1
|
Hsieh ML, Nishizaki D, Adashek JJ, Kato S, Kurzrock R. Toll-like receptor 3: a double-edged sword. Biomark Res 2025; 13:32. [PMID: 39988665 PMCID: PMC11849352 DOI: 10.1186/s40364-025-00739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/02/2025] [Indexed: 02/25/2025] Open
Abstract
The discovery of Toll-like receptors (TLRs) and their role in dendritic cells earned the Nobel Prize for 2011 because TLRs profoundly enhanced our understanding of the immune system. Specifically, TLR3 is located within the endosomal compartments of dendritic cells and plays a crucial role in the immune response by acting as a pattern recognition receptor that detects both exogenous (viral) and endogenous (mammalian) double-stranded RNA. However, TLR3 activation is a double-edged sword in various immune-mediated diseases. On one hand, it can enhance anti-viral defenses and promote pathogen clearance, contributing to host protection. On the other hand, excessive or dysregulated TLR3 signaling can lead to chronic inflammation and tissue damage, exacerbating conditions such as autoimmune diseases, chronic viral infections, and cancer. In cancer, TLR3 expression has been linked to both favorable and poor prognoses, though the underlying mechanisms remain unclear. Recent clinical and preclinical advances have explored the use of TLR3 agonists in cancer immunotherapy, attempting to capitalize on their potential to enhance anti-tumor responses. The dual role of TLR3 highlights its complexity as a therapeutic target, necessitating careful modulation to maximize its protective effects while minimizing potential pathological consequences. In this review, we explore the intricate roles of TLR3 in immune responses across different disease contexts, including cancer, infections, autoimmune disorders, and allergies, highlighting both its protective and detrimental effects in these disorders, as well as progress in developing TLR3 agonists as part of the immunotherapy landscape.
Collapse
Affiliation(s)
| | - Daisuke Nishizaki
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Shumei Kato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA.
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
González-Mariscal I, Pozo-Morales M, Romero-Zerbo SY, Espinosa-Jimenez V, Escamilla-Sánchez A, Sánchez-Salido L, Cobo-Vuilleumier N, Gauthier BR, Bermúdez-Silva FJ. Abnormal cannabidiol ameliorates inflammation preserving pancreatic beta cells in mouse models of experimental type 1 diabetes and beta cell damage. Biomed Pharmacother 2021; 145:112361. [PMID: 34872800 DOI: 10.1016/j.biopha.2021.112361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/02/2022] Open
Abstract
The atypical cannabinoid Abn-CBD improves the inflammatory status in preclinical models of several pathologies, including autoimmune diseases. However, its potential for modulating inflammation in autoimmune type 1 diabetes (T1D) is unknown. Herein we investigate whether Abn-CBD can modulate the inflammatory response during T1D onset using a mouse model of T1D (non-obese diabetic- (NOD)-mice) and of beta cell damage (streptozotocin (STZ)-injected mice). Six-week-old female NOD mice were treated with Abn-CBD (0.1-1 mg/kg) or vehicle during 12 weeks and then euthanized. Eight-to-ten-week-old male C57Bl6/J mice were pre-treated with Abn-CBD (1 mg/kg of body weight) or vehicle for 1 week, following STZ challenge, and euthanized 1 week later. Blood, pancreas, pancreatic lymph nodes (PLNs) and T cells were collected and processed for analysis. Glycemia was also monitored. In NOD mice, treatment with Abn-CBD significantly reduced the severity of insulitis and reduced the pro-inflammatory profile of CD4+ T cells compared to vehicle. Concomitantly, Abn-CBD significantly reduced islet cell apoptosis and improved glucose tolerance. In STZ-injected mice, Abn-CBD decreased circulating proinflammatory cytokines and ameliorated islet inflammation reducing intra-islet phospho-NF-κB and TXNIP. Abn-CBD significantly reduced 2 folds intra-islet CD8+ T cells and reduced Th1/non-Th1 ratio in PLNs of STZ-injected mice. Islet cell apoptosis and intra-islet fibrosis were also significantly reduced in Abn-CBD pre-treated mice compared to vehicle. Altogether, Abn-CBD reduces circulating and intra-islet inflammation, preserving islets, thus delaying the progression of insulitis. Hence, Abn-CBD and related compounds emerge as new candidates to develop pharmacological strategies to treat the early stages of T1D.
Collapse
Affiliation(s)
- Isabel González-Mariscal
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain.
| | - Macarena Pozo-Morales
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain
| | - Silvana Y Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, 29071 Málaga, Spain
| | - Vanesa Espinosa-Jimenez
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain
| | - Alejandro Escamilla-Sánchez
- Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, 29071 Málaga, Spain
| | | | - Nadia Cobo-Vuilleumier
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Benoit R Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain; Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Francisco J Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.
| |
Collapse
|
3
|
Lincez PJ, Shanina I, Horwitz MS. Changes in MDA5 and TLR3 Sensing of the Same Diabetogenic Virus Result in Different Autoimmune Disease Outcomes. Front Immunol 2021; 12:751341. [PMID: 34804036 PMCID: PMC8602094 DOI: 10.3389/fimmu.2021.751341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Seemingly redundant in function, melanoma differentiation-associated protein 5 (MDA5) and toll-like receptor- 3 (TLR3) both sense RNA viruses and induce type I interferon (IFN-I). Herein, we demonstrate that changes in sensing of the same virus by MDA5 and TLR3 can lead to distinct signatures of IFN-α and IFN-ß resulting in different disease outcomes. Specifically, infection with a diabetogenic islet β cell-tropic strain of coxsackievirus (CB4) results in diabetes protection under reduced MDA5 signaling conditions while reduced TLR3 function retains diabetes susceptibility. Regulating the induction of IFN-I at the site of virus infection creates a local site of interferonopathy leading to loss of T cell regulation and induction of autoimmune diabetes. We have not demonstrated another way to prevent T1D in the NOD mouse, rather we believe this work has provided compounding evidence for a specific control of IFN-I to drive a myriad of responses ranging from virus clearance to onset of autoimmune diabetes.
Collapse
Affiliation(s)
- Pamela J. Lincez
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Marc S. Horwitz
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Yang L, Han X, Zhang C, Sun C, Huang S, Xiao W, Gao Y, Liang Q, Luo F, Lu W, Fu J, Zhou Y. Hsa_circ_0060450 Negatively Regulates Type I Interferon-Induced Inflammation by Serving as miR-199a-5p Sponge in Type 1 Diabetes Mellitus. Front Immunol 2020; 11:576903. [PMID: 33133095 PMCID: PMC7550460 DOI: 10.3389/fimmu.2020.576903] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) constitute a class of covalently circular non-coding RNA molecules formed by 5′ and 3′ end back-splicing. The rapid development of bioinformatics and large-scale sequencing has led to the identification of functional circRNAs. Despite an overall upward trend, studies focusing on the roles of circRNAs in immune diseases remain relatively scarce. In the present study, we obtained a differential circRNA expression profile based on microarray analysis of peripheral blood mononuclear cells (PBMCs) in children with type 1 diabetes mellitus (T1DM). We characterized one differentially expressed circRNA back-spliced from the MYB Proto-Oncogene Like 2 (MYBL2) gene in patients with T1DM, termed as hsa_circ_0060450. Subsequent assays revealed that hsa_circ_0060450 can serve as the sponge of miR-199a-5p, release its target gene, Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), encoded by the tyrosine-protein phosphatase non-receptor type 11 gene (PTPN11), and further suppress the JAK-STAT signaling pathway triggered by type I interferon (IFN-I) to inhibit macrophage-mediated inflammation, which indicates the important roles of circRNAs in T1DM and represents a promising therapeutic molecule in the treatment of T1DM.
Collapse
Affiliation(s)
- Lan Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Xiao Han
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Caiyan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Chengjun Sun
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Saihua Huang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Wenfeng Xiao
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Yajing Gao
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Qiuyan Liang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Lu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jinrong Fu
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Dos Santos RS, Marroqui L, Velayos T, Olazagoitia-Garmendia A, Jauregi-Miguel A, Castellanos-Rubio A, Eizirik DL, Castaño L, Santin I. DEXI, a candidate gene for type 1 diabetes, modulates rat and human pancreatic beta cell inflammation via regulation of the type I IFN/STAT signalling pathway. Diabetologia 2019; 62:459-472. [PMID: 30478640 DOI: 10.1007/s00125-018-4782-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS The initial stages of type 1 diabetes are characterised by an aberrant islet inflammation that is in part regulated by the interaction between type 1 diabetes susceptibility genes and environmental factors. Chromosome 16p13 is associated with type 1 diabetes and CLEC16A is thought to be the aetiological gene in the region. Recent gene expression analysis has, however, indicated that SNPs in CLEC16A modulate the expression of a neighbouring gene with unknown function named DEXI, encoding dexamethasone-induced protein (DEXI). We therefore evaluated the role of DEXI in beta cell responses to 'danger signals' and determined the mechanisms involved. METHODS Functional studies based on silencing or overexpression of DEXI were performed in rat and human pancreatic beta cells. Beta cell inflammation and apoptosis, driven by a synthetic viral double-stranded RNA, were evaluated by real-time PCR, western blotting and luciferase assays. RESULTS DEXI-silenced beta cells exposed to a synthetic double-stranded RNA (polyinosinic:polycytidylic acid [PIC], a by-product of viral replication) showed reduced activation of signal transducer and activator of transcription (STAT) 1 and lower production of proinflammatory chemokines that was preceded by a reduction in IFNβ levels. Exposure to PIC increased chromatin-bound DEXI and IFNβ promoter activity. This effect on IFNβ promoter was inhibited in DEXI-silenced beta cells, suggesting that DEXI is implicated in the regulation of IFNβ transcription. In a mirror image of knockdown experiments, DEXI overexpression led to increased levels of STAT1 and proinflammatory chemokines. CONCLUSIONS/INTERPRETATION These observations support DEXI as the aetiological gene in the type 1 diabetes-associated 16p13 genomic region, and provide the first indication of a link between this candidate gene and the regulation of local antiviral immune responses in beta cells. Moreover, our results provide initial information on the function of DEXI.
Collapse
Affiliation(s)
- Reinaldo S Dos Santos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Instituto de Biología Molecular y Celular (IBMC), and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroqui
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Instituto de Biología Molecular y Celular (IBMC), and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Velayos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pediatrics, University of the Basque Country, Leioa, Spain
| | - Ane Olazagoitia-Garmendia
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Fisiology, University of the Basque Country, Leioa, Spain
| | - Amaia Jauregi-Miguel
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Fisiology, University of the Basque Country, Leioa, Spain
| | - Ainara Castellanos-Rubio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Fisiology, University of the Basque Country, Leioa, Spain
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Luis Castaño
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pediatrics, University of the Basque Country, Leioa, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Izortze Santin
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Barrio Sarriena, S/N, 48940, Leioa, Bizkaia, Spain.
| |
Collapse
|
6
|
Zou J, Gao X, Liu T, Liang R, Liu Y, Wang G, Wang L, Liu N, Sun P, Wang Z, Wang S, Shen Z. Ethylenecarbodiimide-fixed splenocytes carrying whole islet antigens decrease the incidence of diabetes in NOD mice via down-regulation of effector memory T cells and autoantibodies. Endocr J 2018; 65:943-952. [PMID: 29998909 DOI: 10.1507/endocrj.ej18-0158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a syndrome of loss of glucose homeostasis caused by the loss of β cell chronic autoimmunity against islet cells. Islet-specific epitopes coupled antigen presenting cells by Ethylenecarbodiimide (ECDI) is a promising strategy to induce antigen-specific tolerance. However, single epitope induced tolerance is insufficient to prevent the onset of T1DM. The aim of this study is to evaluate the efficacy of whole islet antigens in preventing the onset and progression of T1DM and identify the underlying immune mechanism in NOD mice. In this study, the whole islet antigens, derived from islet lysate isolated from BALB/c mice, were coupled to splenocytes of BALB/c mice by ECDI fixation (SP-Islet lysate), and then intravenously administrated to NOD mice. The results showed that, compared with control group, SP-Islet lysate group significantly decreased T1DM incidence and improved the survival of NOD mice. SP-Islet lysate treated mice had reduced insulitis score and autoantibody levels, and improved glucose tolerance and insulin/glucagon production. Furthermore, the effector memory T cells (TEMs) were downregulated and regulatory T cells (Tregs) were upregulated by the SP-Islet lysate treatment, with reduced populations of Th1&Th17 cells. In conclusion, ECDI-fixed splenocytes carrying whole islet antigens effectively prevented the onset of T1DM in NOD mice, via suppressing the production of autoantibodies and inducing anergy of autoreactive T cells.
Collapse
Affiliation(s)
- Jiaqi Zou
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin, China
| | - Xinpu Gao
- Tianjin Medical University, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | - Tengli Liu
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Rui Liang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Yaojuan Liu
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Guanqiao Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Le Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Na Liu
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Peng Sun
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
| | - Zhiping Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin First Center Hospital, Tianjin, China
| | - Shusen Wang
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin First Center Hospital, Tianjin, China
| | - Zhongyang Shen
- Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin First Center Hospital, Tianjin, China
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Despite immense research efforts, type 1 diabetes (T1D) remains an autoimmune disease without a known trigger or approved intervention. Over the last three decades, studies have primarily focused on delineating the role of the adaptive immune system in the mechanism of T1D. The discovery of Toll-like receptors in the 1990s has advanced the knowledge on the role of the innate immune system in host defense as well as mechanisms that regulate adaptive immunity including the function of autoreactive T cells. RECENT FINDINGS Recent investigations suggest that inflammation plays a key role in promoting a large number of autoimmune disorders including T1D. Data from the LEW1.WR1 rat model of virus-induced disease and the RIP-B7.1 mouse model of diabetes suggest that innate immune signaling plays a key role in triggering disease progression. There is also evidence that innate immunity may be involved in the course of T1D in humans; however, a small number of clinical trials have shown that interfering with the function of the innate immune system following disease onset exerts only a modest effect on β-cell function. The data implying that innate immune pathways are linked with mechanisms of islet autoimmunity hold great promise for the identification of novel disease pathways that may be harnessed for clinical intervention. Nevertheless, more work needs to be done to better understand mechanisms by which innate immunity triggers β-cell destruction and assess the therapeutic value in blocking innate immunity for diabetes prevention.
Collapse
Affiliation(s)
- James C Needell
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Danny Zipris
- Innate Biotechnologies LLC, Denver, CO, 80231, USA.
| |
Collapse
|
8
|
Prezioso G, Comegna L, Di Giulio C, Franchini S, Chiarelli F, Blasetti A. C1858T Polymorphism of Protein Tyrosine Phosphatase Non-receptor Type 22 (PTPN22): an eligible target for prevention of type 1 diabetes? Expert Rev Clin Immunol 2016; 13:189-196. [PMID: 27892782 DOI: 10.1080/1744666x.2017.1266257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION In type 1 diabetes (T1D), several genetic factors are associated to β-cell autoimmunity onset and clinical progression. HLA-genes play a major role in susceptibility and initiation of β-cell autoimmunity, whereas non-HLA genes may influence the destruction rate. Areas covered: Our review focuses on the possible role of the PTPN22 C1858 T variant as a prognostic factor, given its influence on disease variability. Moreover, we present the potential role of C1858 T as a target for tertiary prevention trials and new therapeutic strategies, such as the LYP inhibitors. We used PubMed for literature research; key words were 'PTPN22', 'C1858 T polymorphism', 'lymphoid-specific tyrosine phosphatase' and 'type 1 diabetes'. We selected publications between 2000 and 2016. Expert commentary: Current data suggest that PTPN22 can be a promising target for therapeutic interventions and identification of at-risk subjects in autoimmune diseases such as T1D.
Collapse
Affiliation(s)
- Giovanni Prezioso
- a Department of Pediatrics , 'G. D'Annunzio' University , Chieti , Italy
| | - Laura Comegna
- a Department of Pediatrics , 'G. D'Annunzio' University , Chieti , Italy
| | - Concetta Di Giulio
- a Department of Pediatrics , 'G. D'Annunzio' University , Chieti , Italy
| | - Simone Franchini
- a Department of Pediatrics , 'G. D'Annunzio' University , Chieti , Italy
| | | | - Annalisa Blasetti
- a Department of Pediatrics , 'G. D'Annunzio' University , Chieti , Italy
| |
Collapse
|
9
|
Abstract
The gastrointestinal system represents one of the largest interfaces between the human internal microenvironment and the external world. This system harbors trillions of commensal bacteria that reside in symbiosis with the host. Intestinal bacteria play a crucial role in maintaining systemic and intestinal immune and metabolic homeostasis because of their effect on nutrient absorption and immune development and function. Recently, altered gut bacterial composition (dysbiosis) was hypothesized to be involved in mechanisms through which islet autoimmunity is triggered. Evidence from animal models indicates that alterations in the gut bacterial composition precede disease onset, thus implicating a causal role for the gut microbiome in islet destruction. However, it remains unclear whether dysbiosis is directly linked to the mechanisms of human type 1 diabetes (T1D). In this review, we discuss data implicating the gut microbiota in disease progression with an emphasis on our recent studies performed in humans and in rodent models of T1D.
Collapse
Affiliation(s)
- James C Needell
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO, 80045, USA
| | - Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Fichna M, Żurawek M, Fichna P, Januszkiewicz-Lewandowska D, Ruchała M, Nowak J. Polymorphisms of the Toll-Like Receptor-3 Gene in Autoimmune Adrenal Failure and Type 1 Diabetes in Polish Patients. Arch Immunol Ther Exp (Warsz) 2015; 64:83-7. [PMID: 26318769 PMCID: PMC4713709 DOI: 10.1007/s00005-015-0360-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022]
Abstract
Infectious agents are plausible environmental triggers for autoimmunity in genetically susceptible individuals. Polymorphic variants of genes implicated in innate immunity may affect immune responses and hence promote auto-aggressive reactions. Genes such as Toll-like receptor-3 (TLR3), which participate in recognizing conserved foreign molecules and mounting the first line of defence against viral infections, are promising functional candidates in autoimmune conditions. We investigated the association of the TLR3 variants, rs13126816 and rs3775291, with the autoimmune endocrine disorders, Addison's disease (AD) and type 1 diabetes (T1D) in the Polish population. The study comprised 168 AD patients, 524 individuals with T1D and 592 healthy controls. Genotyping was performed by real-time PCR. Distribution of the TLR3 genotypes and alleles did not reveal significant differences between patients and controls (p > 0.05). No effect on age at disease onset was found in affected cohorts. This analysis does not support an association between TLR3 variants and the risk for autoimmune destruction of the adrenal cortex and beta cells. However, innate immunity merits further studies in autoimmune endocrine conditions.
Collapse
Affiliation(s)
- Marta Fichna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland. .,Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland. .,Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Piotr Fichna
- Department of Paediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| |
Collapse
|
11
|
Morran MP, Vonberg A, Khadra A, Pietropaolo M. Immunogenetics of type 1 diabetes mellitus. Mol Aspects Med 2015; 42:42-60. [PMID: 25579746 PMCID: PMC4548800 DOI: 10.1016/j.mam.2014.12.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/20/2014] [Accepted: 12/15/2014] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease arising through a complex interaction of both genetic and immunologic factors. Similar to the majority of autoimmune diseases, T1DM usually has a relapsing remitting disease course with autoantibody and T cellular responses to islet autoantigens, which precede the clinical onset of the disease process. The immunological diagnosis of autoimmune diseases relies primarily on the detection of autoantibodies in the serum of T1DM patients. Although their pathogenic significance remains uncertain, they have the practical advantage of serving as surrogate biomarkers for predicting the clinical onset of T1DM. Type 1 diabetes is a polygenic disease with a small number of genes having large effects (i.e. HLA), and a large number of genes having small effects. Risk of T1DM progression is conferred by specific HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201 (DR3) or DRB1*04-DQB1*0302 (DR4)]. In addition, HLA alleles such as DQB1*0602 are associated with dominant protection from T1DM in multiple populations. A discordance rate of greater than 50% between monozygotic twins indicates a potential involvement of environmental factors on disease development. Viral infections may play a role in the chain of events leading to disease, albeit conclusive evidence linking infections with T1DM remains to be firmly established. Two syndromes have been described in which an immune-mediated form of diabetes occurs as the result of a single gene defect. These syndromes are termed autoimmune polyglandular syndrome type I (APS-I) or autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), and X-linked poyendocrinopathy, immune dysfunction and diarrhea (XPID). These two syndromes are unique models to understand the mechanisms involved in the loss of tolerance to self-antigens in autoimmune diabetes and its associated organ-specific autoimmune disorders. A growing number of animal models of these diseases have greatly helped elucidate the immunologic mechanisms leading to autoimmune diabetes.
Collapse
Affiliation(s)
- Michael P Morran
- Laboratory of Immunogenetics, The Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew Vonberg
- Laboratory of Immunogenetics, The Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Massimo Pietropaolo
- Laboratory of Immunogenetics, The Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
12
|
Assmann TS, Brondani LDA, Bouças AP, Canani LH, Crispim D. Toll-like receptor 3 (TLR3) and the development of type 1 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2015; 59:4-12. [DOI: 10.1590/2359-3997000000003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/29/2014] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Ana Paula Bouças
- Universidade Federal do Rio Grande do Sul, Brazil; UFRGS, Brazil
| | | | - Daisy Crispim
- Universidade Federal do Rio Grande do Sul, Brazil; UFRGS, Brazil
| |
Collapse
|
13
|
Zeng C, Yi X, Zipris D, Liu H, Zhang L, Zheng Q, Krishnamurthy M, Jin G, Zhou A. RNase L contributes to experimentally induced type 1 diabetes onset in mice. J Endocrinol 2014; 223:277-87. [PMID: 25287058 PMCID: PMC4225003 DOI: 10.1530/joe-14-0509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cause of type 1 diabetes continues to be a focus of investigation. Studies have revealed that interferon α (IFNα) in pancreatic islets after viral infection or treatment with double-stranded RNA (dsRNA), a mimic of viral infection, is associated with the onset of type 1 diabetes. However, how IFNα contributes to the onset of type 1 diabetes is obscure. In this study, we found that 2-5A-dependent RNase L (RNase L), an IFNα-inducible enzyme that functions in the antiviral and antiproliferative activities of IFN, played an important role in dsRNA-induced onset of type 1 diabetes. Using RNase L-deficient, rat insulin promoter-B7.1 transgenic mice, which are more vulnerable to harmful environmental factors such as viral infection, we demonstrated that deficiency of RNase L in mice resulted in a significant delay of diabetes onset induced by polyinosinic:polycytidylic acid (poly I:C), a type of synthetic dsRNA, and streptozotocin, a drug which can artificially induce type 1-like diabetes in experimental animals. Immunohistochemical staining results indicated that the population of infiltrated CD8(+)T cells was remarkably reduced in the islets of RNase L-deficient mice, indicating that RNase L may contribute to type 1 diabetes onset through regulating immune responses. Furthermore, RNase L was responsible for the expression of certain proinflammatory genes in the pancreas under induced conditions. Our findings provide new insights into the molecular mechanism underlying β-cell destruction and may indicate novel therapeutic strategies for treatment and prevention of the disease based on the selective regulation and inhibition of RNase L.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Blotting, Western
- Cell Line, Tumor
- Cells, Cultured
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diet, High-Fat/adverse effects
- Endoribonucleases/deficiency
- Endoribonucleases/genetics
- Immunohistochemistry
- Inflammation Mediators/metabolism
- Islets of Langerhans/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- NIH 3T3 Cells
- Obesity/etiology
- Obesity/genetics
- Obesity/metabolism
- Poly I-C
- RNA, Double-Stranded/genetics
- Rats
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Chun Zeng
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - Xin Yi
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - Danny Zipris
- Barbara Davis Center of Childhood Diabetes, University of Colorado Health Science Center, Denver, Colorado 80045
| | - Hongli Liu
- Central Laboratory, the Eighth Hospital of Xi'an, 2 East Zhangba Road, Xi'an 710061, China
| | - Lin Zhang
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - Qiaoyun Zheng
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | | | - Ge Jin
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
- Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH 44195
| |
Collapse
|
14
|
Assmann TS, Brondani LDA, Bauer AC, Canani LH, Crispim D. Polymorphisms in the TLR3 gene are associated with risk for type 1 diabetes mellitus. Eur J Endocrinol 2014; 170:519-27. [PMID: 24408902 DOI: 10.1530/eje-13-0963] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Viral pathogens seem to play a role in triggering the autoimmune destruction that leads to the development of type 1 diabetes mellitus (T1DM). Toll-like receptor 3 (TLR3) has been shown to recognize double-stranded RNA, a molecular signature of most viruses. It is expressed at high levels in pancreatic β-cells and immune cells, suggesting a role for it in the pathogenesis of T1DM. Therefore, the aim of this study was to investigate whether TLR3 polymorphisms are associated with T1DM. METHODS Frequencies of the TLR3 rs11721827, rs13126816, rs5743313, rs7668666, and rs3775291 polymorphisms were analyzed in 449 T1DM patients and in 507 nondiabetic subjects. Haplotypes constructed from the combination of these polymorphisms were inferred using a Bayesian statistical method. RESULTS The rs3775291 and rs13126816 polymorphisms were associated with T1DM, and the strongest association was observed for the additive model (odds ratio (OR)=2.3, 95% CI 1.3-4.2 and OR=2.1, 95% CI 1.3-3.1 respectively). In the same way, the frequency of T1DM was higher as more risk alleles of the five polymorphisms were present (P-trend=0.001). Moreover, in T1DM patients, the minor alleles of the rs5743313 and rs117221827 polymorphisms were associated with an early age at diagnosis and worse glycemic control. CONCLUSION The TLR3 rs3775291 and rs13126816 polymorphisms are associated with risk for T1DM, while the rs5743313 and rs11721827 polymorphisms are associated with age at T1DM diagnosis and poor glycemic control. The number of risk alleles of the five TLR3 polymorphisms in the haplotypes seems to influence the risk for T1DM, suggesting that these polymorphisms might interact in the susceptibility for the disease.
Collapse
Affiliation(s)
- Taís Silveira Assmann
- Endocrine Division, Laboratory of Biology of Human Pancreatic Islet, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Prédio 12, 4° Andar, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
15
|
Alkanani AK, Hara N, Lien E, Ir D, Kotter CV, Robertson CE, Wagner BD, Frank DN, Zipris D. Induction of diabetes in the RIP-B7.1 mouse model is critically dependent on TLR3 and MyD88 pathways and is associated with alterations in the intestinal microbiome. Diabetes 2014; 63:619-31. [PMID: 24353176 DOI: 10.2337/db13-1007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RIP-B7.1 transgenic mice express B7.1 costimulatory molecules in pancreatic islets and develop diabetes after treatment with polyinosinic:polycytidylic acid (poly I:C), a synthetic double-stranded RNA and agonist of Toll-like receptor (TLR) 3 and retinoic acid-inducible protein I. We used this model to investigate the role of TLR pathways and intestinal microbiota in disease progression. RIP-B7.1 mice homozygous for targeted disruption of TLR9, TLR3, and myeloid differentiation factor-88 (MyD88), and most of the wild-type RIP-B7.1 mice housed under normal conditions remained diabetes-free after poly I:C administration. However, the majority of TLR9-deficient mice and wild-type animals treated with poly I:C and an antibiotic developed disease. In sharp contrast, TLR3- and MyD88-deficient mice were protected from diabetes following the same treatment regimen. High-throughput DNA sequencing demonstrated that TLR9-deficient mice treated with antibiotics plus poly I:C had higher bacterial diversity compared with disease-resistant mice. Furthermore, principal component analysis suggested that TLR9-deficient mice had distinct gut microbiome compared with the diabetes-resistant mice. Finally, the administration of sulfatrim plus poly I:C to TLR9-deficient mice resulted in alterations in the abundance of gut bacterial communities at the phylum and genus levels. These data imply that the induction of diabetes in the RIP-B7.1 model is critically dependent on TLR3 and MyD88 pathways, and involves modulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Aimon K Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zouk H, Marchand L, Li Q, Polychronakos C. Functional characterization of the Thr946Ala SNP at the type 1 diabetes IFIH1 locus. Autoimmunity 2013; 47:40-5. [PMID: 24117221 DOI: 10.3109/08916934.2013.832758] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Thr allele at the Thr946Ala non-synonymous single-nucleotide polymorphism (nsSNP) in the IFIH1 gene confers risk for type 1 diabetes (T1D). IFIH1 binds viral double-stranded RNA (dsRNA), inducing a type I interferon (IFN) response. Reports of this nsSNP's role in IFIH1 expression regulation have produced conflicting results and a study evaluating transfected Thr946Ala protein alleles in an artificial system overexpressing IFIH1 shows that the SNP does not affect IFH1 function. In this study, we examine the effects of the Thr946Ala polymorphism on IFN-α response in a cell line that endogenously expresses physiological levels of IFIH1. Eleven lymphoblastoid cell lines (LCLs) homozygous for the major predisposing allele (Thr/Thr) and 6 LCLs homozygous for the minor protective allele (Ala/Ala) were electroporated with the viral dsRNA mimic, poly I:C, in three independent experiments. Media were collected 24 hours later and measured for IFN-α production by ELISA. Basal IFN response is minimal in mock-transfected cells from both genotypes and increases by about 8-fold in cells treated with poly I:C. LCLs with the Ala/Ala genotype have slightly higher IFN-α levels than their Thr/Thr counterparts but this did not reach statistical significance because of the large variability of the IFN response, due mostly to two high outliers (biological, not technical). A larger sample size would be needed to determine whether the Thr946Ala SNP affects the poly I:C-driven IFN-α response. Additionally, the possibility that this nsSNP recognizes viral dsRNA specificities cannot be ruled out. Thus, the mechanism of the observed association of this SNP with T1D remains to be determined.
Collapse
Affiliation(s)
- Hana Zouk
- Endocrine Genetics Laboratory, McGill University Health Center, Montreal Children's Hospital Research Institute, McGill University , Montreal , Canada
| | | | | | | |
Collapse
|
17
|
Presensitizing with a Toll-like receptor 3 ligand impairs CD8 T-cell effector differentiation and IL-33 responsiveness. Proc Natl Acad Sci U S A 2012; 109:10486-91. [PMID: 22689946 DOI: 10.1073/pnas.1202607109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The synthetic double-stranded RNA poly(I:C) is commonly used as an adjuvant to boost CD8 T-cell function; however, polyinosinic:polycytidylic acid [poly(I:C)] can also suppress autoimmune disease. The mechanism by which a single adjuvant achieves two distinct immunoregulatory roles is unknown. Although it is clear that coadministration of poly(I:C) with antigen elicits strong adjuvant effects in mice, we found that poly(I:C) injection before antigen substantially reduced antigen-dependent CD8 T-cell responses. Notably, CD8 T cells sensitized in poly(I:C)-pretreated mice failed to fully up-regulate IL-33R (ST2), which led to impaired T-cell receptor-independent responses to IL-33. In contrast, nonsensitized effector CD8 T cells responded robustly to IL-33 using a two-signal cytokine mechanism. During an acute lung response to Staphylococcus aureus enterotoxin, peripheral injection of poly(I:C) manifested a suppressive process by inhibiting the differentiation of both antigen- and IL-33-responsive CD8 effectors systemically. These findings highlight that early exposure to double-stranded RNA reverses its role as an adjuvant and, importantly, prevents IL-33R up-regulation on CD8 effector T cells to dampen inflammation.
Collapse
|
18
|
Seleme MC, Lei W, Burg AR, Goh KY, Metz A, Steele C, Tse HM. Dysregulated TLR3-dependent signaling and innate immune activation in superoxide-deficient macrophages from nonobese diabetic mice. Free Radic Biol Med 2012; 52:2047-56. [PMID: 22361747 PMCID: PMC3711256 DOI: 10.1016/j.freeradbiomed.2012.01.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 12/26/2022]
Abstract
In type 1 diabetes (T1D), reactive oxygen species (ROS) and proinflammatory cytokines produced by macrophages and other innate immune cells destroy pancreatic β cells while promoting autoreactive T cell maturation. Superoxide-deficient nonobese diabetic mice (NOD.Ncf1(m1J)) are resistant to spontaneous diabetes, revealing the integral role of ROS signaling in T1D. Here, we evaluate the innate immune activation state of bone marrow-derived macrophages (BM-Mϕ) from NOD and NOD.Ncf1(m1J) mice after poly(I:C)-induced Toll-like receptor 3 (TLR3) signaling. We show that ROS synthesis is required for efficient activation of the NF-κB signaling pathway and concomitant expression of TLR3 and the cognate adaptor molecule, TRIF. Poly(I:C)-stimulated NOD.Ncf1(m1J) BM-Mϕ exhibited a 2- and 10-fold decrease in TNF-α and IFN-β proinflammatory cytokine synthesis, respectively, in contrast to NOD BM-Mϕ. Optimal expression of IFN-α/β is not solely dependent on superoxide synthesis, but requires p47(phox) to function in a NOX-independent manner to mediate type I interferon synthesis. Interestingly, MHC-II I-A(g7) expression necessary for CD4 T cell activation is increased 2-fold relative to NOD, implicating a role for superoxide in I-A(g7) downregulation. These findings suggest that defective innate immune-pattern-recognition receptor activation and subsequent decrease in TNF-α and IFN-β proinflammatory cytokine synthesis necessary for autoreactive T cell maturation may contribute to the T1D protection observed in NOD.Ncf1(m1J) mice.
Collapse
Affiliation(s)
- Maria C. Seleme
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Weiqi Lei
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ashley R. Burg
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kah Yong Goh
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Allison Metz
- Department of Medicine/Division of Pulmonary, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Chad Steele
- Department of Medicine/Division of Pulmonary, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
- Address correspondence to: Hubert M. Tse, Department of Microbiology, Comprehensive Diabetes Center, 1825 University Boulevard, SHEL 1202, Birmingham, AL 35294, Phone: (205) 934-7037, Fax: (205) 996-5220,
| |
Collapse
|
19
|
Wang Y, Swiecki M, McCartney SA, Colonna M. dsRNA sensors and plasmacytoid dendritic cells in host defense and autoimmunity. Immunol Rev 2011; 243:74-90. [PMID: 21884168 DOI: 10.1111/j.1600-065x.2011.01049.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The innate immune system detects viruses through molecular sensors that trigger the production of type I interferons (IFN-I) and inflammatory cytokines. As viruses vary tremendously in size, structure, genomic composition, and tissue tropism, multiple sensors are required to detect their presence in various cell types and tissues. In this review, we summarize current knowledge of the diversity, specificity, and signaling pathways downstream of viral sensors and ask whether two distinct sensors that recognize the same viral component are complementary, compensatory, or simply redundant. We also discuss why viral sensors are differentially distributed in distinct cell types and whether a particular cell type dominates the IFN-I response during viral infection. Finally, we review evidence suggesting that inappropriate signaling through viral sensors may induce autoimmunity. The picture emerging from these studies is that disparate viral sensors in different cell types form a dynamic and integrated molecular network that can be exploited for improving vaccination and therapeutic strategies for infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Yaming Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
20
|
Santin I, Moore F, Colli ML, Gurzov EN, Marselli L, Marchetti P, Eizirik DL. PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic β-cell apoptosis via regulation of the BH3-only protein Bim. Diabetes 2011; 60:3279-88. [PMID: 21984578 PMCID: PMC3219938 DOI: 10.2337/db11-0758] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Genome-wide association studies allowed the identification of several associations between specific loci and type 1 diabetes (T1D). However, the mechanisms by which most candidate genes predispose to T1D remain unclear. We presently evaluated the mechanisms by which PTPN2, a candidate gene for T1D, modulates β-cell apoptosis after exposure to type I and II interferons (IFNs), cytokines that contribute to β-cell loss in early T1D. RESEARCH DESIGN AND METHODS Small interfering RNAs were used to inhibit PTPN2, STAT1, Bim, and Jun NH(2)-terminal kinase 1 (JNK1) expression. Cell death was assessed by Hoechst and propidium iodide staining. BAX translocation, Bim phosphorylation, cytochrome c release, and caspases 9 and 3 activation were measured by Western blot or immunofluorescence. RESULTS PTPN2 knockdown exacerbated type I IFN-induced apoptosis in INS-1E, primary rat, and human β-cells. PTPN2 silencing and exposure to type I and II IFNs induced BAX translocation to the mitochondria, cytochrome c release, and caspase 3 activation. There was also an increase in Bim phosphorylation that was at least in part regulated by JNK1. Of note, both Bim and JNK1 knockdown protected β-cells against IFN-induced apoptosis in PTPN2-silenced cells. CONCLUSIONS The present findings suggest that local IFN production may interact with a genetic factor (PTPN2) to induce aberrant proapoptotic activity of the BH3-only protein Bim, resulting in increased β-cell apoptosis via JNK activation and the intrinsic apoptotic pathway. This is the first indication of a direct interaction between a candidate gene for T1D and the activation of a specific downstream proapoptotic pathway in β-cells.
Collapse
Affiliation(s)
- Izortze Santin
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice Moore
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Maikel L. Colli
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Esteban N. Gurzov
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Decio L. Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Corresponding author: Decio L. Eizirik,
| |
Collapse
|
21
|
Colli ML, Nogueira TC, Allagnat F, Cunha DA, Gurzov EN, Cardozo AK, Roivainen M, Op de beeck A, Eizirik DL. Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance. PLoS Pathog 2011; 7:e1002267. [PMID: 21977009 PMCID: PMC3178579 DOI: 10.1371/journal.ppat.1002267] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/27/2011] [Indexed: 12/20/2022] Open
Abstract
The rise in type 1 diabetes (T1D) incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA) and a diabetogenic enterovirus (Coxsackievirus B5). Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR) promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1). Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.
Collapse
Affiliation(s)
- Maikel L. Colli
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Tatiane C. Nogueira
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Florent Allagnat
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Daniel A. Cunha
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Esteban N. Gurzov
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Alessandra K. Cardozo
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Merja Roivainen
- Intestinal Viruses Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Anne Op de beeck
- Virology Unit, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L. Eizirik
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| |
Collapse
|
22
|
Lin ACC, Dissanayake D, Dhanji S, Elford AR, Ohashi PS. Different toll-like receptor stimuli have a profound impact on cytokines required to break tolerance and induce autoimmunity. PLoS One 2011; 6:e23940. [PMID: 21931625 PMCID: PMC3171407 DOI: 10.1371/journal.pone.0023940] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/29/2011] [Indexed: 11/18/2022] Open
Abstract
Although toll-like receptor (TLR) signals are critical for promoting antigen presenting cell maturation, it remains unclear how stimulation via different TLRs influence dendritic cell (DC) function and the subsequent adaptive response in vivo. Furthermore, the relationship between TLR-induced cytokine production by DCs and the consequences on the induction of a functional immune response is not clear. We have established a murine model to examine whether TLR3 or TLR4 mediated DC maturation has an impact on the cytokines required to break tolerance and induce T-cell-mediated autoimmunity. Our study demonstrates that IL-12 is not absolutely required for the induction of a CD8 T-cell-mediated tissue specific immune response, but rather the requirement for IL-12 is determined by the stimuli used to mature the DCs. Furthermore, we found that IFNα is a critical pathogenic component of the cytokine milieu that circumvents the requirement for IL-12 in the induction of autoimmunity. These studies illustrate how different TLR stimuli have an impact on DC function and the induction of immunity.
Collapse
Affiliation(s)
- Albert C. C. Lin
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Dilan Dissanayake
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Salim Dhanji
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Swiecki M, McCartney SA, Wang Y, Colonna M. TLR7/9 versus TLR3/MDA5 signaling during virus infections and diabetes. J Leukoc Biol 2011; 90:691-701. [PMID: 21844166 DOI: 10.1189/jlb.0311166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IFN-I are pleiotropic cytokines that impact innate and adaptive immune responses. In this article, we discuss TLR7/9 versus TLR3/MDA5 signaling in antiviral responses and diabetes. pDCs are thought to have a critical role in antiviral defense because of their ability to rapidly secrete large amounts of IFN-I through TLR7/9 signaling. A recent study demonstrates that although pDCs are a source of IFN-I in vivo, their overall contribution to viral containment is limited and time-dependent, such that additional cellular sources of IFN-I are required to fully control viral infections. dsRNA sensors, such as TLR3 and MDA5, provide another important trigger for antiviral IFN-I responses, which can be exploited to enhance immune responses to vaccines. In the absence of infection, IFN-I production by pDCs or from signaling through dsRNA sensors has been implicated in the pathogenesis of autoimmune diseases such as diabetes. However, recent data demonstrate that IFN-I production via TLR3 and MDA5 is critical to counter diabetes caused by a virus with preferential tropism for pancreatic β-cells. This highlights the complexity of the host antiviral response and how multiple cellular and molecular components balance protective versus pathological responses.
Collapse
Affiliation(s)
- Melissa Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
24
|
McCartney SA, Vermi W, Lonardi S, Rossini C, Otero K, Calderon B, Gilfillan S, Diamond MS, Unanue ER, Colonna M. RNA sensor-induced type I IFN prevents diabetes caused by a β cell-tropic virus in mice. J Clin Invest 2011; 121:1497-507. [PMID: 21403398 DOI: 10.1172/jci44005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 01/19/2011] [Indexed: 12/24/2022] Open
Abstract
Viral infections have been linked to the onset of type I diabetes (T1D), with viruses postulated to induce disease directly by causing β cell injury and subsequent release of autoantigens and indirectly via the host type I interferon (IFN-I) response triggered by the virus. Consistent with this, resistance to T1D is associated with polymorphisms that impair the function of melanoma differentiation associated gene-5 (MDA5), a sensor of viral RNA that elicits IFN-I responses. In animal models, triggering of another viral sensor, TLR3, has been implicated in diabetes. Here, we found that MDA5 and TLR3 are both required to prevent diabetes in mice infected with encephalomyocarditis virus strain D (EMCV-D), which has tropism for the insulin-producing β cells of the pancreas. Infection of Tlr3-/- mice caused diabetes due to impaired IFN-I responses and virus-induced β cell damage rather than T cell-mediated autoimmunity. Mice lacking just 1 copy of Mda5 developed transient hyperglycemia when infected with EMCV-D, whereas homozygous Mda5-/- mice developed severe cardiac pathology. TLR3 and MDA5 controlled EMCV-D infection and diabetes by acting in hematopoietic and stromal cells, respectively, inducing IFN-I responses at kinetically distinct time points. We therefore conclude that optimal functioning of viral sensors and prompt IFN-I responses are required to prevent diabetes when caused by a virus that infects and damages the β cells of the pancreas.
Collapse
Affiliation(s)
- Stephen A McCartney
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kocic G, Pavlovic V, Saranac LJ, Kocic R, Zivic S, Sokolovic D, Jevtovic T, Nikolic G, Stojanovic S, Damnjanovic I. Circulating nucleic acids in type 1 diabetes may modulate the thymocyte turnover rate. Cell Immunol 2010; 266:76-82. [PMID: 20932515 DOI: 10.1016/j.cellimm.2010.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 08/29/2010] [Accepted: 08/31/2010] [Indexed: 11/27/2022]
Abstract
The autoimmunity of type 1 diabetes is associated with T-cell hyperactivity. Current study was designed to examine the effect of circulating ribonucleic acids (RNAs), isolated from type 1 diabetic patients on proliferative, apoptotic and inflammatory potential of rat thymocytes. Rat thymocytes were assayed for proliferating nuclear cell antigen (PCNA), Bcl-2, Bax and NF-κB level, using the flow cytometric and fluorometric assays. Cells were allocated into groups, treated with RNAs purified from plasma of juvenile diabetics, adult type 1 diabetic patients, control healthy children, healthy adult persons, nucleic acids and polynucleotide standards (RNA, polyC, PolyA, PolyIC, and CpG). The upregulation of PCNA and Bcl-2 protein and downregulation of Bax protein and NF-κB was shown when the thymocytes where incubated with RNA purified from plasma of juvenile type 1 diabetic patients. The dysregulation of inflammatory cascade and central tolerance may be a defect in autoimmune diseases related to innate immunity leading to corresponding alteration in adaptive immune response.
Collapse
Affiliation(s)
- G Kocic
- Institute of Biochemistry, University of Nis, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464:1293-300. [PMID: 20432533 PMCID: PMC4959889 DOI: 10.1038/nature08933] [Citation(s) in RCA: 806] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is an autoimmune disorder afflicting millions of people worldwide. Once diagnosed, patients require lifelong insulin treatment and can experience numerous disease-associated complications. The last decade has seen tremendous advances in elucidating the causes and treatment of the disease based on extensive research both in rodent models of spontaneous diabetes and in humans. Integrating these advances has led to the recognition that the balance between regulatory and effector T cells determines disease risk, timing of disease activation, and disease tempo. Here we describe current progress, the challenges ahead and the new interventions that are being tested to address the unmet need for preventative or curative therapies.
Collapse
Affiliation(s)
- Jeffrey A Bluestone
- Diabetes Center and the Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
27
|
Chistiakov DA. Interferon induced with helicase C domain 1 (IFIH1) and virus-induced autoimmunity: a review. Viral Immunol 2010; 23:3-15. [PMID: 20121398 DOI: 10.1089/vim.2009.0071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In addition to genetic factors, environmental triggers, including viruses and other pathogens, are thought to play a major role in the development of autoimmune disease. Recent findings have shown that viral-induced autoimmunity is likely to be genetically determined. In large-scale genetic analyses, an association of interferon induced with helicase C domain 1 (IFIH1) gene variants encoding a viral RNA-sensing helicase with susceptibility to several autoimmune diseases was found. To date, the precise role of IFIH1 in pathogenic mechanisms of viral-induced autoimmunity has yet to be fully elucidated. However, recent reports suggest that IFIH1 may play a role in the etiology of type 1 diabetes. Rare IFIH1 alleles have been shown to be protective against diabetes, and their carriage correlates with lower production of this helicase and its functional disruption. In contrast, upregulation of IFIH1 expression by viruses is associated with more severe disease, and could exacerbate the autoimmune process in susceptible individuals.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow, Russia
| |
Collapse
|
28
|
Abstract
The Banting Medal for Scientific Achievement Award is the American Diabetes Association's highest scientific award and honors an individual who has made significant, long-term contributions to the understanding of diabetes, its treatment, and/or prevention. The award is named after Nobel Prize winner Sir Frederick Banting, who codiscovered insulin treatment for diabetes. Dr. Eisenbarth received the American Diabetes Association's Banting Medal for Scientific Achievement at the Association's 69th Scientific Sessions, June 5–9, 2009, in New Orleans, Louisiana. He presented the Banting Lecture, An Unfinished Journey—Type 1 Diabetes—Molecular Pathogenesis to Prevention , on Sunday, June 7, 2009.
Collapse
Affiliation(s)
- George S Eisenbarth
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Aurora, Colorado, USA.
| |
Collapse
|
29
|
Colli ML, Moore F, Gurzov EN, Ortis F, Eizirik DL. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet 2010; 19:135-46. [PMID: 19825843 PMCID: PMC2792153 DOI: 10.1093/hmg/ddp474] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
β-Cell destruction in type 1 diabetes (T1D) is at least in part consequence of a ‘dialog’ between β-cells and immune system. This dialog may be affected by the individual's genetic background. We presently evaluated whether modulation of MDA5 and PTPN2, two candidate genes for T1D, affects β-cell responses to double-stranded RNA (dsRNA), a by-product of viral replication. These genes were selected following comparison between known candidate genes for T1D and genes expressed in pancreatic β-cells, as identified in previous array analysis. INS-1E cells and primary fluorescence-activated cell sorting-purified rat β-cells were transfected with small interference RNAs (siRNAs) targeting MDA5 or PTPN2 and subsequently exposed to intracellular synthetic dsRNA (polyinosinic–polycitidilic acid—PIC). Real-time RT–PCR, western blot and viability assays were performed to characterize gene/protein expression and viability. PIC increased MDA5 and PTPN2 mRNA expression, which was inhibited by the specific siRNAs. PIC triggered apoptosis in INS-1E and primary β-cells and this was augmented by PTPN2 knockdown (KD), although inhibition of MDA5 did not modify PIC-induced apoptosis. In contrast, MDA5 silencing decreased PIC-induced cytokine and chemokine expression, although inhibition of PTPN2 induced minor or no changes in these inflammatory mediators. These findings indicate that changes in MDA5 and PTPN2 expression modify β-cell responses to dsRNA. MDA5 regulates inflammatory signals, whereas PTPN2 may function as a defence mechanism against pro-apoptotic signals generated by dsRNA. These two candidate genes for T1D may thus modulate β-cell apoptosis and/or local release of inflammatory mediators in the course of a viral infection by acting, at least in part, at the pancreatic β-cell level.
Collapse
Affiliation(s)
- Maikel L Colli
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | |
Collapse
|
30
|
Zipris D. Toll-like receptors and type 1 diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:585-610. [PMID: 20217515 DOI: 10.1007/978-90-481-3271-3_25] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that results in the progressive loss of insulin producing cells. Studies performed in humans with T1D and animal models of the disease over the past two decades have suggested a key role for the adaptive immune system in disease mechanisms. The role of the innate immune system in triggering T1D was shown only recently. Research in this area was greatly facilitated by the discovery of toll-like receptors (TLRs) that were found to be a key component of the innate immune system that detect microbial infections and initiate antimicrobial host defense responses. New data indicate that in some situations, the innate immune system is associated with mechanisms triggering autoimmune diabetes. In fact, studies preformed in the BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rat models of T1D demonstrate that virus infection leads to islet destruction via mechanisms that may involve TLR9-induced innate immune system activation. Data from these studies also show that TLR upregulation can synergize with virus infection to dramatically increase disease penetrance. Reports from murine models of T1D implicate both MyD88-dependent and MyD88-independent pathways in the course of disease. The new knowledge about the role of innate immune pathways in triggering islet destruction could lead to the discovery of new molecules that may be targeted for disease prevention.
Collapse
Affiliation(s)
- Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
31
|
Murine pancreatic beta TC3 cells show greater 2', 5'-oligoadenylate synthetase (2'5'AS) antiviral enzyme activity and apoptosis following IFN-alpha or poly(I:C) treatment than pancreatic alpha TC3 cells. EXPERIMENTAL DIABETES RESEARCH 2009; 2009:631026. [PMID: 19888425 PMCID: PMC2771153 DOI: 10.1155/2009/631026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/30/2009] [Accepted: 08/06/2009] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes is caused by autoimmune destruction of pancreatic beta cells, possibly virus initiated. Virus infection induces alpha-interferon (IFN-α), leading to upregulation of genes encoding double-stranded (ds) RNA-dependent antiviral enzymes 2′, 5′-oligoadenylate synthetase (2′5′AS) and PKR (p68). To investigate whether beta cell specificity could be due to antiviral differences between beta and alpha cells, we treated beta and alpha TC3 cell lines with IFN-α and/or poly(I:C) (a synthetic dsRNA). Results showed that, following IFN-α stimulation, increases in 2′5′AS levels and activities were significantly higher in beta than alpha cells (P < .001), whereas increases in PKR level and activity were comparable in the two cell types. Poly(I:C) stimulated 2′5′AS activity in beta but not alpha cells, and co-transfection IFN-α
plus poly(I:C) induced apoptosis in beta but not alpha cells. These findings suggest that the elevated 2′5′AS response of pancreatic beta cells could render them particularly vulnerable to damage and/or apoptosis during virus infection.
Collapse
|
32
|
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease with a strong inflammatory component. The latest studies indicate that innate immunity and inflammatory mediators have a much broader role in T1DM than initially assumed. Inflammation might contribute to early induction and amplification of the immune assault against pancreatic beta cells and, at later stages, to the stabilization and maintenance of insulitis. Inflammatory mediators probably contribute to the suppression of beta-cell function and subsequent apoptosis; they may also inhibit or stimulate beta-cell regeneration and might cause peripheral insulin resistance. The different effects of inflammation take place in different phases of the course of T1DM, and should be considered in the context of a 'dialog' between invading immune cells and the target beta cells. This dialog is mediated both by cytokines and chemokines that are released by beta cells and immune cells, and by putative, immunogenic signals that are delivered by dying beta cells. In this Review, we divided the role of inflammation in T1DM into three arbitrary stages: induction, amplification and maintenance or resolution of insulitis. These stages, and their progression or resolution, might depend on a patient's genetic background, which contributes to disease heterogeneity.
Collapse
Affiliation(s)
- Décio L Eizirik
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, 808 Route de Lennik, Brussels,Belgium.
| | | | | |
Collapse
|
33
|
Wolter TR, Wong R, Sarkar SA, Zipris D. DNA microarray analysis for the identification of innate immune pathways implicated in virus-induced autoimmune diabetes. Clin Immunol 2009; 132:103-15. [PMID: 19328037 DOI: 10.1016/j.clim.2009.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/13/2009] [Accepted: 02/17/2009] [Indexed: 01/31/2023]
Abstract
We have recently demonstrated that upregulation of the innate immune system plays a key role in KRV-induced autoimmune diabetes in the BBDR rat, but the nature of this proinflammatory reaction has not yet been addressed. Using a DNA microarray approach, we identified 569 genes upregulated in pancreatic lymph nodes following virus infection. Among the most highly activated are IL-1 pathways, IFN-gamma-induced chemokines, and genes associated with interferon production and signaling. Ex vivo and in vitro studies indicate that KRV upregulates proinflammatory cytokines and chemokines in B lymphocytes and Flt-3L-induced plasmacytoid DCs (pDCs). Finally, in contrast to KRV, infection of BBDR rats with the non-diabetogenic KRV homologue H-1 parvovirus fails to induce a robust proinflammatory response in pancreatic lymph nodes. Our findings provide new insights into KRV-induced innate immune pathways that may play a role in early mechanisms leading to islet inflammation and diabetes.
Collapse
Affiliation(s)
- Travis R Wolter
- Department of Pediatrics, Barbara Davis Center for Childhood Diabetes, University of Colorado Health Science Center, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
34
|
Interferon-alpha initiates type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci U S A 2008; 105:12439-44. [PMID: 18716002 DOI: 10.1073/pnas.0806439105] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the goal of identifying changes in gene expression in CD4(+) T cells during the development of diabetes in the nonobese diabetic (NOD) mouse, we used DNA microarrays to analyze gene expression in CD4(+) T cells from the pancreatic draining lymph nodes of NOD/BDC 2.5 T cell receptor transgenic and WT NOD mice at different ages. At 4 and 6 weeks of age, we found up-regulation of a number of genes that are known to be induced by IFN-alpha. IFN-alpha levels and IFN-alpha-producing plasmacytoid dendritic cells were increased in the PLNs of 3- to 4-week-old NOD mice. Moreover, blockade of IFN-alpha receptor 1 in NOD mice by a neutralizing antibody at 2-3 weeks of age significantly delayed the onset and decreased the incidence of type 1 diabetes, increased the relative number of immature dendritic cells in the PLNs, and enhanced the ability of spleen CD4(+) T cells to produce IL-4 and IL-10. These findings demonstrate that IFN-alpha in the PLNs is an essential initiator in the pathogenesis of type 1 diabetes in NOD mice.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Over the last 2 decades, studies addressing mechanisms of type 1 diabetes have focused primarily on the role of T lymphocytes in disease mechanisms. Recent investigations, however, suggest that the innate immune system plays a key role in promoting the response of autoreactive T cells triggering type 1 diabetes. The discovery of toll-like receptors in the 1990s has led to a better understanding of signaling pathways involved in initiating innate immune pathways and how these pathways may be associated with mechanisms leading to autoimmune disease. This review focuses on recent studies on the role of Toll-like receptors and innate pathways in triggering type 1 diabetes. RECENT FINDINGS Data from animal models of type 1 diabetes provide strong support to the hypothesis that Toll-like receptor-induced innate signaling pathways are involved in the proinflammatory process leading to autoimmune diabetes. Studies performed in peripheral blood cells and sera from patients with type 1 diabetes indicate that aberrant innate functions might exist in such patients, but the relevance of these alterations to the mechanism leading to type 1 diabetes is currently unclear. SUMMARY The discovery that innate signaling pathways are involved in the mechanism that may trigger islet inflammation and destruction holds great promise for the identification of new innate signaling molecules that could be targeted to specifically inhibit the autoimmune process to prevent autoimmune diabetes.
Collapse
Affiliation(s)
- Danny Zipris
- Department of Pediatrics, Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, Colorado 80045-6511, USA.
| |
Collapse
|
36
|
Dogusan Z, García M, Flamez D, Alexopoulou L, Goldman M, Gysemans C, Mathieu C, Libert C, Eizirik DL, Rasschaert J. Double-stranded RNA induces pancreatic beta-cell apoptosis by activation of the toll-like receptor 3 and interferon regulatory factor 3 pathways. Diabetes 2008; 57:1236-45. [PMID: 18223009 DOI: 10.2337/db07-0844] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Viral infections contribute to the pathogenesis of type 1 diabetes. Viruses, or viral products such as double-stranded RNA (dsRNA), affect pancreatic beta-cell survival and trigger autoimmunity by unknown mechanisms. We presently investigated the mediators and downstream effectors of dsRNA-induced beta-cell death. RESEARCH DESIGN AND METHODS Primary rat beta-cells and islet cells from wild-type, toll-like receptor (TLR) 3, type I interferon receptor (IFNAR1), or interferon regulatory factor (IRF)-3 knockout mice were exposed to external dsRNA (external polyinosinic-polycytidylic acid [PICex]) or were transfected with dsRNA ([PICin]). RESULTS TLR3 signaling mediated PICex-induced nuclear factor-kappaB (NF-kappaB) and IRF-3 activation and beta-cell apoptosis. PICin activated NF-kappaB and IRF-3 in a TLR3-independent manner, induced eukaryotic initiation factor 2 alpha phosphorylation, and triggered a massive production of interferon (IFN)-beta. This contributed to beta-cell death, as islet cells from IFNAR1(-/-) or IRF-3(-/-) mice were protected against PICin-induced apoptosis. CONCLUSIONS PICex and PICin trigger beta-cell apoptosis via the TLR3 pathway or IRF-3 signaling, respectively. Execution of PICin-mediated apoptosis depends on autocrine effects of type I IFNs.
Collapse
Affiliation(s)
- Zeynep Dogusan
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Route de Lennik, 808, CP 618, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev 2008; 21:13-25. [PMID: 18202435 DOI: 10.1128/cmr.00022-07] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Toll-like receptors (TLRs) form a major group of transmembrane receptors that are involved in the detection of invading pathogens. Double-stranded RNA is a marker for viral infection that is recognized by TLR3. TLR3 triggering activates specific signaling pathways that culminate in the activation of NF-kappaB and IRF3 transcription factors, as well as apoptosis, enabling the host to mount an effective innate immune response through the induction of cytokines, chemokines, and other proinflammatory mediators. In this review, we describe the paradoxical role of TLR3 in innate immunity against different viruses and in viral pathogenesis but also the evidence for TLR3 as a "danger" receptor in nonviral diseases. We also discuss the structure and cellular localization of TLR3, as well as the complex signaling and regulatory events that contribute to TLR3-mediated immune responses.
Collapse
|
38
|
Kocic G, Bjelakovic G, Saranac L, Kocic R, Jevtovic T, Sokolovic D, Nikolic G, Pavlovic D, Stojanovic S. Altered degradation of circulating nucleic acids and oligonucleotides in diabetic patients. Diabetes Res Clin Pract 2008; 79:204-13. [PMID: 17945374 DOI: 10.1016/j.diabres.2007.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 08/26/2007] [Indexed: 11/19/2022]
Abstract
Foreign, infection-associated or endogenously generated circulating nucleotide motifs may represent the critical determinants for the activation of the Toll-like receptors (TLRs), leading to immune stimulation and cytokine secretion. The importance of circulating nucleases is to destroy nucleic acids and oligonucleotides in the blood stream and during cell entry. Patients with juvenile insulin-dependent diabetes, adult patients with insulin-dependent diabetes and adult patients with type 2 diabetes were allocated to the study, together with the age-matched control subjects. Plasma RNase and nuclease activity were examined, in relation to different substrates-TLRs response modifiers, and circulating RNA and oligonucleotides were isolated. The fall in enzyme activity in plasma was obtained for rRNA, poly(C), poly(U), poly(I:C), poly(A:U) and CpG, especially in juvenile diabetics. In order to test the non-enzymatic glycation, commercial RNase (E.C.3.1.27.5) and control plasma samples were incubated with increasing glucose concentrations (5, 10, 20 and 50 mmol/l). The fall of enzyme activity was expressed more significantly in control plasma samples than for the commercial enzyme. Total amount of purified plasma RNA and oligonucleotides was significantly higher in diabetic patients, especially in juvenile diabetics. The increase in the concentration of nucleotides corresponded to the peak absorbance at 270 nm, similar to polyC. The electrophoretic bands shared similar characteristics between controls and each type of diabetic patients, except that the bands were more expressed in diabetic patients. Decreased RNase activity and related increase of circulating oligonucleotides may favor the increase of nucleic acid "danger motifs", leading to TLRs activation.
Collapse
Affiliation(s)
- G Kocic
- Institute of Biochemistry, Medical Faculty University of Nis, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lang KS, Burow A, Kurrer M, Lang PA, Recher M. The role of the innate immune response in autoimmune disease. J Autoimmun 2007; 29:206-12. [PMID: 17904335 DOI: 10.1016/j.jaut.2007.07.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autoimmune diseases are the clinical correlate of a dysregulation of the immune system, involving multiple steps and multiple components of both the innate and the adaptive immune system. Innate immune cells are sensitive to a very limited repertoire of foreign "patterns" that bind to selective "pattern recognition receptors". In contrast, adaptive auto-reactive T or B cells bear receptors specific for antigens including "self" antigens and are rendered non-reactive by several "quality control" mechanisms. Under special conditions, activation of cells of the innate immune system can break the state of inactivity of auto-reactive cells of the adaptive immune system, thereby provoking autoimmune disease. Here we review examples to illustrate how innate immune activation influences autoimmune disease and point to the implications for the treatment of human autoimmune disease.
Collapse
Affiliation(s)
- Karl S Lang
- Institute of Experimental Immunology, University Hospital of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
40
|
Karges W, Rajasalu T, Spyrantis A, Wieland A, Boehm B, Schirmbeck R. The diabetogenic, insulin-specific CD8 T cell response primed in the experimental autoimmune diabetes model in RIP-B7.1 mice. Eur J Immunol 2007; 37:2097-103. [PMID: 17615584 DOI: 10.1002/eji.200737222] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type 1 diabetes mellitus can result from the specific destruction of pancreatic beta cells by autoreactive T cells. As shown here, experimental autoimmune diabetes (EAD) is efficiently induced in RIP-B7.1 mice by preproinsulin (ppins)-encoding DNA vaccines. EAD develops in RIP-B7.1 mice within 3-4 wk after a single immunization with ppins-encoding plasmid DNA. RIP-B7.1 mice develop insulitis, insulin deficiency and hyperglycemia after vaccination with plasmids encoding murine ppins-I or murine ppins-II or human hu-ppins. EAD induction critically depends on CD8 T cells and is independent of CD4 T cells. To be diabetogenic, ppins-specific CD8 T cells had to express IFN-gamma. Neither expression of perforin nor signaling through the type I IFN receptor is an essential component of this pathogenic CD8 T cell phenotype. Using plasmids encoding truncated ppins variants, we show that EAD is only induced by DNA vaccines encoding the insulin A-chain. Diabetogenic CD8 T cells specifically recognize the Kb-restricted A12-21 epitope of the insulin A-chain. The RIP-B7.1 model hence represents an attractive model for the characterization of cellular and molecular events involved in the CD8 T cell-mediated immune pathogenesis of diabetes.
Collapse
Affiliation(s)
- Wolfram Karges
- Division of Endocrinology and Diabetes, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Lang KS, Georgiev P, Recher M, Navarini AA, Bergthaler A, Heikenwalder M, Harris NL, Junt T, Odermatt B, Clavien PA, Pircher H, Akira S, Hengartner H, Zinkernagel RM. Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling. J Clin Invest 2006; 116:2456-63. [PMID: 16955143 PMCID: PMC1555644 DOI: 10.1172/jci28349] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 06/27/2006] [Indexed: 12/21/2022] Open
Abstract
The liver is known to be a classical immunoprivileged site with a relatively high resistance against immune responses. Here we demonstrate that highly activated liver-specific effector CD8+ T cells alone were not sufficient to trigger immune destruction of the liver in mice. Only additional innate immune signals orchestrated by TLR3 provoked liver damage. While TLR3 activation did not directly alter liver-specific CD8+ T cell function, it induced IFN-alpha and TNF-alpha release. These cytokines generated expression of the chemokine CXCL9 in the liver, thereby enhancing CD8+ T cell infiltration and liver disease in mice. Thus, nonspecific activation of innate immunity can drastically enhance susceptibility to immune destruction of a solid organ.
Collapse
Affiliation(s)
- Karl S Lang
- Institute of Experimental Immunology, University Hospital of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Many autoimmune diseases are thought to be precipitated by viral infections. In this issue of the JCI, Lang et al. demonstrate that, in a mouse model of autoimmune hepatitis, viral infections not only trigger expansion of self-reactive T cells but also activate antigen-presenting cells through TLR stimulation (see the related article beginning on page 2456). Activated cells then secrete IFN-alpha and TNF-alpha, which trigger tissue release of chemokines that attract self-reactive CD8+ T cells, ultimately leading to liver damage.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
43
|
|