1
|
Yang X, Lu W, Alves de Souza RW, Mao Q, Baram D, Tripathi R, Wang G, Otterbein LE, Wang B. Metal-Free CO Prodrugs Activated by Molecular Oxygen Protect against Doxorubicin-Induced Cardiomyopathy in Mice. J Med Chem 2024; 67:18981-18992. [PMID: 39417235 DOI: 10.1021/acs.jmedchem.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Carbon monoxide has been extensively studied for its various therapeutic activities in cell cultures and animal models. Great efforts have been made to develop noninhalational approaches for easy and controlled CO delivery. Herein, we introduce a novel metal-free CO prodrug approach that releases CO under near-physiological conditions. CO from the quinone-derived CO prodrugs is initiated by general acid/base-catalyzed tautomerization followed by oxidation by molecular oxygen to form the key norbornadienone intermediate, leading to cheletropic CO release only in an aerobic environment. Representative CO prodrug analog QCO-105 showed marked anti-inflammatory effects and HO-1 induction activity in RAW264.7 macrophages. In a mouse model of doxorubicin-induced cardiomyopathy, we show for the first time that the CO prodrug QCO-105 prevented cardiomyocyte injury, consistent with the known organ-protective effects of HO-1 and CO. Overall, such a new CO prodrug design serves as the starting point for developing CO-based therapy in attenuating the cardiotoxicity of doxorubicin.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Wen Lu
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Rodrigo W Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Qiyue Mao
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Dipak Baram
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ravi Tripathi
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Gangli Wang
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Binghe Wang
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
2
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
3
|
Wang H, Siren J, Perttunen S, Immonen K, Chen Y, Narumanchi S, Kosonen R, Paavola J, Laine M, Tikkanen I, Lakkisto P. Deficiency of heme oxygenase 1a causes detrimental effects on cardiac function. J Cell Mol Med 2024; 28:e18243. [PMID: 38509740 PMCID: PMC10955162 DOI: 10.1111/jcmm.18243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Humans lacking heme oxygenase 1 (HMOX1) display growth retardation, haemolytic anaemia, and vulnerability to stress; however, cardiac function remains unclear. We aimed to explore the cardiac function of zebrafish lacking hmox1a at baseline and in response to stress. We generated zebrafish hmox1a mutants using CRISPR/Cas9 genome editing technology. Deletion of hmox1a increases cardiac output and further induces hypertrophy in adults. Adults lacking hmox1a develop myocardial interstitial fibrosis, restrain cardiomyocyte proliferation and downregulate renal haemoglobin and cardiac antioxidative genes. Larvae lacking hmox1a fail to respond to hypoxia, whereas adults are insensitive to isoproterenol stimulation in the heart, suggesting that hmox1a is necessary for cardiac response to stress. Haplodeficiency of hmox1a stimulates non-mitochondrial respiration and cardiac cell proliferation, increases cardiac output in larvae in response to hypoxia, and deteriorates cardiac function and structure in adults upon isoproterenol treatment. Intriguingly, haplodeficiency of hmox1a upregulates cardiac hmox1a and hmox1b in response to isoproterenol. Collectively, deletion of hmox1a results in cardiac remodelling and abrogates cardiac response to hypoxia and isoproterenol. Haplodeficiency of hmox1a aggravates cardiac response to the stress, which could be associated with the upregulation of hmox1a and hmox1b. Our data suggests that HMOX1 homeostasis is essential for maintaining cardiac function and promoting cardioprotective effects.
Collapse
Affiliation(s)
- Hong Wang
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Juuso Siren
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Sanni Perttunen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | | | - Yu‐Chia Chen
- Department of AnatomyUniversity of HelsinkiHelsinkiFinland
| | | | - Riikka Kosonen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Jere Paavola
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Heart and Lung CentreUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mika Laine
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Heart and Lung CentreUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Ilkka Tikkanen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Abdominal Centre NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Department of Clinical ChemistryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
4
|
Yang X, Ma Z, Tan X, Shi Y, Yuan M, Chen G, Luo X, Hou L. Adoptive transfer of immature dendritic cells with high HO-1 expression delays the onset of T1DM in NOD mice. Life Sci 2023; 335:122273. [PMID: 37972884 DOI: 10.1016/j.lfs.2023.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
AIMS To investigate the potential of imDCs with high expression of HO-1 in preventing or delaying the onset of Type 1 diabetes mellitus (T1DM) in non-obese diabetic (NOD) mice. MATERIALS AND METHODS The phenotypic features of DCs in each group were assessed using flow cytometry. Western blot analysis was used to confirm the high expression of HO-1 in imDCs induced with CoPP. Additionally, flow cytometry was used to evaluate the suppressive capacity of CoPP-induced imDCs on splenic lymphocyte proliferation. Finally, the preventive effect of CoPP-induced imDCs was tested in NOD mice. KEY FINDINGS Compared to imDCs, CoPP-induced imDCs exhibited a reduced mean fluorescence intensity (MFI) of the co-stimulatory molecule CD80 on their surface (P < 0.05) and significantly increased HO-1 protein expression (P < 0.05). Following LPS stimulation, the MFI of co-stimulatory molecules CD80 and CD86 on the surface of CoPP-induced imDCs remained at a lower level (P < 0.05). Furthermore, there was a reduced proliferation rate of lymphocytes stimulated with anti-CD3/28 antibodies. The adoptive transfer of CoPP-imDCs significantly reduced the incidence of T1DM (16.66 % vs. control group: 66.67 %, P = 0.004). Furthermore, at 15 weeks of age, the insulitis score was also decreased in the CoPP-induced imDC treatment group (P < 0.05). There were no significant differences in serum insulin levels among all groups. SIGNIFICANCE ImDCs induced with CoPP and exhibiting high expression of HO-1 demonstrate a robust ability to inhibit immune responses and effectively reduce the onset of diabetes in NOD mice. This finding suggests that CoPP-induced imDCs could potentially serve as a promising treatment strategy for T1DM.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Ziyi Ma
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, People's Republic of China
| | - Yuzhen Shi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Mingming Yuan
- Department of Nail and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, People's Republic of China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Ling Hou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
5
|
Zhou B, Wang X, Wang Y, Liu D. FNDC5 Attenuates Atherosclerotic Plaque Formation and Regulates PPARα/HO-1 in ApoE-/- Mice. J Vasc Res 2023; 60:172-182. [PMID: 37586354 DOI: 10.1159/000531585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/10/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION This study attempted to observe the role of fibronectin type III domain-containing protein 5 (FNDC5) in atherosclerosis development and the underlying mechanism. METHODS After being fed a high-fat diet (HFD), ApoE-/- mice were injected with saline, control adenovirus (Ad-vector), or FNDC5 overexpressing adenovirus (Ad-FNDC5). ApoE-/- mice fed with a chow diet were considered the control. After 12 weeks of treatment, the levels of serum high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and irisin were detected by commercial kits. RESULTS Compared with the control, the serum TG, TC, and LDL-C levels, aortic plaque area, and weight were significantly increased, while serum HDL-C and irisin levels were reduced in HFD mice. Treating with Ad-FNDC5 could alleviate these changes in HFD mice and cause the activation of PPARα/HO-1 signaling in aortic tissue. After co-treating with GW6471, a PPARα antagonist, the effects of Ad-FNDC5 on the weight, serum LDL-C, TC, TG, and HDL-C levels, and aortic plaque of HFD mice were partly blocked. CONCLUSION Elevated FNDC5 has a delaying effect on atherosclerotic plaque formation, which may be related to the upregulation of PPARα/HO-1 signaling.
Collapse
Affiliation(s)
- Bo Zhou
- Institute of Medical Science, Guizhou Medical University, Guiyang, China
- The First People's Hospital of Bijie City, Bijie, China
| | - Xiang Wang
- Institute of Medical Science, Guizhou Medical University, Guiyang, China
| | - Yao Wang
- Institute of Medical Science, Guizhou Medical University, Guiyang, China
| | - Danan Liu
- Institute of Medical Science, Guizhou Medical University, Guiyang, China
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Chen JX, Li L, Cantrell AC, Williams QA, Zeng H. High Glucose Activates Prolyl Hydroxylases and Disrupts HIF-α Signaling via the P53/TIGAR Pathway in Cardiomyocyte. Cells 2023; 12:1060. [PMID: 37048134 PMCID: PMC10093703 DOI: 10.3390/cells12071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The induction of hypoxia tolerance has emerged as a novel therapeutic strategy for the treatment of ischemic diseases. The disruption of hypoxic signaling by hyperglycemia has been shown to contribute to diabetic cardiomyopathy. In this study, we explored the potential molecular mechanisms by which high glucose (HG) impairs hypoxia-inducible factor-α (HIF-α) signaling in cardiomyocytes. The exposure of H9c2 cell lines to HG resulted in time- and concentration-dependent decreases in HIF-1α and HIF-2α expression together with an increase in prolyl hydroxylase-1,2 (PHD1 and PHD2) expression, the main regulators of HIF-α destabilization in the heart. The exposure of H9c2 cells to normal glucose (5.5 mM) and high glucose (15, 30, and 45 mM) led to dose-dependent increases in p53 and TIGAR and a decrease in SIRT3 expression. The pretreatment of H9c2 with p53 siRNA to knockdown p53 attenuated PHD1 and PHD2 expression, thus significantly enhancing HIF-1α and HIF-2α expression in H9c2 cells under HG conditions. Interestingly, pretreatment with p53 siRNA altered H9c2 cell metabolism by reducing oxygen consumption rate and increasing glycolysis. Similarly, pretreatment with TIGAR siRNA blunted HG-induced PHD1 and PHD2 expression. This was accompanied by an increase in HIF-1α and HIF-2α expression with a reduction in oxygen consumption rate in H9c2 cells. Furthermore, pretreatment with adenovirus-SIRT3 (Ad-SIRT3) significantly reduced the HG-induced expression of p53 and PHDs and increased HIF-1α levels in H9c2 cells. Ad-SIRT3 treatment also regulated PHDs-HIF-1α levels in the hearts of diabetic db/db mice. Our study revealed a novel role of the HG-induced disruption of PHDs-HIF-α signaling via upregulating p53 and TIGAR expression. Therefore, the p53/TIGAR signaling pathway may be a novel target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Heng Zeng
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.-X.C.)
| |
Collapse
|
7
|
Wu J, Luo J, Cai H, Li C, Lei Z, Lu Y, Ni L, Cao J, Cheng B, Hu X. Expression Pattern and Molecular Mechanism of Oxidative Stress-Related Genes in Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Dev Dis 2023; 10:jcdd10020079. [PMID: 36826575 PMCID: PMC9961140 DOI: 10.3390/jcdd10020079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
(1) Background: The molecular mechanism of oxidative stress-related genes (OSRGs) in myocardial ischemia-reperfusion injury (MIRI) has not been fully elucidated. (2) Methods: Differential expression analysis, enrichment analysis, and PPI analysis were performed on the MIRI-related datasets GSE160516 and GSE61592 to find key pathways and hub genes. OSRGs were obtained from the Molecular Signatures Database (MSigDB). The expression pattern and time changes of them were studied on the basis of their raw expression data. Corresponding online databases were used to predict miRNAs, transcription factors (TFs), and therapeutic drugs targeting common differentially expressed OSRGs. These identified OSRGs were further verified in the external dataset GSE4105 and H9C2 cell hypoxia-reoxygenation (HR) model. (3) Results: A total of 134 DEGs of MIRI were identified which were enriched in the pathways of "immune response", "inflammatory response", "neutrophil chemotaxis", "phagosome", and "platelet activation". Six hub genes and 12 common differentially expressed OSRGs were identified. A total of 168 miRNAs, 41 TFs, and 21 therapeutic drugs were predicted targeting these OSRGs. Lastly, the expression trends of Aif1, Apoe, Arg1, Col1a1, Gpx7, and Hmox1 were confirmed in the external dataset and HR model. (4) Conclusions: Aif1, Apoe, Arg1, Col1a1, Gpx7, and Hmox1 may be involved in the oxidative stress mechanism of MIRI, and the intervention of these genes may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Jingyi Luo
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Zhe Lei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Yi Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: (B.C.); (X.H.)
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
- Correspondence: (B.C.); (X.H.)
| |
Collapse
|
8
|
Yuan H, Xu F, Tian X, Wei H, Zhang R, Ge Y, Xu H. Oxidative stress and inflammation caused by 1-tetradecyl-3-methylimidazolium tetrafluoroborate in rat livers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86680-86691. [PMID: 35799001 DOI: 10.1007/s11356-022-21495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to elucidate the mechanism underlying toxicity in the livers of male and female rats after treatment with 1-tetradecyl-3-methylimidazolium tetrafluoroborate ([C14mim]BF4, 0 [control], 12.5, 25, or 50 mg/kg) for 90 days. The results showed that [C14mim]BF4 exposure led to a high level of ROS and MDA in rat livers and the lower expression of Nrf2 and its downstream related antioxidant proteins. In addition, the expression of NF-κB p65 and the levels of inflammatory cytokines were upregulated in exposure groups rats' liver. After 30 days of cessation of exposure, the liver injury of rats in the 50 mg/kg exposure group was alleviated, and the above indicators were improved to varying degrees. The paper shows that [C14mim]BF4 could damage rat liver through oxidative stress and inflammatory pathway.
Collapse
Affiliation(s)
- Huafei Yuan
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Feng Xu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xingxing Tian
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Haiyan Wei
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Rui Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yueyue Ge
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hongmei Xu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
9
|
Prolyl Hydroxylase Inhibition Mitigates Allograft Injury During Liver Transplantation. Transplantation 2022; 106:e430-e440. [PMID: 35849574 DOI: 10.1097/tp.0000000000004258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischemia and reperfusion injury (IRI) determines primary allograft function after liver transplantation (LT). Primary graft dysfunction (PGD) is associated with increased morbidity and impaired graft survival and can eventually progress to graft failure requiring retransplantation. Hypoxia-inducible transcription factor-prolyl hydroxylase containing enzymes (PHD1, PHD2, and PHD3) are molecular oxygen sensors, which control the adaptive hypoxia response through the hypoxia-inducible factor (HIF). In this study, we have investigated pharmacological activation of the HIF pathway through inhibition of PHDs as a strategy to reduce PGD after LT. METHODS Primary rat hepatocytes were isolated and the impact of the pan-PHD small-molecule inhibitor ethyl-3,4-dihydroxybenzoate (EDHB) on HIF-1 and its downstream target gene expression assessed. Subsequently, various rodent models of segmental warm liver ischemia and reperfusion and orthotopic LT were applied to study the impact of EDHB on normothermic or combined cold and warm liver IRI. Liver enzyme levels and histology were analyzed to quantify hepatic IRI. RESULTS In vitro, EDHB induced HIF-1 signaling and significantly upregulated its downstream target heme-oxygenase 1 in primary rat hepatocytes. In vivo, after establishment of the optimal EDHB pretreatment conditions in a murine IRI model, EDHB pretreatment significantly mitigated hepatic IRI after warm segmental liver ischemia and reperfusion and allograft injury after orthotopic LT in rats. Mechanistically, EDHB stabilized HIF-1 in the liver and subsequently increased hepatoprotective heme-oxygenase 1 levels, which correlated with reduced hepatic IRI in these models. CONCLUSIONS This proof-of-concept study establishes a strong therapeutic rationale for targeting PHDs with small-molecule inhibitors to mitigate PGD after LT.
Collapse
|
10
|
Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants (Basel) 2022; 11:antiox11030555. [PMID: 35326205 PMCID: PMC8944973 DOI: 10.3390/antiox11030555] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.
Collapse
|
11
|
Zhang Z, Yan B, Li Y, Yang S, Li J. Propofol inhibits oxidative stress injury through the glycogen synthase kinase 3 beta/nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Bioengineered 2022; 13:1612-1625. [PMID: 35030972 PMCID: PMC8805835 DOI: 10.1080/21655979.2021.2021062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is the main cause of ischemia/reperfusion injury. Propofol is a commonly used intravenous hypnotic anesthetic agent with antioxidant properties. In this study, we aimed to elucidate the protective effects of propofol on H2O2-induced cardiomyocyte injury and myocardial ischemic/reperfusion injury (MIRI) in rats. Cardiomyocyte injury was evaluated by determining cardiac troponin-1 (cTn-1) and creatine kinase-MB (CK-MB) levels. Antioxidative stress was assessed by measuring lactate dehydrogenase (LDH), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), reactive oxygen species (ROS), and catalase (CAT) levels. Apoptosis was evaluated using flow cytometry and TUNEL assays. Bax and Bcl-2 expression levels were determined by quantitative reverse transcription PCR (qRT-PCR) and Western blotting. The levels of glycogen synthase kinase 3 beta/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway-related factors were measured using Western blotting. Myocardial infarction in rats was analyzed using an Evans blue staining assay. The results showed that propofol reduced the levels of CK-MB, cTn-1, LDH, MDA, and ROS, and increased the levels of GSH, SOD, and CAT in H2O2-treated H9c2 cells. Additionally, propofol inhibited H2O2-induced apoptosis by downregulating Bax and upregulating Bcl-2. Moreover, propofol decreased the area of myocardial infarction in rats with MIRI. The GSK3β-Nrf2/HO-1 signaling pathway was activated by propofol. Rescue experiments showed that Nrf2 knockdown alleviated the effects of propofol on oxidative stress and apoptosis in H9c2 cells. In conclusion, propofol attenuated H2O2-induced myocardial cell injury by regulating the GSK3β/Nrf2/HO-1 signaling pathway and alleviating MIRI, suggesting that propofol is a promising therapeutic option for ischemic heart disease.
Collapse
Affiliation(s)
- Ziyin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - BaoFeng Yan
- Department of Anesthesiology, Fifth Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Yuguo Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Shuo Yang
- Department of Medical Administration, The Eleventh People’s Hospital of Guangzhou, Guangdong, China
| | - Jinfeng Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
12
|
Lodrini AM, Goumans MJ. Cardiomyocytes Cellular Phenotypes After Myocardial Infarction. Front Cardiovasc Med 2021; 8:750510. [PMID: 34820429 PMCID: PMC8606669 DOI: 10.3389/fcvm.2021.750510] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the increasing success of interventional coronary reperfusion strategies, mortality related to acute myocardial infarction (MI) is still substantial. MI is defined as sudden death of myocardial tissue caused by an ischemic episode. Ischaemia leads to adverse remodelling in the affected myocardium, inducing metabolic and ionic perturbations at a single cell level, ultimately leading to cell death. The adult mammalian heart has limited regenerative capacity to replace lost cells. Identifying and enhancing physiological cardioprotective processes may be a promising therapy for patients with MI. Studies report an increasing amount of evidence stating the intricacy of the pathophysiology of the infarcted heart. Besides apoptosis, other cellular phenotypes have emerged as key players in the ischemic myocardium, in particular senescence, inflammation, and dedifferentiation. Furthermore, some cardiomyocytes in the infarct border zone uncouple from the surviving myocardium and dedifferentiate, while other cells become senescent in response to injury and start to produce a pro-inflammatory secretome. Enhancing electric coupling between cardiomyocytes in the border zone, eliminating senescent cells with senolytic compounds, and upregulating cardioprotective cellular processes like autophagy, may increase the number of functional cardiomyocytes and therefore enhance cardiac contractility. This review describes the different cellular phenotypes and pathways implicated in injury, remodelling, and regeneration of the myocardium after MI. Moreover, we discuss implications of the complex pathophysiological attributes of the infarcted heart in designing new therapeutic strategies.
Collapse
Affiliation(s)
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
13
|
Iqbal J, Chamberlain J, Alfaidi M, Hughes M, Alizadeh T, Casbolt H, Evans P, Mann B, Motterlini R, Francis S, Gunn J. Carbon Monoxide Releasing Molecule A1 Reduces Myocardial Damage After Acute Myocardial Infarction in a Porcine Model. J Cardiovasc Pharmacol 2021; 78:e656-e661. [PMID: 34328710 DOI: 10.1097/fjc.0000000000001067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/01/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Infarct size is a major determinant of outcomes after acute myocardial infarction (AMI). Carbon monoxide-releasing molecules (CORMs), which deliver nanomolar concentrations of carbon monoxide to tissues, have been shown to reduce infarct size in rodents. We evaluated efficacy and safety of CORM-A1 to reduce infarct size in a clinically relevant porcine model of AMI. We induced AMI in Yorkshire White pigs by inflating a coronary angioplasty balloon to completely occlude the left anterior descending artery for 60 minutes, followed by deflation of the balloon to mimic reperfusion. Fifteen minutes after balloon occlusion, animals were given an infusion of 4.27 mM CORM-A1 (n = 7) or sodium borate control (n = 6) over 60 minutes. Infarct size, cardiac biomarkers, ejection fraction, and hepatic and renal function were compared amongst the groups. Immunohistochemical analyses were performed to compare inflammation, cell proliferation, and apoptosis between the groups. CORM-A1-treated animals had significant reduction in absolute infarct area (158 ± 16 vs. 510 ± 91 mm2, P < 0.001) and infarct area corrected for area at risk (24.8% ± 2.6% vs. 45.2% ± 4.0%, P < 0.0001). Biochemical markers of myocardial injury also tended to be lower and left ventricular function tended to recover better in the CORM-A1 treated group. There was no evidence of hepatic or renal toxicity with the doses used. The cardioprotective effects of CORM-A1 were associated with a significant reduction in cell proliferation and inflammation. CORM-A1 reduces infarct size and improves left ventricular remodeling and function in a porcine model of reperfused MI by a reduction in inflammation. These potential cardioprotective effects of CORMs warrant further translational investigations.
Collapse
Affiliation(s)
- Javaid Iqbal
- Cardiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Janet Chamberlain
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Mabruka Alfaidi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Matthew Hughes
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Tooba Alizadeh
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Helen Casbolt
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Brian Mann
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom ; and
| | | | - Sheila Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Julian Gunn
- Cardiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Hofmann A, Müglich M, Wolk S, Khorzom Y, Sabarstinski P, Kopaliani I, Egorov D, Horn F, Brunssen C, Giebe S, Hamann B, Deussen A, Morawietz H, Poitz DM, Reeps C. Induction of Heme Oxygenase-1 Is Linked to the Severity of Disease in Human Abdominal Aortic Aneurysm. J Am Heart Assoc 2021; 10:e022747. [PMID: 34622673 PMCID: PMC8751892 DOI: 10.1161/jaha.121.022747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Rupture of abdominal aortic aneurysm (rAAA) is associated with high case fatality rates, and risk of rupture increases with the AAA diameter. Heme oxygenase‐1 (gene HMOX1, protein HO‐1) is a stress‐induced protein and induction has protective effects in the vessel wall. HMOX1−/− mice are more susceptible to angiotensin II‐induced AAA formation, but the regulation in human nonruptured and ruptured AAA is only poorly understood. Our hypothesis proposed that HO‐1 is reduced in AAA and lowering is inversely associated with the AAA diameter. Methods and Results AAA walls from patients undergoing elective open repair (eAAA) or surgery because of rupture (rAAA) were analyzed for aortic HMOX1/HO‐1 expression by quantitative real‐time polymerase chain reaction and Western blot. Aortas from patients with aortic occlusive disease served as controls. HMOX1/HO‐1 expression was 1.1‐ to 7.6‐fold upregulated in eAAA and rAAA. HO‐1 expression was 3‐fold higher in eAAA specimen with a diameter >84.4 mm, whereas HO‐1 was not different in rAAA. Other variables that are known for associations with AAA and HO‐1 induction were tested. In eAAA, HO‐1 expression was negatively correlated with aortic collagen content and oxidative stress parameters H2O2 release, oxidized proteins, and thiobarbituric acid reactive substances. Serum HO‐1 concentrations were analyzed in patients with eAAA, and maximum values were found in an aortic diameter of 55 to 70 mm with no further increase >70 mm, compared with <55 mm. Conclusions Aortic HO‐1 expression was increased in eAAA and rAAA. HO‐1 increased with the severity of disease but was additionally connected to less oxidative stress and vasoprotective mechanisms.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Margarete Müglich
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Yazan Khorzom
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Pamela Sabarstinski
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Irakli Kopaliani
- Department of Physiology Medical Faculty Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Dmitry Egorov
- Department of Physiology Medical Faculty Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Franziska Horn
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Sindy Giebe
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Bianca Hamann
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Andreas Deussen
- Department of Physiology Medical Faculty Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| |
Collapse
|
15
|
Kumar A, Boovarahan SR, Prem PN, Ramanathan M, Chellappan DR, Kurian GA. Evaluating the effects of carbon monoxide releasing molecule-2 against myocardial ischemia-reperfusion injury in ovariectomized female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2103-2115. [PMID: 34338837 DOI: 10.1007/s00210-021-02129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Cardioprotective effect of carbon monoxide, a gasotransmitter against myocardial ischemia-reperfusion injury (I/R), is well established in preclinical studies with male rats. However, its ischemic tolerance in post-menopausal animals has not been examined due to functional perturbations at the cellular level. METHODS The protective role of carbon monoxide releasing molecule-2 (CORM-2) on myocardial I/R was studied in female Wistar rats using the Langendorff apparatus. The animals were randomly divided into normal and ovariectomized (Ovx) female rats and were maintained 2 months post-surgery. Each group was further divided into 4 subgroups (n = 6/subgroup): normal, I/R, CORM-2-control (20 μmol/L), and CORM-2-I/R. The cardiac injury was estimated via myocardial infarct size, lactate dehydrogenase, and creatine kinase levels in coronary effluent and cardiac hemodynamic indices. Mitochondrial functional activity was assessed by measuring mitochondrial electron transport chain enzyme activities, swelling behavior, mitochondrial membrane potential, and oxidative stress. RESULTS Hemodynamic indices were significantly lower in ovariectomized rat hearts than in normal rat hearts. Sixty minutes of reperfusion of ischemic heart exhibited deteriorated cardiac physiological recovery in both ovariectomized and normal groups, where prominent decline was observed in ovariectomized rat. However, preconditioning the isolated heart with CORM-2 improved hemodynamics parameters significantly in both ovariectomized and normal rat hearts challenged with I/R, but with a limited degree of protection in ovariectomized rat hearts. The protective effect of CORM-2 was further confirmed via a reduction in cardiac injury, preservation of mitochondrial enzymes, and reduction in oxidative stress in all groups. CONCLUSION CORM-2 administration significantly attenuated myocardial I/R injury in ovariectomized rat hearts by attenuating I/R-associated mitochondrial perturbations and reducing oxidative stress.
Collapse
Affiliation(s)
- Arthi Kumar
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Sri Rahavi Boovarahan
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Priyanka N Prem
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Meenakshi Ramanathan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - David Raj Chellappan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
16
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
17
|
Che J, Yang J, Zhao B, Shang P. HO-1: A new potential therapeutic target to combat osteoporosis. Eur J Pharmacol 2021; 906:174219. [PMID: 34081904 DOI: 10.1016/j.ejphar.2021.174219] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Heme oxygenase-1 (HO-1) exerts a protective effect against cell damage and induces the activity of many enzymes involved in the treatment of many human diseases, including osteoporosis. The increasing prevalence of osteoporosis and the limitations of the current treatments available led to a continuous occurrence of bone loss and osteoporotic fractures, highlighting the need of a better understanding of the mechanism and function of HO-1. Many factors cause osteoporosis, including lack of estrogen, aging, and iron overload, and they either cause the increase in inflammatory factors or the increase in reactive oxygen species to break bone reconstruction balance. Therefore, regulating the production of inflammatory factors and reactive oxygen species may become a strategy for the treatment of osteoporosis. Solid evidence showed that the overexpression of HO-1 compensates high oxidation levels by increasing intracellular antioxidant levels and reduces inflammation by suppressing pro-inflammatory factors. Some extracts can target HO-1 and ameliorate osteoporosis. However, no systematic report is available on therapies targeting HO-1 to combat osteoporosis. Therefore, this review summarizes the biological characteristics of HO-1, and the relationship between inflammatory response and reactive oxygen species production regulated by HO-1 and osteoporosis. The understanding of the role of HO-1 in osteoporosis may provide ideas for a potential clinical treatment and new drugs targeting HO-1.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China.
| | - Bin Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
18
|
Andreadou I, Daiber A, Baxter GF, Brizzi MF, Di Lisa F, Kaludercic N, Lazou A, Varga ZV, Zuurbier CJ, Schulz R, Ferdinandy P. Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radic Biol Med 2021; 166:33-52. [PMID: 33588049 DOI: 10.1016/j.freeradbiomed.2021.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
The morbidity and mortality from cardiovascular diseases (CVD) remain high. Metabolic diseases such as obesity, hyperlipidemia, diabetes mellitus (DM), non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) as well as hypertension are the most common comorbidities in patients with CVD. These comorbidities result in increased myocardial oxidative stress, mainly from increased activity of nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, mitochondria as well as downregulation of antioxidant defense systems. Oxidative and nitrosative stress play an important role in ischemia/reperfusion injury and may account for increased susceptibility of the myocardium to infarction and myocardial dysfunction in the presence of the comorbidities. Thus, while early reperfusion represents the most favorable therapeutic strategy to prevent ischemia/reperfusion injury, redox therapeutic strategies may provide additive benefits, especially in patients with heart failure. While oxidative and nitrosative stress are harmful, controlled release of reactive oxygen species is however important for cardioprotective signaling. In this review we summarize the current data on the effect of hypertension and major cardiometabolic comorbidities such as obesity, hyperlipidemia, DM, NAFLD/NASH on cardiac redox homeostasis as well as on ischemia/reperfusion injury and cardioprotection. We also review and discuss the therapeutic interventions that may restore the redox imbalance in the diseased myocardium in the presence of these comorbidities.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr, Germany.
| | - Gary F Baxter
- Division of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, United Kingdom
| | | | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
19
|
Wang X, Rojas-Quintero J, Zhang D, Nakajima T, Walker KH, Peh HY, Li Y, Fucci QA, Tesfaigzi Y, Owen CA. A disintegrin and metalloproteinase domain-15 deficiency leads to exaggerated cigarette smoke-induced chronic obstructive pulmonary disease (COPD)-like disease in mice. Mucosal Immunol 2021; 14:342-356. [PMID: 32690871 PMCID: PMC8422911 DOI: 10.1038/s41385-020-0325-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/21/2020] [Accepted: 07/06/2020] [Indexed: 02/04/2023]
Abstract
A disintegrin and metalloproteinase domain-15 (ADAM15) is expressed by cells implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), but its contributions to COPD are unknown. To address this gap, ADAM15 levels were measured in samples from cigarette smoke (CS)-versus air-exposed wild-type (WT) mice. CS-induced COPD-like disease was compared in CS-exposed WT, Adam15-/-, and Adam15 bone marrow chimeric mice. CS exposure increased Adam15 expression in lung macrophages and CD8+ T cells and to a lesser extent in airway epithelial cells in WT mice. CS-exposed Adam15-/- mice had greater emphysema, small airway fibrosis, and lung inflammation (macrophages and CD8+ T cells) than WT mice. Adam15 bone marrow chimera studies revealed that Adam15 deficiency in leukocytes led to exaggerated pulmonary inflammation and COPD-like disease in mice. Adam15 deficiency in CD8+ T cells was required for the exaggerated pulmonary inflammation and COPD-like disease in CS-exposed Adam15-/- mice (as assessed by genetically deleting CD8+ T cells in Adam15-/- mice). Adam15 deficiency increased pulmonary inflammation by rendering CD8+ T cells and macrophages resistant to CS-induced activation of the mitochondrial apoptosis pathway by preserving mTOR signaling and intracellular Mcl-1 levels in these cells. These results strongly link ADAM15 deficiency to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Duo Zhang
- Program in Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA, 30901, USA,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Takahiro Nakajima
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Katherine H. Walker
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Yuhong Li
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Quynh-Anh Fucci
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Daiber A, Andreadou I, Oelze M, Davidson SM, Hausenloy DJ. Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radic Biol Med 2021; 163:325-343. [PMID: 33359685 DOI: 10.1016/j.freeradbiomed.2020.12.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Global epidemiological studies reported a shift from maternal/infectious communicable diseases to chronic non-communicable diseases and a major part is attributable to atherosclerosis and metabolic disorders. Accordingly, ischemic heart disease was identified as a leading risk factor for global mortality and morbidity with a prevalence of 128 million people. Almost 9 million premature deaths can be attributed to ischemic heart disease and subsequent acute myocardial infarction and heart failure, also representing a substantial socioeconomic burden. As evidenced by typical oxidative stress markers such as lipid peroxidation products or oxidized DNA/RNA bases, the formation of reactive oxygen species by various sources (NADPH oxidases, xanthine oxidase and mitochondrial resperatory chain) plays a central role for the severity of ischemia/reperfusion damage. The underlying mechanisms comprise direct oxidative damage but also adverse redox-regulation of kinase and calcium signaling, inflammation and cardiac remodeling among others. These processes and the role of reactive oxygen species are discussed in the present review. We also present and discuss potential targets for redox-based therapies that are either already established in the clinics (e.g. guanylyl cyclase activators and stimulators) or at least successfully tested in preclinical models of myocardial infarction and heart failure (mitochondria-targeted antioxidants). However, reactive oxygen species have not only detrimental effects but are also involved in essential cellular signaling and may even act protective as seen by ischemic pre- and post-conditioning or eustress - which makes redox therapy quite challenging.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Matthias Oelze
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan.
| |
Collapse
|
21
|
Liang KW, Lee WJ, Lee WL, Wu JP, Lee IT, Wang JS, Sheu WHH. Subjects with coronary artery disease and reduced ejection fraction have longer (GT) n repeats in the heme-oxygenase 1 gene promoter. Heart Vessels 2021; 36:615-620. [PMID: 33388910 DOI: 10.1007/s00380-020-01733-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/13/2020] [Indexed: 11/29/2022]
Abstract
Heme oxygenase (HO)-1 is a rate-limiting enzyme for degrading heme into carbon monoxide. Longer (GT)n repeat of the HO-1 gene (HMOX1) promoter has a lower transcription rate. Subjects with longer GT repeats in the HMOX1 promoter are more likely to have coronary artery disease (CAD) and cardiovascular events. We retrospectively enrolled CAD subjects with an abnormal ejection fraction (EF) < 50% from our catheterization data (N = 670). Polymerase chain reactions were performed for amplifying the HMOX1 promoter GT repeating segment to determine the number of repeats. Two subgroups, reduced EF < 40% (N = 256), and mid-range EF 40-49% (N = 414), were compared. The distribution of genotypes of SS, SL and LL were significantly different in reduced EF (29%, 48%, 23%) vs. mid-range EF CAD (64%, 30%, 5%) (S allele: ≤ 30 repeats, L allele: > 30 repeats) (p < 0.001). The patients with reduced EF had a significantly longer average (GT)n (median 27.5 vs. 26.5, p = 0.004) than those with the mid-range EF. In multivariate analysis, the carrier of L allele (odds ratio 4.437, p < 0.001) was a significant predictor for the diagnosis of reduced vs. mid-range EF CAD. In conclusion, CAD patients with reduced EF had longer HMOX1 promoter (GT)n repeats than those with mid-range EF.
Collapse
Affiliation(s)
- Kae-Woei Liang
- Cardiovascular Center, Taichung Veterans General Hospital, 1650 Taiwan Boulevard, Sec. 4, Taichung, 40705, Taiwan. .,Department of Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan.
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Wen-Lieng Lee
- Cardiovascular Center, Taichung Veterans General Hospital, 1650 Taiwan Boulevard, Sec. 4, Taichung, 40705, Taiwan.,Department of Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Jen-Pey Wu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Te Lee
- Department of Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jun-Sing Wang
- Department of Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wayne H-H Sheu
- Department of Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
22
|
Li K, Sun J, Huang N, Ma Y, Han F, Liu Y, Hou N, Sun X. Liraglutide improves obesity-induced renal injury by alleviating uncoupling of the glomerular VEGF-NO axis in obese mice. Clin Exp Pharmacol Physiol 2020; 47:1978-1984. [PMID: 32757282 DOI: 10.1111/1440-1681.13391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 02/05/2023]
Abstract
Obesity-related kidney disease is associated with generalized endothelial dysfunction. Liraglutide, a glucagon-like peptide-1 agonist, has cardiovascular-renal protective effects in patients with diabetes. In this study, the ability of liraglutide to reduce urinary albumin excretion by alleviating glomerular vascular endothelial growth factor-nitric oxide (VEGF-NO) axis uncoupling was assessed in high fat diet-induced obese mice. C57BL/6J mice were divided into control and obesity groups, treated with or without liraglutide (200 μg/kg/day). Blood biochemistry and urinary albumin excretion were measured. Glomerular VEGF and the AMPK-endothelial nitric oxide synthase (eNOS) pathway were assayed by western blotting. Glomerular NO, renal haeme oxygenase-1 activity, and malondialdehyde levels were also measured. Treatment of obese mice with liraglutide led to significant reductions in body weight gain (46 ± 1 g vs 55 ± 1 g, P < .0001), visceral fat (8.9 ± 0.6 g vs 14.5 ± 0.6 g, P < .0001), perirenal fat (2.9 ± 0.2 g vs 5.4 ± 0.3 g, P < .0001), and free fatty acid (1.71 ± 0.12 mmol/L vs 1.02 ± 0.08 mmol/L, P < .0001). Liraglutide significantly improved glucose homeostasis, which was impaired in obese mice. Liraglutide reduced urinary albumin excretion and glomerular hypertrophy in obese mice. Additionally, liraglutide significantly decreased VEGF and increased glomerular NO production in glomeruli, indicating restoration of the glomerular VEGF-NO axis. Furthermore, liraglutide activated the glomerular AMPK-eNOS pathway in obese mice, upregulated renal haeme oxygenase-1 activity, and reduced the renal malondialdehyde levels in obese mice. In conclusion, liraglutide reduced microalbuminuria and ameliorated renal injury by alleviating the uncoupling of the glomerular VEGF-NO axis.
Collapse
Affiliation(s)
- Kai Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jinhong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Huang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yuting Ma
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
23
|
Li W, Sun K, Hu F, Chen L, Zhang X, Wang F, Yan B. Protective effects of natural compounds against oxidative stress in ischemic diseases and cancers via activating the Nrf2 signaling pathway: A mini review. J Biochem Mol Toxicol 2020; 35:e22658. [PMID: 33118292 DOI: 10.1002/jbt.22658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress, an imbalance between reactive oxygen species and antioxidants, has been seen in the pathological states of many disorders such as ischemic diseases and cancers. Many natural compounds (NCs) have long been recognized to ameliorate oxidative stress due to their inherent antioxidant activities. The modulation of oxidative stress by NCs via activating the Nrf2 signaling pathway is summarized in the review. Three NCs, ursolic acid, betulinic acid, and curcumin, and the mechanisms of their cytoprotective effects are investigated in myocardial ischemia, cerebral ischemia, skin cancer, and prostate cancer. To promote the therapeutic performance of NCs with poor water solubility, the formulation approach, such as the nano drug delivery system, is elaborated as well in this review.
Collapse
Affiliation(s)
- Wenji Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kai Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Chen
- China National Intellectual Property Administration Patent Re-examination and Invalidation Department Pharmaceutical Division, Beijing, China
| | - Xing Zhang
- Departments of Urology, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, Jiangsu, China
| | - Fuxing Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingchun Yan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
24
|
Le Ribeuz H, Dumont F, Ruellou G, Lambert M, Balliau T, Quatredeniers M, Girerd B, Cohen-Kaminsky S, Mercier O, Yen-Nicolaÿ S, Humbert M, Montani D, Capuano V, Antigny F. Proteomic Analysis of KCNK3 Loss of Expression Identified Dysregulated Pathways in Pulmonary Vascular Cells. Int J Mol Sci 2020; 21:E7400. [PMID: 33036472 PMCID: PMC7582549 DOI: 10.3390/ijms21197400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The physiopathology of pulmonary arterial hypertension (PAH) is characterized by pulmonary artery smooth muscle cell (PASMC) and endothelial cell (PAEC) dysfunction, contributing to pulmonary arterial obstruction and PAH progression. KCNK3 loss of function mutations are responsible for the first channelopathy identified in PAH. Loss of KCNK3 function/expression is a hallmark of PAH. However, the molecular mechanisms involved in KCNK3 dysfunction are mostly unknown. To identify the pathological molecular mechanisms downstream of KCNK3 in human PASMCs (hPASMCs) and human PAECs (hPAECs), we used a Liquid Chromatography-Tandem Mass Spectrometry-based proteomic approach to identify the molecular pathways regulated by KCNK3. KCNK3 loss of expression was induced in control hPASMCs or hPAECs by specific siRNA targeting KCNK3. We found that the loss of KCNK3 expression in hPAECs and hPASMCs leads to 326 and 222 proteins differentially expressed, respectively. Among them, 53 proteins were common to hPAECs and hPASMCs. The specific proteome remodeling in hPAECs in absence of KCNK3 was mostly related to the activation of glycolysis, the superpathway of methionine degradation, and the mTOR signaling pathways, and to a reduction in EIF2 signaling pathways. In hPASMCs, we found an activation of the PI3K/AKT signaling pathways and a reduction in EIF2 signaling and the Purine Nucleotides De Novo Biosynthesis II and IL-8 signaling pathways. Common to hPAECs and hPASMCs, we found that the loss of KCNK3 expression leads to the activation of the NRF2-mediated oxidative stress response and a reduction in the interferon pathway. In the hPAECs and hPASMCs, we found an increased expression of HO-1 (heme oxygenase-1) and a decreased IFIT3 (interferon-induced proteins with tetratricopeptide repeats 3) (confirmed by Western blotting), allowing us to identify these axes to understand the consequences of KCNK3 dysfunction. Our experiments, based on the loss of KCNK3 expression by a specific siRNA strategy in control hPAECs and hPASMCs, allow us to identify differences in the activation of several signaling pathways, indicating the key role played by KCNK3 dysfunction in the development of PAH. Altogether, these results allow us to better understand the consequences of KCNK3 dysfunction and suggest that KCNK3 loss of expression acts in favor of the proliferation and migration of hPASMCs and promotes the metabolic shift and apoptosis resistance of hPAECs.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Florent Dumont
- UMS Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (F.D.); (G.R.); (S.Y.-N.)
| | - Guillaume Ruellou
- UMS Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (F.D.); (G.R.); (S.Y.-N.)
| | - Mélanie Lambert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Marceau Quatredeniers
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Barbara Girerd
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Stéphanie Yen-Nicolaÿ
- UMS Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (F.D.); (G.R.); (S.Y.-N.)
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
25
|
Verheijen N, Suttorp CM, van Rheden REM, Regan RF, Helmich MPAC, Kuijpers-Jagtman AM, Wagener FADTG. CXCL12-CXCR4 Interplay Facilitates Palatal Osteogenesis in Mice. Front Cell Dev Biol 2020; 8:771. [PMID: 32974338 PMCID: PMC7471603 DOI: 10.3389/fcell.2020.00771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Cranial neural crest cells (CNCCs), identified by expression of transcription factor Sox9, migrate to the first branchial arch and undergo proliferation and differentiation to form the cartilage and bone structures of the orofacial region, including the palatal bone. Sox9 promotes osteogenic differentiation and stimulates CXCL12-CXCR4 chemokine-receptor signaling, which elevates alkaline phosphatase (ALP)-activity in osteoblasts to initiate bone mineralization. Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion. Since we earlier demonstrated chemokine-receptor mediated signaling by the MES, we hypothesized that chemokine CXCL12 is expressed by the disintegrating MES to promote the formation of an osteogenic center by CXCR4-positive osteoblasts. Disturbed migration of CNCCs by excess oxidative and inflammatory stress is associated with increased risk of cleft lip and palate (CLP). The cytoprotective heme oxygenase (HO) enzymes are powerful guardians harnessing injurious oxidative and inflammatory stressors and enhances osteogenic ALP-activity. By contrast, abrogation of HO-1 or HO-2 expression promotes pregnancy pathologies. We postulate that Sox9, CXCR4, and HO-1 are expressed in the ALP-activity positive osteogenic regions within the CNCCs-derived palatal mesenchyme. To investigate these hypotheses, we studied expression of Sox9, CXCL12, CXCR4, and HO-1 in relation to palatal osteogenesis between E15 and E16 using (immuno)histochemical staining of coronal palatal sections in wild-type (wt) mice. In addition, the effects of abrogated HO-2 expression in HO-2 KO mice and inhibited HO-1 and HO-2 activity by administrating HO-enzyme activity inhibitor SnMP at E11 in wt mice were investigated at E15 or E16 following palatal fusion. Overexpression of Sox9, CXCL12, CXCR4, and HO-1 was detected in the ALP-activity positive osteogenic regions within the palatal mesenchyme. Overexpression of Sox9 and CXCL12 by the disintegrating MES was detected. Neither palatal fusion nor MES disintegration seemed affected by either HO-2 abrogation or inhibition of HO-activity. Sox9 progenitors seem important to maintain the CXCR4-positive osteoblast pool to drive osteogenesis. Sox9 expression may facilitate MES disintegration and palatal fusion by promoting epithelial-to-mesenchymal transformation (EMT). CXCL12 expression by the MES and the palatal mesenchyme may promote osteogenic differentiation to create osteogenic centers. This study provides novel evidence that CXCL12-CXCR4 interplay facilitates palatal osteogenesis and palatal fusion in mice.
Collapse
Affiliation(s)
- Nanne Verheijen
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christiaan M Suttorp
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - René E M van Rheden
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raymond F Regan
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria P A C Helmich
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland.,Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Frank A D T G Wagener
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
26
|
Tift MS, Alves de Souza RW, Weber J, Heinrich EC, Villafuerte FC, Malhotra A, Otterbein LE, Simonson TS. Adaptive Potential of the Heme Oxygenase/Carbon Monoxide Pathway During Hypoxia. Front Physiol 2020; 11:886. [PMID: 32792988 PMCID: PMC7387684 DOI: 10.3389/fphys.2020.00886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 01/15/2023] Open
Abstract
Heme oxygenase (HO) enzymes catalyze heme into biliverdin, releasing carbon monoxide (CO) and iron into circulation. These byproducts of heme degradation can have potent cytoprotective effects in the face of stressors such as hypoxia and ischemia-reperfusion events. The potential for exogenous use of CO as a therapeutic agent has received increasing attention throughout the past few decades. Further, HO and CO are noted as putatively adaptive in diving mammals and certain high-altitude human populations that are frequently exposed to hypoxia and/or ischemia-reperfusion events, suggesting that HO and endogenous CO afford an evolutionary advantage for hypoxia tolerance and are critical in cell survival and injury avoidance. Our goal is to describe the importance of examining HO and CO in several systems, the physiological links, and the genetic factors that underlie variation in the HO/CO pathway. Finally, we emphasize the ways in which evolutionary perspectives may enhance our understanding of the HO/CO pathway in the context of diverse clinical settings.
Collapse
Affiliation(s)
- Michael S. Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Rodrigo W. Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Janick Weber
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA, United States
| | - Francisco C. Villafuerte
- Laboratorio de Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, School of Medicine, San Diego, CA, United States
| | - Leo E. Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, School of Medicine, San Diego, CA, United States
| |
Collapse
|
27
|
MZe786 Rescues Cardiac Mitochondrial Activity in High sFlt-1 and Low HO-1 Environment. Antioxidants (Basel) 2020; 9:antiox9070598. [PMID: 32660064 PMCID: PMC7402164 DOI: 10.3390/antiox9070598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Hypertensive disorder in pregnancy is a major cause of maternal and perinatal mortality worldwide. Women who have had preeclampsia are at three to four times higher risk in later life of developing high blood pressure and heart disease. Soluble Flt-1 (sFlt-1) is elevated in preeclampsia and may remain high postpartum in women with a history of preeclampsia. Heme oxygenase-1 (Hmox1/HO-1) exerts protective effects against oxidative stimuli and is compromised in the placenta of pregnant women with preeclampsia. We hypothesized that sFlt-1 inhibits cardiac mitochondrial activity in HO-1 deficient mice. HO-1 haplo-insufficient mice (Hmox1+/−) were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) or control virus (Ad-CMV). Subsequently, they were treated daily with either placebo or MZe786 for six days, when the heart tissue was harvested to assess cardiac mitochondrial activity. Here, we show that the loss of HO-1 disturbed cardiac mitochondrial respiration and reduced mitochondrial biogenesis. The overexpression of sFlt-1 resulted in the inhibition of the cardiac mitochondrial activity in Hmox1+/− mice. The present study demonstrates that the hydrogen sulfide (H2S) releasing molecule, MZe786, rescues mitochondrial activity by stimulating cardiac mitochondrial biogenesis and antioxidant defense in Hmox1−/− mice and in Hmox1+/− mice exposed to a high sFlt-1 environment.
Collapse
|
28
|
Li B, Nasser M, Masood M, Adlat S, Huang Y, Yang B, Luo C, Jiang N. Efficiency of Traditional Chinese medicine targeting the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2020; 126:110074. [DOI: 10.1016/j.biopha.2020.110074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/09/2023] Open
|
29
|
Chen X, Qi J, Wu Q, Jiang H, Wang J, Chen W, Mao A, Zhu M. High glucose inhibits vascular endothelial Keap1/Nrf2/ARE signal pathway via downregulation of monomethyltransferase SET8 expression. Acta Biochim Biophys Sin (Shanghai) 2020; 52:506-516. [PMID: 32369110 DOI: 10.1093/abbs/gmaa023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia-mediated reactive oxygen species (ROS) accumulation plays an important role in hyperglycemia-induced endothelial injury. Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway inhibition participates in hyperglycemia-induced ROS accumulation. Our previous study indicated that SET8 overexpression inhibits high glucose-mediated ROS accumulation in human umbilical vein endothelial cells (HUVECs). In the present study, we hypothesize that SET8 may play a major role in high glucose-induced ROS accumulation via modulation of Keap1/Nrf2/ARE pathway. Our data indicated that high glucose mediated cell viability reduction, ROS accumulation, and Nrf2/ARE signal pathway inhibition via upregulation of Keap1 expression in HUVECs. Moreover, high glucose inhibited the expressions of SET8 and H4K20me1 (a downstream target of SET8). SET8 overexpression improved high glucose-mediated Keap1/Nrf2/ARE pathway inhibition and endothelial oxidation. Consistently, the effects of sh-SET8 were similar to that of high glucose treatment and were reversed by si-Keap1. A mechanistic study found that H4K20me1 was enriched at the Keap1 promoter region. SET8 overexpression attenuated Keap1 promoter activity and its expression, while mutant SET8 R259G did not affect Keap1 promoter activity and expression. The results of this study demonstrated that SET8 negatively regulates Keap1 expression, thus participating in high glucose-mediated Nrf2/ARE signal pathway inhibition and oxidative injury in HUVECs.
Collapse
Affiliation(s)
- Xiangyuan Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Qi
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qichao Wu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hui Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wankun Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
30
|
Li W, Li W, Leng Y, Xiong Y, Xia Z. Ferroptosis Is Involved in Diabetes Myocardial Ischemia/Reperfusion Injury Through Endoplasmic Reticulum Stress. DNA Cell Biol 2019; 39:210-225. [PMID: 31809190 DOI: 10.1089/dna.2019.5097] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemic disease affects the prognosis in perioperative patients. Diabetes can aggravate myocardial injury. The purpose of this research is to investigate the effect of ferroptosis in the process of diabetes mellitus (DM) myocardial ischemia/reperfusion (I/R) injury (IRI). Endoplasmic reticulum stress (ERS) is investigated whether aggravates cardiomyocytes injury. Rat DM+I/R (DIR), cell high glucose (HG), hypoxia reoxygenation (H/R), and high-glucose H/R (HH/R) models were established. Ferroptosis inhibitor Ferrostatin-1, ferroptosis agonist Erastin, ERS inhibitor Salubrinal, and ERS agonist Tunicamycin were administered. Serum creatine kinase-MB (CK-MB), cell viability, lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), reactive oxygen species (ROS), and cellular ferrous ion concentration were examined. The level of ACSL4, GPX4, ATF4, CHOP, BCL-2, and BAX was detected. Myocardial tissue pathological change was detected by hematoxylin-eosin staining. Cardiac function was monitored by invasive hemodynamic measurements. Evans Blue-triphenyltetrazolium chloride double staining was used to detect the myocardial infarct size. In DM+sham (DS) (or HG) and I/R (or H/R) models, cardiomyocytes were injured accompanied by increased level of ferroptosis and ERS. Moreover, the cell injury was more serious in rat DIR or cell HH/R models. Inhibition of ferroptosis in DIR model could reduce ERS and myocardial injury. Inhibition of ferroptosis in H9c2 cells HG, H/R, and HH/R models could reduce cell injury. Erastin could aggravate ERS and cell injury by stimulating ferroptosis in HH/R cell model. Meanwhile, inhibition of ERS could alleviate ferroptosis and cell injury. Ferroptosis is involved in DIR injury that is related to ERS. Moreover, inhibition of ferroptosis can alleviate DIR injury, which may provide a therapeutic regent for myocardial ischemic disease.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
31
|
Tian S, Wang M, Liu C, Zhao H, Zhao B. Mulberry leaf reduces inflammation and insulin resistance in type 2 diabetic mice by TLRs and insulin Signalling pathway. Altern Ther Health Med 2019; 19:326. [PMID: 31752797 PMCID: PMC6873489 DOI: 10.1186/s12906-019-2742-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Background It has been testified that Diabetes mellitus (DM) has a close association with chronic inflammation and Toll-like Receptors (TLRs), and DM could be prevented by mulberry leaf. Therefore, a hypothesis came into being that mulberry leaf could ameliorate proinflammation and insulin resistance (IR) through TLRs and insulin signalling pathways. Methods Water extracts of mulberry leaf (WEM) was given to diabetic mice by gavage for 10 weeks, and the diabetic mice was injected with low-dose streptozocin, fed with high-fat and high-sugar diet. Oral glucose tolerance tests (OGTTs) were conducted. At the same time, homeostasis model assessment of insulin (HOMA-IR) and the level of the inflammatory factor, tumour necrosis factor-α (TNF-α) was measured. The expressions of critical nodes of TLRs and insulin signalling pathway were also examined. Results WEM contributed to a significant decrease in fasting blood glucose, AUC from the investigation of OGTTs and HOMA-IR. The levels of the inflammatory factor, tumour necrosis factor-α (TNF-α) also declined. Moreover, WEM suppressed the expression of TLR2, myeloid differentiation primary-response protein 88 (MyD88), tumour-necrosis-factor receptor-associated factor 6 (TRAF6), nuclear factor kappa B (NF-κB) in the skeletal muscle. WEM could up-regulate the expression of insulin receptor (InsR) and insulin receptor substrate 1 (IRS1), and down-regulate the phosphorylation of IRS1 in adipose tissue. Conclusion Through this study, a conclusion could be made that WEM mitigates hyperglycemia, IR, and inflammation through the interactions among TLR2 signalling pathway, insulin signalling pathway and TNF-α.
Collapse
|
32
|
Shen Z, Lu J, Wei J, Zhao J, Wang M, Wang M, Shen X, Lü X, Zhou B, Zhao Y, Fu G. Investigation of the underlying hub genes and mechanisms of reperfusion injury in patients undergoing coronary artery bypass graft surgery by integrated bioinformatic analyses. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:664. [PMID: 31930065 DOI: 10.21037/atm.2019.10.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Although coronary artery bypass graft (CABG) surgery is the main method to revascularize the occluded coronary vessels in coronary artery diseases, the full benefits of the operation are mitigated by ischemia-reperfusion (IR) injury. Although many studies have been devoted to reducing IR injury in animal models, the translation of this research into the clinical field has been disappointing. Our study aimed to explore the underlying hub genes and mechanisms of IR injury. Methods A weighted gene co-expression network analysis (WGCNA) was executed based on the expression profiles in patients undergoing CABG surgery (GSE29396). Functional annotation and protein-protein interaction (PPI) network construction were executed within the modules of interest. Potential hub genes were predicted, combining both intramodular connectivity (IC) and degrees. Meanwhile, potential transcription factors (TFs) and microRNAs (miRNAs) were predicted by corresponding bioinformatics tools. Results A total of 336 differentially expressed genes (DEGs) were identified. DEGs were mainly enriched in neutrophil activity and immune response. Within the modules of interest, 5 upregulated hub genes (IL-6, CXCL8, IL-1β, MYC, PTGS-2) and 6 downregulated hub genes (C3, TIMP1, VSIG4, SERPING1, CD163, and HP) were predicted. Predicted miRNAs (hsa-miR-333-5p, hsa-miR-26b-5p, hsa-miR-124-3p, hsa-miR-16-5p, hsa-miR-98-5p, hsa-miR-17-5p, hsa-miR-93-5p) and TF (STAT1) might have regulated gene expression in the most positively related module, while hsa-miR-333-5p and HSF-1 were predicted to regulate the genes within the most negatively related module. Conclusions Our study illustrates an overview of gene expression changes in human atrial samples from patients undergoing CABG surgery and might help translate future research into clinical work.
Collapse
Affiliation(s)
- Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jiangting Lu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jiejin Wei
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.,Department of Electrocardiogram, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Juanjuan Zhao
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Meihui Wang
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ming Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiaohua Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xue Lü
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Binquan Zhou
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yanbo Zhao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
33
|
Russell JS, Griffith TA, Helman T, Du Toit EF, Peart JN, Headrick JP. Chronic type 2 but not type 1 diabetes impairs myocardial ischaemic tolerance and preconditioning in C57Bl/6 mice. Exp Physiol 2019; 104:1868-1880. [PMID: 31535419 DOI: 10.1113/ep088024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023]
Abstract
NEW FINDINGS • What is the central question of this study? What is the impact of chronic adult-onset diabetes on cardiac ischaemic outcomes and preconditioning? • What is the main finding and its importance? Chronic adult-onset type 2 but not type 1 diabetes significantly impairs myocardial ischaemic tolerance and ischaemic preconditioning. Preconditioning may be detrimental in type 2 diabetes, exaggerating nitrosative stress and apoptotic protein expression. ABSTRACT Effects of diabetes on myocardial responses to ischaemia-reperfusion (I-R) and cardioprotective stimuli remain contentious, potentially reflecting influences of disease duration and time of onset. Chronic adult-onset type 1 diabetes (T1D) and type 2 diabetes (T2D) were modelled non-genetically in male C57Bl/6 mice via 5 × 50 mg kg-1 daily streptozotocin (STZ) injections + 12 weeks' standard chow or 1 × 75 mg kg-1 STZ injection + 12 weeks' obesogenic diet (32% calories as fat, 57% carbohydrate, 11% protein), respectively. Systemic outcomes were assessed and myocardial responses to I-R ± ischaemic preconditioning (IPC; 3 × 5 min I-R) determined in Langendorff perfused hearts. Uncontrolled T1D was characterised by pronounced hyperglycaemia (25 mm fasting glucose), glucose intolerance and ∼10% body weight loss, whereas T2D mice exhibited moderate hyperglycaemia (15 mm), hyperinsulinaemia, glucose intolerance and 17% weight gain. Circulating ghrelin, resistin and noradrenaline were unchanged with T1D, while leptin increased and noradrenaline declined in T2D mice. Ischaemic tolerance and IPC were preserved in T1D hearts. In contrast, T2D worsened post-ischaemic function (∼40% greater diastolic and contractile dysfunction) and cell death (100% higher troponin efflux), and abolished IPC protection. Whereas IPC reduced post-ischaemic nitrotyrosine and pro-apoptotic Bak and Bax levels in non-diabetic hearts, these effects were reduced in T1D and IPC augmented Bax and nitrosylation in T2D hearts. The data demonstrate chronic T1D does not inhibit myocardial I-R tolerance or IPC, whereas metabolic and endocrine disruption in T2D is associated with ischaemic intolerance and inhibition of IPC. Indeed, normally protective IPC may exaggerate damage mechanisms in T2D hearts.
Collapse
Affiliation(s)
- Jake S Russell
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, 4217, Australia
| | - Tia A Griffith
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, 4217, Australia
| | - Tessa Helman
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, 4217, Australia
| | - Eugene F Du Toit
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, 4217, Australia
| | - Jason N Peart
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, 4217, Australia
| | - John P Headrick
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, 4217, Australia
| |
Collapse
|
34
|
Gbotosho OT, Ghosh S, Kapetanaki MG, Lin Y, Weidert F, Bullock GC, Ofori-Acquah SF, Kato GJ. Cardiac expression of HMOX1 and PGF in sickle cell mice and haem-treated wild type mice dominates organ expression profiles via Nrf2 (Nfe2l2). Br J Haematol 2019; 187:666-675. [PMID: 31389006 DOI: 10.1111/bjh.16129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
Haemolysis is a major feature of sickle cell disease (SCD) that contributes to organ damage. It is well established that haem, a product of haemolysis, induces expression of the enzyme that degrades it, haem oxygenase-1 (HMOX1). We have also shown that haem induces expression of placental growth factor (PGF), but the organ specificity of these responses has not been well-defined. As expected, we found high level expression of Hmox1 and Pgf transcripts in the reticuloendothelial system organs of transgenic sickle cell mice, but surprisingly strong expression in the heart (P < 0·0001). This pattern was largely replicated in wild type mice by intravenous injection of exogenous haem. In the heart, haem induced unexpectedly strong mRNA responses for Hmox1 (18-fold), Pgf (4-fold), and the haem transporter Slc48a1 (also termed Hrg1; 2·4-fold). This was comparable to the liver, the principal known haem-detoxifying organ. The NFE2L2 (also termed NRF2) transcription factor mediated much of the haem induction of Hmox1 and Hrg1 in all organs, but less so for Pgf. Our results indicate that the heart expresses haem response pathway genes at surprisingly high basal levels and shares with the liver a similar transcriptional response to circulating haem. The role of the heart in haem response should be investigated further.
Collapse
Affiliation(s)
- Oluwabukola T Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samit Ghosh
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Center for Translational and International Hematology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria G Kapetanaki
- Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yu Lin
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frances Weidert
- Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Grant C Bullock
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Solomon F Ofori-Acquah
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Center for Translational and International Hematology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Gregory J Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
35
|
The Protective Role of Heme Oxygenase-1 in Atherosclerotic Diseases. Int J Mol Sci 2019; 20:ijms20153628. [PMID: 31344980 PMCID: PMC6695885 DOI: 10.3390/ijms20153628] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an intracellular enzyme that catalyzes the oxidation of heme to generate ferrous iron, carbon monoxide (CO), and biliverdin, which is subsequently converted to bilirubin. These products have anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-thrombotic properties. Although HO-1 is expressed at low levels in most tissues under basal conditions, it is highly inducible in response to various pathophysiological stresses/stimuli. HO-1 induction is thus thought to be an adaptive defense system that functions to protect cells and tissues against injury in many disease settings. In atherosclerosis, HO-1 may play a protective role against the progression of atherosclerosis, mainly due to the degradation of pro-oxidant heme, the generation of anti-oxidants biliverdin and bilirubin and the production of vasodilator CO. In animal models, a lack of HO-1 was shown to accelerate atherosclerosis, whereas HO-1 induction reduced atherosclerosis. It was also reported that HO-1 induction improved the cardiac function and postinfarction survival in animal models of heart failure or myocardial infarction. Recently, we and others examined blood HO-1 levels in patients with atherosclerotic diseases, e.g., coronary artery disease (CAD) and peripheral artery disease (PAD). Taken together, these findings to date support the notion that HO-1 plays a protective role against the progression of atherosclerotic diseases. This review summarizes the roles of HO-1 in atherosclerosis and focuses on the clinical studies that examined the relationships between HO-1 levels and atherosclerotic diseases.
Collapse
|
36
|
Yang P, Zhou Y, Xia Q, Yao L, Chang X. Astragaloside IV Regulates the PI3K/Akt/HO-1 Signaling Pathway and Inhibits H9c2 Cardiomyocyte Injury Induced by Hypoxia-Reoxygenation. Biol Pharm Bull 2019; 42:721-727. [PMID: 30867343 DOI: 10.1248/bpb.b18-00854] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Astragaloside IV (AS-IV) is one of the main pharmacologically active compounds found in Astragalus membranaceus. AS-IV has protective effects against ischemia-reperfusion injury (IRI), but its mechanism of action has not yet been determined. This study aims to investigate the effect of AS-IV on IRI and its effect on the phosphadylinositol 3-kinase (PI3K)/Akt/heme oxygenase (HO-1) signaling pathway through in vitro experiments. Firstly, a cell culture model of myocardiocyte hypoxia-reoxygenation (H/R) injury was replicated. After AS-IV treatment, cell viability, reactive oxygen species (ROS) levels, as well as the content or activity of the cellular factors lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), were measured to evaluate the effect of treatment with AS-IV. The effect of AS-IV on HO-1 protein expression and nuclear factor E2-related factor 2 (Nrf2) and Bach1 protein expression was determined by Western blotting. Finally, a reversal of the effect of AS-IV treatment was observed following co-incubation with a PI3K inhibitor. Our results show that AS-IV has good protective effect on H/R injury and has anti-oxidative stress and anti-inflammatory effects. It can regulate the expression of Nrf2 and Bach1 proteins in the nucleus and promote the expression of HO-1 protein, while a PI3K inhibitor can partially reverse the above effects. This study suggests that the PI3K/Akt/HO-1 signaling pathway may be a key signaling pathway for the anti-IRI effect of AS-IV.
Collapse
Affiliation(s)
| | - Yuping Zhou
- The Affiliated Hospital of Medical School of Ningbo University
| | - Qing Xia
- Ningbo College of Health Sciences
| | | | | |
Collapse
|
37
|
Chang P, Zhang M, Zhang X, Li G, Hu H, Wu J, Wang X, Yang Z, Zhang J, Chen W, Ren M, Li X, Zhu M, Chen B, Yu J. B-type natriuretic peptide attenuates endoplasmic reticulum stress in H9c2 cardiomyocytes underwent hypoxia/reoxygenation injury under high glucose/high fat conditions. Peptides 2019; 111:103-111. [PMID: 29689346 DOI: 10.1016/j.peptides.2018.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
Exogenously administered B-type natriuretic peptide (BNP) has been shown to provide cardioprotection against various heart diseases. However, the underlying mechanisms remain elusive. This study explores whether BNP exerts its cardioprotection against hypoxia/reoxygenation (H/R) injury under high glucose/high fat (HG/HF) conditions in cardiac H9c2 cells and uncovers the underlying mechanisms. Our data revealed that BNP significantly increased the cell viability and decreased the release of lactate dehydrogenase (LDH) and creatine kinase (CK), with a maximal effect at the BNP concentration of 10-7 mol/L. In addition, by analyzing the activation of cleaved caspase-3 and by Annexin V-FITC/PI staining, we showed that BNP attenuated H/R-induced cell apoptosis in HG/HF conditions. Western blot analysis showed enhanced phosphorylation of protein kinase RNA (PKR)-like endoplastmic reticulum (ER) kinase (PERK) and eukaryotic initiation factor 2α (eIF2α)(one of the three main signaling pathways in endoplastmic reticulum (ER) stress), and increased expression of GRP78 and CHOP proteins (ER stress-related proteins) in H9c2 cells which underwent H/R in HG/HF conditions. Treatment with BNP or 8-Br-cGMP (an analog of cGMP) reversed this activation. However, this effect was significantly weakened by KT-5823, a selective cGMP-dependent protein kinase G (PKG) inhibitor. In addition, similar to BNP, treatment with a specific inhibitor of ER stress tauroursodeoxycholic acid (TUDCA) protected the cells against H/R injury exposed to HG/HF conditions. In conclusion, these findings demonstrated that BNP effectively protected cells against H/R injury under HG/HF conditions by inhibiting the ER stress via activation of the cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Pan Chang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China; Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China; Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guohua Li
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Haiyan Hu
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Juan Wu
- Department of General Practitioner, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Xihui Wang
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Zihua Yang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Jing Zhang
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Weiguo Chen
- Department of General Practitioner, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Minggang Ren
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Xin Li
- Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Miaozhang Zhu
- Department of Physiology, Fourth Military Medical University, Xi'an, China.
| | - Baoying Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jun Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, China; Department of Cardiology, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
38
|
Shan H, Li T, Zhang L, Yang R, Li Y, Zhang M, Dong Y, Zhou Y, Xu C, Yang B, Liang H, Gao X, Shan H. Heme oxygenase-1 prevents heart against myocardial infarction by attenuating ischemic injury-induced cardiomyocytes senescence. EBioMedicine 2018; 39:59-68. [PMID: 30527623 PMCID: PMC6355645 DOI: 10.1016/j.ebiom.2018.11.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 01/10/2023] Open
Abstract
Background Cellular senescence is a stable cell-cycle arrest induced by telomere shortening and various types of cellular stress including oxidative stress, oncogene activation, DNA damage etc. Heme oxygenase-1 (HO-1) is an inducible stress-response protein that plays antioxidant and anti-apoptotic effects. However, the role and underlying mechanisms of HO-1 in cellular senescence in heart are largely unknown. Methods Echocardiography was employed to detect the effect of HO-1 on heart function in adult mice with myocardial infarction (MI) and aged mice. The senescence markers, p53, p16 and LaminB, were analyzed by western blot. The immunofluorescence and immunohistochemical staining were applied to analyze the expression level of p16. SA-β-Gal staining showed the level of cardiomyocyte senescence. Findings We found that hemin significantly induced the expression of HO-1, which notably suppressed cardiomyocyte senescence containing the secretion of senescence-associated secretory phenotype. Further studies showed that systemic HO-1 transgenic overexpression improved heart function by inhibiting aging-induced extracellular matrix deposition and fibrogenesis. More importantly, treatment of hemin improved heart function in MI mice. Furthermore, forced expression of HO-1 blunted cardiomyocyte senescence in natural aged mice and in primary cultured neonatal mouse cardiomyocytes. Interpretation Our study revealed that HO-1 improved heart function and attenuated cardiomyocyte senescence triggered by ischemic injury and aging. In addition, HO-1 induction alleviated H2O2-induced cardiomyocyte senescence. Finally, our study suggested a novel mechanism of HO-1 to play cardioprotective effect. Fund This study was supported by the National Natural Science Foundation of China (81770284 to Hongli Shan); and the National Natural Science Foundation of China (81673425, 81872863 to Yuhong Zhou). The National Natural Science Foundation of China (81473213 to Chaoqian Xu). National Key R&D Program of China (2017YFC1307403 to Baofeng Yang), National Natural Science Foundation of China (81730012 to Baofeng Yang).
Collapse
Affiliation(s)
- Huitong Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Lijia Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Rui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yuechao Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Department of Pharmacology, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| | - Xu Gao
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Cardiovascular Medicine Research of Harbin Medical University, Ministry of Education, Harbin, PR China.
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
39
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
40
|
Lai YL, Lin CY, Jiang WC, Ho YC, Chen CH, Yet SF. Loss of heme oxygenase-1 accelerates mesodermal gene expressions during embryoid body development from mouse embryonic stem cells. Redox Biol 2017; 15:51-61. [PMID: 29216542 PMCID: PMC5722471 DOI: 10.1016/j.redox.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Heme oxygenase (HO)-1 is an inducible stress response protein and well known to protect cells and tissues against injury. Despite its important function in cytoprotection against physiological stress, the role of HO-1 in embryonic stem cell (ESC) differentiation remains largely unknown. We showed previously that induced pluripotent stem (iPS) cells that lack HO-1 are more sensitive to oxidant stress-induced cell death and more prone to lose pluripotent markers upon LIF withdrawal. To elucidate the role of HO-1 in ESC differentiation and to rule out the controversy of potential gene flaws in iPS cells, we derived and established mouse HO-1 knockout ESC lines from HO-1 knockout blastocysts. Using wild type D3 and HO-1 knockout ESCs in the 3-dimensional embryoid body (EB) differentiation model, we showed that at an early time point during EB development, an absence of HO-1 led to enhanced ROS level, concomitant with increased expressions of master mesodermal regulator brachyury and endodermal marker GATA6. In addition, critical smooth muscle cell (SMC) transcription factor serum response factor and its coactivator myocardin were enhanced. Furthermore, HO-1 deficiency increased Smad2 in ESCs and EBs, revealing a role of HO-1 in controlling Smad2 level. Smad2 not only mediates mesendoderm differentiation of mouse ESCs but also SMC development. Collectively, loss of HO-1 resulted in higher level of mesodermal and SMC regulators, leading to accelerated and enhanced SMC marker SM α-actin expression. Our results reveal a previously unrecognized function of HO-1 in regulating SMC gene expressions during ESC-EB development. More importantly, our findings may provide a novel strategy in enhancing ESC differentiation toward SMC lineage. Loss of HO-1 in ESCs promotes adipogenesis but reduces osteogenesis. During early EB development, loss of HO-1 results in robust induction of brachyury. During early EB development, lack of HO-1 leads to enhanced ROS level. Loss of HO-1 increases SMC transcription factor SRF and cofactor myocardin. HO-1 deficiency promotes mesodermal SMC differentiation during EB development.
Collapse
Affiliation(s)
- Yan-Liang Lai
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chen-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wei-Cheng Jiang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Chun Ho
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chung-Huang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University , Taichung, Taiwan.
| |
Collapse
|
41
|
Wu Y, Xia ZY, Zhao B, Leng Y, Dou J, Meng QT, Lei SQ, Chen ZZ, Zhu J. (-)-Epigallocatechin-3-gallate attenuates myocardial injury induced by ischemia/reperfusion in diabetic rats and in H9c2 cells under hyperglycemic conditions. Int J Mol Med 2017; 40:389-399. [PMID: 28714516 PMCID: PMC5504977 DOI: 10.3892/ijmm.2017.3014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/23/2017] [Indexed: 11/27/2022] Open
Abstract
(−)-Epigallocatechin gallate (EGCG) exerts multiple beneficial effects on cardiovascular performance. In this study, we aimed to examine the effects of EGCG on diabetic cardiomyopathy during myocardial ischemia/reperfusion (I/R) injury. EGCG (100 mg/kg/day) was administered at week 6 for 2 weeks to diabetic rats following the induction of type 1 diabetes by streptozotocin (STZ). At the end of week 8, the animals were subjected to myocardial I/R injury. The EGCG-elicited structural and functional effects were analyzed. Additionally, EGCG (20 μM) was administered for 24 h to cultured cardiac H9c2 cells under hyperglycemic conditions (30 mM glucose) prior to hypoxia/reoxygenation (H/R) challenge, and its effects on oxidative stress were compared to H9c2 cells transfecteed with silent information regulator 1 (SIRT1) small interfering RNA (siRNA). In rats with STZ-induced diabetes, EGCG treatment ameliorated post-ischemic cardiac dysfunction, decreased the myocardial infarct size, apoptosis and cardiac fibrosis, and reduced the elevated lactate dehydrogenase (LDH) and malonaldehyde (MDA) levels, and attenuated oxidative stress. Furthermore, EGCG significantly reduced H/R injury in cardiac H9c2 cells exposed to high glucose as evidenced by reduced apoptotic cell death and oxidative stress. The protein expression levels of SIRT1 and manganese superoxide dismutase (MnSOD) were reduced in the diabetic rats and the H9c2 cells under hyperglycemic conditions, compared with the control rats following I/R injury and H9c2 cells under normal glucose conditions. EGCG pre-treatment significantly upregulated the levels of htese proteins in vitro and in vivo. However, treatment with EX527 and SIRT1 siRNA blocked the EGCG-mediated cardioprotective effects. Taken together, our data indicate that SIRT1 plays a critical role in the EGCG-mediated amelioration of I/R injury in diabetic rats, which suggests that EGCG may be a promising dietary supplement for the prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Juan Dou
- Department of Cardiac Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Ze Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Zhu
- Department of Clinical Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
42
|
Abo El Gheit R, Emam MN. Targeting heme oxygenase-1 in early diabetic nephropathy in streptozotocin-induced diabetic rats. Physiol Int 2017; 103:413-427. [PMID: 28229631 DOI: 10.1556/2060.103.2016.4.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular diabetic complications. This study was designed to evaluate the possible protective effect and underlying mechanisms of HO-1 induction in streptozotocin (STZ)-induced early DN in rats. The diabetic rats were divided into three groups: STZ-diabetic, cobalt protoporphyrin (CoPP)-treated diabetic, and zinc protoporphyrin IX (ZnPP)-treated diabetic groups. Compared to the STZ-diabetic group, CoPP-induced HO-1 upregulation improved the diabetic state and renal functional parameters, suppressed the renal proinflammatory marker, NF-κB, abrogated the elevated renal hydroxyprolin, and decreased the enhanced renal nicotinamide adenine dinucleotide phosphate oxidase activity with parallel reduction of urinary oxidative stress markers. On the contrary, treatment with ZnPP abrogated HO-1 levels, aggravated the diabetic condition with further increases in renal oxidative stress, fibrotic and inflammatory markers, and exacerbated renal dysfunction in diabetic animals. These findings suggest that the reduced diabetic renal injury upon HO-1 induction implicates the role of HO-1 induction as a potential treatment for DN.
Collapse
Affiliation(s)
- R Abo El Gheit
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - M N Emam
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| |
Collapse
|
43
|
Otterbein LE, Foresti R, Motterlini R. Heme Oxygenase-1 and Carbon Monoxide in the Heart: The Balancing Act Between Danger Signaling and Pro-Survival. Circ Res 2017; 118:1940-1959. [PMID: 27283533 DOI: 10.1161/circresaha.116.306588] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/02/2016] [Indexed: 12/22/2022]
Abstract
Understanding the processes governing the ability of the heart to repair and regenerate after injury is crucial for developing translational medical solutions. New avenues of exploration include cardiac cell therapy and cellular reprogramming targeting cell death and regeneration. An attractive possibility is the exploitation of cytoprotective genes that exist solely for self-preservation processes and serve to promote and support cell survival. Although the antioxidant and heat-shock proteins are included in this category, one enzyme that has received a great deal of attention as a master protective sentinel is heme oxygenase-1 (HO-1), the rate-limiting step in the catabolism of heme into the bioactive signaling molecules carbon monoxide, biliverdin, and iron. The remarkable cardioprotective effects ascribed to heme oxygenase-1 are best evidenced by its ability to regulate inflammatory processes, cellular signaling, and mitochondrial function ultimately mitigating myocardial tissue injury and the progression of vascular-proliferative disease. We discuss here new insights into the role of heme oxygenase-1 and heme on cardiovascular health, and importantly, how they might be leveraged to promote heart repair after injury.
Collapse
Affiliation(s)
- Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Roberta Foresti
- Inserm, U955, Equipe 12, Créteil, 94000, France.,University Paris Est, Faculty of Medicine, Créteil, 94000, France
| | - Roberto Motterlini
- Inserm, U955, Equipe 12, Créteil, 94000, France.,University Paris Est, Faculty of Medicine, Créteil, 94000, France
| |
Collapse
|
44
|
Suliman HB, Keenan JE, Piantadosi CA. Mitochondrial quality-control dysregulation in conditional HO-1 -/- mice. JCI Insight 2017; 2:e89676. [PMID: 28194437 DOI: 10.1172/jci.insight.89676] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The heme oxygenase-1 (Hmox1; HO-1) pathway was tested for defense of mitochondrial quality control in cardiomyocyte-specific Hmox1 KO mice (HO-1[CM]-/-) exposed to oxidative stress (100% O2). After 48 hours of exposure, these mice showed persistent cardiac inflammation and oxidative tissue damage that caused sarcomeric disruption, cardiomyocyte death, left ventricular dysfunction, and cardiomyopathy, while control hearts showed minimal damage. After hyperoxia, HO-1(CM)-/- hearts showed suppression of the Pgc-1α/nuclear respiratory factor-1 (NRF-1) axis, swelling, low electron density mitochondria by electron microscopy (EM), increased cell death, and extensive collagen deposition. The damage mechanism involves structurally deficient autophagy/mitophagy, impaired LC3II processing, and failure to upregulate Pink1- and Park2-mediated mitophagy. The mitophagy pathway was suppressed through loss of NRF-1 binding to proximal promoter sites on both genes. These results indicate that cardiac Hmox1 induction not only prevents heme toxicity, but also regulates the timing and registration of genetic programs for mitochondrial quality control that limit cell death, pathological remodeling, and cardiac fibrosis.
Collapse
Affiliation(s)
| | | | - Claude A Piantadosi
- Department of Medicine.,Department of Anesthesiology.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
45
|
Surai PF, Kochish II. Antioxidant Systems and Vitagenes in Poultry Biology: Heat Shock Proteins. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Alrob OA, Khatib S, Naser SA. MicroRNAs 33, 122, and 208: a potential novel targets in the treatment of obesity, diabetes, and heart-related diseases. J Physiol Biochem 2016; 73:307-314. [PMID: 27966196 DOI: 10.1007/s13105-016-0543-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022]
Abstract
Despite decades of research, obesity and diabetes remain major health problems in the USA and worldwide. Among the many complications associated with diabetes is an increased risk of cardiovascular diseases, including myocardial infarction and heart failure. Recently, microRNAs have emerged as important players in heart disease and energy regulation. However, little work has investigated the role of microRNAs in cardiac energy regulation. Both human and animal studies have reported a significant increase in circulating free fatty acids and triacylglycerol, increased cardiac reliance on fatty acid oxidation, and subsequent decrease in glucose oxidation which all contributes to insulin resistance and lipotoxicity seen in obesity and diabetes. Importantly, MED13 was initially identified as a negative regulator of lipid accumulation in Drosophilia. Various metabolic genes were downregulated in MED13 transgenic heart, including sterol regulatory element-binding protein. Moreover, miR-33 and miR-122 have recently revealed as key regulators of lipid metabolism. In this review, we will focus on the role of microRNAs in regulation of cardiac and total body energy metabolism. We will also discuss the pharmacological and non-pharmacological interventions that target microRNAs for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Osama Abo Alrob
- Faculty of Pharmacy, Yarmouk University, P.O Box 566, Irbid, 21163, Jordan.
| | - Said Khatib
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saleh A Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
47
|
Patel A, Zhang S, Shrestha AK, Maturu P, Moorthy B, Shivanna B. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway. Toxicol Appl Pharmacol 2016; 311:26-33. [PMID: 27725188 PMCID: PMC5089963 DOI: 10.1016/j.taap.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/24/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022]
Abstract
Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner. siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H2O2) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H2O2 levels. Furthermore, H2O2 independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H2O2 levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H2O2-independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H2O2 - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role.
Collapse
Affiliation(s)
- Ananddeep Patel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Shaojie Zhang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Amrit Kumar Shrestha
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Paramahamsa Maturu
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Bhagavatula Moorthy
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Binoy Shivanna
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
48
|
Xu X, Sun J, Chang X, Wang J, Luo M, Wintergerst KA, Miao L, Cai L. Genetic variants of nuclear factor erythroid-derived 2-like 2 associated with the complications in Han descents with type 2 diabetes mellitus of Northeast China. J Cell Mol Med 2016; 20:2078-2088. [PMID: 27374075 PMCID: PMC5082403 DOI: 10.1111/jcmm.12900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
The transcription factor nuclear factor erythroid 2-like 2 (NFE2L2) is essential for preventing type 2 diabetes mellitus (T2DM)-induced complications in animal models. This case and control study assessed genetic variants of NFE2L2 for associations with T2DM and its complications in Han Chinese volunteers. T2DM patients with (n = 214) or without (n = 236) complications, or healthy controls (n = 359), were genotyped for six NFE2L2 single nucleotide polymorphisms (SNPs: rs2364723, rs13001694, rs10497511, rs1806649, rs1962142 and rs6726395) with TaqMan Pre-Designed SNP Genotyping and Sequence System. Serum levels of heme oxygenase-1 (HMOX1) were determined through enzyme-linked immunosorbent assay. Informative data were obtained for 341 cases and 266 controls. Between T2DM patients and controls, the genotypic and allelic frequencies and haplotypes of the SNPs were similar. However, there was a significant difference in genotypic and allelic frequencies of rs2364723, rs10497511, rs1962142 and rs6726395 between T2DM patients with and without complications, including peripheral neuropathy, nephropathy, retinopathy, foot ulcers and microangiopathy. Furthermore, HMOX1 levels were significantly higher in T2DM patients with complications than in controls. Multiple logistic regression analysis, however, showed that only rs2364723 significantly reduced levels of serum HMOX1 in T2DM patients for the GG genotype carriers compared with participants with CG+CC genotype. The data suggest that although NFE2L2 rs2364723, rs10497511, rs1962142 and rs6726395 were not associated with T2DM risk, they were significantly associated with complications of T2DM. In addition, only for rs2364723 higher serum HMOX1 levels were found in the T2DM patients with CG+CC than those with GG genotype.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Gynecology and Obstetrics, Second Hospital of Jilin University, Changchun, China
| | - Jing Sun
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, China
| | - Xiaomin Chang
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, China
| | - Ji Wang
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, China
| | - Manyu Luo
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, China
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Kupper A Wintergerst
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Louisville, KY, USA
- Wendy L. Novak Diabetes Care Center, Kosair Children's Hospital, University of Louisville, Louisville, KY, USA
| | - Lining Miao
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, China.
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA.
- Wendy L. Novak Diabetes Care Center, Kosair Children's Hospital, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
49
|
Gupta I, Goyal A, Singh NK, Yadav HN, Sharma PL. Hemin, a heme oxygenase-1 inducer, restores the attenuated cardioprotective effect of ischemic preconditioning in isolated diabetic rat heart. Hum Exp Toxicol 2016; 36:867-875. [PMID: 27738197 DOI: 10.1177/0960327116673169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Attenuated cardioprotective effect of ischemic preconditioning (IPC) by reduced nitric oxide (NO) is a hallmark during diabetes mellitus (DM). Recently, we reported that the formation of caveolin-endothelial nitric oxide synthase (eNOS) complex decreases the release of NO, which is responsible for attenuation of IPC-induced cardioprotection in DM rat heart. Heme oxygenase-1 (HO-1) facilitates release of NO by disrupting caveolin-eNOS complex. The activity of HO-1 is decreased during DM. This study was designed to investigate the role of hemin (HO-1 inducer) in attenuated cardioprotective effect of IPC in isolated diabetic rat heart. METHODS DM was induced in male Wistar rat by single dose of streptozotocin. Cardioprotective effect was assessed in terms of myocardial infarct size and release of lactate dehydrogenase and creatine kinase in coronary effluent. The release of NO was estimated indirectly by measuring the release of nitrite in coronary effluent. Perfusion of sodium nitrite, a precursor of NO, was used as a positive control. RESULT IPC-induced cardioprotection and increased release of nitrite were significantly attenuated in a diabetic rat as compared to a normal rat. Pretreatment with hemin and daidzein, a caveolin inhibitor, alone or in combination significantly restored the attenuated cardioprotection and increased the release of nitrite in diabetic rat heart. Zinc protoporphyrin, a HO-1 inhibitor, significantly abolished the observed cardioprotection and decreased the release of nitrite in hemin pretreated DM rat heart. CONCLUSION Thus, it is suggested that hemin restores the attenuated cardioprotective effect in diabetic rat heart by increasing the activity of HO-1 and subsequently release of NO.
Collapse
Affiliation(s)
- I Gupta
- 1 Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - A Goyal
- 2 Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - N K Singh
- 2 Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - H N Yadav
- 3 All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - P L Sharma
- 1 Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
50
|
van den Born JC, Hammes HP, Greffrath W, van Goor H, Hillebrands JL. Gasotransmitters in Vascular Complications of Diabetes. Diabetes 2016; 65:331-45. [PMID: 26798119 DOI: 10.2337/db15-1003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the past decades three gaseous signaling molecules-so-called gasotransmitters-have been identified: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). These gasotransmitters are endogenously produced by different enzymes in various cell types and play an important role in physiology and disease. Despite their specific functions, all gasotransmitters share the capacity to reduce oxidative stress, induce angiogenesis, and promote vasorelaxation. In patients with diabetes, a lower bioavailability of the different gasotransmitters is observed when compared with healthy individuals. As yet, it is unknown whether this reduction precedes or results from diabetes. The increased risk for vascular disease in patients with diabetes, in combination with the extensive clinical, financial, and societal burden, calls for action to either prevent or improve the treatment of vascular complications. In this Perspective, we present a concise overview of the current data on the bioavailability of gasotransmitters in diabetes and their potential role in the development and progression of diabetes-associated microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular (cerebrovascular, coronary artery, and peripheral arterial diseases) complications. Gasotransmitters appear to have both inhibitory and stimulatory effects in the course of vascular disease development. This Perspective concludes with a discussion on gasotransmitter-based interventions as a therapeutic option.
Collapse
Affiliation(s)
- Joost C van den Born
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | |
Collapse
|