1
|
Sou T, Bergström CAS. Contemporary Formulation Development for Inhaled Pharmaceuticals. J Pharm Sci 2020; 110:66-86. [PMID: 32916138 DOI: 10.1016/j.xphs.2020.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary delivery has gained increased interests over the past few decades. For respiratory conditions, targeted drug delivery directly to the site of action can achieve a high local concentration for efficacy with reduced systemic exposure and adverse effects. For systemic conditions, the unique physiology of the lung evolutionarily designed for rapid gaseous exchange presents an entry route for systemic drug delivery. Although the development of inhaled formulations has come a long way over the last few decades, many aspects of it remain to be elucidated. In particular, a reliable and well-understood method for in vitro-in vivo correlations remains to be established. With the rapid and ongoing advancement of technology, there is much potential to better utilise computational methods including different types of modelling and simulation approaches to support inhaled formulation development. This review intends to provide an introduction on some fundamental concepts in pulmonary drug delivery and inhaled formulation development followed by discussions on some challenges and opportunities in the translation of inhaled pharmaceuticals from preclinical studies to clinical development. The review concludes with some recent advancements in modelling and simulation approaches that could play an increasingly important role in modern formulation development of inhaled pharmaceuticals.
Collapse
Affiliation(s)
- Tomás Sou
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; Pharmacometrics, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Christel A S Bergström
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Kuehl PJ, Cherrington A, Dobry DE, Edgerton D, Friesen DT, Hobbs C, Leach CL, Murri B, Neal D, Lyon DK, Vodak DT, Reed MD. Biologic comparison of inhaled insulin formulations: Exubera™ and novel spray-dried engineered particles of dextran-10. AAPS PharmSciTech 2014; 15:1545-50. [PMID: 25106135 DOI: 10.1208/s12249-014-0181-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/23/2014] [Indexed: 01/11/2023] Open
Abstract
Inhaled peptides and proteins have promise for respiratory and systemic disease treatment. Engineered spray-dried powder formulations have been shown to stabilize peptides and proteins and optimize aerosol properties for pulmonary delivery. The current study was undertaken to investigate the in vitro and in vivo inhalation performance of a model spray-dried powder of insulin and dextran 10 in comparison to Exubera™. Dextrans are a class of glucans that are generally recognized as safe with optimum glass transition temperatures well suited for spray drying. A 70% insulin particle loading was prepared by formulating with 30% (w/v) dextran 10. Physical characterization revealed a "raisin like" particle. Both formulations were generated to produce a similar bimodal particle size distribution of less than 3.5 μm MMAD. Four female Beagle dogs were exposed to each powder in a crossover design. Similar presented and inhaled doses were achieved with each powder. Euglycemia was achieved in each dog prior and subsequent to dosing and blood samples were drawn out to 245 min post-exposure. Pharmacokinetic analyses of post-dose insulin levels were similar for both powders. Respective dextran 10-insulin and Exubera exposures were similar producing near identical area under the curve (AUC), 7,728 ± 1,516 and 6,237 ± 2,621; concentration maximums (C max), 126 and 121 (μU/mL), and concentration-time maximums, 20 and 14 min, respectively. These results suggest that dextran-10 and other dextrans may provide a novel path for formulating peptides and proteins for pulmonary delivery.
Collapse
|
3
|
Landersdorfer CB, Jusko WJ. Pharmacokinetic/pharmacodynamic modeling of glucose clamp effects of inhaled and subcutaneous insulin in healthy volunteers and diabetic patients. Drug Metab Pharmacokinet 2010; 25:418-29. [PMID: 20924141 DOI: 10.2133/dmpk.dmpk-10-rg-017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pharmacokinetics and pharmacodynamics (PK/PD) of inhaled insulin in humans have not been modeled previously. We rationalized a model for the effects of inhaled insulin on glucose infusion rate during a euglycemic clamp study based on the mechanism of insulin action and compared parameter estimates between subcutaneous and inhaled insulin in healthy and diabetic subjects. Published data from two studies in 11 healthy volunteers and 18 type 1 diabetes patients were digitized. The subjects received four different doses of inhaled insulin and one or three different doses subcutaneously at the start of a 10 h glucose clamp. All data were modeled simultaneously using NONMEM VI. Insulin pharmacokinetics were described by a one-compartment model with one (inhaled) or two (subcutaneous insulin) first-order absorption processes and first-order elimination. Insulin effects on glucose were described by an indirect response model. A biophase direct effect equation for the glucose infusion rate was implemented. Pharmacodynamic parameter estimates were 15.1 mg/min/kg for maximal glucose infusion rate (GIR(max)) and 88.0 mIU/L for SC(50) for diabetic patients and 62.9 mIU/L for healthy subjects. A PK/PD model based on fundamental principles of insulin action and glucose turnover suggests comparable potencies of inhaled and subcutaneous insulin.
Collapse
Affiliation(s)
- Cornelia B Landersdorfer
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | |
Collapse
|
4
|
Rosenstock J, Cefalu WT, Hollander PA, Klioze SS, Reis J, Duggan WT. Safety and efficacy of inhaled human insulin (exubera) during discontinuation and readministration of therapy in adults with type 2 diabetes: a 3-year randomized controlled trial. Diabetes Technol Ther 2009; 11:697-705. [PMID: 19905885 DOI: 10.1089/dia.2009.0062] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study assessed pulmonary safety following discontinuation and readministration of inhaled human insulin {Exubera [EXU] [Pfizer Inc., New York, NY] (insulin human [recombinant DNA origin]) inhalation powder} in adults with type 2 diabetes (T2DM). METHODS Patients were randomized to receive EXU (n = 316) or subcutaneous (SC) insulin (n = 311) for 2 years (comparative phase), followed by 6 months of SC insulin (washout phase) and 6 months of original therapy (readministration). Highly standardized lung function tests were performed throughout all phases. RESULTS Small, nonprogressive treatment group differences were observed to occur early during the comparative phase for parameters such as change from baseline for forced expiratory volume in 1 s (FEV(1)) and carbon monoxide diffusing capacity (DL(CO)). These differences resolved during washout and recurred to the same small magnitude during readministration. Both treatment groups maintained similar glycemic control and hypoglycemic event rates. In the EXU group, insulin antibody (IAb) levels reached a plateau at 9 months, declined to near baseline levels during washout, and increased during readministration to levels observed in the comparative phase. CONCLUSIONS FEV(1) and DL(CO) changes observed during discontinuation and readministration of EXU therapy were consistent with a reversible, nonprogressive, and nonstructural pathologic effect on lung function in adults with T2DM. EXU readministration was not associated with an augmented IAb response.
Collapse
|
5
|
Onoue S, Yamamoto K, Kawabata Y, Hirose M, Mizumoto T, Yamada S. Novel dry powder inhaler formulation of glucagon with addition of citric acid for enhanced pulmonary delivery. Int J Pharm 2009; 382:144-50. [PMID: 19703531 DOI: 10.1016/j.ijpharm.2009.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
Glucagon, a gut hormone, is one of the key regulatory elements in glucose homeostasis, and is clinically used for treatment of hypoglycemia and premedication in peroral endoscopy. Dry powder inhaler (DPI) form of glucagon is believed to be a promising new dosage form, and the present study aimed to develop a novel glucagon-DPI using absorption enhancer for improved pharmacological effects. The cytotoxicity of citric and capric acids, the potential absorption enhancers, at 1 and 10 mM was assessed by monitoring extracellular LDH levels in rat alveolar L2 cells, and a concentration- and time-dependent release of LDH was observed in capric acid, but not in citric acid-treated cells. DPI form of glucagon containing citric acid was prepared with a jet mill, and laser diffraction and cascade impactor analyses of the newly developed glucagon-DPI suggested high dispersion and deposition in the respiratory organs with an emitted dose and fine particle fraction of 99.5 and 25%, respectively. Addition of citric acid in glucagon-DPI improved the dissolution behavior, and did not impair the solid-state stability of glucagon-DPI. Intratracheal administration of glucagon-DPI (50 microg-glucagon/kg body weight of rat) containing citric acid led to 2.9-fold more potent hyperglycemic effect in rats, as compared to inhaled glucagon-DPI without citric acid. Based on these physicochemical and pharmacological characterization, the dry powder inhaler of glucagon with addition of citric acid would be of use as an alternative to injection form.
Collapse
Affiliation(s)
- Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics and Global Center of Excellence Program, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Hompesch M, Kollmeier A, Rave K, Heinemann L, Mitnick M, Davies S, Strack T. Glycemic exposure is affected favorably by inhaled human insulin (Exubera) as compared with subcutaneous insulin glargine (Lantus) in patients with type 2 diabetes. Diabetes Technol Ther 2009; 11:307-13. [PMID: 19537357 DOI: 10.1089/dia.2008.0080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The objective was to compare the effects on glycemia of adding either inhaled human insulin (Exubera [EXU] [insulin human (recombinant DNA origin) inhalational powder]) or subcutaneous insulin glargine (GLA) to the treatment regimens of patients with type 2 diabetes uncontrolled with oral antidiabetic drugs. METHODS Forty patients were randomized to receive either EXU three times daily prior to meals or subcutaneous GLA once daily in a crossover design. Interstitial glucose concentrations were monitored using a continuous glucose monitoring system (CGMS) for the final 72-h period of 8 treatment days. RESULTS Total insulin dosage on the last treatment day was approximately 40.1+/-18.1 units/day EXU compared with 16.4+/-4.8 units/day GLA. Serum insulin levels over the 72-h CGMS period were higher for EXU than for GLA (1,091+/-589 pmol/mL/h vs. 737+/-386 pmol/mL/h; ratio, 148; 95% confidence interval [CI], 130-169). The glucose exposure over this period was lower with EXU than with GLA (380+/-45 mmol/Lh vs. 426+/-89 mmol/Lh; ratio, 88.57; 95% CI, 84-93). The overall hypoglycemic event rate was 8.7 events per subject-month for EXU and 2.4 for GLA. CONCLUSIONS Prandial insulin therapy with EXU, using a higher daily insulin dose, reduces total daily glucose exposure--in particular postmeal glycemia--more effectively than a basal insulin analog.
Collapse
Affiliation(s)
- Marcus Hompesch
- Profil Institute for Clinical Research Inc., Chula Vista, California 91911, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Edgerton DS, Cherrington AD, Neal DW, Scott M, Lautz M, Brown N, Petro J, Hobbs CH, Leach C, Del Parigi A, Strack TR. Inhaled insulin is associated with prolonged enhancement of glucose disposal in muscle and liver in the canine. J Pharmacol Exp Ther 2009; 328:970-5. [PMID: 19098161 PMCID: PMC3202424 DOI: 10.1124/jpet.108.146985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/16/2008] [Indexed: 11/22/2022] Open
Abstract
Diabetic patients treated with inhaled insulin exhibit reduced fasting plasma glucose levels. In dogs, insulin action in muscle is enhanced for as long as 3 h after insulin inhalation. This study was designed to determine whether this effect lasts for a prolonged duration such that it could explain the effect observed in diabetic patients. Human insulin was administered via inhalation (Exubera; n = 9) or infusion (Humulin R; n = 9) in dogs using an infusion algorithm that yielded matched plasma insulin kinetics between the two groups. Somatostatin was infused to prevent insulin secretion, and glucagon was infused to replace basal plasma levels of the hormone. Glucose was infused into the portal vein at 4 mg/kg/min and into a peripheral vein to maintain the arterial plasma glucose level at 160 mg/dl. Arterial and hepatic sinusoidal insulin and glucose levels were virtually identical in the two groups. Notwithstanding, glucose utilization was greater when insulin was administered by inhalation. At its peak, the peripheral glucose infusion rate was 4 mg/kg/min greater in the inhalation group, and a 50% difference between groups persisted over 8 h. Inhalation of insulin caused a greater increase in nonhepatic glucose uptake in the first 3 h after inhalation; thereafter, net hepatic glucose uptake was greater. Inhalation of insulin was associated with greater than expected (based on insulin levels) glucose disposal. This may explain the reduced fasting glucose concentrations observed in humans after administration of certain inhaled insulin formulations compared with subcutaneous insulin.
Collapse
Affiliation(s)
- Dale S Edgerton
- Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 710 Robinson Research Building, Nashville, TN 37232-0615, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Edgerton DS, Johnson KMS, Neal DW, Scott M, Hobbs CH, Zhang X, Duttaroy A, Cherrington AD. Inhibition of dipeptidyl peptidase-4 by vildagliptin during glucagon-like Peptide 1 infusion increases liver glucose uptake in the conscious dog. Diabetes 2009; 58:243-9. [PMID: 18840785 PMCID: PMC2606880 DOI: 10.2337/db08-0515] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE This study investigated the acute effects of treatment with vildagliptin on dipeptidyl peptidase-4 (DPP-4) activity, glucagon-like peptide 1 (GLP-1) concentration, pancreatic hormone levels, and glucose metabolism. The primary aims were to determine the effects of DPP-4 inhibition on GLP-1 clearance and on hepatic glucose uptake. RESEARCH DESIGN AND METHODS Fasted conscious dogs were studied in the presence (n = 6) or absence (control, n = 6) of oral vildagliptin (1 mg/kg). In both groups, GLP-1 was infused into the portal vein (1 pmol . kg(-1) . min(-1)) for 240 min. During the same time, glucose was delivered into the portal vein at 4 mg . kg(-1) . min(-1) and into a peripheral vein at a variable rate to maintain the arterial plasma glucose level at 160 mg/dl. RESULTS Vildagliptin fully inhibited DPP-4 over the 4-h experimental period. GLP-1 concentrations were increased in the vildagliptin-treated group (50 +/- 3 vs. 85 +/- 7 pmol/l in the portal vein in control and vildagliptin-treated dogs, respectively; P < 0.05) as a result of a 40% decrease in GLP-1 clearance (38 +/- 5 and 22 +/- 2 ml . kg(-1) . min(-1), respectively; P < 0.05). Although hepatic insulin and glucagon levels were not significantly altered, there was a tendency for plasma insulin to be greater (hepatic levels were 73 +/- 10 vs. 88 +/- 15 microU/ml, respectively). During vildagliptin treatment, net hepatic glucose uptake was threefold greater than in the control group. This effect was greater than that predicted by the change in insulin. CONCLUSIONS Vildagliptin fully inhibited DPP-4 activity, reduced GLP-1 clearance by 40%, and increased hepatic glucose disposal by means beyond the effects of GLP-1 on insulin and glucagon secretion.
Collapse
Affiliation(s)
- Dale S Edgerton
- Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Abstract
Inhaled insulin has attractive pharmacodynamic properties with a fast onset of action which should lead to improved postprandial blood glucose concentrations. Comparisons with regular subcutaneous (sc) insulin in clinical studies, however, showed lower fasting blood glucose concentrations. Overall, clinical efficacy of inhaled insulin was comparable to that of regular sc insulin. Treatment with inhaled insulin was safe and well tolerated, with slight and reversible changes in lung function parameters and a rise in insulin antibodies (not associated with any clinical or safety parameters) as main adverse effects. Treatment satisfaction in open-label studies was higher with inhaled than with sc insulin, indicating that inhaled insulin might help to overcome one of the major hurdles of diabetes therapy, i.e. a timely initiation of insulin therapy. The first inhaled insulin formulation was approved in the US and Europe in January 2006, but some countries granted reimbursement only for selected patients, or did not reimburse treatment with inhaled insulin at all because of the high treatment costs. These are due to the rather low bioavailability of approximately 8-15%. Therefore, further research is needed to improve the bioavailability of inhaled insulin: e.g. through optimization of the inhaler, the insulin formulation, or the inhalation technique. In view of the potential for further improvement, inhaled insulin may become a very attractive alternative to sc insulin, in particular in patients in whom insulin therapy has to be initiated and/or intensified.
Collapse
Affiliation(s)
- Sabine Arnolds
- Profil Institut für Stoffwechselforschung GmbH, Hellersbergstr. 9, D-41460 Neuss, Germany.
| | | |
Collapse
|
11
|
Hollander PA, Krasner A, Klioze S, Schwartz P, Duggan W. Body weight changes associated with insulin therapy: a retrospective pooled analysis of inhaled human insulin (Exubera) versus subcutaneous insulin in five controlled Phase III trials. Diabetes Care 2007; 30:2508-10. [PMID: 17536080 DOI: 10.2337/dc06-2083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Yang X, Yates ML, Candelore MR, Feeney W, Hora D, Kim RM, Parmee ER, Berger JP, Zhang BB, Qureshi SA. Cloning and expression of canine glucagon receptor and its use to evaluate glucagon receptor antagonists in vitro and in vivo. Eur J Pharmacol 2007; 555:8-16. [PMID: 17140563 DOI: 10.1016/j.ejphar.2006.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 10/09/2006] [Accepted: 10/11/2006] [Indexed: 10/24/2022]
Abstract
Glucose homeostasis is maintained by the combined actions of insulin and glucagon. Hyperglucagonemia and/or elevation of glucagon/insulin ratio have been reported in diabetic patients and in animal models of diabetes. Therefore, antagonizing glucagon receptor function has long been considered a useful approach to lower hyperglycemia. Dogs serve as an excellent model for studying glycemic control and various aspects of glucagon biology in vivo; however, the amino acid sequence of the dog glucagon receptor has not been reported. To better understand the pharmacology of the dog glucagon receptor and to characterize glucagon receptor antagonists, we cloned a cDNA corresponding to the glucagon receptor from dog liver RNA. The dog glucagon receptor shares a significant (>75%) homology at both nucleotide and amino acid levels with the glucagon receptor from human, monkey, mouse, and rat. The protein is highly conserved among all species in areas corresponding to the 7 trans-membrane domains. However, it shows significant divergence at the carboxy terminus such that the receptor from dog has the longest cytoplasmic tail among all species examined. When expressed in chinese hamster ovary cells, the dog glucagon receptor bound [125I]Glucagon with a K(d) of 477+/-106 pM. Glucagon stimulated the rise of intracellular cAMP levels in these cells with an EC(50) of 9.6+/-1.7 nM and such effects could be blocked by known peptidyl and non-peptidyl small molecule antagonists. In addition we show that a small molecule glucagon receptor antagonist with significant activity in cell based assays also blocked the ability of glucagon to induce elevation in blood glucose in beagle dogs. These data demonstrate that the cloned cDNA encodes a functional dog glucagon receptor. The availability of the dog cDNA will facilitate the understanding of glucagon pharmacology and aid in the characterization of novel glucagon antagonists that may serve as anti-hyperglycemic treatment for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of Metabolic Disorder-Molecular Endocrinology, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Edgerton DS, Cherrington AD, Williams P, Neal DW, Scott M, Bowen L, Wilson W, Hobbs CH, Leach C, Kuo MC, Strack TR. Inhalation of human insulin (exubera) augments the efficiency of muscle glucose uptake in vivo. Diabetes 2006; 55:3604-10. [PMID: 17130510 DOI: 10.2337/db06-0718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study assessed the site of increased glucose uptake resulting from insulin inhalation, quantified its effect under steady-state glucose concentrations, and identified the time to onset of effect. Human insulin was administered to 13 beagles via inhalation (Exubera [insulin human (rDNA origin)] Inhalation Powder; n = 7) or infusion into the inferior vena cava (Humulin R; n = 6) using an algorithm to match plasma insulin levels and kinetics for both groups. Somatostatin and glucagon were infused. Glucose was delivered into the portal vein (4 mg x kg(-1) x min(-1)) and a peripheral vein, as needed, to maintain arterial plasma glucose levels at 180 mg/dl. Hepatic exposure to insulin and glucose and liver glucose uptake were similar in both groups. Despite comparable arterial insulin and glucose levels, hind-limb glucose uptake increased 2.4-fold after inhalation compared with infusion due to increased muscle glucose uptake. Glucose infusion rate, nonhepatic glucose uptake, and tracer-determined glucose disposal were about twice as great compared with intravenous insulin. The effect appeared after 1 h, persisting at least as long as arterial insulin levels remained above basal. Pulmonary administration of insulin increases nonhepatic glucose uptake compared with infusion, and skeletal muscle is the likely site of that effect.
Collapse
Affiliation(s)
- Dale S Edgerton
- Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 710 Robinson Research Building, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Edgerton DS, Stettler KM, Neal DW, Scott M, Bowen L, Wilson W, Hobbs CH, Leach C, Strack TR, Cherrington AD. Inhalation of human insulin is associated with improved insulin action compared with subcutaneous injection and endogenous secretion in dogs. J Pharmacol Exp Ther 2006; 319:1258-64. [PMID: 16963622 DOI: 10.1124/jpet.106.108373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study compared the effects of endogenous (portal) insulin secretion versus peripheral insulin administration with subcutaneous or inhaled human insulin [INH; Exubera, insulin human (rDNA origin) inhalation powder] on glucose disposal in fasted dogs. In the control group, glucose was infused into the portal vein (Endo; n = 6). In two other groups, glucose was infused portally, whereas insulin was administered peripherally by inhalation (n = 13) or s.c. injection (n = 6) with somatostatin and basal glucagon. In the Endo group, over the first 3 h, the arterial insulin concentration was twice that of the peripheral groups, whereas hepatic sinusoidal insulin levels were half as much. Although net hepatic glucose uptake was greatest in the Endo group, the peripheral groups demonstrated larger increases in nonhepatic glucose uptake so that total glucose disposal was greater in the latter groups. Compared with s.c. insulin action, glucose excursions were smaller and shorter, and insulin action was at least twice as great after INH. Thus, at the glucose dose and insulin levels chosen, peripheral insulin delivery was associated with greater whole-body glucose disposal than endogenous (portal) insulin secretion. INH administration resulted in increased insulin sensitivity in nonhepatic but not in hepatic tissues compared with s.c. delivery.
Collapse
Affiliation(s)
- Dale S Edgerton
- Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 710 Robinson Research Building, Nashville, TN 37232-0615, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Administration of insulin by inhalation was first attempted > 50 years ago. At that time, little was known concerning effective delivery systems and insulin formulations. The recent development of pulmonary delivery systems for the administration of insulin is driven by the reluctance of patients and their providers to initiate insulin earlier in the course of Type 2 diabetes, the desire to reduce the number of daily insulin injections for both Type 1 and 2 patients, and the recent emphasis on intensified glycaemic control including postprandial glycaemic control. The deep lung is a unique mucosal tissue having a surface area of > 100 m2 and is readily accessible both to the external environment and to drug delivery, provided that appropriate conditions are met. There have been four mid- to late-phase pulmonary insulin programmes using modern inhalation devices that will be reported in this paper. The programmes differ in the choice of delivery systems, the formulations of insulin and reported bioavailability, pharmacokinetic and glucodynamic profiles and adverse events. However, all systems successfully deliver insulin to the deep lung and biological effectiveness compares favourably with injected subcutaneous insulins.
Collapse
Affiliation(s)
- Samuel Edwin Fineberg
- Indiana University School of Medicine, 1120 South Drive, Fesler Hall 302, Indianapolis, USA.
| |
Collapse
|
16
|
Briscoe VJ, Davis SN. Role of inhaled human insulin in the management of Type 1 and 2 diabetes. Expert Rev Endocrinol Metab 2006; 1:479-488. [PMID: 30290460 DOI: 10.1586/17446651.1.4.479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inhaled human insulin (Exubera®) has been approved by the FDA and other regulatory bodies for treatment in Type 1 and 2 diabetes in the USA. It is the first alternative to injectable insulin since the discovery of the insulin compound to treat diabetes. This article will review results of recent clinical studies that support the therapeutic efficacy and safety of inhalable insulin for use in patients with diabetes. The pharmacological profile of inhaled insulin with particular reference to inhaled human insulin and the potential to influence diabetes care is also discussed.
Collapse
Affiliation(s)
- Vanessa J Briscoe
- a Department of Medicine, Vanderbilt University School of Medicine, 715 PRB, 2220, Pierce Avenue, Nashville, TN, 37232-6303, USA
| | - Stephen N Davis
- b Department of Medicine, Vanderbilt University School of Medicine and Nashville Veterans Affairs Medical Center, 715 PRB, 2220, Pierce Avenue, Nashville, TN, 37232-6303, USA.
| |
Collapse
|
17
|
Affiliation(s)
- Emma Morton-Eggleston
- University of Virginia School of Medicine, Box 801410, Charlottesville, VA 22908, USA
| | - Eugene J Barrett
- University of Virginia School of Medicine, Box 801410, Charlottesville, VA 22908, USA()
| |
Collapse
|
18
|
|
19
|
Dicostanzo CA, Dardevet DP, Neal DW, Lautz M, Allen E, Snead W, Cherrington AD. Role of the hepatic sympathetic nerves in the regulation of net hepatic glucose uptake and the mediation of the portal glucose signal. Am J Physiol Endocrinol Metab 2006; 290:E9-E16. [PMID: 16105863 DOI: 10.1152/ajpendo.00184.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Portal glucose delivery enhances net hepatic glucose uptake (NHGU) relative to peripheral glucose delivery. We hypothesize that the sympathetic nervous system normally restrains NHGU, and portal glucose delivery relieves the inhibition. Two groups of 42-h-fasted conscious dogs were studied using arteriovenous difference techniques. Denervated dogs (DEN; n=10) underwent selective sympathetic denervation by cutting the nerves at the celiac nerve bundle near the common hepatic artery; control dogs (CON; n=10) underwent a sham procedure. After a 140-min basal period, somatostatin was given along with basal intraportal infusions of insulin and glucagon. Glucose was infused peripherally to double the hepatic glucose load (HGL) for 90 min (P1). In P2, glucose was infused intraportally (3-4 mg.kg(-1).min(-1)), and the peripheral glucose infusion was reduced to maintain the HGL for 90 min. This was followed by 90 min (P3) in which portal glucose infusion was terminated and peripheral glucose infusion was increased to maintain the HGL. P1 and P3 were averaged as the peripheral glucose infusion period (PE). The average HGLs (mg.kg(-1).min(-1)) in CON and DEN were 55+/-3 and 54+/-4 in the peripheral periods and 55+/-3 and 55+/-4 in P2, respectively. The arterial insulin and glucagon levels remained basal in both groups. NHGU (mg.kg(-1).min(-1)) in CON averaged 1.7+/-0.3 during PE and increased to 2.9+/-0.3 during P2. NHGU (mg.kg(-1).min(-1)) was greater in DEN than CON (P<0.05) during PE (2.9+/-0.4) and failed to increase significantly (3.2+/-0.2) during P2 (not significant vs. CON). Selective sympathetic denervation increased NHGU during hyperglycemia but significantly blunted the response to portal glucose delivery.
Collapse
Affiliation(s)
- Catherine A Dicostanzo
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN 37232-0615, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Devries JH. Mealtime inhaled insulin lowers fasting glucose: a look at possible explanations. Diabetologia 2005; 48:2682-3. [PMID: 16273346 DOI: 10.1007/s00125-005-0027-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/10/2005] [Indexed: 11/30/2022]
Affiliation(s)
- J H Devries
- Department of Internal Medicine, Academic Medical Center, PO Box 22660, 1100DD, Amsterdam, the Netherlands,
| |
Collapse
|
21
|
Skyler JS, Weinstock RS, Raskin P, Yale JF, Barrett E, Gerich JE, Gerstein HC. Use of inhaled insulin in a basal/bolus insulin regimen in type 1 diabetic subjects: a 6-month, randomized, comparative trial. Diabetes Care 2005; 28:1630-5. [PMID: 15983312 DOI: 10.2337/diacare.28.7.1630] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Despite the demonstrated benefits of glycemic control, patient acceptance of basal/bolus insulin therapy for type 1 diabetes has been slow. We investigated whether a basal/bolus insulin regimen involving rapid-acting, dry powder, inhaled insulin could provide glycemic control comparable with a basal/bolus subcutaneous regimen. RESEARCH DESIGN AND METHODS Patients with type 1 diabetes (ages 12-65 years) received twice-daily subcutaneous NPH insulin and were randomized to premeal inhaled insulin (n = 163) or subcutaneous regular insulin (n = 165) for 6 months. RESULTS Mean glycosylated hemoglobin (A1C) decreased comparably from baseline in the inhaled and subcutaneous insulin groups (-0.3 and -0.1%, respectively; adjusted difference -0.16% [CI -0.34 to 0.01]), with a similar percentage of subjects achieving A1C <7%. Although 2-h postprandial glucose reductions were comparable between the groups, fasting plasma glucose levels declined more in the inhaled than in the subcutaneous insulin group (adjusted difference -39.5 mg/dl [CI -57.5 to -21.6]). Inhaled insulin was associated with a lower overall hypoglycemia rate but higher severe hypoglycemia rate. The overall hypoglycemia rate (episodes/patient-month) was 9.3 (inhaled) vs. 9.9 (subcutaneous) (risk ratio [RR] 0.94 [CI 0.91-0.97]), and the severe hypoglycemia rate (episodes/100 patient-months) was 6.5 vs. 3.3 (RR 2.00 [CI 1.28-3.12]). Increased insulin antibody serum binding without associated clinical manifestations occurred in the inhaled insulin group. Pulmonary function between the groups was comparable, except for a decline in carbon monoxide-diffusing capacity in the inhaled insulin group without any clinical correlates. CONCLUSIONS Inhaled insulin may provide an alternative for the management of type 1 diabetes as part of a basal/bolus strategy in patients who are unwilling or unable to use preprandial insulin injections.
Collapse
Affiliation(s)
- Jay S Skyler
- University of Miami, School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|