1
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Ngoc APT, Zahoor A, Kim DG, Yang SH. Using Synbiotics as a Therapy to Protect Mental Health in Alzheimer's Disease. J Microbiol Biotechnol 2024; 34:1739-1747. [PMID: 39099195 PMCID: PMC11485767 DOI: 10.4014/jmb.2403.03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that represents a major cause of dementia worldwide. Its pathogenesis involves multiple pathways, including the amyloid cascade, tau protein, oxidative stress, and metal ion dysregulation. Recent studies have suggested a critical link between changes in gut microbial diversity and the disruption of the gut-brain axis in AD. Previous studies primarily explored the potential benefits of probiotics and prebiotics in managing AD. However, studies have yet to fully describe a novel promising approach involving the use of synbiotics, which include a combination of active probiotics and new-generation prebiotics. Synbiotics show potential for mitigating the onset and progression of AD, thereby offering a holistic approach to address the multifaceted nature of AD. This review article primarily aims to gain further insights into the mechanisms of AD, specifically the intricate interaction between gut bacteria and the brain via the gut-brain axis. By understanding this relationship, we can identify potential targets for intervention and therapeutic strategies to combat AD effectively. This review also discusses substantial evidence supporting the role of synbiotics as a promising AD treatment that surpasses traditional probiotic or prebiotic interventions. We find that synbiotics may be used not only to address cognitive decline but also to reduce AD-related psychological burden, thus enhancing the overall quality of life of patients with AD.
Collapse
Affiliation(s)
- Anh Pham Thi Ngoc
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dong Gyun Kim
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
3
|
Rather MA, Khan A, Jahan S, Siddiqui AJ, Wang L. Influence of Tau on Neurotoxicity and Cerebral Vasculature Impairment Associated with Alzheimer's Disease. Neuroscience 2024; 552:1-13. [PMID: 38871021 DOI: 10.1016/j.neuroscience.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease is a fatal chronic neurodegenerative condition marked by a gradual decline in cognitive abilities and impaired vascular function within the central nervous system. This affliction initiates its insidious progression with the accumulation of two aberrant protein entities including Aβ plaques and neurofibrillary tangles. These chronic elements target distinct brain regions, steadily erasing the functionality of the hippocampus and triggering the erosion of memory and neuronal integrity. Several assumptions are anticipated for AD as genetic alterations, the occurrence of Aβ plaques, altered processing of amyloid precursor protein, mitochondrial damage, and discrepancy of neurotropic factors. In addition to Aβ oligomers, the deposition of tau hyper-phosphorylates also plays an indispensable part in AD etiology. The brain comprises a complex network of capillaries that is crucial for maintaining proper function. Tau is expressed in cerebral blood vessels, where it helps to regulate blood flow and sustain the blood-brain barrier's integrity. In AD, tau pathology can disrupt cerebral blood supply and deteriorate the BBB, leading to neuronal neurodegeneration. Neuroinflammation, deficits in the microvasculature and endothelial functions, and Aβ deposition are characteristically detected in the initial phases of AD. These variations trigger neuronal malfunction and cognitive impairment. Intracellular tau accumulation in microglia and astrocytes triggers deleterious effects on the integrity of endothelium and cerebral blood supply resulting in further advancement of the ailment and cerebral instability. In this review, we will discuss the impact of tau on neurovascular impairment, mitochondrial dysfunction, oxidative stress, and the role of hyperphosphorylated tau in neuron excitotoxicity and inflammation.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States.
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail City, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States
| |
Collapse
|
4
|
Naik B, Sasikumar J, Das SP. From Skin and Gut to the Brain: The Infectious Journey of the Human Commensal Fungus Malassezia and Its Neurological Consequences. Mol Neurobiol 2024:10.1007/s12035-024-04270-w. [PMID: 38871941 DOI: 10.1007/s12035-024-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The human mycobiome encompasses diverse communities of fungal organisms residing within the body and has emerged as a critical player in shaping health and disease. While extensive research has focused on the skin and gut mycobiome, recent investigations have pointed toward the potential role of fungal organisms in neurological disorders. Among those fungal organisms, the presence of the commensal fungus Malassezia in the brain has created curiosity because of its commensal nature and primary association with the human skin and gut. This budding yeast is responsible for several diseases, such as Seborrheic dermatitis, Atopic dermatitis, Pityriasis versicolor, Malassezia folliculitis, dandruff, and others. However recent findings surprisingly show the presence of Malassezia DNA in the brain and have been linked to diseases like Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Amyotrophic lateral sclerosis. The exact role of Malassezia in these disorders is unknown, but its ability to infect human cells, travel through the bloodstream, cross the blood-brain barrier, and reside along with the lipid-rich neuronal cells are potential mechanisms responsible for pathogenesis. This also includes the induction of pro-inflammatory cytokines, disruption of the blood-brain barrier, gut-microbe interaction, and accumulation of metabolic changes in the brain environment. In this review, we discuss these key findings from studies linking Malassezia to neurological disorders, emphasizing the complex and multifaceted nature of these cases. Furthermore, we discuss potential mechanisms through which Malassezia might contribute to the development of neurological conditions. Future investigations will open up new avenues for our understanding of the fungal gut-brain axis and how it influences human behavior. Collaborative research efforts among microbiologists, neuroscientists, immunologists, and clinicians hold promise for unraveling the enigmatic connections between human commensal Malassezia and neurological disorders.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
5
|
Hickey JP, Collins AE, Nelson ML, Chen H, Kalisch BE. Modulation of Oxidative Stress and Neuroinflammation by Cannabidiol (CBD): Promising Targets for the Treatment of Alzheimer's Disease. Curr Issues Mol Biol 2024; 46:4379-4402. [PMID: 38785534 PMCID: PMC11120237 DOI: 10.3390/cimb46050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia globally. Although the direct cause of AD remains under debate, neuroinflammation and oxidative stress are critical components in its pathogenesis and progression. As a result, compounds like cannabidiol (CBD) are being increasingly investigated for their ability to provide antioxidant and anti-inflammatory neuroprotection. CBD is the primary non-psychotropic phytocannabinoid derived from Cannabis sativa. It has been found to provide beneficial outcomes in a variety of medical conditions and is gaining increasing attention for its potential therapeutic application in AD. CBD is not psychoactive and its lipophilic nature allows its rapid distribution throughout the body, including across the blood-brain barrier (BBB). CBD also possesses anti-inflammatory, antioxidant, and neuroprotective properties, making it a viable candidate for AD treatment. This review outlines CBD's mechanism of action, the role of oxidative stress and neuroinflammation in AD, and the effectiveness and limitations of CBD in preclinical models of AD.
Collapse
Affiliation(s)
| | | | | | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.H.); (A.E.C.); (M.L.N.); (H.C.)
| |
Collapse
|
6
|
Guo L, Zhao Y, Kong Z, Liu R, Liu P. Protective effects of myricetin and morin on neurological damage in Aβ 1-42/Al 3+ -induced Alzheimer's disease model of rats. J Chem Neuroanat 2024; 137:102404. [PMID: 38423257 DOI: 10.1016/j.jchemneu.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disorder with unclear pathogenesis. Single-target drugs have very limited efficacy in treating AD, but synthetic multi-target drugs have poor efficacy and safety. Therefore, finding suitable natural multi-target drugs against AD is of great interest for research studies. We chose two flavonols, myricetin and morin, for the relevant study. In this study, we used microinjection of Aβ1-42 oligomers into the CA1 region of rat hippocampus, combined with gavage of Aluminum chloride hexahydrate (AlCl3·6H2O) solution to establish AD rat models, and myricetin and morin were selected as intervening drugs to explore the protective effects against neurological impairment. Experimental results showed that myricetin or morin could reduce the production of Aβ, Tubulin-associated unit (Tau), and Phosphorylated tubulin-associated unit (p-Tau), down-regulate the expression of relevant inflammatory factors, reduce hippocampal cell apoptosis in rats. There was a significant increase in the activity of adenosine triphosphatase, catalase, total superoxide dismutase, and the content of glutathione in the brain tissue. However, the content of malondialdehyde, inducible nitric oxide synthase, and the activity of acetylcholinesterase were decreased in the brain tissue. These two flavonols can regulate the imbalance of monoamine and amino acid neurotransmitter levels. In conclusion, Myricetin or morin can effectively improve learning and memory dysfunction in AD rats induced by Aβ1-42/Al3+ through anti-oxidative stress and anti-apoptotic features.
Collapse
Affiliation(s)
- Linli Guo
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Zhao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhengqiao Kong
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ruihua Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Yu Y, Chen R, Mao K, Deng M, Li Z. The Role of Glial Cells in Synaptic Dysfunction: Insights into Alzheimer's Disease Mechanisms. Aging Dis 2024; 15:459-479. [PMID: 37548934 PMCID: PMC10917533 DOI: 10.14336/ad.2023.0718] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impacts a substantial number of individuals globally. Despite its widespread prevalence, there is currently no cure for AD. It is widely acknowledged that normal synaptic function holds a key role in memory, cognitive abilities, and the interneuronal transfer of information. As AD advances, symptoms including synaptic impairment, decreased synaptic density, and cognitive decline become increasingly noticeable. The importance of glial cells in the formation of synapses, the growth of neurons, brain maturation, and safeguarding the microenvironment of the central nervous system is well recognized. However, during AD progression, overactive glial cells can cause synaptic dysfunction, neuronal death, and abnormal neuroinflammation. Both neuroinflammation and synaptic dysfunction are present in the early stages of AD. Therefore, focusing on the changes in glia-synapse communication could provide insights into the mechanisms behind AD. In this review, we aim to provide a summary of the role of various glial cells, including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells, in regulating synaptic dysfunction. This may offer a new perspective on investigating the underlying mechanisms of AD.
Collapse
Affiliation(s)
- Yang Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Ran Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Kaiyue Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Maoyan Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| |
Collapse
|
8
|
Serafini S, Ferretti G, Monterosso P, Angiolillo A, Di Costanzo A, Matrone C. TNF-α Levels Are Increased in Patients with Subjective Cognitive Impairment and Are Negatively Correlated with β Amyloid-42. Antioxidants (Basel) 2024; 13:216. [PMID: 38397814 PMCID: PMC10886257 DOI: 10.3390/antiox13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The role of tumor necrosis factor-α (TNF-α) in Alzheimer's disease (AD) has recently become a topic of debate. TNF-α levels increase in the blood of patients with AD, and amyloid beta (Aβ) plaques contain TNF-α deposits. The therapeutic efficacy of blocking TNF-α in patients with AD remains controversial as it is mostly based on preclinical studies. Thus, whether and how TNF-α contributes to amyloidogenic processes in AD is still an open question to be addressed. We analyzed plasma TNF-α and Aβ42 levels in patients with subjective cognitive impairment (SCI), mild cognitive impairment (MCI), and AD, and in healthy volunteers (HLT). In addition, we performed correlation analysis to evaluate whether changes in plasma TNF-α levels correlate with cognitive decline, Aβ42 levels, age, and BMI, which are all factors considered to contribute to or predispose individuals to AD. We found that TNF-α and Aβ42 plasma levels were higher in patients with AD than in HLT individuals. High TNF-α levels were also observed in patients with SCI, in whom TNF-α and Aβ42 levels were negatively correlated. Notably, TNF-α did not affect the amyloidogenic pathway in human microglial cultures exposed to 48 h of incubation, although it did trigger neuroinflammatory processes. These results imply that high TNF-α levels are more likely to be a clinical condition linked to AD than are direct contributors. Nonetheless, elevated levels of TNF-α in early-stage patients, like those with SCI and MCI, may provide a distinguishing feature for identifying clinical profiles that are at risk of having a poorer outcome in AD and could benefit from tailored therapies.
Collapse
Affiliation(s)
- Sara Serafini
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Gabriella Ferretti
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Paola Monterosso
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Antonella Angiolillo
- Department of Medicine and Health Sciences, Center for Research and Training in Aging Medicine, University of Molise, 86100 Campobasso, Italy
| | - Alfonso Di Costanzo
- Department of Medicine and Health Sciences, Center for Research and Training in Aging Medicine, University of Molise, 86100 Campobasso, Italy
| | - Carmela Matrone
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
9
|
Zhao T, Jia J. Polygalacic acid attenuates cognitive impairment by regulating inflammation through PPARγ/NF-κB signaling pathway. CNS Neurosci Ther 2024; 30:e14581. [PMID: 38421141 PMCID: PMC10851321 DOI: 10.1111/cns.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS We aimed to explore the role and molecular mechanism of polygalacic acid (PA) extracted from traditional Chinese medicine Polygala tenuifolia in the treatment of Alzheimer's disease (AD). METHODS The network pharmacology analysis was used to predict the potential targets and pathways of PA. Molecular docking was applied to analyze the combination between PA and core targets. Aβ42 oligomer-induced AD mice model and microglia were used to detect the effect of PA on the release of pro-inflammatory mediators and its further mechanism. In addition, a co-culture system of microglia and neuronal cells was constructed to assess the effect of PA on activating microglia-mediated neuronal apoptosis. RESULTS We predict that PA might regulate inflammation by targeting PPARγ-mediated pathways by using network pharmacology. In vivo study, PA could attenuate cognitive deficits and inhibit the expression levels of inflammation-related factors. In vitro study, PA can also decrease the production of activated microglia-mediated inflammatory cytokines and reduce the apoptosis of N2a neuronal cells. PPARγ inhibitor GW9662 inversed the neuroprotective effect of PA. Both in vivo and in vitro studies showed PA might attenuate the inflammation through the PPARγ/NF-κB pathway. CONCLUSIONS PA is expected to provide a valuable candidate for new drug development for AD in the future.
Collapse
Affiliation(s)
- Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu HospitalCapital Medical University, National Clinical Research Center for Geriatric DiseasesBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's DiseaseBeijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical UniversityBeijingChina
- Key Laboratory of Neurodegenerative Diseases, Ministry of EducationBeijingChina
| |
Collapse
|
10
|
Yuan M, Ceylan AF, Gao R, Zhu H, Zhang Y, Ren J. Selective inhibition of the NLRP3 inflammasome protects against acute ethanol-induced cardiotoxicity in an FBXL2-dependent manner. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1972-1986. [PMID: 37994158 PMCID: PMC10753364 DOI: 10.3724/abbs.2023256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 11/24/2023] Open
Abstract
Binge drinking exerts cardiac toxicity through various mechanisms, including oxidative stress and inflammation. NLRP3 inflammasomes possess both pro- and anti-inflammatory properties, although the role of NLRP3 in ethanol-induced cardiotoxicity remains unknown. This study is designed to examine the role of NLRP3 inflammasome in acute ethanol cardiotoxicity and the underlying mechanisms of action. Nine- to twelve-week-old adult male C57BL/6 mice are administered with ethanol (1.5 g/kg, twice daily, i.p.) for 3 days. A cohort of control and ethanol-challenged mice are treated with the NLRP3 inhibitor MCC950 (10 mg/kg/day, i.p., days 1 and 3). Myocardial geometry and function are monitored using echocardiography and cardiomyocyte edge-detection techniques. Levels of NLRP3 inflammasome, mitophagy and apoptosis are evaluated by western blot analysis and immunofluorescence techniques. Acute ethanol challenge results in abnormally higher cardiac systolic function, in conjunction with deteriorated cardiac diastolic function and cardiomyocyte contractile function. Levels of NLRP3 inflammasome and apoptosis are elevated, and mitophagy flux is blocked (elevated Pink1-Parkin and LC3B along with diminished p62 and Rab7) in mice receiving acute ethanol challenge. Although MCC950 does not elicit a notable effect on myocardial function, apoptosis or inflammasome activation in the absence of ethanol exposure, it effectively rescues acute ethanol cardiotoxicity, as manifested by restored myocardial and cardiomyocyte functional homeostasis, suppressed NLRP3 inflammasome activation and apoptosis, and improved mitophagy flux. Our data further suggest that FBXL2, an E3 ubiquitin ligase associated with mitochondrial homeostasis and mitophagy, is destabilized due to proteasomal degradation of caspase-1 by ethanol-induced hyperactivation of NLRP3-caspase-1 inflammasome signaling, resulting in mitochondrial injury and apoptosis. These findings denote a role for NLRP3 inflammasome in acute ethanol exposure-induced cardiotoxicity in an FBXL2-dependent manner and the therapeutic promise of targeting NLRP3 inflammasome for acute ethanol cardiotoxicity.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Cardiology and Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghai200032China
- Clinical Research Center for Interventional MedicineShanghai200032China
| | - Asli F. Ceylan
- Ankara Yildirim Beyazit UniversityFaculty of MedicineDepartment of Medical PharmacologyBilkentAnkaraTurkey
| | - Rifeng Gao
- Department of CardiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Hong Zhu
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative MedicineShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghai200032China
- Clinical Research Center for Interventional MedicineShanghai200032China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghai200032China
- Clinical Research Center for Interventional MedicineShanghai200032China
| |
Collapse
|
11
|
Birajdar SV, Mazahir F, Alam MI, Kumar A, Yadav AK. Repurposing and clinical attributes of antidiabetic drugs for the treatment of neurodegenerative disorders. Eur J Pharmacol 2023; 961:176117. [PMID: 37907134 DOI: 10.1016/j.ejphar.2023.176117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
The risk of neurodegeneration was found to be increased among people with type 2 diabetes mellitus (T2DM). Brain disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and others are considered neurodegenerative diseases and can be characterized by progressive loss of neurons. The deficiency of insulin, impaired signaling, and its resistance lead to alteration in the neuronal functioning of the brain. Insulin degrading enzyme (IDE) plays a significant role in the amyloid β metabolism, aggregation, and deposition of misfolded proteins in the brain's hippocampal and cortical neuronal regions. The insulin signaling via IP3 activation upregulates the IDE and could be a promising approach to regulate neurodegeneration. The repurposing of existing antidiabetic drugs such as Metformin, DPP-4 inhibitors, thiazolidinediones, glucagon-like peptides (GLP-1), sodium-glucose co-transport-2 (SGCT-2) inhibitors, and insulin could be an alternative and effective strategy to treat neurodegeneration via modulating insulin signaling, insulin resistance, IDE activity, oxidative stress, mitochondrial dysfunction, serum lipid profile and neuroinflammation in the brain. Antidiabetic medications reduce the risk of neuroinflammation, oxidative stress, and Aβ deposition by enhancing their clearance rate. The downregulation of IDE alters the degradation of Aβ monomers in the Tg2576 APP mice. Also, the treatment with metformin activated the AMPK pathway and suppressed mTOR and BACE-1 protein expression in the APP/PS1-induced mice model. Thus, the primary intention of this review is to explore the link between T2DM and neurodegenerative disorders, and the possible role of various antidiabetic drugs in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Swapnali Vasant Birajdar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, 226002, Uttar Pradesh, India
| | - Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, 226002, Uttar Pradesh, India
| | - Md Imtiyaz Alam
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, 226002, Uttar Pradesh, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
12
|
Vincow ES, Thomas RE, Milstein G, Pareek G, Bammler T, MacDonald J, Pallanck L. Glucocerebrosidase deficiency leads to neuropathology via cellular immune activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571406. [PMID: 38168223 PMCID: PMC10760128 DOI: 10.1101/2023.12.13.571406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency. We identified target immune factors via RNA-Seq and proteomics on heads from GCase-deficient flies, which revealed both increased abundance of humoral factors and increased macrophage activation. We then manipulated the identified immune factors and measured their effect on head protein aggregates, a hallmark of neurodegenerative disease. Genetic ablation of humoral (secreted) immune factors did not suppress the development of protein aggregation. By contrast, re-expressing Gba1b in activated macrophages suppressed head protein aggregation in Gba1b mutants and rescued their lifespan and behavioral deficits. Moreover, reducing the GCase substrate glucosylceramide in activated macrophages also ameliorated Gba1b mutant phenotypes. Taken together, our findings show that glucosylceramide accumulation due to GCase deficiency leads to macrophage activation, which in turn promotes the development of neuropathology.
Collapse
Affiliation(s)
- Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ruth E. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gillian Milstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Leo Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
13
|
Shekarchian M, Peeri M, Azarbayjani MA. Physical activity in a swimming pool attenuates memory impairment by reducing glutamate and inflammatory cytokines and increasing BDNF in the brain of mice with type 2 diabetes. Brain Res Bull 2023; 201:110725. [PMID: 37543294 DOI: 10.1016/j.brainresbull.2023.110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Type 2 diabetes is a risk factor for the development of cognitive impairment. Increasing evidence suggests that regular exercise is beneficial for the treatment of clinical symptoms in diabetic patients. The current study aimed to evaluate whether increasing physical activity through swimming training can reduce memory impairment in an animal model of type 2 diabetes. Diabetes and non-diabetes mice underwent swimming training for four weeks, and then working, spatial, and recognition memory were evaluated using three behavioral tests. Body weight, glucose, and insulin resistance were monitored. We also measured inflammatory cytokines (interleukin (IL)- 6, IL-1β, and tumor-necrosis-factor (TNF)-α), an anti-inflammatory cytokine (IL-10), and brain-derived-neurotrophic-factor (BDNF), and glutamate levels in the hippocampus or prefrontal cortex of mice. The findings showed that diabetes increased body weight, glucose, and insulin resistance, impaired working, spatial and recognition memory, increased levels of IL-6, IL-1β, TNF-α, and glutamate levels, and decreased BDNF in the hippocampus of diabetic mice. While higher physical activity was associated with reduced body weight, glucose, and insulin resistance, attenuated memory impairment, IL-6, IL-1β, TNF-α, and glutamate, and increased BDNF levels in the hippocampus and prefrontal cortex of diabetic mice. This study shows that swimming training can normalize body weight and glucose-insulin axis and reduce inflammation and glutamate in the hippocampus and enhance the neurotrophic system in both the hippocampus and prefrontal cortex of diabetic mice. This study also suggests that higher physical activity through swimming training can improve cognitive impairment in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Mandana Shekarchian
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
14
|
Parrales-Macias V, Michel PP, Tourville A, Raisman-Vozari R, Haïk S, Hunot S, Bizat N, Lannuzel A. The Pesticide Chlordecone Promotes Parkinsonism-like Neurodegeneration with Tau Lesions in Midbrain Cultures and C. elegans Worms. Cells 2023; 12:cells12091336. [PMID: 37174736 PMCID: PMC10177284 DOI: 10.3390/cells12091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Chlordecone (CLD) is an organochlorine pesticide (OCP) that is currently banned but still contaminates ecosystems in the French Caribbean. Because OCPs are known to increase the risk of Parkinson's disease (PD), we tested whether chronic low-level intoxication with CLD could reproduce certain key characteristics of Parkinsonism-like neurodegeneration. For that, we used culture systems of mouse midbrain dopamine (DA) neurons and glial cells, together with the nematode C. elegans as an in vivo model organism. We established that CLD kills cultured DA neurons in a concentration- and time-dependent manner while exerting no direct proinflammatory effects on glial cells. DA cell loss was not impacted by the degree of maturation of the culture. The use of fluorogenic probes revealed that CLD neurotoxicity was the consequence of oxidative stress-mediated insults and mitochondrial disturbances. In C. elegans worms, CLD exposure caused a progressive loss of DA neurons associated with locomotor deficits secondary to alterations in food perception. L-DOPA, a molecule used for PD treatment, corrected these deficits. Cholinergic and serotoninergic neuronal cells were also affected by CLD in C. elegans, although to a lesser extent than DA neurons. Noticeably, CLD also promoted the phosphorylation of the aggregation-prone protein tau (but not of α-synuclein) both in midbrain cell cultures and in a transgenic C. elegans strain expressing a human form of tau in neurons. In summary, our data suggest that CLD is more likely to promote atypical forms of Parkinsonism characterized by tau pathology than classical synucleinopathy-associated PD.
Collapse
Affiliation(s)
- Valeria Parrales-Macias
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Patrick P Michel
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Aurore Tourville
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Rita Raisman-Vozari
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stéphane Haïk
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stéphane Hunot
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Nicolas Bizat
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
- Faculté de Pharmacie de Paris, Université de Paris Cité, 75006 Paris, France
| | - Annie Lannuzel
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
- Centre Hospitalier Universitaire de la Guadeloupe, Service de Neurologie, Faculté de Médecine de l'Université des Antilles, Centre d'Investigation Clinique (CIC) 1424, 97159 Pointe-à-Pitre, France
| |
Collapse
|
15
|
Wang M, Tang G, Zhou C, Guo H, Hu Z, Hu Q, Li G. Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer's disease from the perspective of ferroptosis. Chem Biol Interact 2023; 375:110387. [PMID: 36758888 DOI: 10.1016/j.cbi.2023.110387] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by chronic neuroinflammation with amyloid beta-protein deposition and hyperphosphorylated tau protein. The typical clinical manifestation of AD is progressive memory impairment, and AD is considered a multifactorial disease with various etiologies (genetic factors, aging, lifestyle, etc.) and complicated pathophysiological processes. Previous research identified that neuroinflammation and typical microglial activation are significant mechanisms underlying AD, resulting in dysfunction of the nervous system and progression of the disease. Ferroptosis is a novel modality involved in this process. As an iron-dependent form of cell death, ferroptosis, characterized by iron accumulation, lipid peroxidation, and irreversible plasma membrane disruption, promotes AD by accelerating neuronal dysfunction and abnormal microglial activation. In this case, disturbances in brain iron homeostasis and neuronal ferroptosis aggravate neuroinflammation and lead to the abnormal activation of microglia. Abnormally activated microglia release various pro-inflammatory factors that aggravate the dysregulation of iron homeostasis and neuroinflammation, forming a vicious cycle. In this review, we first introduce ferroptosis, microglia, AD, and their relationship. Second, we discuss the nonnegligible role of ferroptosis in the abnormal microglial activation involved in the chronic neuroinflammation of AD to provide new ideas for the identification of potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Miaomiao Wang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Gan Tang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Congfa Zhou
- Department of Anatomy, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Hongmin Guo
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Zihui Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
16
|
Nafea M, Elharoun M, Abd-Alhaseeb MM, Helmy MW. Leflunomide abrogates neuroinflammatory changes in a rat model of Alzheimer's disease: the role of TNF-α/NF-κB/IL-1β axis inhibition. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:485-498. [PMID: 36385687 PMCID: PMC9898334 DOI: 10.1007/s00210-022-02322-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and is associated with disrupted cognition and behavior. Neuroinflammatory pathogenesis is the main component that contributes to AD initiation and progression through microglial activation and neuronal damage. Thus, targeting inflammatory pathways may help manage AD. In this study, for the first time, the potential prophylactic and therapeutic effects of leflunomide were investigated either alone or in combination with rivastigmine in aluminum chloride (AlCl3)-induced AD-like rats using behavioral, biochemical, and histological approaches. Thirty-six adult male albino rats were divided into two protocols: the treatment protocol, subdivided into five groups (n = 6)-(1) control group, (2) AlCl3 (50, 70, 100 mg/kg/I.P) group, (3) reference group (rivastigmine 2 mg/kg/P.O.), (4) experimental group (leflunomide 10 mg/kg/P.O.), and (5) combination group (rivastigmine + leflunomide); and the prophylactic protocol (leflunomide 10 mg/kg/P.O.), which started 2 weeks before AlCl3 induction. The results showed that AlCl3 disrupted learning and memory parameters in rats and increased amyloid-β plaque deposition and neurofibrillary tangle aggregation. Moreover, AlCl3 administration markedly elevated acetylcholinesterase activity, nuclear factor-kappa β, tumor necrosis factor-α, and interleukin-1 beta, and marked degenerative changes in the pyramidal neurons. However, administration of leflunomide alone or with rivastigmine in AlCl3-induced AD rats restored most of the behavioral, biochemical, and histological parameters triggered by AlCl3 in rats. Our findings suggest that leflunomide can potentially restore most of the neuronal damage in the hippocampal tissues of AlCl3-induced AD rats. However, these preclinical findings still need to be confirmed in clinical trials.
Collapse
Affiliation(s)
- Menna Nafea
- Department of Pharmacology and Biochemistry, College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
| | - Mona Elharoun
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, El-Bahira, Egypt
| | | | - Maged Wasfy Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, El-Bahira, Egypt.
| |
Collapse
|
17
|
Teo EJ, Chand KK, Miller SM, Wixey JA, Colditz PB, Bjorkman ST. Early evolution of glial morphology and inflammatory cytokines following hypoxic-ischemic injury in the newborn piglet brain. Sci Rep 2023; 13:282. [PMID: 36609414 PMCID: PMC9823001 DOI: 10.1038/s41598-022-27034-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
Neuroinflammation is a hallmark of hypoxic-ischemic injury and can be characterized by the activation of glial cells and the expression of inflammatory cytokines and chemokines. Interleukin (IL)-1β and tumor necrosis factor (TNF)α are among the best-characterized early response cytokines and are often expressed concurrently. Several types of central nervous system cells secrete IL-1β and TNFα, including microglia, astrocytes, and neurons, and these cytokines convey potent pro-inflammatory actions. Chemokines also play a central role in neuroinflammation by controlling inflammatory cell trafficking. Our aim was to characterise the evolution of early neuroinflammation in the neonatal piglet model of hypoxic-ischemic encephalopathy (HIE). Piglets (< 24 h old) were exposed to HI insult, and recovered to 2, 4, 8, 12 or 24H post-insult. Brain tissue from the frontal cortex and basal ganglia was harvested for assessment of glial cell activation profiles and transcription levels of inflammatory markers in HI piglets with comparison to a control group of newborn piglets. Fluorescence microscopy was used to observe microglia, astrocytes, neurons, degenerating neurons and possibly apoptotic cells, and quantitative polymerase chain reaction was used to measure gene expression of several cytokines and chemokines. HI injury was associated with microglial activation and morphological changes to astrocytes at all time points examined. Gene expression analyses of inflammation-related markers revealed significantly higher expression of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin 1 beta (IL-1β), chemokines cxc-chemokine motif ligand (CXCL)8 and CXCL10, and anti-inflammatory cytokine transforming growth factor (TGF)β in every HI group, with some region-specific differences noted. No significant difference was observed in the level of C-X-C chemokine receptor (CCR)5 over time. This high degree of neuroinflammation was associated with a reduction in the number of neurons in piglets at 12H and 24H in the frontal cortex, and the putamen at 12H. This reduction of neurons was not associated with increased numbers of degenerating neurons or potentially apoptotic cells. HI injury triggered a robust early neuroinflammatory response associated with a reduction in neurons in cortical and subcortical regions in our piglet model of HIE. This neuroinflammatory response may be targeted using novel therapeutics to reduce neuropathology in our piglet model of neonatal HIE.
Collapse
Affiliation(s)
- Elliot J. Teo
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Kirat. K. Chand
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Stephanie M. Miller
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Julie A. Wixey
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Paul B. Colditz
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - S. Tracey. Bjorkman
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| |
Collapse
|
18
|
Zhu Y, Liu Y, Escames G, Yang Z, Zhao H, Qian L, Xue C, Xu D, Acuña-Castroviejo D, Yang Y. Deciphering clock genes as emerging targets against aging. Ageing Res Rev 2022; 81:101725. [PMID: 36029999 DOI: 10.1016/j.arr.2022.101725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
The old people often suffer from circadian rhythm disturbances, which in turn accelerate aging. Many aging-related degenerative diseases such as Alzheimer's disease, Parkinson's disease, and osteoarthritis have an inextricable connection with circadian rhythm. In light of the predominant effects of clock genes on regulating circadian rhythm, we systematically present the elaborate network of roles that clock genes play in aging in this review. First, we briefly introduce the basic background regarding clock genes. Second, we systemically summarize the roles of clock genes in aging and aging-related degenerative diseases. Third, we discuss the relationship between clock genes polymorphisms and aging. In summary, this review is intended to clarify the indispensable roles of clock genes in aging and sheds light on developing clock genes as anti-aging targets.
Collapse
Affiliation(s)
- Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chengxu Xue
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Danni Xu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
19
|
Jayaraman A, Reynolds R. Diverse pathways to neuronal necroptosis in Alzheimer's disease. Eur J Neurosci 2022; 56:5428-5441. [PMID: 35377966 DOI: 10.1111/ejn.15662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Necroptosis, or programmed necrosis, involves the kinase activity of receptor interacting kinases 1 and 3, the activation of the pseudokinase mixed lineage kinase domain-like and formation of a complex called the necrosome. It is one of the non-apoptotic cell death pathways that has gained interest in the recent years, especially as a neuronal cell death pathway occurring in Alzheimer's disease. In this review, we focus our discussion on the various molecular mechanisms that could trigger neuronal death through necroptosis and have been shown to play a role in Alzheimer's disease pathogenesis and neuroinflammation. We describe how each of these pathways, such as tumour necrosis factor signalling, reactive oxygen species, endosomal sorting complex, post-translational modifications and certain individual molecules, is dysregulated or activated in Alzheimer's disease, and how this dysregulation/activation could trigger necroptosis. At the cellular level, many of these molecular mechanisms and pathways may act in parallel to synergize with each other or inhibit one another, and changes in the balance between them may determine different cellular vulnerabilities at different disease stages. However, from a therapeutic standpoint, it remains unclear how best to target one or more of these pathways, given that such diverse pathways could all contribute to necroptotic cell death in Alzheimer's disease.
Collapse
Affiliation(s)
- Anusha Jayaraman
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Richard Reynolds
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
20
|
Juárez-Cedillo T, Martínez-Rodríguez N, Vargas-Alarcon G, Juárez-Cedillo E, Valle-Medina A, Garrido-Acosta O, Ramirez A. Synergistic influence of cytokine gene polymorphisms over the risk of dementia: A multifactor dimensionality reduction analysis. Front Aging Neurosci 2022; 14:952173. [PMID: 36389080 PMCID: PMC9643855 DOI: 10.3389/fnagi.2022.952173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 09/11/2023] Open
Abstract
OBJECTIVE Evidence supports the important role of neuroinflammation in some types of dementia. This study aimed to evaluate the effect of epistasis of gene cytokines such as interleukin (IL)-α, IL-6, tumor necrosis factor (TNFα), and interferon-gamma (IFN-γ) on the susceptibility to the development of dementia. MATERIALS AND METHODS In the study, 221 patients diagnosed with dementia and 710 controls were included. The multifactor-dimensionality reduction (MDR) analysis was performed to identify the epistasis between SNP located in genes of IL-α (rs1800587), IL-6 (rs1800796), TNFα (rs361525 and rs1800629), and IFNγ (rs2069705). The best risk prediction model was identified based on precision and cross-validation consistency. RESULTS Multifactor-dimensionality reduction analysis detected a significant model with the genes TNFα, IFNγ, IL1α, and IL6 (prediction success: 72%, p < 0.0001). When risk factors were analyzed with these polymorphisms, the model achieved a similar prediction for dementia as the genes-only model. CONCLUSION These data indicate that gene-gene interactions form significant models to identify populations susceptible to dementia.
Collapse
Affiliation(s)
- Teresa Juárez-Cedillo
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Nancy Martínez-Rodríguez
- Epidemiology, Endocrinology, and Nutrition Research Unit, Hospital Infantil de México Federico Gomez, Ministry of Health (SSA), Mexico City, Mexico
| | - Gilberto Vargas-Alarcon
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Enrique Juárez-Cedillo
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Antonio Valle-Medina
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Osvaldo Garrido-Acosta
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Köln, Germany
| |
Collapse
|
21
|
Yang J, Ran M, Li H, Lin Y, Ma K, Yang Y, Fu X, Yang S. New insight into neurological degeneration: Inflammatory cytokines and blood–brain barrier. Front Mol Neurosci 2022; 15:1013933. [PMID: 36353359 PMCID: PMC9637688 DOI: 10.3389/fnmol.2022.1013933] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Neurological degeneration after neuroinflammation, such as that resulting from Alzheimer’s disease (AD), stroke, multiple sclerosis (MS), and post-traumatic brain injury (TBI), is typically associated with high mortality and morbidity and with permanent cognitive dysfunction, which places a heavy economic burden on families and society. Diagnosing and curing these diseases in their early stages remains a challenge for clinical investigation and treatment. Recent insight into the onset and progression of these diseases highlights the permeability of the blood–brain barrier (BBB). The primary factor that influences BBB structure and function is inflammation, especially the main cytokines including IL-1β, TNFα, and IL-6, the mechanism on the disruption of which are critical component of the aforementioned diseases. Surprisingly, the main cytokines from systematic inflammation can also induce as much worse as from neurological diseases or injuries do. In this review, we will therefore discuss the physiological structure of BBB, the main cytokines including IL-1β, TNFα, IL-6, and their mechanism on the disruption of BBB and recent research about the main cytokines from systematic inflammation inducing the disruption of BBB and cognitive impairment, and we will eventually discuss the need to prevent the disruption of BBB.
Collapse
Affiliation(s)
- Jie Yang
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Mingzi Ran
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Anaesthesiology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Hongyu Li
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Ye Lin
- Department of Neurology, The First Medical Centre, PLA General Hospital, Beijing, China
| | - Kui Ma
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
| | - Yuguang Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Xiaobing Fu,
| | - Siming Yang
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
- *Correspondence: Siming Yang,
| |
Collapse
|
22
|
Aydin N, Turkez H, Tozlu OO, Arslan ME, Yavuz M, Sonmez E, Ozpolat OF, Cacciatore I, Di Stefano A, Mardinoglu A. Ameliorative Effects by Hexagonal Boron Nitride Nanoparticles against Beta Amyloid Induced Neurotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12152690. [PMID: 35957121 PMCID: PMC9370266 DOI: 10.3390/nano12152690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 05/28/2023]
Abstract
Alzheimer’s disease (AD) is considered as the most common neurodegenerative disease. Extracellular amyloid beta (Aβ) deposition is a hallmark of AD. The options based on degradation and clearance of Aβ are preferred as promising therapeutic strategies for AD. Interestingly, recent findings indicate that boron nanoparticles not only act as a carrier but also play key roles in mediating biological effects. In the present study, the aim was to investigate the effects of different concentrations (0−500 mg/L) of hexagonal boron nitride nanoparticles (hBN-NPs) against neurotoxicity by beta amyloid (Aβ1-42) in differentiated human SH-SY5Y neuroblastoma cell cultures for the first time. The synthesized hBN-NPs were characterized by X-ray diffraction (XRD) measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Aβ1-42-induced neurotoxicity and therapeutic potential by hBN-NPs were assessed on differentiated SH-SY5Y cells using MTT and LDH release assays. Levels of total antioxidant capacity (TAC) and total oxidant status (TOS), expression levels of genes associated with AD and cellular morphologies were examined. The exposure to Aβ1-42 significantly decreased the rates of viable cells which was accompanied by elevated TOS level. Aβ1-42 induced both apoptotic and necrotic cell death. Aβ exposure led to significant increases in expression levels of APOE, BACE 1, EGFR, NCTSN and TNF-α genes and significant decreases in expression levels of ADAM 10, APH1A, BDNF, PSEN1 and PSENEN genes (p < 0.05). All the Aβ1-42-induced neurotoxic insults were inhibited by the applications with hBN-NPs. hBN-NPs also suppressed the remarkable elevation in the signal for Aβ following exposure to Aβ1-42 for 48 h. Our results indicated that hBN-NPs could significantly prevent the neurotoxic damages by Aβ. Thus, hBN-NPs could be a novel and promising anti-AD agent for effective drug development, bio-nano imaging or drug delivery strategies.
Collapse
Affiliation(s)
- Nursah Aydin
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25050, Turkey
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, Erzurum 25240, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25050, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25050, Turkey
| | - Mehmet Yavuz
- REEM Neuropsychiatry Clinics, İstanbul 34245, Turkey
| | - Erdal Sonmez
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum 25240, Turkey
- Department of Physics, Kazım Karabekir Education Faculty, Atatürk University, Erzurum 25240, Turkey
| | - Ozgur Fırat Ozpolat
- Computer Sciences Research and Application Center, Atatürk University, Erzurum 25240, Turkey
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti Scalo, CH, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti Scalo, CH, Italy
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
23
|
Nillert N, Boonyarat C, Welbat JU, Bunreungthong K, Puthongking P, Pannangrong W. Clausena Harmandiana root extract attenuated cognitive impairments via reducing amyloid accumulation and neuroinflammation in Aβ 1-42-induced rats. BMC Complement Med Ther 2022; 22:108. [PMID: 35439990 PMCID: PMC9019931 DOI: 10.1186/s12906-022-03591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathogenesis is associated with amyloid-β (Aβ)-induced neuroinflammation. In AD, the activation of microglia caused by Aβ accumulation is followed by the synthesis and release of pro-inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα), and ultimately leads to cognitive impairments. Clausena harmandiana (CH) is a medicinal plant in the Rutaceae family and has been used in folk medicine to relieve illnesses such as stomachache and headache, and as a health tonic. Interestingly, CH root extract (CHRE) has several anti-inflammatory and other pharmacological activities, but there are no studies in AD-like animal models. OBJECTIVES This study aims to evaluate the effects of CHRE on cognitive impairments, increased Aβ1-42 protein levels, and neuroinflammation in Aβ1-42-induced rats. METHODS Forty-eight adult male Sprague-Dawley rats (250-300 g) were randomly divided into 6 groups (n = 8) of the sham control, V + Aβ, CB + Aβ CHRE125 + Aβ, CHRE250 + Aβ, and CHRE500 + Aβ. Sodium carboxymethylcellulose, Celebrex (10 mg/kg BW) and CHRE (125, 250, and 500 mg/kg BW) were given orally or without any treatment for 35 days. On day 21, aggregated Aβ1-42 at a concentration of 1 μg/μl were injected into both lateral ventricles (1 μl/side) of all treated rats, while sterilized normal saline were injected to untreated rats. Ten days later, the novel object recognition test was performed to assess their recognition memory. At the end of the test period, an overdose of thiopental sodium (120 mg/kg BW) and transcardial perfusion with 0.9% normal saline solution were used to euthanize all rats. Then Aβ1-42 protein levels and the expression of inflammatory markers (CD11b-positive microglia, IL-1β, and TNFα) were investigated in the cerebral cortex and hippocampus. RESULTS Pretreatment with CHRE at all doses could attenuate short- and long-term impairments in recognition memory. Additionally, CHRE also inhibited the increase of Aβ1-42 protein levels and the expression of inflammatory markers in both brain regions as well as receiving Celebrex. CONCLUSIONS This suggests that preventive treatment of CHRE might be a potential therapy against cognitive impairments via reducing Aβ1-42 protein levels and neuroinflammation caused by Aβ1-42.
Collapse
Affiliation(s)
- Nutchareeporn Nillert
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Komsun Bunreungthong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ploenthip Puthongking
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
24
|
Martínez-Iglesias O, Naidoo V, Carrera I, Cacabelos R. Epigenetic Studies in the Male APP/BIN1/COPS5 Triple-Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:2446. [PMID: 35269588 PMCID: PMC8909965 DOI: 10.3390/ijms23052446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's Disease (AD) is a major health problem worldwide. The lack of efficacy of existing therapies for AD is because of diagnosis at late stages of the disease, limited knowledge of biomarkers, and molecular mechanisms of AD pathology, as well as conventional drugs that are focused on symptomatic rather than mechanistic features of the disease. The connection between epigenetics and AD, however, may be useful for the development of novel therapeutics or diagnostic biomarkers for AD. The aim of this study was to investigate a pathogenic role for epigenetics and other biomarkers in the male APP/BIN1/COPS5 triple-transgenic (3xTg) mouse model of AD. In the APP/BIN1/COPS5 3xTg-AD mouse hippocampus, sirtuin expression and activity decreased, HDAC3 expression and activity increased, PSEN1 mRNA levels were unchanged, PSEN2 and APOE expression was reduced, and levels of the pro-inflammatory marker IL-6 increased; levels of pro-inflammatory COX-2 and TNFα and apoptotic (NOS3) markers increased slightly, but these were non-significant. In fixed mouse-brain slices, immunoreactivity for CD11b and β-amyloid immunostaining increased. APP/BIN1/COPS5 3xTg-AD mice are a suitable model for evaluating epigenetic changes in AD, the discovery of new epigenetic-related biomarkers for AD diagnosis, and new epidrugs for the treatment of this neurodegenerative disease.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Corunna, Spain; (V.N.); (I.C.); (R.C.)
| | | | | | | |
Collapse
|
25
|
Mann CN, Devi SS, Kersting CT, Bleem AV, Karch CM, Holtzman DM, Gallardo G. Astrocytic α2-Na +/K + ATPase inhibition suppresses astrocyte reactivity and reduces neurodegeneration in a tauopathy mouse model. Sci Transl Med 2022; 14:eabm4107. [PMID: 35171651 DOI: 10.1126/scitranslmed.abm4107] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most dominant form of dementia characterized by the deposition of extracellular amyloid plaques and intracellular neurofibrillary tau tangles (NFTs). In addition to these pathologies, an emerging pathophysiological mechanism that influences AD is neuroinflammation. Astrocytes are a vital type of glial cell that contribute to neuroinflammation, and reactive astrocytes, or astrogliosis, are a well-known pathological feature of AD. However, the mechanisms by which astrocytes contribute to the neurodegenerative process in AD have not been fully elucidated. Here, we showed that astrocytic α2-Na+/K+ adenosine triphosphatase (α2-NKA) is elevated in postmortem human brain tissue from AD and progressive nuclear palsy, a primary tauopathy. The increased astrocytic α2-NKA was also recapitulated in a mouse model of tauopathy. Pharmacological inhibition of α2-NKA robustly suppressed neuroinflammation and reduced brain atrophy. In addition, α2-NKA knockdown in tauopathy mice halted the accumulation of tau pathology. We also demonstrated that α2-NKA promoted tauopathy, in part, by regulating the proinflammatory protein lipocalin-2 (Lcn2). Overexpression of Lcn2 in tauopathy mice increased tau pathology, and prolonged Lcn2 exposure to primary neurons promoted tau uptake in vitro. These studies collectively highlight the contribution of reactive astrocytes to tau pathogenesis in mice and define α2-NKA as a major regulator of astrocytic-dependent neuroinflammation.
Collapse
Affiliation(s)
- Carolyn N Mann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA
| | - Shamulailatpam Shreedarshanee Devi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA
| | - Corey T Kersting
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA
| | - Amber V Bleem
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA
| | - Celeste M Karch
- Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA.,Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - Gilbert Gallardo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
26
|
Babaei P, Azari HB. Exercise Training Improves Memory Performance in Older Adults: A Narrative Review of Evidence and Possible Mechanisms. Front Hum Neurosci 2022; 15:771553. [PMID: 35153701 PMCID: PMC8829997 DOI: 10.3389/fnhum.2021.771553] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
As human life expectancy increases, cognitive decline and memory impairment threaten independence and quality of life. Therefore, finding prevention and treatment strategies for memory impairment is an important health concern. Moreover, a better understanding of the mechanisms involved underlying memory preservation will enable the development of appropriate pharmaceuticals drugs for those who are activity limited. Exercise training as a non-pharmacological tool, has been known to increase the mean lifespan by maintaining general body health and improving the cardiovascular and nervous systems function. Among different exercise training protocols, aerobic exercise has been reported to prevent the progression of memory decline, provided adequate exertion level, duration, and frequency. Mechanisms underlying exercise training effects on memory performance have not been understood yet. Convergent evidence suggest several direct and indirect mechanisms at molecular and supramolecular levels. The supramolecular level includes improvement in blood circulation, synaptic plasticity and neurogenesis which are under controls of complex molecular signaling of neurotransmitters, neurotrophic factors, exerkines, and epigenetics factors. Among these various factors, irisin/BDNF signaling seems to be one of the important mediators of crosstalk between contracted skeletal muscles and the brain during exercise training. This review provides an affordable and effective method to improve cognitive function in old ages, particularly those who are most vulnerable to neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Helya Bolouki Azari
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Fighting fire with fire: the immune system might be key in our fight against Alzheimer's disease. Drug Discov Today 2022; 27:1261-1283. [PMID: 35032668 DOI: 10.1016/j.drudis.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The ultimate cause of Alzheimer's disease (AD) is still unknown and no disease-modifying treatment exists. Emerging evidence supports the concept that the immune system has a key role in AD pathogenesis. This awareness leads to the idea that specific parts of the immune system must be engaged to ward off the disease. Immunotherapy has dramatically improved the management of several previously untreatable cancers and could hold similar promise as a novel therapy for treating AD. However, before potent immunotherapies can be rationally designed as treatment against AD, we need to fully understand the dynamic interplay between AD and the different parts of our immune system. Accordingly, here we review the most important aspects of both the innate and adaptive immune system in relation to AD pathology. Teaser: Emerging results support the concept that Alzheimer's disease is affected by the inability of the immune system to contain the pathology of the brain. Here, we discuss how we can engage our immune system to fight this devastating disease.
Collapse
|
28
|
Fernandes A, Caldeira C, Cunha C, Ferreiro E, Vaz AR, Brites D. Differences in Immune-Related Genes Underlie Temporal and Regional Pathological Progression in 3xTg-AD Mice. Cells 2022; 11:cells11010137. [PMID: 35011699 PMCID: PMC8750089 DOI: 10.3390/cells11010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
The prevalence of Alzheimer’s disease (AD), the most common cause of age-associated dementia, is estimated to increase over the next decades. Evidence suggests neuro-immune signaling deregulation and risk genes beyond the amyloid-β (Aβ) deposition in AD pathology. We examined the temporal profile of inflammatory mediators and microglia deactivation/activation in the brain cortex and hippocampus of 3xTg-AD mice at 3- and 9-month-old. We found upregulated APP processing, decreased expression of CD11b, CX3CR1, MFG-E8, TNF-α, IL-1β, MHC-II and C/EBP-α and increased miR-146a in both brain regions in 3-month-old 3xTG-AD mice, suggestive of a restrictive regulation. Enhanced TNF-α, IL-1β, IL-6, iNOS, SOCS1 and Arginase 1 were only present in the hippocampus of 9-month-old animals, though elevation of HMGB1 and reduction of miR-146a and miR-124 were common features in the hippocampus and cortex regions. miR-155 increased early in the cortex and later in both regions, supporting its potential as a biomarker. Candidate downregulated target genes by cortical miR-155 included Foxo3, Runx2 and CEBPβ at 3 months and Foxo3, Runx2 and Socs1 at 9 months, which are implicated in cell survival, but also in Aβ pathology and microglia/astrocyte dysfunction. Data provide new insights across AD state trajectory, with divergent microglia phenotypes and inflammatory-associated features, and identify critical targets for drug discovery and combinatorial therapies.
Collapse
Affiliation(s)
- Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Correspondence: (A.F.); (D.B.); Tel.: +351-217946450 (D.B.)
| | - Cláudia Caldeira
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
| | - Carolina Cunha
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
- Bruno Silva-Santos Lab, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Elisabete Ferreiro
- MitoXT-Mitochondrial Toxicologu and Experimental Therapeutics Laboratory, CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, 3004-516 Coimbra, Portugal;
- III-Institute for Interdisciplinary Research (IIIUC), Universidade de Coimbra, 3004-516 Coimbra, Portugal
| | - Ana Rita Vaz
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
- Correspondence: (A.F.); (D.B.); Tel.: +351-217946450 (D.B.)
| |
Collapse
|
29
|
Ou W, Yang J, Simanauskaite J, Choi M, Castellanos DM, Chang R, Sun J, Jagadeesan N, Parfitt KD, Cribbs DH, Sumbria RK. Biologic TNF-α inhibitors reduce microgliosis, neuronal loss, and tau phosphorylation in a transgenic mouse model of tauopathy. J Neuroinflammation 2021; 18:312. [PMID: 34972522 PMCID: PMC8719395 DOI: 10.1186/s12974-021-02332-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Background Tumor necrosis factor-α (TNF-α) plays a central role in Alzheimer’s disease (AD) pathology, making biologic TNF-α inhibitors (TNFIs), including etanercept, viable therapeutics for AD. The protective effects of biologic TNFIs on AD hallmark pathology (Aβ deposition and tau pathology) have been demonstrated. However, the effects of biologic TNFIs on Aβ-independent tau pathology have not been reported. Existing biologic TNFIs do not cross the blood–brain barrier (BBB), therefore we engineered a BBB-penetrating biologic TNFI by fusing the extracellular domain of the type-II human TNF-α receptor (TNFR) to a transferrin receptor antibody (TfRMAb) that ferries the TNFR into the brain via receptor-mediated transcytosis. The present study aimed to investigate the effects of TfRMAb-TNFR (BBB-penetrating TNFI) and etanercept (non-BBB-penetrating TNFI) in the PS19 transgenic mouse model of tauopathy. Methods Six-month-old male and female PS19 mice were injected intraperitoneally with saline (n = 12), TfRMAb-TNFR (1.75 mg/kg, n = 10) or etanercept (0.875 mg/kg, equimolar dose of TNFR, n = 10) 3 days/week for 8 weeks. Age-matched littermate wild-type mice served as additional controls. Blood was collected at baseline and 8 weeks for a complete blood count. Locomotion hyperactivity was assessed by the open-field paradigm. Brains were examined for phosphorylated tau lesions (Ser202, Thr205), microgliosis, and neuronal health. The plasma pharmacokinetics were evaluated following a single intraperitoneal injection of 0.875 mg/kg etanercept or 1.75 mg/kg TfRMAb-TNFR or 1.75 mg/kg chronic TfRMAb-TNFR dosing for 4 weeks. Results Etanercept significantly reduced phosphorylated tau and microgliosis in the PS19 mouse brains of both sexes, while TfRMAb-TNFR significantly reduced these parameters in the female PS19 mice. Both TfRMAb-TNFR and etanercept treatment improved neuronal health by significantly increasing PSD95 expression and attenuating hippocampal neuron loss in the PS19 mice. The locomotion hyperactivity in the male PS19 mice was suppressed by chronic etanercept treatment. Equimolar dosing resulted in eightfold lower plasma exposure of the TfRMAb-TNFR compared with etanercept. The hematological profiles remained largely stable following chronic biologic TNFI dosing except for a significant increase in platelets with etanercept. Conclusion Both TfRMAb-TNFR (BBB-penetrating) and non-BBB-penetrating (etanercept) biologic TNFIs showed therapeutic effects in the PS19 mouse model of tauopathy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02332-7.
Collapse
Affiliation(s)
- Weijun Ou
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Joshua Yang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - Matthew Choi
- Keck Science Department, Claremont McKenna College, Claremont, CA, 91711, USA
| | - Demi M Castellanos
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Rudy Chang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Nataraj Jagadeesan
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Karen D Parfitt
- Department of Neuroscience, Pomona College, Claremont, CA, 91711, USA
| | - David H Cribbs
- MIND Institute, University of California, Irvine, CA, 92697, USA
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA. .,Department of Neurology, University of California, Irvine, CA, 92868, USA.
| |
Collapse
|
30
|
Neshan M, Malakouti SK, Kamalzadeh L, Makvand M, Campbell A, Ahangari G. Alterations in T-Cell Transcription Factors and Cytokine Gene Expression in Late-Onset Alzheimer's Disease. J Alzheimers Dis 2021; 85:645-665. [PMID: 34864659 DOI: 10.3233/jad-210480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Late-onset Alzheimer's disease (LOAD) is associated with many environmental and genetic factors. The effect of systemic inflammation on the pathogenesis of neurodegenerative diseases such as AD has been strongly suggested. T helper cells (Th) are one of the important components of the immune system and can easily infiltrate the brain in pathological conditions. The development of each Th-subset depends on the production of unique cytokines and their main regulator. OBJECTIVE This study aimed to compare the mRNA levels of Th-related genes derived from peripheral blood mononuclear cells of LOAD patients with control. Also, the identification of the most important Th1/Th2 genes and downstream pathways that may be involved in the pathogenesis of AD was followed by computational approaches. METHODS This study invloved 30 patients with LOAD and 30 non-demented controls. The relative expression of T-cell cytokines (IFN-γ, TNF-α, IL-4, and IL-5) and transcription factors (T-bet and GATA-3) were assessed using real-time PCR. Additionally, protein-protein interaction (PPI) was investigated by gene network construction. RESULTS A significant decrease at T-bet, IFN-γ, TNF-α, and GATA-3 mRNA levels was detected in the LOAD group, compared to the controls. However, there was no significant difference in IL-4 or IL-5 mRNA levels. Network analysis revealed a list of the highly connected protein (hubs) related to mitogen-activated protein kinase (MAPK) signaling and Th17 cell differentiation pathways. CONCLUSION The findings point to a molecular dysregulation in Th-related genes, which can promising in the early diagnosis or targeted interventions of AD. Furthermore, the PPI analysis showed that upstream off-target stimulation may involve MAPK cascade activation and Th17 axis induction.
Collapse
Affiliation(s)
- Masoud Neshan
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Kazem Malakouti
- Mental Health Research Center, Tehran Institute of Psychiatry-School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Kamalzadeh
- Mental Health Research Center, Tehran Institute of Psychiatry-School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Makvand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Ghasem Ahangari
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
31
|
Wang Q, Yao H, Liu W, Ya B, Cheng H, Xing Z, Wu Y. Microglia Polarization in Alzheimer's Disease: Mechanisms and a Potential Therapeutic Target. Front Aging Neurosci 2021; 13:772717. [PMID: 34819850 PMCID: PMC8606412 DOI: 10.3389/fnagi.2021.772717] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation regulated by microglia is one of the important factors involved in the pathogenesis of Alzheimer’s disease (AD). Activated microglia exhibited phenotypes termed as M1 and M2 phenotypes separately. M1 microglia contribute to the development of inflammation via upregulating pro-inflammatory cytokines, while M2 microglia exert anti-inflammation effects through enhancing the expression of anti-inflammation factors. Moreover, M1 and M2 microglia could be mutually transformed under various conditions. Both M1 and M2 microglia are implicated in AD. Amyloid-β (Aβ) and hyperphosphorylated tau are two major components of AD pathological hallmarks, neuritic plaques, and neurofibrillary tangles. Both Aβ and hyperphosphorylated tau were involved in microglial activation and subsequent inflammation, which further contribute to neuronal and synaptic loss in AD. In this review, we summarized the roles of M1 and M2 microglia in AD and underlying mechanisms, which will provide an insight into the role of microglia in the pathogenesis of AD and highlight the therapeutic potential of modulating microglia.
Collapse
Affiliation(s)
- Qinqin Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Hongmei Yao
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Wenyan Liu
- Department of Physiology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Bailiu Ya
- Department of Physiology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Hongju Cheng
- Department of Physiology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Zhenkai Xing
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Wenzhou, China
| |
Collapse
|
32
|
Villanueva EB, Tresse E, Liu Y, Duarte JN, Jimenez-Duran G, Ejlerskov P, Kretz O, Loreth D, Goldmann T, Prinz M, Issazadeh-Navikas S. Neuronal TNFα, Not α-Syn, Underlies PDD-Like Disease Progression in IFNβ-KO Mice. Ann Neurol 2021; 90:789-807. [PMID: 34476836 DOI: 10.1002/ana.26209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) manifests in motor dysfunction, non-motor symptoms, and eventual dementia (PDD). Neuropathological hallmarks include nigrostriatal neurodegeneration, Lewy body (LB) pathology, and neuroinflammation. Alpha-synuclein (α-syn), a primary component of LBs, is implicated in PD pathogenesis, accumulating, and aggregating in both familial and sporadic PD. However, as α-syn pathology is often comorbid with amyloid-beta (Aβ) plaques and phosphorylated tau (pTau) tangles in PDD, it is still unclear whether α-syn is the primary cause of neurodegeneration in sporadic PDD. We aimed to determine how the absence of α-syn would affect PDD manifestation. METHODS IFN-β knockout (Ifnb-/- ) mice spontaneously develop progressive behavior abnormalities and neuropathology resembling PDD, notably with α-syn+ LBs. We generated Ifnb/Snca double knockout (DKO) mice and evaluated their behavior and neuropathology compared with wild-type (Wt), Ifnb-/- , and Snca-/- mice using immunohistochemistry, electron microscopy, immunoblots, qPCR, and modification of neuronal signaling. RESULTS Ifnb/Snca DKO mice developed all clinical PDD-like behavioral manifestations induced by IFN-β loss. Independently of α-syn expression, lack of IFN-β alone induced Aβ plaques, pTau tangles, and LB-like Aβ+ /pTau+ inclusion bodies and neuroinflammation. IFN-β loss caused significant elevated glial and neuronal TNF-α and neuronal TNFR1, associated with neurodegeneration. Restoring neuronal IFN-β signaling or blocking TNFR1 rescued caspase 3/t-BID-mediated neuronal-death through upregulation of c-FLIPS and lowered intraneuronal Aβ and pTau accumulation. INTERPRETATION These findings increase our understanding of PD pathology and suggest that targeting α-syn alone is not sufficient to mitigate disease. Targeting specific aspects of neuroinflammation, such as aberrant neuronal TNF-α/TNFR1 or IFN-β/IFNAR signaling, may attenuate disease. ANN NEUROL 2021;90:789-807.
Collapse
Affiliation(s)
- Erika B Villanueva
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Tresse
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yawei Liu
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - João N Duarte
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gisela Jimenez-Duran
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Ejlerskov
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Kretz
- Department of Internal Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Goldmann
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiberg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiberg, Germany
| | - Shohreh Issazadeh-Navikas
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Lennon MJ, Rigney G, Raymont V, Sachdev P. Genetic Therapies for Alzheimer's Disease: A Scoping Review. J Alzheimers Dis 2021; 84:491-504. [PMID: 34569966 DOI: 10.3233/jad-215145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Effective, disease modifying therapies for Alzheimer's disease (AD) remain a quandary, following a panoply of expensive failures in human clinical trials. Given the stagnation in therapeutics, alternative approaches are needed. Recent successes of genetic therapies in other neurodegenerative diseases may highlight the way forward. This scoping review explores suggested targets of genetic therapy in AD, with a focus on vector-based approaches in pre-clinical and clinical trials. Putative targets of genetic therapies tested in pre-clinical trials include amyloid pathway intermediates and enzymes modulation, tau protein downregulation, APOE4 downregulation and APOE2 upregulation, neurotrophin expression (nerve growth factor (NGF) and brain-derived neurotrophic factor), and inflammatory cytokine alteration, among several other approaches. There have been three completed human clinical trials for genetic therapy in AD patients, all of which upregulated NGF in AD patients, showing some mixed evidence of benefit. Several impediments remain to be surpassed before genetic therapies can be successfully applied to AD, including the challenge of delivering monogenic genetic therapies for complex polygenic disorders, risks in the dominant delivery method (intracranial injection), stability of genetic therapies in vivo, poor translatability of pre-clinical AD models, and the expense of genetic therapy production. Genetic therapies represent an exciting opportunity within the world of AD therapeutics, but clinical applications likely remain a long term, rather than short term, possibility.
Collapse
Affiliation(s)
- Matthew J Lennon
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK.,Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Grant Rigney
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
34
|
Jayaraman A, Htike TT, James R, Picon C, Reynolds R. TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer's disease hippocampus. Acta Neuropathol Commun 2021; 9:159. [PMID: 34625123 PMCID: PMC8501605 DOI: 10.1186/s40478-021-01264-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The pathogenetic mechanisms underlying neuronal death and dysfunction in Alzheimer’s disease (AD) remain unclear. However, chronic neuroinflammation has been implicated in stimulating or exacerbating neuronal damage. The tumor necrosis factor (TNF) superfamily of cytokines are involved in many systemic chronic inflammatory and degenerative conditions and are amongst the key mediators of neuroinflammation. TNF binds to the TNFR1 and TNFR2 receptors to activate diverse cellular responses that can be either neuroprotective or neurodegenerative. In particular, TNF can induce programmed necrosis or necroptosis in an inflammatory environment. Although activation of necroptosis has recently been demonstrated in the AD brain, its significance in AD neuron loss and the role of TNF signaling is unclear. We demonstrate an increase in expression of multiple proteins in the TNF/TNF receptor-1-mediated necroptosis pathway in the AD post-mortem brain, as indicated by the phosphorylation of RIPK3 and MLKL, predominantly observed in the CA1 pyramidal neurons. The density of phosphoRIPK3 + and phosphoMLKL + neurons correlated inversely with total neuron density and showed significant sexual dimorphism within the AD cohort. In addition, apoptotic signaling was not significantly activated in the AD brain compared to the control brain. Exposure of human iPSC-derived glutamatergic neurons to TNF increased necroptotic cell death when apoptosis was inhibited, which was significantly reversed by small molecule inhibitors of RIPK1, RIPK3, and MLKL. In the post-mortem AD brain and in human iPSC neurons, in response to TNF, we show evidence of altered expression of proteins of the ESCRT III complex, which has been recently suggested as an antagonist of necroptosis and a possible mechanism by which cells can survive after necroptosis has been triggered. Taken together, our results suggest that neuronal loss in AD is due to TNF-mediated necroptosis rather than apoptosis, which is amenable to therapeutic intervention at several points in the signaling pathway.
Collapse
|
35
|
Tsamou M, Pistollato F, Roggen EL. A Tau-Driven Adverse Outcome Pathway Blueprint Toward Memory Loss in Sporadic (Late-Onset) Alzheimer's Disease with Plausible Molecular Initiating Event Plug-Ins for Environmental Neurotoxicants. J Alzheimers Dis 2021; 81:459-485. [PMID: 33843671 DOI: 10.3233/jad-201418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The worldwide prevalence of sporadic (late-onset) Alzheimer's disease (sAD) is dramatically increasing. Aging and genetics are important risk factors, but systemic and environmental factors contribute to this risk in a still poorly understood way. Within the frame of BioMed21, the Adverse Outcome Pathway (AOP) concept for toxicology was recommended as a tool for enhancing human disease research and accelerating translation of data into human applications. Its potential to capture biological knowledge and to increase mechanistic understanding about human diseases has been substantiated since. In pursuit of the tau-cascade hypothesis, a tau-driven AOP blueprint toward the adverse outcome of memory loss is proposed. Sequences of key events and plausible key event relationships, triggered by the bidirectional relationship between brain cholesterol and glucose dysmetabolism, and contributing to memory loss are captured. To portray how environmental factors may contribute to sAD progression, information on chemicals and drugs, that experimentally or epidemiologically associate with the risk of AD and mechanistically link to sAD progression, are mapped on this AOP. The evidence suggests that chemicals may accelerate disease progression by plugging into sAD relevant processes. The proposed AOP is a simplified framework of key events and plausible key event relationships representing one specific aspect of sAD pathology, and an attempt to portray chemical interference. Other sAD-related AOPs (e.g., Aβ-driven AOP) and a better understanding of the impact of aging and genetic polymorphism are needed to further expand our mechanistic understanding of early AD pathology and the potential impact of environmental and systemic risk factors.
Collapse
|
36
|
Adu TS, Mabandla MV. Effects of bromelain on striatal neuroinflammation in rat model of Parkinsonism. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
37
|
Uddin MS, Yu WS, Lim LW. Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer's disease. Ageing Res Rev 2021; 70:101417. [PMID: 34339860 DOI: 10.1016/j.arr.2021.101417] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
One evident hallmark of Alzheimer's disease (AD) is the irregular accumulation of proteins due to changes in proteostasis involving endoplasmic reticulum (ER) stress. To alleviate ER stress and reinstate proteostasis, cells undergo an integrated signaling cascade called the unfolded protein response (UPR) that reduces the number of misfolded proteins and inhibits abnormal protein accumulation. Aging is associated with changes in the expression of ER chaperones and folding enzymes, leading to the impairment of proteostasis, and accumulation of misfolded proteins. The disrupted initiation of UPR prevents the elimination of unfolded proteins, leading to ER stress. In AD, the accumulation of misfolded proteins caused by sustained cellular stress leads to neurodegeneration and neuronal death. Current research has revealed that ER stress can trigger an inflammatory response through diverse transducers of UPR. Although the involvement of a neuroinflammatory component in AD has been documented for decades, whether it is a contributing factor or part of the neurodegenerative events is so far unknown. Besides, a feedback loop occurs between neuroinflammation and ER stress, which is strongly associated with neurodegenerative processes in AD. In this review, we focus on the current research on ER stress and UPR in cellular aging and neuroinflammatory processes, leading to memory impairment and synapse dysfunction in AD.
Collapse
|
38
|
Pluta R, Czuczwar SJ, Januszewski S, Jabłoński M. The Many Faces of Post-Ischemic Tau Protein in Brain Neurodegeneration of the Alzheimer's Disease Type. Cells 2021; 10:cells10092213. [PMID: 34571862 PMCID: PMC8465797 DOI: 10.3390/cells10092213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Recent data suggest that post-ischemic brain neurodegeneration in humans and animals is associated with the modified tau protein in a manner typical of Alzheimer’s disease neuropathology. Pathological changes in the tau protein, at the gene and protein level due to cerebral ischemia, can lead to the development of Alzheimer’s disease-type neuropathology and dementia. Some studies have shown increased tau protein staining and gene expression in neurons following ischemia-reperfusion brain injury. Recent studies have found the tau protein to be associated with oxidative stress, apoptosis, autophagy, excitotoxicity, neuroinflammation, blood-brain barrier permeability, mitochondrial dysfunction, and impaired neuronal function. In this review, we discuss the interrelationship of these phenomena with post-ischemic changes in the tau protein in the brain. The tau protein may be at the intersection of many pathological mechanisms due to severe neuropathological changes in the brain following ischemia. The data indicate that an episode of cerebral ischemia activates the damage and death of neurons in the hippocampus in a tau protein-dependent manner, thus determining a novel and important mechanism for the survival and/or death of neuronal cells following ischemia. In this review, we update our understanding of proteomic and genomic changes in the tau protein in post-ischemic brain injury and present the relationship between the modified tau protein and post-ischemic neuropathology and present a positive correlation between the modified tau protein and a post-ischemic neuropathology that has characteristics of Alzheimer’s disease-type neurodegeneration.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Str. Pawińskiego, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-6086-540
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 8b Str. Jaczewskiego, 20-090 Lublin, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Str. Pawińskiego, 02-106 Warsaw, Poland;
| | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, 8 Str. Jaczewskiego, 20-090 Lublin, Poland;
| |
Collapse
|
39
|
Uddin MS, Kabir MT, Jalouli M, Rahman MA, Jeandet P, Behl T, Alexiou A, Albadrani GM, Abdel-Daim MM, Perveen A, Ashraf GM. Neuroinflammatory Signaling in the Pathogenesis of Alzheimer's Disease. Curr Neuropharmacol 2021; 20:126-146. [PMID: 34525932 PMCID: PMC9199559 DOI: 10.2174/1570159x19666210826130210] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can, in turn, induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Bangladesh
| | | | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451. Saudi Arabia
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul. Korea
| | - Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2. France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham. Australia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474. Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522. Egypt
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur. India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| |
Collapse
|
40
|
Liu H, Hu X, Jiang R, Cai J, Lin Q, Fan Z, Zhao P, Wang S, Zou C, Du W, Dong Z, Liu Y. CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice. Inflammation 2021; 44:1345-1358. [PMID: 33528726 PMCID: PMC8285337 DOI: 10.1007/s10753-021-01420-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
Excessive microglial activation-mediated neuroinflammation is closely involved in the pathogenesis of several neurological diseases. CQMUH-011, as a novel adamantane sulfonamide compound, has been shown anti-inflammatory properties in activated macrophages (RAW264.7). However, the role of CQMUH-011 in microglial activation-induced neuroinflammation and neuroprotective properties has yet to be elucidated. In the present study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-stimulated primary microglia in vitro and transient middle cerebral artery occlusion (t-MCAO)-induced acute cerebral ischemia/reperfusion (I/R) injury in vivo. The results demonstrated that CQMUH-011 significantly suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β by LPS-stimulated primary microglia. In addition, CQMUH-011 inhibited the proliferation of activated microglia by arresting the cell cycle at the G1/S phase accompanied by downregulating the expression of cell cycle regulatory proteins such as proliferating cell nuclear antigen (PCNA) and cyclin D1. CQMUH-011 was seen to induce apoptosis in activated microglia by regulating the expression of Bax and Bcl-2. Furthermore, CQMUH-011 markedly attenuated the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) as well as the phosphorylation levels of nuclear factor-kappa (NF-κB) subunit p65, inhibitory kappa B-alpha (IκBα), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and p38 kinases. In vivo, CQMUH-011 administration significantly improved neurological function and infarct volume, and ameliorated the inflammatory cytokines and microglia amount around the injury site of mice. In conclusion, these results suggested that CQMUH-011 has a notable anti-inflammatory effect and protects mice from I/R injure. Thus, CQMUH-011 may be a candidate drug for the treatment of cerebral ischemia patients.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Xiangnan Hu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianghui Cai
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Qiao Lin
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiguo Fan
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Pan Zhao
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Song Wang
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Chunqiao Zou
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Weimin Du
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Dong
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Yingju Liu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
41
|
McGing JJ, Radford SJ, Francis ST, Serres S, Greenhaff PL, Moran GW. Review article: The aetiology of fatigue in inflammatory bowel disease and potential therapeutic management strategies. Aliment Pharmacol Ther 2021; 54:368-387. [PMID: 34228817 DOI: 10.1111/apt.16465] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fatigue is the inability to achieve or maintain an expected work output resulting from central or peripheral mechanisms. The prevalence of inflammatory bowel disease (IBD) fatigue can reach 86% in active disease, persisting in 50%-52% of patients with mild to inactive disease. Fatigue is the commonest reason for work absence in IBD, and patients often report fatigue burden to be greater than that of primary disease symptoms. Relatively few evidence-based treatment options exist, and the aetiology is poorly understood. AIM To review the available data and suggest a possible aetiology of IBD fatigue and to consider the efficacy of existing management strategies and highlight potential future interventions. METHODS We reviewed fatigue-related literature in IBD using PubMed database. RESULTS Disease related factors such as inflammation and pharmacological treatments negatively impact skeletal muscle and brain physiology, likely contributing to fatigue symptoms. Secondary factors such as malnutrition, anaemia, sleep disturbance and psychological comorbidity are potential determinants. Immune profile, faecal microbiota composition and physical fitness differ significantly between fatigued and non-fatigued patients, suggesting these may be aetiological factors. Solution-focused therapy, high-dosage thiamine supplementation and biological therapy may reduce fatigue perception in IBD. The effect of physical activity interventions is inconclusive. CONCLUSIONS A multimodal approach is likely required to treat IBD fatigue. Established reversible factors like anaemia, micronutrient deficiencies and active disease should initially be resolved. Psychosocial intervention shows potential efficacy in reducing fatigue perception in quiescent disease. Restoring physical deconditioning by exercise training intervention may further improve fatigue burden.
Collapse
Affiliation(s)
- Jordan J McGing
- School of Medicine, University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Shellie Jean Radford
- School of Medicine, University of Nottingham, Nottingham, UK.,National Institute of Health Research Nottingham Biomedical Research Centre (NIHR), Nottingham University Hospitals and University of Nottingham, Nottingham, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,National Institute of Health Research Nottingham Biomedical Research Centre (NIHR), Nottingham University Hospitals and University of Nottingham, Nottingham, UK
| | - Sébastien Serres
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Paul L Greenhaff
- National Institute of Health Research Nottingham Biomedical Research Centre (NIHR), Nottingham University Hospitals and University of Nottingham, Nottingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Gordon W Moran
- School of Medicine, University of Nottingham, Nottingham, UK.,National Institute of Health Research Nottingham Biomedical Research Centre (NIHR), Nottingham University Hospitals and University of Nottingham, Nottingham, UK
| |
Collapse
|
42
|
Rather MA, Khan A, Alshahrani S, Rashid H, Qadri M, Rashid S, Alsaffar RM, Kamal MA, Rehman MU. Inflammation and Alzheimer's Disease: Mechanisms and Therapeutic Implications by Natural Products. Mediators Inflamm 2021; 2021:9982954. [PMID: 34381308 PMCID: PMC8352708 DOI: 10.1155/2021/9982954] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with no clear causative event making the disease difficult to diagnose and treat. The pathological hallmarks of AD include amyloid plaques, neurofibrillary tangles, and widespread neuronal loss. Amyloid-beta has been extensively studied and targeted to develop an effective disease-modifying therapy, but the success rate in clinical practice is minimal. Recently, neuroinflammation has been focused on as the event in AD progression to be targeted for therapies. Various mechanistic pathways including cytokines and chemokines, complement system, oxidative stress, and cyclooxygenase pathways are linked to neuroinflammation in the AD brain. Many cells including microglia, astrocytes, and oligodendrocytes work together to protect the brain from injury. This review is focused to better understand the AD inflammatory and immunoregulatory processes to develop novel anti-inflammatory drugs to slow down the progression of AD.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rana M. Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
43
|
Abdelmeguid NE, Khalil MIM, Elhabet R, Sultan AS, Salam SA. Combination of docosahexaenoic acid and Ginko biloba extract improves cognitive function and hippocampal tissue damages in a mouse model of Alzheimer's disease. J Chem Neuroanat 2021; 116:101995. [PMID: 34182090 DOI: 10.1016/j.jchemneu.2021.101995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases characterized by a progressive loss of memory and other cognitive functions among elder people. Nowadays, natural antioxidants have been used to recover the quality of life for those with AD. In this study, we investigated, for the first time, the combined effect of docosahexaenoic acid (DHA) and Ginkgo bilobastandardized extract (EGb761) on AD mice. AD was induced in adult male albino mice with AlCl3 (20 mg/kg b.w, i.g.) and D-galactose (D-gal; 120 mg/kg, i.p.) for 90 days. 30 days after induction, mice were treated with DHA (200 mg/kg b.w., i.g.) and EGb761 (200 mg/kg b.w., i.g.) for two months. Our data revealed that the dual treatment of DHA and EGb761 significantly improved cognitive memory and spatial learning abilities in AD-induced mice. The drug treatments preserved the hippocampal CA3 architecture and restored neuronal ultrastructural alterations. Expression of protein phosphatase 2A (PP2A), the most implicated protein phosphatase in AD neurodegeneration, was highly upregulated in the CA3 hippocampus of AD mice treated with DHA and EGb761. Intriguingly, TNF-α expression was significantly reduced in the same group. In conclusion, our findings proved that the combined effect of DHA and EGb761 tended to be potent against the neurodegenerative effect of AlCl3 and D-gal. The applied treatment enhanced neuronal survival and cognitive functions via upregulation of PP2A and restoration of TNF-α expression.
Collapse
Affiliation(s)
- Nabila E Abdelmeguid
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mahmoud I M Khalil
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon.
| | - Rasha Elhabet
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Ahmed S Sultan
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
44
|
Chiu YJ, Lin CH, Lee MC, Hsieh-Li HM, Chen CM, Wu YR, Chang KH, Lee-Chen GJ. Formulated Chinese medicine Shaoyao Gancao Tang reduces NLRP1 and NLRP3 in Alzheimer's disease cell and mouse models for neuroprotection and cognitive improvement. Aging (Albany NY) 2021; 13:15620-15637. [PMID: 34106880 PMCID: PMC8221334 DOI: 10.18632/aging.203125] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Amyloid β (Aβ) plays a major role in the neurodegeneration of Alzheimer’s disease (AD). The accumulation of misfolded Aβ causes oxidative stress and inflammatory damage leading to apoptotic cell death. Traditional Chinese herbal medicine (CHM) has been widely used in treating neurodegenerative diseases by reducing oxidative stress and neuroinflammation. We examined the neuroprotective effect of formulated CHM Shaoyao Gancao Tang (SG-Tang, made of Paeonia lactiflora and Glycyrrhiza uralensis at 1:1 ratio) in AD cell and mouse models. In Aβ-GFP SH-SY5Y cells, SG-Tang reduced Aβ aggregation and reactive oxygen species (ROS) production, as well as improved neurite outgrowth. When the Aβ-GFP-expressing cells were stimulated with conditioned medium from interferon (IFN)-γ-activated HMC3 microglia, SG-Tang suppressed expressions of inducible nitric oxide synthase (iNOS), NLR family pyrin domain containing 1 (NLRP1) and 3 (NLRP3), tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, attenuated caspase-1 activity and ROS production, and promoted neurite outgrowth. In streptozocin-induced hyperglycemic APP/PS1/Tau triple transgenic (3×Tg-AD) mice, SG-Tang also reduced expressions of NLRP1, NLRP3, Aβ and Tau in hippocampus and cortex, as well as improved working and spatial memories in Y maze and Morris water maze. Collectively, our results demonstrate the potential of SG-Tang in treating AD by moderating neuroinflammation.
Collapse
Affiliation(s)
- Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ming-Chung Lee
- Sun Ten Pharmaceutical Co. Ltd., New Taipei City 23143, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
45
|
Nakai T, Yamada K, Mizoguchi H. Alzheimer's Disease Animal Models: Elucidation of Biomarkers and Therapeutic Approaches for Cognitive Impairment. Int J Mol Sci 2021; 22:5549. [PMID: 34074018 PMCID: PMC8197360 DOI: 10.3390/ijms22115549] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disorder. It is widely accepted that AD is mainly caused by the accumulation of extracellular amyloid β (Aβ) and intracellular neurofibrillary tau tangles. Aβ begins to accumulate years before the onset of cognitive impairment, suggesting that the benefit of currently available interventions would be greater if they were initiated in the early phases of AD. To understand the mechanisms of AD pathogenesis, various transgenic mouse models with an accelerated accumulation of Aβ and tau tangles have been developed. However, none of these models exhibit all pathologies present in human AD. To overcome these undesirable phenotypes, APP knock-in mice, which were presented with touchscreen-based tasks, were developed to better evaluate the efficacy of candidate therapeutics in mouse models of early-stage AD. This review assesses several AD mouse models from the aspect of biomarkers and cognitive impairment and discusses their potential as tools to provide novel AD therapeutic approaches.
Collapse
Affiliation(s)
- Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
46
|
Gavriel Y, Rabinovich-Nikitin I, Ezra A, Barbiro B, Solomon B. Subcutaneous Administration of AMD3100 into Mice Models of Alzheimer's Disease Ameliorated Cognitive Impairment, Reduced Neuroinflammation, and Improved Pathophysiological Markers. J Alzheimers Dis 2021; 78:653-671. [PMID: 33016905 DOI: 10.3233/jad-200506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), the prevalent dementia in the elderly, involves many related and interdependent pathologies that manifest simultaneously, leading to cognitive impairment and death. Amyloid-β (Aβ) accumulation in the brain triggers the onset of AD, accompanied by neuroinflammatory response and pathological changes. The CXCR4/CXCL12 (SDF1) axis is one of the major signal transduction cascades involved in the inflammation process and regulation of homing of hematopoietic stem cells (HSCs) within the bone marrow niche. Inhibition of the axis with AMD3100, a reversible antagonist of CXCR4 mobilizes endogenous HSCs from the bone marrow into the periphery, facilitating the recruitment of bone marrow-derived microglia-like cells into the brain, attenuates the neuroinflammation process that involves release of excitotoxic markers such as TNFα, intracellular Ca2 +, and glutamate and upregulates monocarboxylate transporter 1, the major L-lactate transporter in the brain. OBJECTIVE Herein, we investigate if administration of a combination of AMD3100 and L-lactate may have beneficial effects in the treatment of AD. METHODS We tested the feasibility of the combined treatment for short- and long-term efficacy for inducing endogenous stem cells' mobilization and attenuation of neuroinflammation in two distinct amyloid-β-induced AD mouse models. RESULTS The combined treatment did not demonstrate any adverse effects on the mice, and resulted in a significant improvement in cognitive/memory functions, attenuated neuroinflammation, and alleviated AD pathologies compared to each treatment alone. CONCLUSION This study showed AMD3100's beneficial effect in ameliorating AD pathogenesis, suggesting an alternative to the multistep procedures of transplantation of stem cells in the treatment of AD.
Collapse
Affiliation(s)
- Yuval Gavriel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inna Rabinovich-Nikitin
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Ezra
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Becki Barbiro
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Beka Solomon
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
47
|
Herr D, Jew K, Wong C, Kennell A, Gelein R, Chalupa D, Raab A, Oberdörster G, Olschowka J, O'Banion MK, Elder A. Effects of concentrated ambient ultrafine particulate matter on hallmarks of Alzheimer's disease in the 3xTgAD mouse model. Neurotoxicology 2021; 84:172-183. [PMID: 33794265 DOI: 10.1016/j.neuro.2021.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Exposure to air pollution has been identified as a possible environmental contributor to Alzheimer's Disease (AD) risk. As the number of people with AD worldwide continues to rise, it becomes vital to understand the nature of this potential gene-environment interaction. This study assessed the effects of short-term exposures to concentrated ambient ultrafine particulates (UFP, <100 nm) on measurements of amyloid-β, tau, and microglial morphology. METHODS Two cohorts of aged (12.5-14 months) 3xTgAD and NTg mice were exposed to concentrated ambient UFP or filtered air for 2 weeks (4-h/day, 4 days/week). Bronchoalveolar lavage fluid and brain tissue were collected twenty-four hours following the last exposure to evaluate lung inflammation, tau pathology, amyloid-β pathology, and glial cell morphology. RESULTS No exposure- or genotype-related changes were found with any of the measures of lung inflammation or in the hippocampal staining density of astrocyte marker glial fibrillary acidic protein. The microglia marker, ionized calcium binding adaptor molecule 1, and amyloid-β marker, 6E10, exhibited significant genotype by exposure interactions such that levels were lower in the UFP-exposed as compared to filtered air-exposed 3xTgAD mice. When microglia morphology was assessed by Sholl analysis, microglia from both NTg mouse groups were ramified. The 3xTgAD air-exposed mice had the most ameboid microglia, while the 3xTgAD UFP-exposed mice had microglia that were comparatively more ramified. The 3xTgAD air-exposed mice had more plaques per region of interest as measured by Congo red staining as well as more plaque-associated microglia than the 3xTgAD UFP-exposed mice. The number of non-plaque-associated microglia was not affected by genotype or exposure. Levels of soluble and insoluble human amyloid-β42 protein were measured in both 3xTgAD groups and no exposure effect was found. In contrast, UFP-exposure led to significant elevations in phosphorylated tau in 3xTgAD mice as compared to those that were exposed to air, as measured by pT205 staining. CONCLUSIONS Exposure to environmentally relevant levels of ultrafine particulates led to changes in tau phosphorylation and microglial morphology in the absence of overt lung inflammation. Such changes highlight the need to develop greater mechanistic understanding of the link between air pollution exposure and Alzheimer's disease.
Collapse
Affiliation(s)
- Denise Herr
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Katrina Jew
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Candace Wong
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Andrea Kennell
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Robert Gelein
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Alexandria Raab
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - John Olschowka
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA; Department of Neurology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
48
|
CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice. Inflammation 2021. [PMID: 33528726 DOI: 10.1007/s10753-021-01420-3.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Excessive microglial activation-mediated neuroinflammation is closely involved in the pathogenesis of several neurological diseases. CQMUH-011, as a novel adamantane sulfonamide compound, has been shown anti-inflammatory properties in activated macrophages (RAW264.7). However, the role of CQMUH-011 in microglial activation-induced neuroinflammation and neuroprotective properties has yet to be elucidated. In the present study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-stimulated primary microglia in vitro and transient middle cerebral artery occlusion (t-MCAO)-induced acute cerebral ischemia/reperfusion (I/R) injury in vivo. The results demonstrated that CQMUH-011 significantly suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β by LPS-stimulated primary microglia. In addition, CQMUH-011 inhibited the proliferation of activated microglia by arresting the cell cycle at the G1/S phase accompanied by downregulating the expression of cell cycle regulatory proteins such as proliferating cell nuclear antigen (PCNA) and cyclin D1. CQMUH-011 was seen to induce apoptosis in activated microglia by regulating the expression of Bax and Bcl-2. Furthermore, CQMUH-011 markedly attenuated the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) as well as the phosphorylation levels of nuclear factor-kappa (NF-κB) subunit p65, inhibitory kappa B-alpha (IκBα), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and p38 kinases. In vivo, CQMUH-011 administration significantly improved neurological function and infarct volume, and ameliorated the inflammatory cytokines and microglia amount around the injury site of mice. In conclusion, these results suggested that CQMUH-011 has a notable anti-inflammatory effect and protects mice from I/R injure. Thus, CQMUH-011 may be a candidate drug for the treatment of cerebral ischemia patients.
Collapse
|
49
|
Parvin P, Parichehreh Y, Mehdi N, Zahra H. Effects of artemisinin and TSP-1-human endometrial-derived stem cells on a streptozocin-induced model of Alzheimer’s disease and diabetes in Wistar rats. Acta Neurobiol Exp (Wars) 2021. [DOI: 10.21307/ane-2021-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Bachtiar EW, Putri CF, Soejoedono RD, Bachtiar BM. Expression of TNF, IL1B, and iNOS2 in the neural cell after induced by Porphyromonas gingivalis with and without coating antibody anti -Porphyromonas gingivalis. F1000Res 2020; 9:1499. [PMID: 34367622 PMCID: PMC8311800 DOI: 10.12688/f1000research.26749.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis has virulence factors such as gingipain and lipopolysaccharide, causing bacteremia to reach the brain and activate neuroinflammatory release cytokines. This study analyzed the effect of the co-culture of neuron cells with P. gingivalis coated with anti -P. gingivalis antibodies against cytokines produced by neuron cells. The gene expressions of the TNF, IL1B, iNOS2 in neurons was evaluated using RT-qPCR. The results showed that P. gingivalis coated with anti -P. gingivalis antibody before co-culture with neuron cells could decrease the gene expression of TNF, IL1B, and iNOS2 of neuron cells.
Collapse
Affiliation(s)
- Endang Winiati Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry Universitas Indonesia, Jakarta, DKI, 10430, Indonesia
| | - Citra F. Putri
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry Universitas Indonesia, Jakarta, DKI, 10430, Indonesia
| | - Retno D. Soejoedono
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Boy M. Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry Universitas Indonesia, Jakarta, DKI, 10430, Indonesia
| |
Collapse
|