1
|
Xue Y, Xu P, Hu Y, Liu S, Yan R, Liu S, Li Y, Liu J, Fu T, Li Z. Stress systems exacerbate the inflammatory response after corneal abrasion in sleep-deprived mice via the IL-17 signaling pathway. Mucosal Immunol 2024; 17:323-345. [PMID: 38428739 DOI: 10.1016/j.mucimm.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Sleep deprivation (SD) has a wide range of adverse health effects. However, the mechanisms by which SD influences corneal pathophysiology and its post-wound healing remain unclear. This study aimed to examine the basic physiological characteristics of the cornea in mice subjected to SD and determine the pathophysiological response to injury after corneal abrasion. Using a multi-platform water environment method as an SD model, we found that SD leads to disturbances of corneal proliferative, sensory, and immune homeostasis as well as excessive inflammatory response and delayed repair after corneal abrasion by inducing hyperactivation of the sympathetic nervous system and hypothalamic-pituitary-adrenal axis. Pathophysiological changes in the cornea mainly occurred through the activation of the IL-17 signaling pathway. Blocking both adrenergic and glucocorticoid synthesis and locally neutralizing IL-17A significantly improved corneal homeostasis and the excessive inflammatory response and delay in wound repair following corneal injury in SD-treated mice. These results indicate that optimal sleep quality is essential for the physiological homeostasis of the cornea and its well-established repair process after injury. Additionally, these observations provide potential therapeutic targets to ameliorate SD-induced delays in corneal wound repair by inhibiting or blocking the activation of the stress system and its associated IL-17 signaling pathway.
Collapse
Affiliation(s)
- Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pengyang Xu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Pathology, Nanyang Second General Hospital, Nanyang City, Henan, China
| | - Yu Hu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Sijing Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruyu Yan
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shutong Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Gupta N, Somayajulu M, Gurdziel K, LoGrasso G, Aziz H, Rosati R, McClellan S, Pitchaikannu A, Santra M, Shukkur MFA, Stemmer P, Hazlett LD, Xu S. The miR-183/96/182 cluster regulates sensory innervation, resident myeloid cells and functions of the cornea through cell type-specific target genes. Sci Rep 2024; 14:7676. [PMID: 38561433 PMCID: PMC10985120 DOI: 10.1038/s41598-024-58403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
The conserved miR-183/96/182 cluster (miR-183C) is expressed in both corneal resident myeloid cells (CRMCs) and sensory nerves (CSN) and modulates corneal immune/inflammatory responses. To uncover cell type-specific roles of miR-183C in CRMC and CSN and their contributions to corneal physiology, myeloid-specific miR-183C conditional knockout (MS-CKO), and sensory nerve-specific CKO (SNS-CKO) mice were produced and characterized in comparison to the conventional miR-183C KO. Immunofluorescence and confocal microscopy of flatmount corneas, corneal sensitivity, and tear volume assays were performed in young adult naïve mice; 3' RNA sequencing (Seq) and proteomics in the trigeminal ganglion (TG), cornea and CRMCs. Our results showed that, similar to conventional KO mice, the numbers of CRMCs were increased in both MS-CKO and SNS-CKO vs age- and sex-matched WT control littermates, suggesting intrinsic and extrinsic regulations of miR-183C on CRMCs. The number of CRMCs was increased in male vs female MS-CKO mice, suggesting sex-dependent regulation of miR-183C on CRMCs. In the miR-183C KO and SNS-CKO, but not the MS-CKO mice, CSN density was decreased in the epithelial layer of the cornea, but not the stromal layer. Functionally, corneal sensitivity and basal tear volume were reduced in the KO and SNS-CKO, but not the MS-CKO mice. Tear volume in males is consistently higher than female WT mice. Bioinformatic analyses of the transcriptomes revealed a series of cell-type specific target genes of miR-183C in TG sensory neurons and CRMCs. Our data elucidate that miR-183C imposes intrinsic and extrinsic regulation on the establishment and function of CSN and CRMCs by cell-specific target genes. miR-183C modulates corneal sensitivity and tear production through its regulation of corneal sensory innervation.
Collapse
Affiliation(s)
- Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | | | - Giovanni LoGrasso
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Haidy Aziz
- School of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sharon McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Manoranjan Santra
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Muhammed Farooq Abdul Shukkur
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Li W, Gurdziel K, Pitchaikannu A, Gupta N, Hazlett LD, Xu S. The miR-183/96/182 cluster is a checkpoint for resident immune cells and shapes the cellular landscape of the cornea. Ocul Surf 2023; 30:17-41. [PMID: 37536656 PMCID: PMC10834862 DOI: 10.1016/j.jtos.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE The conserved miR-183/96/182 cluster (miR-183C) regulates both corneal sensory innervation and corneal resident immune cells (CRICs). This study is to uncover its role in CRICs and in shaping the corneal cellular landscape at a single-cell (sc) level. METHODS Corneas of naïve, young adult [2 and 6 months old (mo)], female miR-183C knockout (KO) mice and wild-type (WT) littermates were harvested and dissociated into single cells. Dead cells were removed using a Dead Cell Removal kit. CD45+ CRICs were enriched by Magnetic Activated Cell Sorting (MACS). scRNA libraries were constructed and sequenced followed by comprehensive bioinformatic analyses. RESULTS The composition of major cell types of the cornea stays relatively stable in WT mice from 2 to 6 mo, however the compositions of subtypes of corneal cells shift with age. Inactivation of miR-183C disrupts the stability of the major cell-type composition and age-related transcriptomic shifts of subtypes of corneal cells. The diversity of CRICs is enhanced with age. Naïve mouse cornea contains previously-unrecognized resident fibrocytes and neutrophils. Resident macrophages (ResMφ) adopt cornea-specific function by expressing abundant extracellular matrix (ECM) and ECM organization-related genes. Naïve cornea is endowed with partially-differentiated proliferative ResMφ and contains microglia-like Mφ. Resident lymphocytes, including innate lymphoid cells (ILCs), NKT and γδT cells, are the major source of innate IL-17a. miR-183C limits the diversity and polarity of ResMφ. CONCLUSION miR-183C serves as a checkpoint for CRICs and imposes a global regulation of the cellular landscape of the cornea.
Collapse
Affiliation(s)
- Weifeng Li
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, USA; Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
4
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
5
|
Neuroimmune crosstalk in the cornea: The role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog Retin Eye Res 2022; 91:101105. [PMID: 35868985 DOI: 10.1016/j.preteyeres.2022.101105] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
In the cornea, resident immune cells are in close proximity to sensory nerves, consistent with their important roles in the maintenance of nerves in both homeostasis and inflammation. Using in vivo confocal microscopy in humans, and ex vivo immunostaining and fluorescent reporter mice to visualize corneal sensory nerves and immune cells, remarkable progress has been made to advance our understanding of the physical and functional interactions between corneal nerves and immune cells. In this review, we summarize and discuss recent studies relating to corneal immune cells and sensory nerves, and their interactions in health and disease. In particular, we consider how disrupted corneal nerve axons can induce immune cell activity, including in dendritic cells, macrophages and other infiltrating cells, directly and/or indirectly by releasing neuropeptides such as substance P and calcitonin gene-related peptide. We summarize growing evidence that the role of corneal intraepithelial immune cells is likely different in corneal wound healing versus other inflammatory-dominated conditions. The role of different types of macrophages is also discussed, including how stromal macrophages with anti-inflammatory phenotypes communicate with corneal nerves to provide neuroprotection, while macrophages with pro-inflammatory phenotypes, along with other infiltrating cells including neutrophils and CD4+ T cells, can be inhibitory to corneal re-innervation. Finally, this review considers the bidirectional interactions between corneal immune cells and corneal nerves, and how leveraging this interaction could represent a potential therapeutic approach for corneal neuropathy.
Collapse
|
6
|
TRPV1 + sensory nerves modulate corneal inflammation after epithelial abrasion via RAMP1 and SSTR5 signaling. Mucosal Immunol 2022; 15:867-881. [PMID: 35680973 DOI: 10.1038/s41385-022-00533-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Timely initiation and termination of inflammatory response after corneal epithelial abrasion is critical for the recovery of vision. The cornea is innervated with rich sensory nerves with highly dense TRPV1 nociceptors. However, the roles of TRPV1+ sensory neurons in corneal inflammation after epithelial abrasion are not completely understood. Here, we found that depletion of TRPV1+ sensory nerves using resiniferatoxin (RTX) and blockade of TRPV1 using AMG-517 delayed corneal wound closure and enhanced the infiltration of neutrophils and γδ T cells to the wounded cornea after epithelial abrasion. Furthermore, depletion of TRPV1+ sensory nerves increased the number and TNF-α production of corneal CCR2+ macrophages and decreased the number of corneal CCR2- macrophages and IL-10 production. In addition, the TRPV1+ sensory nerves inhibited the recruitment of neutrophils and γδ T cells to the cornea via RAMP1 and SSTR5 signaling, decreased the responses of CCR2+ macrophages via RAMP1 signaling, and increased the responses of CCR2- macrophages via SSTR5 signaling. Collectively, our results suggest that the TRPV1+ sensory nerves suppress inflammation to support corneal wound healing via RAMP1 and SSTR5 signaling, revealing potential approaches for improving defective corneal wound healing in patients with sensory neuropathy.
Collapse
|
7
|
Corneal stromal repair and regeneration. Prog Retin Eye Res 2022; 91:101090. [DOI: 10.1016/j.preteyeres.2022.101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/02/2023]
|
8
|
Huang Y, Fu T, Jiao X, Liu S, Xue Y, Liu J, Li Z. Hypothyroidism affects corneal homeostasis and wound healing in mice. Exp Eye Res 2022; 220:109111. [DOI: 10.1016/j.exer.2022.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 11/04/2022]
|
9
|
Wu M, Downie LE, Hill LJ, Chinnery HR. The effect of topical decorin on temporal changes to corneal immune cells after epithelial abrasion. J Neuroinflammation 2022; 19:90. [PMID: 35414012 PMCID: PMC9006562 DOI: 10.1186/s12974-022-02444-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Corneal immune cells interact with corneal sensory nerves during both homeostasis and inflammation. This study sought to evaluate temporal changes to corneal immune cell density in a mouse model of epithelial abrasion and nerve injury, and to investigate the immunomodulatory effects of topical decorin, which we have shown previously to promote corneal nerve regeneration. METHODS Bilateral corneal epithelial abrasions (2 mm) were performed on C57BL/6J mice. Topical decorin or saline eye drops were applied three times daily for 12 h, 24 h, 3 days or 5 days. Optical coherence tomography imaging was performed to measure the abrasion area. The densities of corneal sensory nerves (β-tubulin III) and immune cells, including dendritic cells (DCs; CD11c+), macrophages (Iba-1+) and neutrophils (NIMP-R14+) were measured. Cx3cr1gfp/gfp mice that spontaneously lack resident corneal intraepithelial DCs were used to investigate the specific contribution of epithelial DCs. Neuropeptide and cytokine gene expression was evaluated using qRT-PCR at 12 h post-injury. RESULTS In decorin-treated corneas, higher intraepithelial DC densities and lower neutrophil densities were observed at 24 h after injury, compared to saline controls. At 12 h post-injury, topical decorin application was associated with greater re-epithelialisation. At 5 days post-injury, corneal stromal macrophage density in the decorin-treated and contralateral eyes was lower, and nerve density was higher, compared to eyes treated with saline only. Lower expression of transforming growth factor beta (TGF-β) and higher expression of CSPG4 mRNA was detected in corneas treated with topical decorin. There was no difference in corneal neutrophil density in Cx3cr1gfp/gfp mice treated with or without decorin at 12 h. CONCLUSIONS Topical decorin regulates immune cell dynamics after corneal injury, by inhibiting neutrophils and recruiting intraepithelial DCs during the acute phase (< 24 h), and inhibiting macrophage density at the study endpoint (5 days). These immunomodulatory effects were associated with faster re-epithelialisation and likely contribute to promoting sensory nerve regeneration. The findings suggest a potential interaction between DCs and neutrophils with topical decorin treatment, as the decorin-induced neutrophil inhibition was absent in Cx3cr1gfp/gfp mice that lack corneal epithelial DCs. TGF-β and CSPG4 proteoglycan likely regulate decorin-mediated innate immune cell responses and nerve regeneration after injury.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Alam J, Yazdanpanah G, Ratnapriya R, Borcherding N, de Paiva CS, Li D, Guimaraes de Souza R, Yu Z, Pflugfelder SC. IL-17 Producing Lymphocytes Cause Dry Eye and Corneal Disease With Aging in RXRα Mutant Mouse. Front Med (Lausanne) 2022; 9:849990. [PMID: 35402439 PMCID: PMC8983848 DOI: 10.3389/fmed.2022.849990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose To investigate IL-17 related mechanisms for developing dry eye disease in the Pinkie mouse strain with a loss of function RXRα mutation. Methods Measures of dry eye disease were assessed in the cornea and conjunctiva. Expression profiling was performed by single-cell RNA sequencing (scRNA-seq) to compare gene expression in conjunctival immune cells. Conjunctival immune cells were immunophenotyped by flow cytometry and confocal microscopy. The activity of RXRα ligand 9-cis retinoic acid (RA) was evaluated in cultured monocytes and γδ T cells. Results Compared to wild type (WT) C57BL/6, Pinkie has increased signs of dry eye disease, including decreased tear volume, corneal barrier disruption, corneal/conjunctival cornification and goblet cell loss, and corneal vascularization, opacification, and ulceration with aging. ScRNA-seq of conjunctival immune cells identified γδ T cells as the predominant IL-17 expressing population in both strains and there is a 4-fold increased percentage of γδ T cells in Pinkie. Compared to WT, IL-17a, and IL-17f significantly increased in Pinkie with conventional T cells and γδ T cells as the major producers. Flow cytometry revealed an increased number of IL-17+ γδ T cells in Pinkie. Tear concentration of the IL-17 inducer IL-23 is significantly higher in Pinkie. 9-cis RA treatment suppresses stimulated IL-17 production by γδ T and stimulatory activity of monocyte supernatant on γδ T cell IL-17 production. Compared to WT bone marrow chimeras, Pinkie chimeras have increased IL-17+ γδ T cells in the conjunctiva after desiccating stress and anti-IL-17 treatment suppresses dry eye induced corneal MMP-9 production/activity and conjunctival goblet cell loss. Conclusion These findings indicate that RXRα suppresses generation of dry eye disease-inducing IL-17 producing lymphocytes s in the conjunctiva and identifies RXRα as a potential therapeutic target in dry eye.
Collapse
Affiliation(s)
- Jehan Alam
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Ghasem Yazdanpanah
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Rinki Ratnapriya
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Nicholas Borcherding
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - DeQuan Li
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Rodrigo Guimaraes de Souza
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
- Department of Ophthalmology, University of São Paulo, São Paulo, Brazil
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C. Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Stephen C. Pflugfelder
| |
Collapse
|
11
|
Frutos-Rincón L, Gómez-Sánchez JA, Íñigo-Portugués A, Acosta MC, Gallar J. An Experimental Model of Neuro-Immune Interactions in the Eye: Corneal Sensory Nerves and Resident Dendritic Cells. Int J Mol Sci 2022; 23:ijms23062997. [PMID: 35328417 PMCID: PMC8951464 DOI: 10.3390/ijms23062997] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
The cornea is an avascular connective tissue that is crucial, not only as the primary barrier of the eye but also as a proper transparent refractive structure. Corneal transparency is necessary for vision and is the result of several factors, including its highly organized structure, the physiology of its few cellular components, the lack of myelinated nerves (although it is extremely innervated), the tightly controlled hydration state, and the absence of blood and lymphatic vessels in healthy conditions, among others. The avascular, immune-privileged tissue of the cornea is an ideal model to study the interactions between its well-characterized and dense sensory nerves (easily accessible for both focal electrophysiological recording and morphological studies) and the low number of resident immune cell types, distinguished from those cells migrating from blood vessels. This paper presents an overview of the corneal structure and innervation, the resident dendritic cell (DC) subpopulations present in the cornea, their distribution in relation to corneal nerves, and their role in ocular inflammatory diseases. A mouse model in which sensory axons are constitutively labeled with tdTomato and DCs with green fluorescent protein (GFP) allows further analysis of the neuro-immune crosstalk under inflammatory and steady-state conditions of the eye.
Collapse
Affiliation(s)
- Laura Frutos-Rincón
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
| | - José Antonio Gómez-Sánchez
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- Correspondence: ; Tel.: +34-965-91-9594
| | - Almudena Íñigo-Portugués
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
| | - M. Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
- Instituto de Investigación Biomédica y Sanitaria de Alicante, 03010 Alicante, Spain
| |
Collapse
|
12
|
Kang K, Zhou Q, McGinn L, Nguyen T, Luo Y, Djalilian A, Rosenblatt M. High fat diet induced gut dysbiosis alters corneal epithelial injury response in mice. Ocul Surf 2022; 23:49-59. [PMID: 34808360 PMCID: PMC8792274 DOI: 10.1016/j.jtos.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Commensal microbiome secretes various metabolites that can exert important effects on the host immunity and inflammation and can alter cellular functions. However, little is known regarding the effect of microbiome on corneal immunity and genetic expression. The purpose of this study is to describe the effect of diet-induced gut dysbiosis on corneal immunity and corneal gene expression after wounding. METHODS This study is approved by the Animal Care and Use of the University of Illinois. Six-week-old female C57BL6 mice were fed on a normal chow diet (ND), isocaloric low-fat control diet (LFD), or a 21% milk high-fat diet (HFD) for six weeks. 2 mm corneal epithelial debridement was performed (n = 10). Fecal samples from mice were used for microbial diversity analysis (n > 3). Immunofluorescence staining of corneal wholemount tissue post-debridement was used to visualize immune cell distribution. RNA Seq was performed on tissue samples from corneas following debridement. RESULTS Mice fed differing diets had significant alterations in gut microbial diversities. After corneal debridement, HFD mice experienced delayed wound healing in comparison to LFD mice and ND mice groups. However, fecal transplantation led to normalization of wound closure rates. Increased γδTCR staining was observed in the LFD group, and decreased LY6G was observed in HFD group (p < 0.05). Gene Ontology terms of differentially expressed genes included response to external stimulus, cell proliferation, migration, adhesion, defense response and leukocyte migration. Top over-represented pathways included ECM-receptor interaction, Cytokine-cytokine receptor interaction, Focal adhesion and Leukocyte trans-endothelial migration. CONCLUSIONS Gut microbial dysbiosis alters corneal immune cell distribution, corneal response to injury, and genes related to epithelial function and corneal immunity.
Collapse
Affiliation(s)
- Kai Kang
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Qiang Zhou
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Lander McGinn
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Tara Nguyen
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuncin Luo
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Djalilian
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark Rosenblatt
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Mucosal immunology of the ocular surface. Mucosal Immunol 2022; 15:1143-1157. [PMID: 36002743 PMCID: PMC9400566 DOI: 10.1038/s41385-022-00551-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
The eye is a sensory organ exposed to the environment and protected by a mucosal tissue barrier. While it shares a number of features with other mucosal tissues, the ocular mucosal system, composed of the conjunctiva, Meibomian glands, and lacrimal glands, is specialized to address the unique needs of (a) lubrication and (b) host defense of the ocular surface. Not surprisingly, most challenges, physical and immunological, to the homeostasis of the eye fall into those two categories. Dry eye, a dysfunction of the lacrimal glands and/or Meibomian glands, which can both cause, or arise from, sensory defects, including those caused by corneal herpes virus infection, serve as examples of these perturbations and will be discussed ahead. To preserve vision, dense neuronal and immune networks sense various stimuli and orchestrate responses, which must be tightly controlled to provide protection, while simultaneously minimizing collateral damage. All this happens against the backdrop of, and can be modified by, the microorganisms that colonize the ocular mucosa long term, or that are simply transient passengers introduced from the environment. This review will attempt to synthesize the existing knowledge and develop trends in the study of the unique mucosal and immune elements of the ocular surface.
Collapse
|
14
|
Crespo-Piazuelo D, Ramayo-Caldas Y, González-Rodríguez O, Pascual M, Quintanilla R, Ballester M. A Co-Association Network Analysis Reveals Putative Regulators for Health-Related Traits in Pigs. Front Immunol 2021; 12:784978. [PMID: 34899750 PMCID: PMC8662732 DOI: 10.3389/fimmu.2021.784978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
In recent years, the increase in awareness of antimicrobial resistance together with the societal demand of healthier meat products have driven attention to health-related traits in livestock production. Previous studies have reported medium to high heritabilities for these traits and described genomic regions associated with them. Despite its genetic component, health- and immunity-related traits are complex and its study by association analysis with genomic markers may be missing some information. To analyse multiple phenotypes and gene-by-gene interactions, systems biology approaches, such as the association weight matrix (AWM), allows combining genome wide association study results with network inference algorithms. The present study aimed to identify gene networks, key regulators and candidate genes associated to immunocompetence in pigs by integrating multiple health-related traits, enriched for innate immune phenotypes, using the AWM approach. The co-association network analysis unveiled a network comprised of 3,636 nodes (genes) and 451,407 edges (interactions), including a total of 246 regulators. From these, five genes (ARNT2, BRMS1L, MED12L, SUPT3H and TRIM25) were selected as key regulators as they were associated with the maximum number of genes with the minimum overlapping (1,827 genes in total). The five regulators were involved in pathways related to immunity such as lymphocyte differentiation and activation, platelet activation and degranulation, megakaryocyte differentiation, FcγR-mediated phagocytosis and response to nitric oxide, among others, but also in immunometabolism. Furthermore, we identified genes co-associated with the key regulators previously reported as candidate genes (e.g., ANGPT1, CD4, CD36, DOCK1, PDE4B, PRKCE, PTPRC and SH2B3) for immunity traits in humans and pigs, but also new candidate ones (e.g., ACSL3, CXADR, HBB, MMP12, PTPN6, WLS) that were not previously described. The co-association analysis revealed new regulators associated with health-related traits in pigs. This approach also identified gene-by-gene interactions and candidate genes involved in pathways related to cell fate and metabolic and immune functions. Our results shed new light in the regulatory mechanisms involved in pig immunity and reinforce the use of the pig as biomedical model.
Collapse
Affiliation(s)
- Daniel Crespo-Piazuelo
- Animal Breeding and Genetics Programme, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Programme, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Programme, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Mariam Pascual
- Animal Breeding and Genetics Programme, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Programme, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Programme, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| |
Collapse
|
15
|
Nabi R, Lewin AC, Collantes TM, Chouljenko VN, Kousoulas KG. Intramuscular Vaccination With the HSV-1(VC2) Live-Attenuated Vaccine Strain Confers Protection Against Viral Ocular Immunopathogenesis Associated With γδT Cell Intracorneal Infiltration. Front Immunol 2021; 12:789454. [PMID: 34868077 PMCID: PMC8634438 DOI: 10.3389/fimmu.2021.789454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) ocular infection is one of the leading causes of infectious blindness in developed countries. The resultant herpetic keratitis (HK) is caused by an exacerbated reaction of the adaptive immune response that persists beyond virus clearance causing substantial damage to the cornea. Intramuscular immunization of mice with the HSV-1(VC2) live-attenuated vaccine strain has been shown to protect mice against lethal ocular challenge. Herein, we show that following ocular challenge, VC2 vaccinated animals control ocular immunopathogenesis in the absence of neutralizing antibodies on ocular surfaces. Ocular protection is associated with enhanced intracorneal infiltration of γδ T cells compared to mock-vaccinated animals. The observed γδ T cellular infiltration was inversely proportional to the infiltration of neutrophils, the latter associated with exacerbated tissue damage. Inhibition of T cell migration into ocular tissues by the S1P receptors agonist FTY720 produced significant ocular disease in vaccinated mice and marked increase in neutrophil infiltration. These results indicate that ocular challenge of mice immunized with the VC2 vaccine induce a unique ocular mucosal response that leads into the infiltration of γδ T cells resulting in the amelioration of infection-associated immunopathogenesis.
Collapse
MESH Headings
- Animals
- Chemotaxis, Leukocyte
- Cornea/immunology
- Cornea/pathology
- Cornea/virology
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Herpes Simplex Virus Vaccines/administration & dosage
- Herpes Simplex Virus Vaccines/immunology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Host-Pathogen Interactions
- Injections, Intramuscular
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/virology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/pathology
- Keratitis, Herpetic/prevention & control
- Keratitis, Herpetic/virology
- Lymphangiogenesis
- Mice, Inbred BALB C
- Neovascularization, Pathologic
- Neutrophil Infiltration
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Mice
Collapse
Affiliation(s)
- Rafiq Nabi
- Department of Pathobiological Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Andrew C. Lewin
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Therese M. Collantes
- Department of Pathobiological Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Vladimir N. Chouljenko
- Department of Pathobiological Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Konstantin G. Kousoulas
- Department of Pathobiological Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
16
|
Latta L, Figueiredo FC, Ashery-Padan R, Collinson JM, Daniels J, Ferrari S, Szentmáry N, Solá S, Shalom-Feuerstein R, Lako M, Xapelli S, Aberdam D, Lagali N. Pathophysiology of aniridia-associated keratopathy: Developmental aspects and unanswered questions. Ocul Surf 2021; 22:245-266. [PMID: 34520870 DOI: 10.1016/j.jtos.2021.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease.
Collapse
Affiliation(s)
- L Latta
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany; Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - F C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - R Ashery-Padan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - J M Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - J Daniels
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - S Ferrari
- The Veneto Eye Bank Foundation, Venice, Italy
| | - N Szentmáry
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - S Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - R Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - M Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - S Xapelli
- Instituto Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D Aberdam
- Centre de Recherche des Cordeliers, INSERM U1138, Team 17, France; Université de Paris, 75006, Paris, France.
| | - N Lagali
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
17
|
Platelet and Erythrocyte Extravasation across Inflamed Corneal Venules Depend on CD18, Neutrophils, and Mast Cell Degranulation. Int J Mol Sci 2021; 22:ijms22147360. [PMID: 34298979 PMCID: PMC8329926 DOI: 10.3390/ijms22147360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 01/26/2023] Open
Abstract
Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the β2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.
Collapse
|
18
|
Collin J, Queen R, Zerti D, Bojic S, Dorgau B, Moyse N, Molina MM, Yang C, Dey S, Reynolds G, Hussain R, Coxhead JM, Lisgo S, Henderson D, Joseph A, Rooney P, Ghosh S, Clarke L, Connon C, Haniffa M, Figueiredo F, Armstrong L, Lako M. A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cells. Ocul Surf 2021; 21:279-298. [PMID: 33865984 PMCID: PMC8343164 DOI: 10.1016/j.jtos.2021.03.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Purpose Single cell (sc) analyses of key embryonic, fetal and adult stages were performed to generate a comprehensive single cell atlas of all the corneal and adjacent conjunctival cell types from development to adulthood. Methods Four human adult and seventeen embryonic and fetal corneas from 10 to 21 post conception week (PCW) specimens were dissociated to single cells and subjected to scRNA- and/or ATAC-Seq using the 10x Genomics platform. These were embedded using Uniform Manifold Approximation and Projection (UMAP) and clustered using Seurat graph-based clustering. Cluster identification was performed based on marker gene expression, bioinformatic data mining and immunofluorescence (IF) analysis. RNA interference, IF, colony forming efficiency and clonal assays were performed on cultured limbal epithelial cells (LECs). Results scRNA-Seq analysis of 21,343 cells from four adult human corneas and adjacent conjunctivas revealed the presence of 21 cell clusters, representing the progenitor and differentiated cells in all layers of cornea and conjunctiva as well as immune cells, melanocytes, fibroblasts, and blood/lymphatic vessels. A small cell cluster with high expression of limbal progenitor cell (LPC) markers was identified and shown via pseudotime analysis to give rise to five other cell types representing all the subtypes of differentiated limbal and corneal epithelial cells. A novel putative LPCs surface marker, GPHA2, expressed on the surface of 0.41% ± 0.21 of the cultured LECs, was identified, based on predominant expression in the limbal crypts of adult and developing cornea and RNAi validation in cultured LECs. Combining scRNA- and ATAC-Seq analyses, we identified multiple upstream regulators for LPCs and demonstrated a close interaction between the immune cells and limbal progenitor cells. RNA-Seq analysis indicated the loss of GPHA2 expression and acquisition of proliferative limbal basal epithelial cell markers during ex vivo LEC expansion, independently of the culture method used. Extending the single cell analyses to keratoconus, we were able to reveal activation of collagenase in the corneal stroma and a reduced pool of limbal suprabasal cells as two key changes underlying the disease phenotype. Single cell RNA-Seq of 89,897 cells obtained from embryonic and fetal cornea indicated that during development, the conjunctival epithelium is the first to be specified from the ocular surface epithelium, followed by the corneal epithelium and the establishment of LPCs, which predate the formation of limbal niche by a few weeks. Conclusions Our scRNA-and ATAC-Seq data of developing and adult cornea in steady state and disease conditions provide a unique resource for defining genes/pathways that can lead to improvement in ex vivo LPCs expansion, stem cell differentiation methods and better understanding and treatment of ocular surface disorders.
Collapse
Affiliation(s)
- Joseph Collin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Rachel Queen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Darin Zerti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Sanja Bojic
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Birthe Dorgau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Nicky Moyse
- Newcastle Cellular Therapies Facility, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, UK
| | - Marina Moya Molina
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Chunbo Yang
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Sunanda Dey
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Israel
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Rafiqul Hussain
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Jonathan M Coxhead
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Agatha Joseph
- NHS Blood and Transplant Tissue and Eye Services, Liverpool, UK
| | - Paul Rooney
- NHS Blood and Transplant Tissue and Eye Services, Liverpool, UK
| | - Saurabh Ghosh
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Lucy Clarke
- UK Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, UK
| | - Che Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Francisco Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK; UK Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, UK
| | - Lyle Armstrong
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK.
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK.
| |
Collapse
|
19
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
20
|
Coku A, McClellan SA, Van Buren E, Back JB, Hazlett LD, Xu S. The miR-183/96/182 Cluster Regulates the Functions of Corneal Resident Macrophages. Immunohorizons 2020; 4:729-744. [PMID: 33208381 PMCID: PMC7891884 DOI: 10.4049/immunohorizons.2000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident macrophages (ResMϕ) play important roles in the normal development and physiological functions as well as tissue repair and immune/inflammatory response to both internal and external insults. In cornea, ResMϕ are critical to the homeostasis and maintenance, wound healing, ocular immune privilege, and immune/inflammatory response to injury and microbial infection. However, the roles of microRNAs in corneal ResMϕ are utterly unknown. Previously, we demonstrated that the conserved miR-183/96/182 cluster (miR-183/96/182) plays important roles in sensory neurons and subgroups of both innate and adaptive immune cells and modulates corneal response to bacterial infection. In this study, we provide direct evidence that the mouse corneal ResMϕ constitutively produce both IL-17f and IL-10. This function is regulated by miR-183/96/182 through targeting Runx1 and Maf, key transcriptional regulators for IL-17f and IL-10 expression, respectively. In addition, we show that miR-183/96/182 has a negative feedback regulation on the TLR4 pathway in mouse corneal ResMϕ. Furthermore, miR-183/96/182 regulates the number of corneal ResMϕ. Inactivation of miR-183/96/182 in mouse results in more steady-state corneal resident immune cells, including ResMϕ, and leads to a simultaneous early upregulation of innate IL-17f and IL-10 production in the cornea after Pseudomonas aeruginosa infection. Its multiplex regulations on the simultaneous production of IL-17f and IL-10, TLR4 signaling pathway and the number of corneal ResMϕ place miR-183/96/182 in the center of corneal innate immunity, which is key to the homeostasis of the cornea, ocular immune privilege, and the corneal response to microbial infections.
Collapse
Affiliation(s)
- Ardian Coku
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | - Eric Van Buren
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201
| | - Jessica B Back
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| |
Collapse
|
21
|
Hargrave A, Courson JA, Pham V, Landry P, Magadi S, Shankar P, Hanlon S, Das A, Rumbaut RE, Smith CW, Burns AR. Corneal dysfunction precedes the onset of hyperglycemia in a mouse model of diet-induced obesity. PLoS One 2020; 15:e0238750. [PMID: 32886728 PMCID: PMC7473521 DOI: 10.1371/journal.pone.0238750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/21/2020] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The purpose of this study was to use a mouse model of diet-induced obesity to determine if corneal dysfunction begins prior to the onset of sustained hyperglycemia and if the dysfunction is ameliorated by diet reversal. METHODS Six-week-old male C57BL/6 mice were fed a high fat diet (HFD) or a normal diet (ND) for 5-15 weeks. Diet reversal (DiR) mice were fed a HFD for 5 weeks, followed by a ND for 5 or 10 weeks. Corneal sensitivity was determined using aesthesiometry. Corneal cytokine expression was analyzed using a 32-plex Luminex assay. Excised corneas were prepared for immunofluorescence microscopy to evaluate diet-induced changes and wound healing. For wounding studies, mice were fed a HFD or a ND for 10 days prior to receiving a central 2mm corneal abrasion. RESULTS After 10 days of HFD consumption, corneal sensitivity declined. By 10 weeks, expression of corneal inflammatory mediators increased and nerve density declined. While diet reversal restored nerve density and sensitivity, the corneas remained in a heightened inflammatory state. After 10 days on the HFD, corneal circadian rhythms (limbal neutrophil accumulation, epithelial cell division and Rev-erbα expression) were blunted. Similarly, leukocyte recruitment after wounding was dysregulated and accompanied by delays in wound closure and nerve recovery. CONCLUSION In the mouse, obesogenic diet consumption results in corneal dysfunction that precedes the onset of sustained hyperglycemia. Diet reversal only partially ameliorated this dysfunction, suggesting a HFD diet may have a lasting negative impact on corneal health that is resistant to dietary therapeutic intervention.
Collapse
Affiliation(s)
- Aubrey Hargrave
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Justin A Courson
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Vanna Pham
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Paul Landry
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Sri Magadi
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Pooja Shankar
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Sam Hanlon
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Apoorva Das
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Rolando E Rumbaut
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - C Wayne Smith
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, Texas, United States of America
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
22
|
Jamali A, Kenyon B, Ortiz G, Abou-Slaybi A, Sendra VG, Harris DL, Hamrah P. Plasmacytoid dendritic cells in the eye. Prog Retin Eye Res 2020; 80:100877. [PMID: 32717378 DOI: 10.1016/j.preteyeres.2020.100877] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subpopulation of immune cells, distinct from classical dendritic cells. pDCs are generated in the bone marrow and following development, they typically home to secondary lymphoid tissues. While peripheral tissues are generally devoid of pDCs during steady state, few tissues, including the lung, kidney, vagina, and in particular ocular tissues harbor resident pDCs. pDCs were originally appreciated for their potential to produce large quantities of type I interferons in viral immunity. Subsequent studies have now unraveled their pivotal role in mediating immune responses, in particular in the induction of tolerance. In this review, we summarize our current knowledge on pDCs in ocular tissues in both mice and humans, in particular in the cornea, limbus, conjunctiva, choroid, retina, and lacrimal gland. Further, we will review our current understanding on the significance of pDCs in ameliorating inflammatory responses during herpes simplex virus keratitis, sterile inflammation, and corneal transplantation. Moreover, we describe their novel and pivotal neuroprotective role, their key function in preserving corneal angiogenic privilege, as well as their potential application as a cell-based therapy for ocular diseases.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Abdo Abou-Slaybi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Victor G Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
23
|
Wu M, Liu J, Li F, Huang S, He J, Xue Y, Fu T, Feng S, Li Z. Antibiotic-induced dysbiosis of gut microbiota impairs corneal development in postnatal mice by affecting CCR2 negative macrophage distribution. Mucosal Immunol 2020; 13:47-63. [PMID: 31434991 PMCID: PMC6914671 DOI: 10.1038/s41385-019-0193-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/18/2019] [Accepted: 07/17/2019] [Indexed: 02/04/2023]
Abstract
Antibiotics are extremely useful, but they can cause adverse impacts on host bodies. We found that antibiotic treatment altered the composition of the gut microbiota and the gene expression profile in the corneal tissues of postnatal mice and decreased the corneal size and thickness, the angiogenesis of limbal blood vessels, and the neurogenesis of corneal nerve fibers. The reconstitution of the gut microbiota with fecal transplants in antibiotic-treated mice largely reversed these impairments in corneal development. Furthermore, C-C chemokine receptor type 2 negative (CCR2-) macrophages were confirmed to participate in corneal development, and their distribution in the cornea was regulated by the gut microbiota. We propose that the CCR2- macrophage population is a crucial mediator through which gut microbiota affect corneal development in postnatal mice. In addition, probiotics were shown to have the potential effect of restoring corneal development in antibiotic-treated mice. Abx-induced gut dysbiosis has significant, long-term effects on the development of the cornea, and reversal of these suppressive effects takes a long time.
Collapse
Affiliation(s)
- Mingjuan Wu
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Fanying Li
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1790 3548grid.258164.cDepartment of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Shuoya Huang
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1760 3828grid.412601.0Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingxin He
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1760 3828grid.412601.0Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Shanshan Feng
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zhijie Li
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1760 3828grid.412601.0Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China ,grid.414011.1Department of Ophthalmology, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
24
|
Abstract
The cornea is a transparent outermost structure of the eye anterior segment comprising the highest density of innervated tissue. In the process of corneal innervation, trigeminal ganglion originated corneal nerves diligently traverse different corneal cell types in different corneal layers including the corneal stroma and epithelium. While crossing the stromal and epithelial cell layers during innervation, due to the existing physical contacts, close interactions occur between stromal keratocytes, epithelial cells, resident immune cells and corneal nerves. Furthermore, by producing various trophic and growth factors corneal cells assist in maintaining the growth and function of corneal nerves. Similarly, corneal nerve generated growth factors critically modify the corneal cell function in all the corneal layers. Due to their close association and contacts, on-going cross-communication between these cell types and corneal nerves play a vital role in the modulation of corneal nerve function, regeneration during wound healing. The present review highlights the influence of different corneal cell types and growth factors released from these cells on corneal nerve regeneration and function.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| |
Collapse
|
25
|
Liu J, Wu M, He J, Xiao C, Xue Y, Fu T, Lin C, Dong D, Li Z. Antibiotic-Induced Dysbiosis of Gut Microbiota Impairs Corneal Nerve Regeneration by Affecting CCR2-Negative Macrophage Distribution. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 188:2786-2799. [PMID: 30470496 PMCID: PMC6284554 DOI: 10.1016/j.ajpath.2018.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
Although antibiotics are useful, they can also bring negative effects. We found that antibiotic-treated mice exhibit an alteration in the gene expression profile of corneal tissues and a decrease in corneal nerve density. During corneal wound healing, antibiotic treatment was found to impair corneal nerve regeneration, an effect that could be largely reversed by reconstitution of the gut microbiota via fecal transplant. Furthermore, CCR2- corneal macrophages were found to participate in the repair of damaged corneal nerves, and a decrease in CCR2- corneal macrophages in antibiotic-treated mice, which could be reversed by fecal transplant, was observed. Adoptive transfer of CCR2- corneal macrophages promoted corneal nerve regeneration in antibiotic-treated mice. The application of probiotics after administration of antibiotics also restored the proportion of CCR2- corneal macrophages and increased the regeneration of corneal nerve fibers after epithelial abrasion. These results suggest that dysbiosis of the gut microbiota induced by antibiotic treatment impairs corneal nerve regeneration by affecting CCR2- macrophage distribution in the cornea. This study also indicates the potential of probiotics as a therapeutic strategy for promoting the regeneration of damaged corneal nerve fibers when the gut microbiota is in dysbiosis.
Collapse
Affiliation(s)
- Jun Liu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, People's Republic of China; International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Mingjuan Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Jingxin He
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Chengju Xiao
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Yunxia Xue
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Ting Fu
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Cuipei Lin
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Dong Dong
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Zhijie Li
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China; Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China; Section of Leukocyte Biology, Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
26
|
McKay TB, Seyed-Razavi Y, Ghezzi CE, Dieckmann G, Nieland TJF, Cairns DM, Pollard RE, Hamrah P, Kaplan DL. Corneal pain and experimental model development. Prog Retin Eye Res 2019; 71:88-113. [PMID: 30453079 PMCID: PMC6690397 DOI: 10.1016/j.preteyeres.2018.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/03/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
The cornea is a valuable tissue for studying peripheral sensory nerve structure and regeneration due to its avascularity, transparency, and dense innervation. Somatosensory innervation of the cornea serves to identify changes in environmental stimuli at the ocular surface, thereby promoting barrier function to protect the eye against injury or infection. Due to regulatory demands to screen ocular safety of potential chemical exposure, a need remains to develop functional human tissue models to predict ocular damage and pain using in vitro-based systems to increase throughput and minimize animal use. In this review, we summarize the anatomical and functional roles of corneal innervation in propagation of sensory input, corneal neuropathies associated with pain, and the status of current in vivo and in vitro models. Emphasis is placed on tissue engineering approaches to study the human corneal pain response in vitro with integration of proper cell types, controlled microenvironment, and high-throughput readouts to predict pain induction. Further developments in this field will aid in defining molecular signatures to distinguish acute and chronic pain triggers based on the immune response and epithelial, stromal, and neuronal interactions that occur at the ocular surface that lead to functional outcomes in the brain depending on severity and persistence of the stimulus.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Yashar Seyed-Razavi
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Gabriela Dieckmann
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Rachel E Pollard
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| |
Collapse
|
27
|
Cui X, Gao N, Me R, Xu J, Yu FSX. TSLP Protects Corneas From Pseudomonas aeruginosa Infection by Regulating Dendritic Cells and IL-23-IL-17 Pathway. Invest Ophthalmol Vis Sci 2019; 59:4228-4237. [PMID: 30128494 PMCID: PMC6103385 DOI: 10.1167/iovs.18-24672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose We sought to determine the role of epithelium-produced thymic stromal lymphopoietin (TSLP) and its underlying mechanisms in corneal innate immune defense against Pseudomonas (P.) aeruginosa keratitis. Methods The expression of TSLP and TSLPR in cultured human corneal epithelial cells (HCECs) and mouse corneas was determined by PCR, Western, and/or ELISA. Cellular localization of TSLP receptor (TSLPR) was determined by whole mount confocal microscopy. TSLP-TSLPR signaling was downregulated by neutralizing antibodies and/or small interfering (si)RNA; their effects on the severity of P. aeruginosa–keratitis and cytokine expression were assessed using clinical scoring, bacterial counting, PMN infiltration, and real-time PCR. The role of dendritic cells (DCs) in corneal innate immunity was determined by local DC depletion using CD11c-DTR mice. Results P. aeruginosa–infection induced the expression of TSLP and TSLPR in both cultured primary HCECs and in C57BL/6 mouse corneas. While TSLP was mostly expressed by epithelial cells, CD11c-positive cells were positive for TSLPR. Targeting TSLP or TSLPR with neutralizing antibodies or TSLPR with siRNA resulted in more severe keratitis, attributable to an increase in bacterial burden and PMN infiltration. TSLPR neutralization significantly suppressed infection-induced TSLP and interleukin (IL)-17C expression and augmented the expression of IL-23 and IL-17A. Local depletion of DCs markedly increased the severity of keratitis and exhibited no effects on TSLP and IL-23 expression while suppressing IL-17A and C expression in P. aeruginosa–infected corneas. Conclusions The epithelium-expressed TSLP plays a protective role in P. aeruginosa keratitis through targeting of DCs and in an IL-23/IL-17 signaling pathway-related manner.
Collapse
Affiliation(s)
- Xinhan Cui
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States.,Eye and ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rao Me
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Jianjiang Xu
- Eye and ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
28
|
Xiao C, Wu M, Liu J, Gu J, Jiao X, Lu D, He J, Lin C, Xue Y, Fu T, Wang H, Wang G, Yang X, Li Z. Acute tobacco smoke exposure exacerbates the inflammatory response to corneal wounds in mice via the sympathetic nervous system. Commun Biol 2019; 2:33. [PMID: 30701198 PMCID: PMC6345828 DOI: 10.1038/s42003-018-0270-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Exposure to tobacco smoke is a major public health concern that can also affect ophthalmic health. Based on previous work demonstrating the important role of the sympathetic nervous system (SNS) in corneal wound repair, we postulated that acute tobacco smoke exposure (ATSE) may act through the SNS in the impairment of corneal wound repair. Here we find that ATSE rapidly increases the markers of inflammatory response in normal corneal limbi. After an abrasion injury, ATSE exaggerates inflammation, impairs wound repair, and enhances the expression of nuclear factor-κB (NF-κB) and inflammatory molecules such as interleukin-6 (IL-6) and IL-17. We find that chemical SNS sympathectomy, local adrenergic receptor antagonism, NF-κB1 inactivation, and IL-6/IL-17A neutralization can all independently attenuate ATSE-induced excessive inflammatory responses and alleviate their impairment of the healing process. These findings highlight that the SNS may represent a major molecular sensor and mediator of ATSE-induced inflammation.
Collapse
Affiliation(s)
- Chengju Xiao
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Mingjuan Wu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Jianqin Gu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Jingxin He
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Cuipei Lin
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Hanqing Wang
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Guang Wang
- Department of Histology and Embryology, Jinan University Medical School, Guangzhou, China
| | - Xuesong Yang
- Department of Histology and Embryology, Jinan University Medical School, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
- Section of Leukocyte Biology, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
29
|
Yoon CH, Lee D, Jeong HJ, Ryu JS, Kim MK. Distribution of Interleukin-22-secreting Immune Cells in Conjunctival Associated Lymphoid Tissue. KOREAN JOURNAL OF OPHTHALMOLOGY 2018; 32:147-153. [PMID: 29560621 PMCID: PMC5906400 DOI: 10.3341/kjo.2017.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Interleukin (IL)-22 is a cytokine involved in epithelial cell regeneration. Currently, no research studies have analyzed the distribution of the three distinct IL-22-secreting cell populations in human or mouse conjunctiva. This study investigated the distribution of the three main populations of IL-22-secreting immune cells, αβ Th cells, γδ T cells, or innate cells (innate lymphoid cells [ILCs] or natural killer cells), in conjunctival associated lymphoid tissues (CALTs) in human and mouse models. METHODS We collected discarded cadaveric bulbar conjunctival tissue specimens after preservation of the corneo-limbal tissue for keratoplasty from four enucleated eyes of the domestic donor. The bulbar conjunctiva tissue, including the cornea from normal (n = 27) or abraded (n = 4) B6 mice, were excised and pooled in RPMI 1640 media. After the lymphoid cells were gated in forward and side scattering, the αβ Th cells, γδ T cells, or innate lymphoid cells were positively or negatively gated using anti-CD3, anti-γδ TCR, and anti-IL-22 antibodies, with a FACSCanto flow cytometer. RESULTS In normal human conjunctiva, the percentage and number of cells were highest in αβ Th cells, followed by γδ T cells and CD3- γδ TCR- IL-22+ innate cells (presumed ILCs, pILCs) (Kruskal-Wallis test, p = 0.012). In normal mice keratoconjunctiva, the percentage and total number were highest in γδ T cells, followed by αβ Th cells and pILCs (Kruskal-Wallis test, p = 0.0004); in corneal abraded mice, the population of αβ Th cells and pILCs tended to increase. CONCLUSIONS This study suggests that three distinctive populations of IL-22-secreting immune cells are present in CALTs of both humans and mice, and the proportions of IL-22+αβ Th cells, γδ T cells, and pILCs in CALTs in humans might be differently distributed from those in normal mice.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Daeseung Lee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jeong Jeong
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.
| |
Collapse
|
30
|
Postnikoff CK, Nichols KK. Neutrophil and T-Cell Homeostasis in the Closed Eye. Invest Ophthalmol Vis Sci 2017; 58:6212-6220. [PMID: 29222551 PMCID: PMC6110127 DOI: 10.1167/iovs.17-22449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose This study sought to examine the changes and phenotype of the tear neutrophil and T-cell populations between early eyelid closure and after a full night of sleep. Methods Fourteen healthy participants were recruited and trained to wash the ocular surface with PBS for at-home self-collection of ocular surface and tear leukocytes following up to 1 hour of sleep and a full night of sleep (average 7 hours), on separate days. Cells were isolated, counted, and incubated with fluorescently labeled antibodies to identify neutrophils, monocytes, and T cells. For neutrophil analysis, samples were stimulated with lipopolysaccharide (LPS) or calcium ionophore (CaI) before antibody incubation. Flow cytometry was performed. Results Following up to 1 hour of sleep, numerous leukocytes were collected (2.6 × 105 ± 3.0 × 105 cells), although significantly (P < 0.005) more accumulated with 7 hours of sleep (9.9 × 105 ± 1.2× 106 cells). Neutrophils (65%), T cells (3%), and monocytes (1%) were identified as part of the closed eye leukocyte infiltration following 7 hours of sleep. Th17 cells represented 22% of the total CD4+ population at the 7-hour time point. Neutrophil phenotype changed with increasing sleep, with a downregulation of membrane receptors CD16, CD11b, CD14, and CD15, indicating a loss in the phagocytic capability of neutrophils. Conclusions Neutrophils begin accumulating in the closed eye conjunctival sac much earlier than previously demonstrated. The closed eye tears are also populated with T cells, including a subset of Th17 cells. The closed eye environment is more inflammatory than previously thought and is relevant to understanding ocular homeostasis.
Collapse
Affiliation(s)
- Cameron K Postnikoff
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly K Nichols
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
31
|
Saghizadeh M, Kramerov AA, Svendsen CN, Ljubimov AV. Concise Review: Stem Cells for Corneal Wound Healing. Stem Cells 2017; 35:2105-2114. [PMID: 28748596 PMCID: PMC5637932 DOI: 10.1002/stem.2667] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/16/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Corneal wound healing is a complex process that occurs in response to various injuries and commonly used refractive surgery. It is a significant clinical problem, which may lead to serious complications due to either incomplete (epithelial) or excessive (stromal) healing. Epithelial stem cells clearly play a role in this process, whereas the contribution of stromal and endothelial progenitors is less well studied. The available evidence on stem cell participation in corneal wound healing is reviewed, together with the data on the use of corneal and non-corneal stem cells to facilitate this process in diseased or postsurgical conditions. Important aspects of corneal stem cell generation from alternative cell sources, including pluripotent stem cells, for possible transplantation upon corneal injuries or in disease conditions are also presented. Stem Cells 2017;35:2105-2114.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Andrei A. Kramerov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
| | - Clive N. Svendsen
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Alexander V. Ljubimov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
32
|
Liu J, Xue Y, Dong D, Xiao C, Lin C, Wang H, Song F, Fu T, Wang Z, Chen J, Pan H, Li Y, Cai D, Li Z. CCR2 - and CCR2 + corneal macrophages exhibit distinct characteristics and balance inflammatory responses after epithelial abrasion. Mucosal Immunol 2017; 10:1145-1159. [PMID: 28120849 PMCID: PMC5562841 DOI: 10.1038/mi.2016.139] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/19/2016] [Indexed: 02/04/2023]
Abstract
Macrophages are distributed throughout the body and are crucial for the restoration of damaged tissues. However, their characteristics in the cornea and roles in the repair of corneal injures are unclear. Here we show that corneal macrophages can be classified as CCR2- macrophages, which already exist in the cornea at embryonic day 12.5 (E12.5) and are similar to yolk sac-derived macrophages, microglia, in phenotype and gene expression, and CCR2+ macrophages, which do not appear in the cornea until E17.5. At a steady state, CCR2- corneal macrophages have local proliferation capacity and are rarely affected by monocytes; however, following corneal epithelial abrasion, most CCR2- corneal macrophages are replaced by monocytes. In contrast, CCR2+ macrophages are repopulated by monocytes under both a steady-state condition and following corneal wounding. Depletion of CCR2+ macrophages decreases corneal inflammation after epithelial abrasion, whereas depletion of CCR2- macrophages increases inflammation of the injured cornea. Loss of either cell type results in a delay in corneal healing. These data indicate that there are two unique macrophage populations present in the cornea, both of which participate in corneal wound healing by balancing the inflammatory response.
Collapse
Affiliation(s)
- J Liu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China,International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Y Xue
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - D Dong
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - C Xiao
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - C Lin
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - H Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - F Song
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - T Fu
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Z Wang
- Department of Medical Images, The Third People’s Hospital, Puyang, China
| | - J Chen
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - H Pan
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Y Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - D Cai
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Z Li
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China,Section of Leukocyte Biology, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA,()
| |
Collapse
|
33
|
Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities. Int J Mol Sci 2017; 18:ijms18061257. [PMID: 28604651 PMCID: PMC5486079 DOI: 10.3390/ijms18061257] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea.
Collapse
|
34
|
Liu J, Xiao C, Wang H, Xue Y, Dong D, Lin C, Song F, Fu T, Wang Z, Chen J, Pan H, Li Y, Cai D, Li Z. Local Group 2 Innate Lymphoid Cells Promote Corneal Regeneration after Epithelial Abrasion. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1313-1326. [PMID: 28419818 DOI: 10.1016/j.ajpath.2017.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 02/09/2017] [Indexed: 12/24/2022]
Abstract
Corneal injuries and infections are the leading cause of blindness worldwide. Thus, understanding the mechanisms that control healing of the damaged cornea is critical for the development of new therapies to promptly restore vision. Innate lymphoid cells (ILCs) are a recently identified heterogeneous cell population that has been reported to orchestrate immunity and promote tissue repair in the lungs and skin after injury. However, whether ILCs can modulate the repair process in the cornea remains poorly understood. We identified a population of cornea-resident group 2 ILCs (ILC2s) in mice that express CD127, T1/ST2, CD90, and cKit. This cell population was relatively rare in corneas at a steady state but increased after corneal epithelial abrasion. Moreover, ILC2s were maintained and expanded locally at a steady state and after wounding. Depletion of this cell population caused a delay in corneal wound healing, whereas supplementation of ILC2s through adoptive transfer partially restored the healing process. Further investigation revealed that IL-25, IL-33, and thymic stromal lymphopoietin had critical roles in corneal ILC2 responses and that CCR2- corneal macrophages were an important producer of IL-33 in the cornea. Together, these results reveal the critical role of cornea-resident ILC2s in the restoration of corneal epithelial integrity after acute injury and suggest that ILC2 responses depend on local induction of IL-25, IL-33, and thymic stromal lymphopoietin.
Collapse
Affiliation(s)
- Jun Liu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China; International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Chengju Xiao
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Hanqing Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Dong Dong
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Cuipei Lin
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Fang Song
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Zhaorui Wang
- Department of Medical Images, The Third People's Hospital, Puyang, China
| | - Jiansu Chen
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Hongwei Pan
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Dongqing Cai
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China; Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|
35
|
Chinnery HR, McMenamin PG, Dando SJ. Macrophage physiology in the eye. Pflugers Arch 2017; 469:501-515. [DOI: 10.1007/s00424-017-1947-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
|
36
|
Zhang W, Magadi S, Li Z, Smith CW, Burns AR. IL-20 promotes epithelial healing of the injured mouse cornea. Exp Eye Res 2016; 154:22-29. [PMID: 27818315 DOI: 10.1016/j.exer.2016.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023]
Abstract
After corneal epithelial injury, the ensuing inflammatory response is necessary for efficient wound healing. While beneficial healing effects are attributed to recruited neutrophils and platelets, dysregulated inflammation (too little or too much) is associated with impaired wound healing. The purpose of this study was to use an established C57BL/6J mouse model of corneal injury to evaluate the potential modulatory role of interleukin-20 (IL-20) on the inflammatory and healing responses to epithelial wounding. In the uninjured cornea, immunofluorescence staining for IL-20 and its receptor, IL-20RA, was observed on basal epithelial cells at the limbus. After a 2 mm central epithelial abrasion, IL-20 staining was also observed in stromal keratocytes and ELISA studies showed a significant increase (nearly 3-fold) in IL-20 expression. Injured corneas healed more slowly when treated with a topical application of a neutralizing anti-IL-20 antibody. While corneal epithelial cell division and epithelial nerve recovery measured at 24 h post-injury were reduced compared to controls, neutrophil influx into the cornea was increased. In contrast, topical application of recombinant IL-20 (rIL-20) decreased corneal inflammation as evidenced by reductions in limbal vessel dilatation, platelet extravasation, neutrophil recruitment and CXCL1 expression. In wild type mice, topical rIL-20 had a limited effect on corneal wound healing and resulted in only a slight increase in epithelial cell division and epithelial nerve recovery; the rate of wound closure was unaffected. To clarify the effect of IL-20 on corneal wound healing, rIL-20 was topically applied to neutropenic wild type (WT) mice and mutant mice (ɣδ T cell deficient mice and CD11a deficient mice), all of which have well characterized reductions in neutrophil recruitment and delayed wound healing after corneal injury. In each case, rIL-20 restored corneal wound healing to baseline levels while neutrophil recruitment remained low. Thus, it appears that IL-20 plays a beneficial and direct role in corneal wound healing while negatively regulating neutrophil and platelet infiltration.
Collapse
Affiliation(s)
- Wanyu Zhang
- College of Optometry, University of Houston, United States
| | - Sri Magadi
- College of Optometry, University of Houston, United States
| | - Zhijie Li
- Department of Pediatrics, Baylor College of Medicine, United States; International Collaborative Innovation Research Center of Ocular Surface Diseases and Institute of Ophthalmology, Jinan University School of Medicine, Guangzhou, China
| | - C Wayne Smith
- Department of Pediatrics, Baylor College of Medicine, United States
| | - Alan R Burns
- College of Optometry, University of Houston, United States; Department of Pediatrics, Baylor College of Medicine, United States.
| |
Collapse
|
37
|
Kalyan S. It May Seem Inflammatory, but Some T Cells Are Innately Healing to the Bone. J Bone Miner Res 2016; 31:1997-2000. [PMID: 27207251 DOI: 10.1002/jbmr.2875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2022]
Abstract
Among the most significant developments to have taken place in osteology over the last few decades is an evolution from treating and viewing bone disorders primarily through an endocrine lens to instead seeing them as metabolic disorders that interface at the molecular and cellular level with the immune system. Osteoimmunology was officially born in response to accumulating evidence that the immune system is integrally involved in bone remodeling, but much of the early work focused on the role of conventional αβ T cells in driving bone loss. There is, however, emerging data indicating that innate lymphocytes, in particular γδ T cells, may in fact be important for bone regeneration. We first observed that bisphosphonate-associated osteonecrosis of the jaw (ONJ), a rare but serious adverse drug effect characterized by nonhealing necrotic bone tissue of the mandible or maxilla, was linked to a deficiency in a subset of γδ T cells found in human peripheral blood. Patients who developed ONJ while on bisphosphonate therapy not only lacked the main subset of circulating γδ T cells, but they also all had underlying conditions that compromised their immune integrity. A number of recent studies have unraveled the role of γδ T cells (and lymphocytes sharing their characteristics) in bone regeneration-particularly for fracture healing. These findings seem to contradict the prevailing view of such "inflammatory" T cells as being bone degenerative rather than restorative. This viewpoint melds together the emerging evidence of these so-called inflammatory T cells in bone remodeling and healing-showing that they are not in fact "all bad to the bone." © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Shirin Kalyan
- CeMCOR, Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
38
|
Song F, Xue Y, Dong D, Liu J, Fu T, Xiao C, Wang H, Lin C, Liu P, Zhong J, Yang Y, Wang Z, Pan H, Chen J, Li Y, Cai D, Li Z. Insulin Restores an Altered Corneal Epithelium Circadian Rhythm in Mice with Streptozotocin-induced Type 1 Diabetes. Sci Rep 2016; 6:32871. [PMID: 27611469 PMCID: PMC5017193 DOI: 10.1038/srep32871] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms of corneal epithelial lesions and delayed wound repair, as well as their association with diabetes mellitus, are critical issues for clinical ophthalmologists. To test whether the diabetic condition alters the circadian rhythm in a mouse cornea and whether insulin can synchronise the corneal clock, we studied the effects of streptozotocin-induced diabetes on the mitosis of epithelial cells, the recruitment of leukocytes to the cornea, and the expression of main core clock genes (Clock, Bmal1, Per2, Cry1, and Rev-erbα) in the corneal epithelium. We also assessed the possible effect of insulin on these modifications. Diabetes downregulated Clock, Bmal1, and Per2 expression, upregulated Cry1 and Rev-erbα expression, reduced corneal epithelial mitosis, and increased leukocyte (neutrophils and γδ T-cells) recruitment to the cornea. Early treatments with insulin partially restored the altered rhythmicity in the diabetic cornea. In conclusion, insulin-dependent diabetes altered the normal rhythmicity of the cornea, and insulin administration had a beneficial effect on restoring normal rhythmicity in the diabetic cornea.
Collapse
Affiliation(s)
- Fang Song
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Yunxia Xue
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Dong Dong
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Jun Liu
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Ting Fu
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Chengju Xiao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Hanqing Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Cuipei Lin
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Peng Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Jiajun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Yabing Yang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Zhaorui Wang
- Department of Medical Images, The Third People's Hospital, Puyang, China
| | - Hongwei Pan
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Jiansu Chen
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Dongqing Cai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Zhijie Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China.,International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China.,Section of Leukocyte Biology, Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
39
|
Reins RY, Hanlon SD, Magadi S, McDermott AM. Effects of Topically Applied Vitamin D during Corneal Wound Healing. PLoS One 2016; 11:e0152889. [PMID: 27035345 PMCID: PMC4817982 DOI: 10.1371/journal.pone.0152889] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/21/2016] [Indexed: 11/18/2022] Open
Abstract
Vitamin D is an important regulator of immune function and largely acts to dampen chronic inflammatory events in a variety of tissues. There is also accumulating evidence that vitamin D acts to enhance initial inflammation, beneficial during both infection and wound healing, and then promotes resolution and prevention of chronic, damaging inflammation. The current study examines the effect of topical vitamin D in a mouse of model of corneal epithelial wound healing, where acute inflammation is necessary for efficient wound closure. At 12 and 18 hours post-wounding, vitamin D treatment significantly delayed wound closure by ~17% and increased infiltration of neutrophils into the central cornea. Basal epithelial cell division, corneal nerve density, and levels of VEGF, TGFβ, IL-1β, and TNFα were unchanged. However, vitamin D increased the production of the anti-microbial peptide CRAMP 12 hours after wounding. These data suggest a possible role for vitamin D in modulating corneal wound healing and have important implications for therapeutic use of vitamin D at the ocular surface.
Collapse
Affiliation(s)
- Rose Y. Reins
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Samuel D. Hanlon
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Sri Magadi
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Alison M. McDermott
- College of Optometry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
40
|
The Role of γδ T Cells in Systemic Lupus Erythematosus. J Immunol Res 2016; 2016:2932531. [PMID: 26981547 PMCID: PMC4766344 DOI: 10.1155/2016/2932531] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by the overproduction of autoantibodies against an array of nuclear and cytoplasmic antigens and affects multiple organs, such as the skin, joints, kidneys, and neuronal tissues. T cells have been recognized as important players in the development of SLE due to their functions in cytokine secretion, antigen presentation, and supporting B cells for antibody production. γδ T cells are a minor population of T cells that play important roles in infection and tumor-associated disease. In recent years, the role of γδ T cells in autoimmune diseases has been investigated. In this review, we discussed the role of γδ T cells in the pathogenesis of SLE.
Collapse
|
41
|
Liu J, Fu T, Song F, Xue Y, Xia C, Liu P, Wang H, Zhong J, Li Q, Chen J, Li Y, Cai D, Li Z. Mast Cells Participate in Corneal Development in Mice. Sci Rep 2015; 5:17569. [PMID: 26627131 PMCID: PMC4667177 DOI: 10.1038/srep17569] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
The development of the cornea, a highly specialized transparent tissue located at the anterior of the eye, is coordinated by a variety of molecules and cells. Here, we report that mast cells (MCs), recently found to be involved in morphogenesis, played a potentially important role in corneal development in mice. We show that two different waves of MC migration occurred during corneal development. In the first wave, MCs migrated to the corneal stroma and became distributed throughout the cornea. This wave occurred by embryonic day 12.5, with MCs disappearing from the cornea at the time of eyelid opening. In the second wave, MCs migrated to the corneal limbus and became distributed around limbal blood vessels. The number of MCs in this region gradually increased after birth and peaked at the time of eyelid opening in mice, remaining stable after postnatal day 21. We also show that integrin α4β7 and CXCR2 were important for the migration of MC precursors to the corneal limbus and that c-Kit-dependent MCs appeared to be involved in the formation of limbal blood vessels and corneal nerve fibers. These data clearly revealed that MCs participate in the development of the murine cornea.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Ting Fu
- International Collaborative Innovation Research Center of Ocular Surface Diseases and Institute of Ophthalmology, Jinan University School of Medicine, Guangzhou, China
| | - Fang Song
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Collaborative Innovation Research Center of Ocular Surface Diseases and Institute of Ophthalmology, Jinan University School of Medicine, Guangzhou, China
| | - Chaoyong Xia
- Department of Embryology and Histology, Jinan University School of Medicine, Guangzhou, China
| | - Peng Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Hanqing Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Jiajun Zhong
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Quanrong Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Jiansu Chen
- International Collaborative Innovation Research Center of Ocular Surface Diseases and Institute of Ophthalmology, Jinan University School of Medicine, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Jinan University School of Medicine, Guangzhou, China
| | - Dongqing Cai
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Zhijie Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,International Collaborative Innovation Research Center of Ocular Surface Diseases and Institute of Ophthalmology, Jinan University School of Medicine, Guangzhou, China.,Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China.,Section of Leukocyte Biology, Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
42
|
Huang Y, Yang Z, Huang C, McGowan J, Casper T, Sun D, Born WK, O'Brien RL. γδ T Cell-Dependent Regulatory T Cells Prevent the Development of Autoimmune Keratitis. THE JOURNAL OF IMMUNOLOGY 2015; 195:5572-81. [PMID: 26566677 DOI: 10.4049/jimmunol.1501604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
Abstract
To prevent potentially damaging inflammatory responses, the eye actively promotes local immune tolerance via a variety of mechanisms. Owing to trauma, infection, or other ongoing autoimmunity, these mechanisms sometimes fail, and an autoimmune disorder may develop in the eye. In mice of the C57BL/10 (B10) background, autoimmune keratitis often develops spontaneously, particularly in the females. Its incidence is greatly elevated in the absence of γδ T cells, such that ∼80% of female B10.TCRδ(-/-) mice develop keratitis by 18 wk of age. In this article, we show that CD8(+) αβ T cells are the drivers of this disease, because adoptive transfer of CD8(+), but not CD4(+), T cells to keratitis-resistant B10.TCRβ/δ(-/-) hosts induced a high incidence of keratitis. This finding was unexpected because in other autoimmune diseases, more often CD4(+) αβ T cells, or both CD4(+) and CD8(+) αβ T cells, mediate the disease. Compared with wild-type B10 mice, B10.TCRδ(-/-) mice also show increased percentages of peripheral memory phenotype CD8(+) αβ T cells, along with an elevated frequency of CD8(+) αβ T cells biased to produce inflammatory cytokines. In addition, B10.TCRδ-/- mice have fewer peripheral CD4(+) CD25(+) Foxp3(+) αβ regulatory T cells (Tregs), which express lower levels of receptors needed for Treg development and function. Together, these observations suggest that in B10 background mice, γδ T cells are required to generate adequate numbers of CD4(+) CD25(+) Foxp3(+) Tregs, and that in B10.TCRδ(-/-) mice a Treg deficiency allows dysregulated effector or memory CD8(+) αβ T cells to infiltrate the cornea and provoke an autoimmune attack.
Collapse
Affiliation(s)
- Yafei Huang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045; Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City 430030, People's Republic of China
| | - Zhifang Yang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045; Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City 430030, People's Republic of China; and
| | - Chunjian Huang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Jessica McGowan
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Tamara Casper
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033
| | - Willi K Born
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Rebecca L O'Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045;
| |
Collapse
|
43
|
Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea. J Transl Med 2015; 95:1305-18. [PMID: 26280222 PMCID: PMC4626298 DOI: 10.1038/labinvest.2015.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 01/09/2023] Open
Abstract
Although sensory reinnervation occurs after injury in the peripheral nervous system, poor reinnervation in the elderly and those with diabetes often leads to pathology. Here we quantify sub-basal axon density in the central and peripheral mouse cornea over time after three different types of injury. The mouse cornea is highly innervated with a dense array of sub-basal nerves that form a spiral called the vortex at the corneal center or apex; these nerves are readily detected within flat mounted corneas. After anesthesia, corneal epithelial cells were removed using either a dulled blade or a rotating burr within an area demarcated centrally with a 1.5 mm trephine. A third wound type, superficial trephination, involved demarcating the area with the 1.5 mm trephine but not removing cells. By 7 days after superficial trephination, sub-basal axon density returns to control levels; by 28 days the vortex reforms. Although axon density is similar to control 14 days after dulled blade and rotating burr wounding, defects in axon morphology at the corneal apex remain. After 14 days, axons retract from the center leaving the sub-basal axon density reduced by 37.2 and 36.8% at 28 days after dulled blade and rotating burr wounding, respectively, compared with control. Assessment of inflammation using flow cytometry shows that persistent inflammation is not a factor in the incomplete reinnervation. Expression of mRNAs encoding 22 regeneration-associated genes involved in axon targeting assessed by QPCR reveals that netrin-1 and ephrin signaling are altered after wounding. Subpopulations of corneal epithelial basal cells at the corneal apex stop expressing ki67 as early as 7 days after injury and by 14 and 28 days after wounding, many of these basal cells undergo apoptosis and die. Although sub-basal axons are restored to their normal density and morphology after superficial trephination, sub-basal axon recovery is partial after debridement wounds. The increase in corneal epithelial basal cell apoptosis at the apex observed at 14 days after corneal debridement may destabilize newly reinnervated sub-basal axons and lead to their retraction toward the periphery.
Collapse
|
44
|
Gao Y, Min K, Zhang Y, Su J, Greenwood M, Gronert K. Female-Specific Downregulation of Tissue Polymorphonuclear Neutrophils Drives Impaired Regulatory T Cell and Amplified Effector T Cell Responses in Autoimmune Dry Eye Disease. THE JOURNAL OF IMMUNOLOGY 2015; 195:3086-99. [PMID: 26324767 DOI: 10.4049/jimmunol.1500610] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
Abstract
Immune-driven dry eye disease primarily affects women; the cause for this sex-specific prevalence is unknown. Polymorphonuclear neutrophils (PMN) have distinct phenotypes that drive inflammation but also regulate lymphocytes and are the rate-limiting cell for generating anti-inflammatory lipoxin A4 (LXA4). Estrogen regulates the LXA4 circuit to induce delayed female-specific wound healing in the cornea. However, the role of PMNs in dry eye disease remains unexplored. We discovered an LXA4-producing tissue PMN population in the corneal limbus, lacrimal glands, and cervical lymph nodes of healthy male and female mice. These tissue PMNs, unlike inflammatory PMNs, expressed a highly amplified LXA4 circuit and were sex-specifically regulated during immune-driven dry eye disease. Desiccating stress in females, unlike in males, triggered a remarkable decrease in lymph node PMN and LXA4 formation that remained depressed during dry eye disease. Depressed lymph node PMN and LXA4 in females correlated with an increase in effector T cells (Th1 and Th17), a decrease in regulatory T cells (Treg), and increased dry eye pathogenesis. Ab depletion of tissue PMN abrogated LXA4 formation in lymph nodes, as well as caused a marked increase in Th1 and Th17 cells and a decrease in Tregs. To establish an immune-regulatory role for PMN-derived LXA4 in dry eye, females were treated with LXA4. LXA4 treatment markedly inhibited Th1 and Th17 and amplified Treg in draining lymph nodes, while reducing dry eye pathogenesis. These results identify female-specific regulation of LXA4-producing tissue PMN as a potential key factor in aberrant effector T cell activation and initiation of immune-driven dry eye disease.
Collapse
Affiliation(s)
- Yuan Gao
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - Kyungji Min
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - Yibing Zhang
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - John Su
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - Matthew Greenwood
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| |
Collapse
|
45
|
Abstract
Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and nanocarriers for corneal drug delivery are discussed. Attention is also paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells.
Collapse
Affiliation(s)
- Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
46
|
Ramirez K, Witherden DA, Havran WL. All hands on DE(T)C: Epithelial-resident γδ T cells respond to tissue injury. Cell Immunol 2015; 296:57-61. [PMID: 25958272 DOI: 10.1016/j.cellimm.2015.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/27/2015] [Accepted: 04/19/2015] [Indexed: 12/29/2022]
Abstract
Immunology has traditionally focused on the lymphocytes circulating among primary lymphoid organs while the large reservoir of tissue-resident T cells have received relatively less attention. In epithelia, these populations are comprised of significant, and sometimes exclusive, subsets of γδ T cells that are highly specialized in promoting tissue homeostasis. As the epithelial layers of the skin and gut are permanently exposed to the environment, they are continually subject to injury and therefore require highly efficient repair processes to maintain barrier functions. Here, we review the role of γδ T cells in promoting wound healing, a critical and complex process occurring in the skin and other barrier sites.
Collapse
Affiliation(s)
- Kevin Ramirez
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Deborah A Witherden
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Wendy L Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
47
|
He S, Zhang H, Liu S, Liu H, Chen G, Xie Y, Zhang J, Sun S, Li Z, Wang L. γδ T cells regulate the expression of cytokines but not the manifestation of fungal keratitis. Exp Eye Res 2015; 135:93-101. [PMID: 25864785 DOI: 10.1016/j.exer.2015.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/20/2015] [Accepted: 03/17/2015] [Indexed: 12/31/2022]
Abstract
As an important immunoregulatory cell type, the role of γδ T cells in fungal keratitis (FK) is unclear. We observed the distribution of γδ T cells in infected corneas in vivo by two-photon microscopy. The γδ T cells were depleted by neutralizing antibodies. The cytokine expression profile was obtained by protein arrays to determine the cytokines regulated by γδ T cells. ICAM-1, MIP-2 and IL-17A were evaluated by ELISA assays to confirm the role of γδ T cells in FK. We counted the number of neutrophils, evaluated the volume of fungal hyphae and analyzed the manifestation of the disease. The γδ T cells increased significantly at 36 h and 72 h post fungal infection (P < 0.05) and migrated from the limbus to the infection site. The neutralizing antibodies completely depleted the γδ T cells in 24 h. The depletion of γδ T cells led to up regulation of 25 cytokines and down regulation of 3 cytokines. ICAM-1, MIP-2 and IL-17A changed significantly because of the depletion of γδ T cells (P < 0.05). However, the number of neutrophils, volume of fungal hyphae and manifestation of the disease was not affected by the depletion of γδ T cells. Our results demonstrated that γδ T cells have a role in FK via regulation of some cytokines but did not affect the manifestation of this disease, suggesting that γδ T cells are not the key regulator cells in this disease.
Collapse
Affiliation(s)
- Siyu He
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Hongmin Zhang
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Susu Liu
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Hui Liu
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Guoming Chen
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Yanting Xie
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Shengtao Sun
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Liya Wang
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China.
| |
Collapse
|
48
|
Platelet recruitment promotes keratocyte repopulation following corneal epithelial abrasion in the mouse. PLoS One 2015; 10:e0118950. [PMID: 25775402 PMCID: PMC4361664 DOI: 10.1371/journal.pone.0118950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/12/2015] [Indexed: 12/25/2022] Open
Abstract
Corneal abrasion not only damages the epithelium but also induces stromal keratocyte death at the site of injury. While a coordinated cascade of inflammatory cell recruitment facilitates epithelial restoration, it is unclear if this cascade is necessary for keratocyte recovery. Since platelet and neutrophil (PMN) recruitment after corneal abrasion is beneficial to epithelial wound healing, we wanted to determine if these cells play a role in regulating keratocyte repopulation after epithelial abrasion. A 2 mm diameter central epithelial region was removed from the corneas of C57BL/6 wildtype (WT), P-selectin deficient (P-sel-/-), and CD18 hypomorphic (CD18hypo) mice using the Algerbrush II. Corneas were studied at 6h intervals out to 48h post-injury to evaluate platelet and PMN cell numbers; additional corneas were studied at 1, 4, 14, and 28 days post injury to evaluate keratocyte numbers. In WT mice, epithelial abrasion induced a loss of anterior central keratocytes and keratocyte recovery was rapid and incomplete, reaching ~70% of uninjured baseline values by 4 days post-injury but no further improvement at 28 days post-injury. Consistent with a beneficial role for platelets and PMNs in wound healing, keratocyte recovery was significantly depressed at 4 days post-injury (~30% of uninjured baseline) in P-sel-/- mice, which are known to have impaired platelet and PMN recruitment after corneal abrasion. Passive transfer of platelets from WT, but not P-sel-/-, into P-sel-/- mice prior to injury restored anterior central keratocyte numbers at 4 days post-injury to P-sel-/- uninjured baseline levels. While PMN infiltration in injured CD18hypo mice was similar to injured WT mice, platelet recruitment was markedly decreased and anterior central keratocyte recovery was significantly reduced (~50% of baseline) at 4–28 days post-injury. Collectively, the data suggest platelets and platelet P-selectin are critical for efficient keratocyte recovery after corneal epithelial abrasion.
Collapse
|
49
|
Latha TS, Reddy MC, Durbaka PVR, Rachamallu A, Pallu R, Lomada D. γδ T Cell-Mediated Immune Responses in Disease and Therapy. Front Immunol 2014; 5:571. [PMID: 25426120 PMCID: PMC4225745 DOI: 10.3389/fimmu.2014.00571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/24/2014] [Indexed: 12/18/2022] Open
Abstract
The role of γδ T cells in immunotherapy has gained specific importance in the recent years because of their prominent function involving directly or indirectly in the rehabilitation of the diseases. γδ T cells represent a minor population of T cells that express a distinct T cell receptor (TCR) composed of γδ chains instead of αβ chains. Unlike αβ T cells, γδ T cells display a restricted TCR repertoire and recognize mostly unknown non-peptide antigens. γδ T cells act as a link between innate and adaptive immunity, because they lack precise major histocompatibility complex (MHC) restriction and seize the ability to recognize ligands that are generated during affliction. Skin epidermal γδ T cells recognize antigen expressed by damaged or stressed keratinocytes and play an indispensable role in tissue homeostasis and repair through secretion of distinct growth factors. γδ T cell based immunotherapy strategies possess great prominence in the treatment because of the property of their MHC-independent cytotoxicity, copious amount of cytokine release, and a immediate response in infections. Understanding the role of γδ T cells in pathogenic infections, wound healing, autoimmune diseases, and cancer might provide knowledge for the successful treatment of these diseases using γδ T cell based immunotherapy. Enhancing the human Vγ9Vδ2 T cells functions by administration of aminobisphosphonates like zoledronate, pamidronate, and bromohydrin pyrophosphate along with cytokines and monoclonal antibodies shows a hopeful approach for treatment of tumors and infections. The current review summarizes the role of γδ T cells in various human diseases and immunotherapeutic approaches using γδ T cells.
Collapse
Affiliation(s)
- T Sree Latha
- Department of Genetics and Genomics, Yogi Vemana University , Kadapa , India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University , Kadapa , India
| | | | - Aparna Rachamallu
- Department of Animal Biology, University of Hyderabad , Hyderabad , India ; National Institute of Animal Biotechnology (NIAB) , Hyderabad , India
| | - Reddanna Pallu
- Department of Animal Biology, University of Hyderabad , Hyderabad , India ; National Institute of Animal Biotechnology (NIAB) , Hyderabad , India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University , Kadapa , India
| |
Collapse
|
50
|
Liu X, Gao N, Dong C, Zhou L, Mi QS, Standiford TJ, Yu FSX. Flagellin-induced expression of CXCL10 mediates direct fungal killing and recruitment of NK cells to the cornea in response to Candida albicans infection. Eur J Immunol 2014; 44:2667-79. [PMID: 24965580 PMCID: PMC4165733 DOI: 10.1002/eji.201444490] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/29/2014] [Accepted: 06/20/2014] [Indexed: 11/10/2022]
Abstract
We previously showed that topical flagellin induces profound mucosal innate protection in the cornea against microbial infection, a response involving multiple genes and cell types. In this study, we used a Candida albicans (CA)-C57BL/6 mouse keratitis model to delineate the contribution of CXCL10- and CXCR3-expressing cells in flagellin-induced protection. Flagellin pretreatment markedly enhanced CXCL10 expression at 6 h post CA infection (hpi), but significantly dampened CXCL10 expression at 24 hpi. At the cellular level, CXCL10 was expressed in the epithelia at 6 hpi in flagellin-pretreated corneas, and concentrated at lesion sites 24 hpi. CXCR3-expressing cells were detected in great numbers at 24 hpi, organized within clusters at the lesion sites in CA-infected corneas. CXCL10 or CXCR3 neutralization increased keratitis severity and dampened flagellin-induced protection. CXCR3-positive cells were identified as NK cells, the depletion of which resulted in severe CA keratitis. Contributions from NK T-cells were excluded by finding no change in flagellin-induced protection in Rag1 KO mice. Recombinant CXCL10 inhibited CA growth in vitro and accelerated fungal clearance and inflammation resolution in vivo. Taken together, our data indicate that epithelium-expressed CXCL10 plays a critical role in fungal clearance and that CXCR3-expressing NK cells contribute to CA eradication in mouse corneas.
Collapse
Affiliation(s)
- Xiaowei Liu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chen Dong
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Zhou
- Henry Ford Immunology Program, Department of Dermatology, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Department of Dermatology, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Fu-Shin X. Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|