through the downregulation of VEGF and the suppression of oxidative stress.
Collapse
Affiliation(s)
- Tetsushi Kimura
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Yousif MHM. Signal transduction through Ras-GTPase and Ca2+/ calmodulin-dependent protein kinase II contributes to development of diabetes-induced renal vascular dysfunction. Cell Biochem Funct 2006; 24:299-305. [PMID: 16287213 DOI: 10.1002/cbf.1301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study examined the role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Ras-GTPase in the development of abnormal reactivity to vasoactive agents in the renal artery of diabetic rats. The vasoconstrictor response induced by norepinephrine (NE), endothelin-1 (ET-1) or angiotensin II (Ang II) was significantly increased whereas vasodilator response to carbachol, histamine or sodium nitroprusside (SNP) was not altered in the renal artery segments of the streptozotocin (STZ)-diabetic rats. Chronic intraperitoneal administration of KN-93 (5 mg/kg/ alt diem), an inhibitor of CaMKII or FPTIII (1.5 mg/kg/ alt diem), an inhibitor of Ras-GTPase, produced significant normalization of the altered agonist-induced vasoconstrictor responses without affecting blood glucose levels. All the inhibitors were administered for four weeks starting from day one of diabetes induction. Inhibition of Ras-GTPase or CaMKII did not affect the agonist-induced vasoconstrictor and vasodilator responses in the non-diabetic control animals. These data suggest that inhibition of signal transduction involving CaMKII and Ras-GTPase can prevent development of diabetes-induced abnormal vascular reactivity in the renal artery.
Collapse
Affiliation(s)
- Mariam H M Yousif
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, P. O. Box: 24923, Safat 13110, Kuwait.
| |
Collapse
|
30
|
Kowluru RA, Kowluru A, Kanwar M. Small molecular weight G-protein, H-Ras, and retinal endothelial cell apoptosis in diabetes. Mol Cell Biochem 2006; 296:69-76. [PMID: 16924412 DOI: 10.1007/s11010-006-9299-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 07/26/2006] [Indexed: 01/23/2023]
Abstract
We have demonstrated that the expressions of small molecular weight G-protein, H-Ras, and its effector protein, Raf-1, are increased in the retina in diabetes, and the specific inhibitors of Ras function inhibit glucose-induced apoptosis of retinal capillary cells. This study is to examine the contributory roles for H-Ras in glucose-induced apoptosis of retinal endothelial cells by genetic manipulation of functionally active H-Ras levels. Bovine retinal endothelial cells were transfected with the plasmids of either wild type (WT), constitutively active (V12) or dominant-negative (N17) H-Ras. Glucose-induced increase in apoptosis, nitric oxide (NO) levels and activation of NF-kappaB and caspase-3 were determined in these genetically manipulated cells. Exposure of bovine retinal endothelial cells to 20 mM glucose significantly increased H-Ras activation as determined by Raf-1 binding assay. Overexpression of V12 in the endothelial cells further increased their glucose-induced apoptosis by 40%, NO levels by about 50%, and activated NF-kappaB and caspase-3 by about 30-40% compared to the untransfected cells incubated in 20 mM glucose. In contrast, overexpression of the inactive mutant, N17, inhibited glucose-mediated increases in apoptotic cell death, NO levels and NF-kappaB and caspase-3 activation; the values were significantly different (p < 0.02) compared to those obtained from the untransfected cells incubated under similar conditions. Our findings demonstrate that H-Ras activation is important in the activation of the specific signaling events leading to the accelerated retinal capillary cell apoptosis in hyperglycemic conditions, suggesting the possible use of H-Ras inhibitors to inhibit the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Kresge Eye Institute, 4717 St. Antoine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
31
|
Allen DA, Yaqoob MM, Harwood SM. Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications. J Nutr Biochem 2005; 16:705-13. [PMID: 16169208 DOI: 10.1016/j.jnutbio.2005.06.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular responses to high glucose are numerous and varied but ultimately result in functional changes and, often, cell death. High glucose induces oxidative and nitrosative stress in many cell types causing the generation of species such as superoxide, nitric oxide and peroxynitrite and their derivatives. The role of these species in high glucose-mediated apoptotic cell death is relevant to the complications of diabetes such as neuropathy, nephropathy and cardiovascular disease. High glucose causes activation of several proteins involved in apoptotic cell death, including members of the caspase and Bcl-2 families. These events and the relationship between high glucose-induced oxidative stress and apoptosis are discussed here with reference to additional regulators of apoptosis such as the mitogen-activated protein kinases (MAPKs) and cell-cycle regulators.
Collapse
Affiliation(s)
- David A Allen
- Centre for Experimental Medicine, Nephrology and Critical Care, William Harvey Research Institute, St. Bartholomew's and Royal London School of Medicine and Dentistry, Queen Mary, University of London, EC1M 6BQ London, UK.
| | | | | |
Collapse
|
32
|
Current literature in diabetes. Diabetes Metab Res Rev 2005; 21:71-8. [PMID: 15624121 DOI: 10.1002/dmrr.534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Kowluru RA. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sci 2005; 76:1051-60. [PMID: 15607333 DOI: 10.1016/j.lfs.2004.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 10/02/2004] [Indexed: 01/01/2023]
Abstract
Advanced glycation end-products (AGEs) are considered to play an important role in the development of retinopathy in diabetes, and are shown to induce retinal vascular changes resembling that of diabetic retinopathy. We have shown that apoptosis of retinal capillary cells is accelerated in diabetes. The aim of this study is to investigate the role of AGEs in accelerated retinal capillary cell death in in vitro conditions, and to identify the possible mechanism involved. Bovine retinal endothelial cells and pericytes were incubated in the presence of 5 microM AGE-bovine serum albumin (AGE-BSA) or untreated control BSA (BSA) for up to five days. The cell death was determined by performing ELISA for cytoplasmic histone-associated DNA fragments and by measuring the activity of caspase-3. Incubation of endothelial cells or pericytes with AGE-BSA increased oxidative stress and NO by 60%, and in the same cells nuclear transcriptional factor (NF-kB) was also activated by over 60%. AGE-BSA induced their apoptosis by 55%, and activated caspase-3 by about 50% compared to the cells incubated with unmodified BSA. Co-addition of AGE-BSA and antioxidants (N-acetyl cysteine or alpha-lipoic acid) inhibited oxidative stress, nitrotyrosine formation, NF-kB activation and capillary cell apoptosis. These data strongly suggest that increased AGE in diabetes could play an important role in retinal capillary apoptosis and that oxidative stress is involved in this process. Inhibition of AGEs in the retinal capillary cells could prevent their apoptosis, and ultimately, the development of retinopathy in diabetes.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
34
|
Kowluru RA, Odenbach S. Effect of long-term administration of alpha-lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats. Diabetes 2004; 53:3233-8. [PMID: 15561955 DOI: 10.2337/diabetes.53.12.3233] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidative stress is increased in the retina in diabetes, and it is considered to play an important role in the development of retinopathy. alpha-Lipoic acid, a thiol antioxidant, has been shown to have beneficial effects on polyneuropathy and on the parameters of oxidative stress in various tissues, including nerve, kidney, and retina. The purpose of this study was to examine the effect of alpha-lipoic acid on retinal capillary cell apoptosis and the development of pathology in diabetes. Retina was used from streptozotocin-induced diabetic rats receiving diets supplemented with or without alpha-lipoic acid (400 mg/kg) for 11 months of diabetes. Capillary cell apoptosis (by terminal transferase-mediated dUTP nick-end labeling) and formation of acellular capillaries were investigated in the trypsin-digested retinal microvessels. The effect of alpha-lipoic acid administration on retinal 8-hydroxy-2'deoxyguanosine (8-OHdG) and nitrotyrosine levels was determined by enzyme-linked immunosorbent assay. alpha-Lipoic acid administration for the entire duration of diabetes inhibited capillary cell apoptosis and the number of acellular capillaries in the retina, despite similar severity of hyperglycemia in the two diabetic groups (with and without alpha-lipoic acid). Retinal 8-OHdG and nitrotyrosine levels were increased by over twofold and 70%, respectively, in diabetes, and alpha-lipoic acid administration inhibited these increases. Our results demonstrate that the long-term administration of alpha-lipoic acid has beneficial effects on the development of diabetic retinopathy via inhibition of accumulation of oxidatively modified DNA and nitrotyrosine in the retina. alpha-Lipoic acid supplementation represents an achievable adjunct therapy to help prevent vision loss in diabetic patients.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
35
|
Abstract
AIM To examine the role of cytokine interleukin-1beta (IL-1beta) in retinal capillary cell death in diabetes. METHODS The effect of glucose on the expression of IL-1beta was measured in the bovine retinal endothelial cells. The role of IL-1beta in the accelerated endothelial cell loss was determined by investigating the effect of human recombinant IL-1beta on their apoptosis in normal and high glucose conditions, and was confirmed using interleukin-1 receptor antagonist (IL-1ra). RESULTS High glucose increased IL-1beta expression by 60% compared with cells incubated in 5 mM glucose (p<0.05). Incubation of cells with IL-1beta increased NO levels by about 80% and activated NF-kappaB by 40%. In the same cells apoptosis was increased by 70% and caspase-3 activity was increased by 40%. Supplementation of IL-1beta in 20 mM glucose medium further increased nitric oxide and NF-kappaB, and accelerated apoptosis, and addition of IL-1ra significantly decreased glucose induced abnormalities and apoptosis. CONCLUSIONS IL-1beta accelerates apoptosis of retinal capillary cells via activation of NF-kappaB, and the process is exacerbated in high glucose conditions. These studies suggest a possible role of IL-1beta in the development of retinopathy in diabetes, and offer a possible rationale to test IL-1beta receptor antagonists to inhibit the development of diabetic retinopathy.
Collapse
Affiliation(s)
- R A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|