1
|
Qu B, Zhang XE, Feng H, Yan B, Bai Y, Liu S, He Y. Microbial perspective on the skin-gut axis and atopic dermatitis. Open Life Sci 2024; 19:20220782. [PMID: 38623584 PMCID: PMC11017189 DOI: 10.1515/biol-2022-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 04/17/2024] Open
Abstract
Atopic dermatitis (AD) is a relapsing inflammatory skin condition that has become a global health issue with complex etiology and mounting prevalence. The association of AD with skin and gut microbiota has been revealed by virtue of the continuous development of sequencing technology and genomics analysis. Also, the gut-brain-skin axis and its mutual crosstalk mechanisms have been gradually verified. Accordingly, the microbiota-skin-gut axis also plays an important role in allergic skin inflammation. Herein, we reviewed the relationship between the microbiota-skin-gut axis and AD, explored the underlying signaling molecules and potential pathways, and focused on the potential mechanisms of probiotics, antimicrobial peptides (AMPs), coagulase-negative staphylococci transplantation, fecal microbiota transplantation, AMPs, and addition of essential fatty acids in alleviating AD, with the aim to provide a new perspective for targeting microbiota in the treatment of allergic skin inflammation.
Collapse
Affiliation(s)
- Bo Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Xue-er Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Haoyue Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Bonan Yan
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yingchun Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Shanlin Liu
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yuhua He
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| |
Collapse
|
2
|
Dong J, Peng Z, Chen M, Lai Y, Zhang X, Yu M, Zhong H, Liu J, Yue Y, Shang J. Long Non-Coding RNA Mir17hg Positively Regulates Melanogenesis by Inhibiting TGFβ Receptor 2 under Psychological Stress. J Invest Dermatol 2024; 144:358-368.e10. [PMID: 37709007 DOI: 10.1016/j.jid.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Vitiligo is a common skin depigmentation disorder characterized by the patchy loss of skin color. Nowadays, it is recognized as being correlated with multiple genetic factors as well as the psychological conditions of individuals. Long noncoding RNAs have been reported to underlie the pathogenesis of vitiligo; however, the role of long noncoding RNAs in the stress-related depigmentation process remains largely unknown. In this study, the inhibition of melanocyte function was observed in C57BL/6J mice modeled through chronic restraint stress. Furthermore, downregulation of the expression of the long noncoding RNAs Mir17hg was identified using RNA sequencing. The regulatory role of Mir17hg in melanogenesis was also investigated in melanocytes and zebrafish embryos through overexpression or knockdown. Finally, TGFβ receptor 2 was shown to be a downstream target in Mir17hg-mediated melanogenesis regulation, in which the classical TGFβ/SMAD signaling cascade and the PI3K/AKT/mTOR signaling cascade play important roles. In conclusion, our results revealed an important regulatory role of Mir17hg in melanogenesis through inhibition of TGFβR2, which can provide a potential therapeutic target for treating skin depigmentation disorders.
Collapse
Affiliation(s)
- Jing Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zan Peng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghan Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yifan Lai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaofeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China
| | - Yunyun Yue
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China; NMPA Key Laboratory for Research and Evaluation of Cosmetics, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
3
|
Matar DY, Ng B, Darwish O, Wu M, Orgill DP, Panayi AC. Skin Inflammation with a Focus on Wound Healing. Adv Wound Care (New Rochelle) 2023; 12:269-287. [PMID: 35287486 PMCID: PMC9969897 DOI: 10.1089/wound.2021.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
Significance: The skin is the crucial first-line barrier against foreign pathogens. Compromise of this barrier presents in the context of inflammatory skin conditions and in chronic wounds. Skin conditions arising from dysfunctional inflammatory pathways severely compromise the quality of life of patients and have a high economic impact on the U.S. health care system. The development of a thorough understanding of the mechanisms that can disrupt skin inflammation is imperative to successfully modulate this inflammation with therapies. Recent Advances: Many advances in the understanding of skin inflammation have occurred during the past decade, including the development of multiple new pharmaceuticals. Mechanical force application has been greatly advanced clinically. Bioscaffolds also promote healing, while reducing scarring. Critical Issues: Various skin inflammatory conditions provide a framework for analysis of our understanding of the phases of successful wound healing. The large burden of chronic wounds on our society continues to focus attention on the chronic inflammatory state induced in many of these skin conditions. Future Directions: Better preclinical models of disease states such as chronic wounds, coupled with enhanced diagnostic abilities of human skin, will allow a better understanding of the mechanism of action. This will lead to improved treatments with biologics and other modalities such as the strategic application of mechanical forces and scaffolds, which ultimately results in better outcomes for our patients.
Collapse
Affiliation(s)
- Dany Y. Matar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian Ng
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Oliver Darwish
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, California Northstate University College of Medicine, Elk Grove, California, USA
| | - Mengfan Wu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dennis P. Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana C. Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Acceleration of TAA-Induced Liver Fibrosis by Stress Exposure Is Associated with Upregulation of Nerve Growth Factor and Glycopattern Deviations. Int J Mol Sci 2021; 22:ijms22105055. [PMID: 34064584 PMCID: PMC8151393 DOI: 10.3390/ijms22105055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis results from many chronic injuries and may often progress to cirrhosis and hepatocellular carcinoma (HCC). In fact, up to 90% of HCC arise in a cirrhotic liver. Conversely, stress is implicated in liver damage, worsening disease outcome. Hence, stress could play a role in disrupting liver homeostasis, a concept that has not been fully explored. Here, in a murine model of TAA-induced liver fibrosis we identified nerve growth factor (NGF) to be a crucial regulator of the stress-induced fibrogenesis signaling pathway as it activates its receptor p75 neurotrophin receptor (p75NTR), increasing liver damage. Additionally, blocking the NGF decreased liver fibrosis whereas treatment with recombinant NGF accelerated the fibrotic process to a similar extent than stress challenge. We further show that the fibrogenesis induced by stress is characterized by specific changes in the hepatoglycocode (increased β1,6GlcNAc-branched complex N-glycans and decreased core 1 O-glycans expression) which are also observed in patients with advanced fibrosis compared to patients with a low level of fibrosis. Our study facilitates an understanding of stress-induced liver injury and identify NGF signaling pathway in early stages of the disease, which contributes to the established fibrogenesis.
Collapse
|
5
|
Islam SMS, Ryu HM, Sayeed HM, Sohn S. Interrelationship of Stress, Environment, and Herpes Simplex Virus Type-1 on Behçet's Disease: Using a Mouse Model. Front Immunol 2021; 12:607768. [PMID: 33868228 PMCID: PMC8044423 DOI: 10.3389/fimmu.2021.607768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to investigate effects of stress and environment factors on the induction of Behçet's disease (BD) using HSV-1 infected mouse model. BD is a chronic multisystemic inflammatory disease of unknown etiology. Environmental factors, immune dysfunction, and herpes simplex virus type-1 (HSV) infection might be triggers of BD. To investigate effects of environmental factors on the incidence of BD, HSV was inoculated into mice. Mice were then maintained in conventional facility or SPF facility to compare BD incidence rates. The incidence of BD was also tracked by adding stressors such as substance P (anxiety stress), 4°C (cold stress), xanthine sodium salt (oxidative stress), or 77 dB noise (noise stress). To clarify immune mechanisms involved in the difference in BD incidence caused by various stresses, dendritic cell activation markers were analyzed using flow cytometry. The combination of conventional environment, noise stress, and HSV had the highest rate of BD (38.1%) among all groups. However, HSV inoculated group in a SPF environment had the lowest incidence (2.2%). Frequencies of dendritic cell activation markers such as CD40, CD83, CD80, and CD86 were expressed differently under various stresses. Noise stress increased frequencies of CD83 positive cells. Noise stress also upregulated transcription factors T-bet and ROR-γt. Different gut microbiota compositions were observed between SPF and conventional environment by 16S rRNA sequence analysis. Environment and stress influenced the incidence of HSV-induced BD. Microbial diversity due to environmental differences might be one explanation for regional differences in the incidence of BD.
Collapse
Affiliation(s)
- S M Shamsul Islam
- Department of Biomedical Science, School of Medicine, Ajou University, Suwon, South Korea
| | - Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Hasan M Sayeed
- Department of Biomedical Science, School of Medicine, Ajou University, Suwon, South Korea
| | - Seonghyang Sohn
- Department of Biomedical Science, School of Medicine, Ajou University, Suwon, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
6
|
Kawamoto T, Miyake Y, Tanaka K, Nagano J, Sasaki S, Hirota Y. Maternal prenatal stress and infantile wheeze and asthma: The Osaka Maternal and Child Health Study. J Psychosom Res 2020; 135:110143. [PMID: 32470843 DOI: 10.1016/j.jpsychores.2020.110143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Some recent studies suggest that maternal prenatal stress (MPS) increases allergic diseases in the children. However, knowledge on this issue in Asian children are lacking. We investigated the association between MPS and the risks of wheeze and asthma in Japanese infants aged 16-24 months. METHODS The present subjects were 763 Japanese mother-child pairs. The first, second, and third surveys based on self-administered questionnaires were performed during pregnancy, between 2 and 9 months postpartum, and from 16 to 24 months postpartum, respectively. Data on MPS was obtained in the first survey, using the Stress Inventory (SI), which constructs 12 specific behavioral patterns as response styles to stressors. Data on wheeze and asthma was obtained in the third survey, where wheeze was based on the International Study of Asthma and Allergies in Childhood criteria and asthma was based on doctors' diagnosis. RESULTS There were 169 infants with wheeze (22.1%) and 33 infants with asthma (4.3%), at the time of the third survey. Multiple logistic regression analyses found that a maternal behavioral pattern characterized by chronic irritation and anger was associated with the risk of childhood asthma (adjusted odds ratio [OR] = 1.56, 95% confidence interval [CI]: 1.11 to 2.22), but not wheeze (adjusted OR = 1.02, 95%CI: 0.88 to 1.19), while there was no appreciable association between the other SI scales and the risk of childhood wheeze or asthma. CONCLUSIONS The results partly supported the hypothesis that MPS might increase the risk of asthma in their infants in Japanese.
Collapse
Affiliation(s)
- Tetsuya Kawamoto
- Center for Advanced School Education and Evidence-based Research (CASEER), The University of Tokyo, Tokyo, Japan; Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Yoshihiro Miyake
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Ehime, Japan; Research Promotion Unit, Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Keiko Tanaka
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Ehime, Japan; Research Promotion Unit, Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Jun Nagano
- Center for Health Sciences and Counseling, Kyushu University, Fukuoka, Japan
| | - Satoshi Sasaki
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Yoshio Hirota
- Clinical Epidemiology Research Center, Medical Co. LTA (SOUSEIKAI), Fukuoka, Japan
| |
Collapse
|
7
|
Tissue-resident macrophages can be generated de novo in adult human skin from resident progenitor cells during substance P-mediated neurogenic inflammation ex vivo. PLoS One 2020; 15:e0227817. [PMID: 31971954 PMCID: PMC6977738 DOI: 10.1371/journal.pone.0227817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
Besides monocyte (MO)-derived macrophages (MACs), self-renewing tissue-resident macrophages (trMACs) maintain the intracutaneous MAC pool in murine skin. Here, we have asked whether the same phenomenon occurs in human skin using organ-cultured, full-thickness skin detached from blood circulation and bone marrow. Skin stimulation ex vivo with the neuropeptide substance P (SP), mimicking neurogenic skin inflammation, significantly increased the number of CD68+MACs in the papillary dermis without altering intracutaneous MAC proliferation or apoptosis. Since intraluminal CD14+MOs were undetectable in the non-perfused dermal vasculature, new MACs must have differentiated from resident intracutaneous progenitor cells in human skin. Interestingly, CD68+MACs were often seen in direct cell-cell-contact with cells expressing both, the hematopoietic stem cell marker CD34 and SP receptor (neurokinin-1 receptor [NK1R]). These cell-cell contacts and CD34+cell proliferation were up-regulated in SP-treated skin samples. Collectively, our study provides the first evidence that resident MAC progenitors, from which mature MACs can rapidly differentiate within the tissue, do exist in normal adult human skin. That these NK1R+trMAC-progenitor cells quickly respond to a key stress-associated neuroinflammatory stimulus suggests that this may satisfy increased local MAC demand under conditions of wounding/stress.
Collapse
|
8
|
Yu M, Lee SM, Lee H, Amouzegar A, Nakao T, Chen Y, Dana R. Neurokinin-1 Receptor Antagonism Ameliorates Dry Eye Disease by Inhibiting Antigen-Presenting Cell Maturation and T Helper 17 Cell Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:125-133. [PMID: 31669306 PMCID: PMC6943374 DOI: 10.1016/j.ajpath.2019.09.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation plays an important role in the pathogenesis of ocular surface disease, including dry eye disease (DED), but little is known about the contribution of substance P (SP) to DED. In this study, we investigated the expression of SP at the ocular surface and evaluated its effect on maturation of antigen-presenting cells (APCs), the key cell component involved in the induction of type 17 helper T-cell (Th17) response in DED. The effect of topical blockade of SP signaling was further investigated using neurokinin-1 receptor (NK1R) inhibitors on APC maturation, Th17 cell activation, and disease severity in a mouse model of DED. The results demonstrate that SP is constitutively expressed at the ocular surface, and trigeminal ganglion neurons are the major source of SP in DED. SP derived from trigeminal ganglion enhanced the expression of major histocompatibility complex class II maturation marker by bone marrow-derived dendritic cells, an effect that is abrogated by blockade of SP signaling using NK1R antagonist spantide. Finally, using a well-established murine model of DED, topical treatment of DED mice with NK1R antagonists CP-99,994 and L-733,060 suppressed APC acquisition of major histocompatibility complex class II, reduced Th17 cell activity, and ameliorated DED severity. These findings are of translational value, as they suggest that antagonizing NK1R-mediated SP signaling may be an effective strategy in suppressing Th17-mediated ocular surface disease.
Collapse
Affiliation(s)
- Man Yu
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Sang-Mok Lee
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Hyunsoo Lee
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Takeshi Nakao
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Yihe Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Choi JE, Di Nardo A. Skin neurogenic inflammation. Semin Immunopathol 2018; 40:249-259. [PMID: 29713744 DOI: 10.1007/s00281-018-0675-z] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/06/2018] [Indexed: 01/12/2023]
Abstract
The epidermis closely interacts with nerve endings, and both epidermis and nerves produce substances for mutual sustenance. Neuropeptides, like substance P (SP) and calcitonin gene-related protein (CGRP), are produced by sensory nerves in the dermis; they induce mast cells to release vasoactive amines that facilitate infiltration of neutrophils and T cells. Some receptors are more important than others in the generation of itch. The Mas-related G protein-coupled receptors (Mrgpr) family as well as transient receptor potential ankyrin 1 (TRPA1) and protease activated receptor 2(Par2) have important roles in itch and inflammation. The activation of MrgprX1 degranulates mast cells to communicate with sensory nerve and cutaneous cells for developing neurogenic inflammation. Mrgprs and transient receptor potential vanilloid 4 (TRPV4) are crucial for the generation of skin diseases like rosacea, while SP, CGRP, somatostatin, β-endorphin, vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating polypeptide (PACAP) can modulate the immune system during psoriasis development. The increased level of SP, in atopic dermatitis, induces the release of interferon (IFN)-γ, interleukin (IL)-4, tumor necrosis factor (TNF)-α, and IL-10 from the peripheral blood mononuclear leukocytes. We are finally starting to understand the intricate connections between the skin neurons and resident skin cells and how their interaction can be key to controlling inflammation and from there the pathogenesis of diseases like atopic dermatitis, psoriasis, and rosacea.
Collapse
Affiliation(s)
- Jae Eun Choi
- Department of Dermatology, University of California San Diego, 9500 Gilman Drive #0869, La Jolla, CA, 92093, USA
| | - Anna Di Nardo
- Department of Dermatology, University of California San Diego, 9500 Gilman Drive #0869, La Jolla, CA, 92093, USA.
| |
Collapse
|
10
|
Corticosterone Production during Repeated Social Defeat Causes Monocyte Mobilization from the Bone Marrow, Glucocorticoid Resistance, and Neurovascular Adhesion Molecule Expression. J Neurosci 2018; 38:2328-2340. [PMID: 29382712 DOI: 10.1523/jneurosci.2568-17.2018] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 02/08/2023] Open
Abstract
Repeated social defeat (RSD) stress promotes the release of bone marrow-derived monocytes into circulation that are recruited to the brain, where they augment neuroinflammation and cause prolonged anxiety-like behavior. Physiological stress activates the sympathetic nervous system and hypothalamic-pituitary-adrenal gland (HPA) axis, and both of these systems play a role in the physiological, immunological, and behavioral responses to stress. The purpose of this study was to delineate the role of HPA activation and corticosterone production in the immunological responses to stress in male C57BL/6 mice. Here, surgical (adrenalectomy) and pharmacological (metyrapone) interventions were used to abrogate corticosterone signaling during stress. We report that both adrenalectomy and metyrapone attenuated the stress-induced release of monocytes into circulation. Neither intervention altered the production of monocytes during stress, but both interventions enhanced retention of these cells in the bone marrow. Consistent with this observation, adrenalectomy and metyrapone also prevented the stress-induced reduction of a key retention factor, CXCL12, in the bone marrow. Corticosterone depletion with metyrapone also abrogated the stress-induced glucocorticoid resistance of myeloid cells. In the brain, these corticosterone-associated interventions attenuated stress-induced microglial remodeling, neurovascular expression of the adhesion molecule intercellular cell adhesion molecule-1, prevented monocyte accumulation and neuroinflammatory signaling. Overall, these results indicate that HPA activation and corticosterone production during repeated social defeat stress are critical for monocyte release into circulation, glucocorticoid resistance of myeloid cells, and enhanced neurovascular cell adhesion molecule expression.SIGNIFICANCE STATEMENT Recent studies of stress have identified the presence of monocytes that show an exaggerated inflammatory response to immune challenge and are resistant to the suppressive effects of glucocorticoids. Increased presence of these proinflammatory monocytes has been implicated in neuropsychiatric symptoms and the development of chronic cardiovascular, autoimmune, and metabolic disorders. In the current study, we show novel evidence that corticosterone produced during stress enhances the release of proinflammatory monocytes from the bone marrow into circulation, augments their recruitment to the brain and the induction of a neuroinflammatory profile. Overproduction of corticosterone during stress is also the direct cause of glucocorticoid resistance, a key phenotype in individuals exposed to chronic stress. Inhibiting excess corticosterone production attenuates these inflammatory responses to stress.
Collapse
|
11
|
Langerhans cells prevent subbasal nerve damage and upregulate neurotrophic factors in dry eye disease. PLoS One 2017; 12:e0176153. [PMID: 28441413 PMCID: PMC5404869 DOI: 10.1371/journal.pone.0176153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 04/04/2017] [Indexed: 11/20/2022] Open
Abstract
The functional role of Langerhans cells (LCs) in ocular surface inflammation and nerve damage in dry eye (DE) disease has yet to be determined. This study was performed to investigate this relationship through both clinical study on DE patients and in vivo mouse models with induced DE disease. In a cross-sectional case-control study (54 eyes of DE patients; 34 eyes of control patients), average cell density, area, and process length of LCs were measured using confocal microscopy. Data were analyzed to determine whether changes in LCs are correlated with subbasal nerve plexus (SNP) parameters (nerve density, beading, and tortuosity). In DE patients, SNP density marginally decreased and nerve beading and tortuosity were significantly increased compared to the control group. The total number of LCs significantly increased in DE patients, and some LCs with elongated processes were found to be attached to nerve fibers. Interestingly, nerve loss and deformation were correlated with inactivation of LCs. In an in vivo experiment to elucidate the role of LCs in ocular surface inflammation and corneal nerve loss, we used a genetically modified mouse model (CD207-DTR) that reduced the population of CD207 (Langerin) expressing cells by injection of diphtheria toxin. In CD207-depleted mice with DE disease (CD207-dDTR+DE), corneal nerves in the central region were significantly decreased, an effect that was not observed in wild-type (WT)+DE mice. In CD207-dDTR+DE mice, infiltration of CD4+, CD19+, CD45+, and CD11b+ cells into the ocular surface was increased, as confirmed by flow cytometry. Increased IL-17 and IFN-γ mRNA levels, and decreased expression of neurotrophic factors and neurotransmitters, were also found in the CD207-dDTR+DE mice. These data support a functional role for LCs in negatively regulating ocular surface inflammation and exhibiting a neuroprotective function in DE disease.
Collapse
|
12
|
Pathogen-Host Defense in the Evolution of Depression: Insights into Epidemiology, Genetics, Bioregional Differences and Female Preponderance. Neuropsychopharmacology 2017; 42:5-27. [PMID: 27629366 PMCID: PMC5143499 DOI: 10.1038/npp.2016.194] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/28/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022]
Abstract
Significant attention has been paid to the potential adaptive value of depression as it relates to interactions with people in the social world. However, in this review, we outline the rationale of why certain features of depression including its environmental and genetic risk factors, its association with the acute phase response and its age of onset and female preponderance appear to have evolved from human interactions with pathogens in the microbial world. Approaching the relationship between inflammation and depression from this evolutionary perspective yields a number of insights that may reveal important clues regarding the origin and epidemiology of the disorder as well as the persistence of its risk alleles in the modern human genome.
Collapse
|
13
|
Peters EMJ. Stressed skin?--a molecular psychosomatic update on stress-causes and effects in dermatologic diseases. J Dtsch Dermatol Ges 2016; 14:233-52; quiz 253. [PMID: 26972185 DOI: 10.1111/ddg.12957] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A pathogenetically relevant link between stress, in terms of psychosocial stress, and disease was first described in the 1970s, when it was proven that viral diseases of mucous membranes (such as rhinovirus and Coxsackie virus infections) develop faster and more severe after stress exposure. Since then, there has been an annual increase in the number of publications which investigate this relationship and break it down to the molecular level. Nevertheless, the evidences for the impact of psychosocial stress on chronic inflammatory skin diseases and skin tumors are hardly known. In the present review, we outline current insights into epidemiology, psychoneuroimmunology, and molecular psychosomatics which demonstrate the manifold disease-relevant interactions between the endocrine, nervous, and immune systems. The focus is on stress-induced shifts in immune balance in exemplary disorders such as atopic dermatitis, psoriasis, and malignant melanoma. The objective of this article is to convey basic psychosomatic knowledge with respect to etiology, symptomatology, and therapeutic options for chronic skin diseases. Particular attention is directed towards the underlying molecular relationships, both from a somatic to mental as well as a mental to somatic perspective.
Collapse
Affiliation(s)
- Eva M J Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatics Medicine and Psychotherapy, Justus Liebig University, Giessen, Germany.,Charité Center 12 (CC12) for Internal Medicine and Dermatology, Universitätsmedizin - Charité, Berlin, Germany
| |
Collapse
|
14
|
Paus R. Exploring the “brain-skin connection”: Leads and lessons from the hair follicle. Curr Res Transl Med 2016; 64:207-214. [DOI: 10.1016/j.retram.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022]
|
15
|
Peters EM. Gestresste Haut? - Aktueller Stand molekularer psychosomatischer Zusammenhänge und ihr Beitrag zu Ursachen und Folgen dermatologischer Erkrankungen. J Dtsch Dermatol Ges 2016. [DOI: 10.1111/ddg.12957_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eva M.J. Peters
- Psychoneuroimmunologie Labor, Klinik für Psychosomatik und Psychotherapie; Justus Liebig Universität; Gießen
- CharitéCenter 12 (CC12) für Innere Medizin und Dermatologie Universitätsmedizin - Charité; Berlin
| |
Collapse
|
16
|
Liu X, Olsen J, Agerbo E, Yuan W, Sigsgaard T, Li J. Prenatal stress and childhood asthma in the offspring: role of age at onset. Eur J Public Health 2015; 25:1042-6. [PMID: 26116689 DOI: 10.1093/eurpub/ckv129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Asthma is a heterogeneous disorder with different phenotypes, and age at onset may define part of them. Little is known about possible association between prenatal stress and asthma phenotypes according to age at onset. We aim to investigate whether there is an association between prenatal stress and asthma, and if so, whether such an association differs according to age at asthma onset. METHODS We carried out a cohort study based on several national registers in Denmark, including all live singletons born during 1996-2007 in Denmark (N = 750,058). We identified children born to mothers who lost a close relative (a child, partner/spouse, a parent or a sibling) 1 year prior to or during pregnancy as the bereaved group. Using Cox proportional hazards regression model, we evaluated the hazard ratios (HRs) for asthma in children of bereaved mothers, compared with children of non-bereaved mothers. RESULTS Prenatal stress following maternal bereavement was associated with a marginally increased risk of asthma events in children aged 0-3 years [HR = 1.04, 95% confidence interval (CI): 1.00-1.07], while unexpected bereavement was associated with a higher risk (HR = 1.13, 95% CI: 1.02-1.24). There was no association between prenatal bereavement and asthma in children aged 4-15 years (HR = 1.02, 95% CI: 0.96-1.09). CONCLUSIONS Prenatal stress is possibly associated with asthma events in children aged 0-3 years, but not with asthma in children aged 4-15 years irrespective of age at asthma onset.
Collapse
Affiliation(s)
- Xiaoqin Liu
- 1 Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark 2 Department of Epidemiology and Social Science on Reproductive Health, Shanghai Institute of Planned Parenthood Research, WHO Collaborating Center for Research in Human Reproduction, National Population & Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai, China
| | - Jørn Olsen
- 1 Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark 3 Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA
| | - Esben Agerbo
- 4 National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark 5 CIRRAU-Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Wei Yuan
- 2 Department of Epidemiology and Social Science on Reproductive Health, Shanghai Institute of Planned Parenthood Research, WHO Collaborating Center for Research in Human Reproduction, National Population & Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai, China
| | - Torben Sigsgaard
- 6 Section for Environment, Occupation and Health, Department of Public Health, Aarhus University, Denmark
| | - Jiong Li
- 1 Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci U S A 2013; 110:E3225-34. [PMID: 23929777 DOI: 10.1073/pnas.1312933110] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca(2+) response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain.
Collapse
|
18
|
Guxens M, Sonnenschein-van der Voort AMM, Tiemeier H, Hofman A, Sunyer J, de Jongste JC, Jaddoe VWV, Duijts L. Parental psychological distress during pregnancy and wheezing in preschool children: the Generation R Study. J Allergy Clin Immunol 2013; 133:59-67.e1-12. [PMID: 23777854 DOI: 10.1016/j.jaci.2013.04.044] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Maternal psychological distress during pregnancy might affect fetal lung development and subsequently predispose children to childhood asthma. OBJECTIVE We sought to assess the associations of maternal psychological distress during pregnancy with early childhood wheezing. METHODS We performed a population-based prospective cohort study among 4848 children. We assessed maternal and paternal psychological distress at the second trimester of gestation and 3 years after delivery and maternal psychological distress at 2 and 6 months after delivery by using the Brief Symptom Inventory questionnaire. Wheezing in the children was annually examined by using questionnaires from 1 to 4 years. Physician-diagnosed ever asthma was reported at 6 years. RESULTS Mothers with psychological distress during pregnancy had increased odds of wheezing in their children from 1 to 4 years of life (overall distress: odds ratio [OR], 1.60 [95% CI, 1.32-1.93]; depression: OR, 1.46 [95% CI, 1.20-1.77]; and anxiety: OR, 1.39 [95% CI, 1.15-1.67]). We observed similar positive associations with the number of wheezing episodes, wheezing patterns, and physician-diagnosed asthma at 6 years. Paternal distress during pregnancy and maternal and paternal distress after delivery did not affect these results and were not associated with childhood wheezing. CONCLUSION Maternal psychological distress during pregnancy is associated with increased odds of wheezing in their children during the first 6 years of life independent of paternal psychological distress during pregnancy and maternal and paternal psychological distress after delivery. These results suggest a possible intrauterine programming effect of maternal psychological distress leading to respiratory morbidity.
Collapse
Affiliation(s)
- Mònica Guxens
- Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands; Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - Agnes M M Sonnenschein-van der Voort
- Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pediatrics, Division of Respiratory Medicine, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Child & Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jordi Sunyer
- Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain
| | - Johan C de Jongste
- Department of Pediatrics, Division of Respiratory Medicine, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pediatrics, Division of Neonatology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Raison CL, Miller AH. The evolutionary significance of depression in Pathogen Host Defense (PATHOS-D). Mol Psychiatry 2013; 18:15-37. [PMID: 22290120 PMCID: PMC3532038 DOI: 10.1038/mp.2012.2] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/21/2011] [Accepted: 01/03/2012] [Indexed: 12/24/2022]
Abstract
Given the manifold ways that depression impairs Darwinian fitness, the persistence in the human genome of risk alleles for the disorder remains a much debated mystery. Evolutionary theories that view depressive symptoms as adaptive fail to provide parsimonious explanations for why even mild depressive symptoms impair fitness-relevant social functioning, whereas theories that suggest that depression is maladaptive fail to account for the high prevalence of depression risk alleles in human populations. These limitations warrant novel explanations for the origin and persistence of depression risk alleles. Accordingly, studies on risk alleles for depression were identified using PubMed and Ovid MEDLINE to examine data supporting the hypothesis that risk alleles for depression originated and have been retained in the human genome because these alleles promote pathogen host defense, which includes an integrated suite of immunological and behavioral responses to infection. Depression risk alleles identified by both candidate gene and genome-wide association study (GWAS) methodologies were found to be regularly associated with immune responses to infection that were likely to enhance survival in the ancestral environment. Moreover, data support the role of specific depressive symptoms in pathogen host defense including hyperthermia, reduced bodily iron stores, conservation/withdrawal behavior, hypervigilance and anorexia. By shifting the adaptive context of depression risk alleles from relations with conspecifics to relations with the microbial world, the Pathogen Host Defense (PATHOS-D) hypothesis provides a novel explanation for how depression can be nonadaptive in the social realm, whereas its risk alleles are nonetheless represented at prevalence rates that bespeak an adaptive function.
Collapse
Affiliation(s)
- C L Raison
- Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ 85724-5137, USA.
| | | |
Collapse
|
20
|
Peters EM, Liezmann C, Klapp BF, Kruse J. The neuroimmune connection interferes with tissue regeneration and chronic inflammatory disease in the skin. Ann N Y Acad Sci 2012; 1262:118-26. [DOI: 10.1111/j.1749-6632.2012.06647.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Wright RJ. Stress-related programming of autonomic imbalance: role in allergy and asthma. CHEMICAL IMMUNOLOGY AND ALLERGY 2012; 98:32-47. [PMID: 22767056 PMCID: PMC3888825 DOI: 10.1159/000336496] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evidence linking psychological stress to allergy has grown with our increased understanding of the natural history and pathophysiology of these disorders and the neurobiology of stress vulnerability. However, the specific pathways that increase vulnerability to developing allergy and associated disorders remain to be elucidated. Autonomic nervous system functioning (autonomic balance) has been implicated in allergy for some time albeit links between autonomic balance and immune function in early development have been under studied. Starting in utero, stress may influence the programming of brain neurotransmitter systems, sympathetic and parasympathetic nervous system functioning, and the hypothalamic-pituitary-adrenal axis, which in turn may alter neural regulation of immune function. Epigenetic dysregulation of gene expression may be a fundamental mechanism for programming of early neural-immune processes.
Collapse
Affiliation(s)
- Rosalind J Wright
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Szczepankiewicz A, Sobkowiak P, Rachel M, Bręborowicz A, Schoneich N, Bruce K, Kycler Z, Wojsyk-Banaszak I, Dmitrzak-Węglarz M. Multilocus analysis of candidate genes involved in neurogenic inflammation in pediatric asthma and related phenotypes: a case-control study. J Asthma 2012; 49:329-35. [PMID: 22468730 DOI: 10.3109/02770903.2012.669442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Asthma is a heterogenous complex disorder caused by chronic inflammation of the airways. The key issue in genetic association studies of complex disorders is the identification of multiple low-risk genes that individually have little impact on the phenotype, but in combination account for the clinical manifestation of asthma. Since neurogenic inflammation is emerging as a candidate factor in the pathogenesis of asthma, the aim of the study was to investigate whether genetic variants of neurotrophin genes are associated with asthma disease severity or asthma-related phenotypes in a pediatric population. METHODS We genotyped 27 polymorphisms located in neurotrophin genes, using TaqMan SNP genotyping assays or Polymerase Chain Reaction - Restriction Fragments Lengths Polymorphism (PCR-RFLP) in 200 children diagnosed with asthma and 226 controls. Interactions between 27 polymorphic loci and asthma-related phenotypes were determined using the Multifactor Dimensionality Reduction (MDR) method. RESULTS In single marker analysis, we observed an association of MAP3K1 gene polymorphisms (rs702689 and rs889312) with asthma. We also observed that four Single Nucleotide Polymorphisms (SNPs) were associated with severe asthma. Analysis stratified by asthma-related phenotype revealed an association between atopy and NGFR (rs3785931), while BDNF (rs7124442), NTRK2 (rs1212171), NGFR (rs2072446), and FYN (rs3730353) variants were associated with increased exhaled nitric oxide (exNO). In addition, gene-gene interaction analysis revealed a significant epistatic interaction between MAPK (rs889312) and NGF (rs11102930) variants in asthma susceptibility. CONCLUSIONS Our results suggest that genetic variants of MAP3K1 and NGF genes involved in the regulation of neurogenic inflammation may contribute to asthma, possibly via enhanced NGF expression and MAPK signaling pathway activation.
Collapse
Affiliation(s)
- Aleksandra Szczepankiewicz
- Department of Pediatric Pulmonology, Allergy and Clinical Immunology, IIIrd Department of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Andrews JA, Neises KD. Cells, biomarkers, and post-traumatic stress disorder: evidence for peripheral involvement in a central disease. J Neurochem 2011; 120:26-36. [PMID: 22017326 DOI: 10.1111/j.1471-4159.2011.07545.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a complicated CNS syndrome. Looking beyond the CNS, recent studies suggest that peripheral blood mononuclear cells could cause and/or exacerbate PTSD. This review summarizes the literature, describes associations between circulating peripheral blood cells and PTSD, proposes a novel mechanism, and analyzes several biomarkers that appear to associate with PTSD symptoms. Several experimental animal models have shown that peripheral blood mononuclear cell activity can cause hippocampal volume loss and PTSD-like symptoms. Data from these models suggest that a traumatic event and/or traumatic events can trigger peripheral cells to migrate, mediate inflammation, and decrease neurogenesis, potentially leading to CNS volume loss. Biomarkers that associate with PTSD symptoms have the potential to differentiate PTSD from traumatic brain injury, but more work needs to be done. Research examining the mechanism of how traumatic events are linked to peripheral blood mononuclear cell functions and biomarkers may offer improved diagnoses and treatments for PTSD patients.
Collapse
Affiliation(s)
- James A Andrews
- Naval Health Research Center, San Diego, California 92106-3521, USA.
| | | |
Collapse
|
24
|
Fang F, Olgart Höglund C, Arck P, Lundholm C, Långström N, Lichtenstein P, Lekander M, Almqvist C. Maternal bereavement and childhood asthma-analyses in two large samples of Swedish children. PLoS One 2011; 6:e27202. [PMID: 22087265 PMCID: PMC3210147 DOI: 10.1371/journal.pone.0027202] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/12/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Prenatal factors such as prenatal psychological stress might influence the development of childhood asthma. METHODOLOGY AND PRINCIPAL FINDINGS We assessed the association between maternal bereavement shortly before and during pregnancy, as a proxy for prenatal stress, and the risk of childhood asthma in the offspring, based on two samples of children 1-4 (n = 426,334) and 7-12 (n = 493,813) years assembled from the Swedish Medical Birth Register. Exposure was maternal bereavement of a close relative from one year before pregnancy to child birth. Asthma event was defined by a hospital contact for asthma or at least two dispenses of inhaled corticosteroids or montelukast. In the younger sample we calculated hazards ratios (HRs) of a first-ever asthma event using Cox models and in the older sample odds ratio (ORs) of an asthma attack during 12 months using logistic regression. Compared to unexposed boys, exposed boys seemed to have a weakly higher risk of first-ever asthma event at 1-4 years (HR: 1.09; 95% confidence interval [CI]: 0.98, 1.22) as well as an asthma attack during 12 months at 7-12 years (OR: 1.10; 95% CI: 0.96, 1.24). No association was suggested for girls. Boys exposed during the second trimester had a significantly higher risk of asthma event at 1-4 years (HR: 1.55; 95% CI: 1.19, 2.02) and asthma attack at 7-12 years if the bereavement was an older child (OR: 1.58; 95% CI: 1.11, 2.25). The associations tended to be stronger if the bereavement was due to a traumatic death compared to natural death, but the difference was not statistically significant. CONCLUSIONS/SIGNIFICANCE Our results showed some evidence for a positive association between prenatal stress and childhood asthma among boys but not girls.
Collapse
Affiliation(s)
- Fang Fang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Olgart Höglund
- Respiratory Medicine Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Petra Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Cecilia Lundholm
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Långström
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mats Lekander
- Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health and Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
25
|
Liezmann C, Klapp B, Peters EM. Stress, atopy and allergy: A re-evaluation from a psychoneuroimmunologic persepective. DERMATO-ENDOCRINOLOGY 2011; 3:37-40. [PMID: 21519408 DOI: 10.4161/derm.3.1.14618] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 01/08/2023]
Abstract
Since the early days of psychosomatic thinking, atopic disease was considered exemplary. In the 70s and 80s numerous reports stated increased anxiety, depression or ill stresscoping in atopics in correlation with enhanced disease activity. Employed patient groups however were small and diverse and controls rare. Therefore, the question remained, whether psychopathological findings in atopics were of pathogenetic relevance or an epiphenomenon of chronic inflammatory disease. Recently, the discussion has been revived and refocused by psychoneuroimmunological findings. We now know that atopic disease is characterized by an imbalance of the classical stress-axis response along the hypothalamus-pituitary-adrenal axis (HPA) and the sympathetic axis (SA). This imbalance can be found shoulder-to-shoulder with enhanced expression of newly emerging neuroendocrine stress mediators such as substance P (SP) and nerve growth factor that form up to a third stress axis (neurotrophin neuropeptide axis: NNA). Together they can alter the inflammatory as well as the neuroendocrine stress-response on several levels. In skin, the immediate inflammatory response to stress involves neuropeptide release and mast cell degranulation, in short neurogenic inflammation. Systemically, antigen-presentation and TH2 cytokine bias are promoted under the influence of cortisol and neuropeptides. Imbalanced stress-responsiveness may therefore be at the core of exacerbated allergic disease and deserves re-evaluation of therapeutic options such as neutralization of SP-signaling by antagonists against its receptor NK1, cortisol treatment as supplementation and relaxation techniques to balance the stress-response.
Collapse
Affiliation(s)
- Christiane Liezmann
- University-Medicine Charité; Internal Medicine and Dermatology; Department of Psychosomatic Medicine and Psychotherapy; Berlin
| | | | | |
Collapse
|
26
|
Ostrowski SM, Belkadi A, Loyd CM, Diaconu D, Ward NL. Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J Invest Dermatol 2011; 131:1530-8. [PMID: 21471984 PMCID: PMC3116081 DOI: 10.1038/jid.2011.60] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nervous system involvement in psoriasis pathogenesis is supported by increases in nerve fiber numbers and neuropeptides in psoriatic skin and by reports detailing spontaneous plaque remission following nerve injury. Using the KC-Tie2 psoriasiform mouse model, we investigated the mechanisms by which nerve injury leads to inflammatory skin disease remission. Cutaneous nerves innervating dorsal skin of KC-Tie2 animals were surgically axotomized and beginning 1 day after denervation, CD11c(+) cell numbers decreased by 40% followed by a 30% improvement in acanthosis at 7 days and a 30% decrease in CD4(+) T-cell numbers by 10 days. Restoration of substance P (SP) signaling in denervated KC-Tie2 skin prevented decreases in CD11c(+) and CD4(+) cells, but had no effect on acanthosis; restoration of calcitonin gene-related peptide (CGRP) signaling reversed the improvement in acanthosis and prevented denervated-mediated decreases in CD4(+) cells. Under innervated conditions, small-molecule inhibition of SP in KC-Tie2 animals resulted in similar decreases to those observed following surgical denervation for cutaneous CD11c(+) and CD4(+) cell numbers; whereas small-molecule inhibition of CGRP resulted in significant reductions in CD4(+) cell numbers and acanthosis. These data demonstrate that sensory nerve-derived peptides mediate psoriasiform dendritic cell and T-cell infiltration and acanthosis and introduce targeting nerve-immunocyte/KC interactions as potential psoriasis therapeutic treatment strategies.
Collapse
Affiliation(s)
- Stephen M Ostrowski
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
27
|
Ruutu MP, Chen X, Joshi O, Kendall MA, Frazer IH. Increasing mechanical stimulus induces migration of Langerhans cells and impairs the immune response to intracutaneously delivered antigen. Exp Dermatol 2011; 20:534-6. [DOI: 10.1111/j.1600-0625.2010.01234.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Wright RJ. Epidemiology of stress and asthma: from constricting communities and fragile families to epigenetics. Immunol Allergy Clin North Am 2011; 31:19-39. [PMID: 21094921 PMCID: PMC3052958 DOI: 10.1016/j.iac.2010.09.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several epidemiologic frameworks, exemplified through extant research examples, provide insight into the role of stress in the expression of asthma and other allergic disorders. Biologic, psychological, and social processes interact throughout the life course to influence disease expression. Studies exploiting a child development framework focus on critical periods of exposure, including the in utero environment, to examine the influence of stress on disease onset. Early stress effects that alter the normal course of morphogenesis and maturation that affect both structure and function of key organ systems (eg, immune, respiratory) may persist into adult life underscoring the importance of a life course perspective. Other evidence suggests that maternal stress influences programming of integrated physiologic systems in their offspring (eg, neuroendocrine, autonomic, immune function) starting in pregnancy; consequently stress effects may be transgenerational. A multilevel approach that includes an ecological perspective may help to explain heterogeneities in asthma expression across socioeconomic and geographic boundaries that to date remain largely unexplained. Evolving studies incorporating psychological, behavioral, and physiologic correlates of stress more specifically inform underlying mechanisms operating in these critical periods of development. The role of genetics, gene by environment interactions, and epigenetic mechanisms of gene expression have been sparsely examined in epidemiologic studies on stress and asthma although overlapping evidence provides proof of concept for such studies in the future.
Collapse
Affiliation(s)
- Rosalind J Wright
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
29
|
da Silva L, Carvalho E, Cruz MT. Role of neuropeptides in skin inflammation and its involvement in diabetic wound healing. Expert Opin Biol Ther 2011; 10:1427-39. [PMID: 20738210 DOI: 10.1517/14712598.2010.515207] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IMPORTANCE OF THE FIELD In 2010, the world prevalence of diabetes is 6.4%, affecting 285 million adults. Diabetic patients are at risk of developing neuropathy and delayed wound healing that can culminate in incurable diabetic foot ulcerations (DFUs) or even foot amputation. AREAS COVERED IN THIS REVIEW The contrast between cellular and molecular events of wound healing and diabetic wound healing processes is characterized. Neuropeptides released from the autonomous nervous system and skin cells reveal a major role in the immunity of wound healing. Therefore, the signaling pathways that induce pro/anti-inflammatory cytokines expression and its involvement in diabetic wound healing are discussed. The involvement of neuropeptides in the activation, growth, migration and maturation of skin cells, like keratinocytes, Langerhans cells, macrophages and mast cells, are described. WHAT THE READER WILL GAIN This review attempts to address the role of neuropeptides in skin inflammation, focusing on signal transduction, inflammatory mediators and pro/anti-inflammatory function, occurring in each cell type, as well as, its connection with diabetic wound healing. TAKE HOME MESSAGE Understanding the role of neuropeptides in the skin, their application on skin wounds could be a potential therapy for skin pathologies, like the problematic and prevalent DFUs.
Collapse
Affiliation(s)
- Lucília da Silva
- Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
30
|
Tancowny BP, Karpov V, Schleimer RP, Kulka M. Substance P primes lipoteichoic acid- and Pam3CysSerLys4-mediated activation of human mast cells by up-regulating Toll-like receptor 2. Immunology 2011; 131:220-30. [PMID: 20497485 DOI: 10.1111/j.1365-2567.2010.03296.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Substance P (SP) is a neuropeptide with neuroimmunoregulatory activity that may play a role in susceptibility to infection. Human mast cells, which are important in innate immune responses, were analysed for their responses to pathogen-associated molecules via Toll-like receptors (TLRs) in the presence of SP. Human cultured mast cells (LAD2) were activated by SP and TLR ligands including lipopolysaccharide (LPS), Pam3CysSerLys4 (Pam3CSK4) and lipoteichoic acid (LTA), and mast cell leukotriene and chemokine production was assessed by enzyme-linked immunosorbent assay (ELISA) and gene expression by quantitative PCR (qPCR). Mast cell degranulation was determined using a β-hexosaminidase (β-hex) assay. SP treatment of LAD2 up-regulated mRNA for TLR2, TLR4, TLR8 and TLR9 while anti-immunoglobulin E (IgE) stimulation up-regulated expression of TLR4 only. Flow cytometry and western blot confirmed up-regulation of TLR2 and TLR8. Pretreatment of LAD2 with SP followed by stimulation with Pam3CSK4 or LTA increased production of leukotriene C4 (LTC(4) ) and interleukin (IL)-8 compared with treatment with Pam3CSK4 or LTA alone (>2-fold; P<0·01). SP alone activated 5-lipoxygenase (5-LO) nuclear translocation but also augmented Pam3CSK4 and LTA-mediated 5-LO translocation. Pam3CSK4, LPS and LTA did not induce LAD2 degranulation. SP primed LTA and Pam3CSK4-mediated activation of JNK, p38 and extracellular-signal-regulated kinase (ERK) and activated the nuclear translocation of c-Jun, nuclear factor (NF)-κB, activating transcription factor 2 (ATF-2) and cyclic-AMP-responsive element binding protein (CREB) transcription factors. Pretreatment with SP followed by LTA stimulation synergistically induced production of chemokine (C-X-C motif) ligand 8 (CXCL8)/IL-8, chemokine (C-C motif) ligand 2 (CCL2)/monocyte chemotactic protein 1 (MCP-1), tumour necrosis factor (TNF) and IL-6 protein. SP primes TLR2-mediated activation of human mast cells by up-regulating TLR expression and potentiating signalling pathways associated with TLR. These results suggest that neuronal responses may influence innate host defence responses.
Collapse
Affiliation(s)
- Brian P Tancowny
- Allergy/Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
31
|
Pavlovic S, Liezmann C, Blois SM, Joachim R, Kruse J, Romani N, Klapp BF, Peters EMJ. Substance P Is a Key Mediator of Stress-Induced Protection from Allergic Sensitization via Modified Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2010; 186:848-55. [DOI: 10.4049/jimmunol.0903878] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Schreml S, Kaiser E, Landthaler M, Szeimies RM, Babilas P. Amyloid in skin and brain: What′s the link? Exp Dermatol 2010; 19:953-7. [DOI: 10.1111/j.1600-0625.2010.01166.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Arck P, Handjiski B, Hagen E, Pincus M, Bruenahl C, Bienenstock J, Paus R. Is there a ‘gut-brain-skin axis’? Exp Dermatol 2010; 19:401-5. [DOI: 10.1111/j.1600-0625.2009.01060.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Wright RJ. Perinatal stress and early life programming of lung structure and function. Biol Psychol 2010; 84:46-56. [PMID: 20080145 PMCID: PMC2888999 DOI: 10.1016/j.biopsycho.2010.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 12/31/2022]
Abstract
Exposure to environmental toxins during critical periods of prenatal and/or postnatal development may alter the normal course of lung morphogenesis and maturation, potentially resulting in changes that affect both structure and function of the respiratory system. Moreover, these early effects may persist into adult life magnifying the potential public health impact. Aberrant or excessive pro-inflammatory immune responses, occurring both locally and systemically, that result in inflammatory damage to the airway are a central determinant of lung structure-function changes throughout life. Disruption of neuroendocrine function in early development, specifically the hypothalamic-pituitary-adrenal (HPA) axis, may alter functional status of the immune system. Autonomic nervous system (ANS) function (sympathovagal imbalance) is another integral component of airway function and immunity in childhood. This overview discusses the evidence linking psychological factors to alterations in these interrelated physiological processes that may, in turn, influence childhood lung function and identifies gaps in our understanding.
Collapse
Affiliation(s)
- Rosalind J Wright
- Channing Laboratory, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02116, USA.
| |
Collapse
|
35
|
Wright RJ, Visness CM, Calatroni A, Grayson MH, Gold DR, Sandel MT, Lee-Parritz A, Wood RA, Kattan M, Bloomberg GR, Burger M, Togias A, Witter FR, Sperling RS, Sadovsky Y, Gern JE. Prenatal maternal stress and cord blood innate and adaptive cytokine responses in an inner-city cohort. Am J Respir Crit Care Med 2010; 182:25-33. [PMID: 20194818 DOI: 10.1164/rccm.200904-0637oc] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Stress-elicited disruption of immunity begins in utero. OBJECTIVES Associations among prenatal maternal stress and cord blood mononuclear cell (CBMC) cytokine responses were prospectively examined in the Urban Environment and Childhood Asthma Study (n = 557 families). METHODS Prenatal maternal stress included financial hardship, difficult life circumstances, community violence, and neighborhood/block and housing conditions. Factor analysis produced latent variables representing three contexts: individual stressors and ecological-level strains (housing problems and neighborhood problems), which were combined to create a composite cumulative stress indicator. CBMCs were incubated with innate (lipopolysaccharide, polyinosinic-polycytidylic acid, cytosine-phosphate-guanine dinucleotides, peptidoglycan) and adaptive (tetanus, dust mite, cockroach) stimuli, respiratory syncytial virus, phytohemagglutinin, or medium alone. Cytokines were measured using multiplex ELISAs. Using linear regression, associations among increasing cumulative stress and cytokine responses were examined, adjusting for sociodemographic factors, parity, season of birth, maternal asthma and steroid use, and potential pathway variables (prenatal smoking, birth weight for gestational age). MEASUREMENTS AND MAIN RESULTS Mothers were primarily minorities (Black [71%], Latino [19%]) with an income less than $15,000 (69%). Mothers with the highest cumulative stress were older and more likely to have asthma and deliver lower birth weight infants. Higher prenatal stress was related to increased IL-8 production after microbial (CpG, PIC, peptidoglycan) stimuli and increased tumor necrosis factor-alpha to microbial stimuli (CpG, PIC). In the adaptive panel, higher stress was associated with increased IL-13 after dust mite stimulation and reduced phytohemagglutinin-induced IFN-gamma. CONCLUSIONS Prenatal stress was associated with altered innate and adaptive immune responses in CBMCs. Stress-induced perinatal immunomodulation may impact the expression of allergic disease in these children.
Collapse
Affiliation(s)
- Rosalind J Wright
- The Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bae SJ, Shimizu K, Yozaki M, Yamaoka T, Akiyama Y, Yoshizaki A, Muroi E, Hara T, Ogawa F, Sato S. Involvement of L-selectin in contact hypersensitivity responses augmented by auditory stress. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:187-97. [PMID: 19948832 DOI: 10.2353/ajpath.2010.090322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stress affects the pathophysiology of cutaneous immune reactions, including contact hypersensitivity (CH) in individuals sensitized with sensitizing hapten, where local endothelial cell activation plays a critical role. To clarify the effects of stress in cutaneous immune reactions, we selected a CH model using annoying sound as a stress. Furthermore, we conducted the stress experiments by using selectin-deficient mice to determine the involvement of selectin molecules regarding local endothelial activation. Auditory stress augmented CH responses in the present study. Namely, ear thickness and mast cell numbers were significantly increased in stressed CH mice. mRNA expression of preprotachykinin-A, a precursor of substance-P; interferon-gamma; interleukin (IL)-4; IL-6; and tumor necrosis factor-alpha significantly increased in stressed CH mice. Furthermore, stressed L-selectin-deficient mice showed significant decreases in all parameters mentioned above relative to stressed wild-type mice in CH response. Meanwhile, treatment with anti-L-selectin Ab resulted in a significant decrease in ear thickness and mRNA levels of interferon-gamma, IL-4, IL-6, and tumor necrosis factor-alpha, but failed to significantly reduce preprotachykinin-A mRNA levels and mast cell numbers. Our results indicated that auditory stress enhances CH response and that the augmentation of this CH response might be mediated through L-selectin, but not through P- or E-selectin pathways.
Collapse
Affiliation(s)
- Sang Jae Bae
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Veres TZ, Rochlitzer S, Braun A. The role of neuro-immune cross-talk in the regulation of inflammation and remodelling in asthma. Pharmacol Ther 2009; 122:203-14. [PMID: 19292991 DOI: 10.1016/j.pharmthera.2009.02.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 12/22/2022]
Abstract
Despite recent advances in the development of anti-asthmatic medication, asthma continues to be a major health problem worldwide. The symptoms of asthmatic patients include wheezing, chest tightness, cough and shortness of breath, which, together with airway hyperresponiveness, previously have been attributed to a dysfunction of airway nerves. However, research in the last two decades identified Th2-sensitization and the subsequent allergic reaction to innocuous environmental antigens as a basic immunological mechanism leading to chronic airway inflammation. Recent evidence suggests that the development of allergic asthma is influenced by events and circumstances in early childhood and even in utero. Allergen, ozone or stress exposure, as well as RSV infection in early life could be able to induce irreversible changes in the developing epithelial-mesenchymal trophic unit of the airways. The co-existence of chronic inflammation and neural dysfunction have recently drawn attention to the involvement of interaction pathways between the nervous and the immune system in the airways. Intensive basic research has accumulated morphological as well as functional evidence for the interaction between nerves and immune cells. Neuropeptides and neurotrophins have come into focus of attention as the key mediators of neuro-immune interactions, which lead to the development of several pharmacological compounds specifically targeting these molecules. This review will integrate our current knowledge on the involvement of neuro-immune pathways in asthma on the cellular and molecular level. It will summarize the results of pharmacological studies addressing the potential of neuropeptides and neurotrophins as novel therapeutic targets in asthma.
Collapse
Affiliation(s)
- Tibor Z Veres
- Department of Immunology, Allergology and Immunotoxicology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | | |
Collapse
|