1
|
Gao G, Liu SM, Hao FB, Wang QN, Wang XP, Wang MJ, Bao XY, Han C, Duan L. Factors Influencing Collateral Circulation Formation After Indirect Revascularization for Moyamoya Disease: a Narrative Review. Transl Stroke Res 2024; 15:1005-1014. [PMID: 37592190 DOI: 10.1007/s12975-023-01185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Indirect revascularization is one of the main techniques for the treatment of Moyamoya disease. The formation of good collateral circulation is a key measure to improve cerebral blood perfusion and reduce the risk of secondary stroke, and is the main method for evaluating the effect of indirect revascularization. Therefore, how to predict and promote the formation of collateral circulation before and after surgery is important for improving the success rate of indirect revascularization in Moyamoya disease. Previous studies have shown that vascular endothelial growth factor, endothelial progenitor cells, Caveolin-1, and other factors observed in patients with Moyamoya disease may play a key role in the generation of collateral vessels after indirect revascularization through endothelial hyperplasia and smooth muscle migration. In addition, mutations in the genetic factor RNF213 have also been associated with this process. This study summarizes the factors and mechanisms influencing collateral circulation formation after indirect revascularization in Moyamoya disease.
Collapse
Affiliation(s)
- Gan Gao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Si-Meng Liu
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Fang-Bin Hao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Qian-Nan Wang
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiao-Peng Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Min-Jie Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiang-Yang Bao
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Cong Han
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.
| |
Collapse
|
2
|
Asai C, Takamura N, Watanabe T, Asami M, Ikeda N, Reese CF, Hoffman S, Yamaguchi Y. A water-soluble caveolin-1 peptide inhibits psoriasis-like skin inflammation by suppressing cytokine production and angiogenesis. Sci Rep 2024; 14:20553. [PMID: 39232048 PMCID: PMC11375059 DOI: 10.1038/s41598-024-71350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
The plasma membrane protein caveolin-1 (CAV-1) regulates signaling by inhibiting a wide range of kinases and other enzymes. Our previous study demonstrated that the downregulation of CAV-1 in psoriatic epidermal cells contributes to inflammation by enhancing JAK/STAT signaling, cell proliferation, and chemokine production. Administration of the CAV-1 scaffolding domain (CSD) peptide suppressed imiquimod (IMQ)-induced psoriasis-like dermatitis. To identify an optimal therapeutic peptide derived from CAV-1, we have compared the efficacy of CSD and subregions of CSD that have been modified to make them water soluble. We refer to these modified peptides as sCSD, sA, sB, and sC. In IMQ-induced psoriasis-like dermatitis, while all four peptides showed major beneficial effects, sB caused the most significant improvements of skin phenotype and number of infiltrating cells, comparable or superior to the effects of sCSD. Phosphorylation of STAT3 was also inhibited by sB. Furthermore, sB suppressed angiogenesis both in vivo in the dermis of IMQ-induced psoriasis mice and in vitro by blocking the ability of conditioned media derived from CAV-1-silenced keratinocytes to inhibit tube formation by HUVEC. In conclusion, sB had similar or greater beneficial effects than sCSD not only by cytokine suppression but by angiogenesis inhibition adding to its ability to target psoriatic inflammation.
Collapse
Affiliation(s)
- Chika Asai
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Naoko Takamura
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Tomoya Watanabe
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Miho Asami
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Noriko Ikeda
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Charles F Reese
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Stanley Hoffman
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
3
|
An Z, Tian J, Zhao X, Liu L, Yang X, Zhang M, Zhang L, Song X. Regulation of cardiovascular and cardiac functions by caveolins. FEBS J 2024; 291:3753-3761. [PMID: 37060249 DOI: 10.1111/febs.16798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023]
Abstract
Caveolae are intracellular vesicles with diameters ranging from 50 to 100 nm. The role of caveolins in mediating oxidative stress, autophagy, apoptosis, fibrosis, and vascular remodeling has attracted increasing attention in cardiovascular therapy. Several studies have suggested that caveolin could be a therapeutic target for the treatment of cardiac and/or vascular injury via several pathophysiological mechanisms. Despite substantial advances in our understanding of the basic biology of vesicles over the past decade, the relevance and specific role of these mechanisms in cardiovascular homeostasis remains ambiguous. Here, we review the macroscopic role of caveolins in protecting cardiac function and, at the microscopic level, examine possible cardioprotective caveolar mechanisms, including their antioxidative stress, antiapoptosis, autophagy-regulatory, antifibrosis, and angiogenesis-promoting properties. We believe that the role of caveolins in cardiac functioning has not been fully elucidated and is an important line of future research with several cardioprotective implications.
Collapse
Affiliation(s)
- Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingduo Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lijun Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Islam M, Behura SK. Molecular Regulation of Fetal Brain Development in Inbred and Congenic Mouse Strains Differing in Longevity. Genes (Basel) 2024; 15:604. [PMID: 38790233 PMCID: PMC11121069 DOI: 10.3390/genes15050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J mice (long-lived) in comparison to B6.Cg-Cav1tm1Mls/J (congenic, short-lived) and AKR/J (inbred, short-lived) mice on day(d) 12, 15, and 17 of gestation. The analysis showed a contrasting gene expression pattern during fetal brain development in these mice. Genes related to brain development, aging, and the regulation of alternative splicing were significantly differentially regulated in the fetal brain of the short-lived compared to long-lived mice during development from d15 and d17. A significantly reduced number of splice variants was observed on d15 compared to d12 or d17 in a strain-dependent manner. An epigenetic clock analysis of d15 fetal brain identified DNA methylations that were significantly associated with single-nucleotide polymorphic sites between AKR/J and C57BL/6J strains. These methylations were associated with genes that show epigenetic changes in an age-correlated manner in mice. Together, the finding of this study suggest that fetal brain development and longevity are epigenetically linked, supporting the emerging concept of the early-life origin of longevity.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Islam M, Behura SK. Single-Cell Transcriptional Response of the Placenta to the Ablation of Caveolin-1: Insights into the Adaptive Regulation of Brain-Placental Axis in Mice. Cells 2024; 13:215. [PMID: 38334607 PMCID: PMC10854826 DOI: 10.3390/cells13030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Caveolin-1 (Cav1) is a major plasma membrane protein that plays important functions in cellular metabolism, proliferation, and senescence. Mice lacking Cav1 show abnormal gene expression in the fetal brain. Though evidence for placental influence on brain development is emerging, whether the ablation of Cav1 affects the regulation of the brain-placental axis remains unexamined. The current study tests the hypothesis that gene expression changes in specific cells of the placenta and the fetal brain are linked to the deregulation of the brain-placental axis in Cav1-null mice. By performing single-nuclei RNA sequencing (snRNA-seq) analyses, we show that the abundance of the extravillious trophoblast (EVT) and stromal cells, but not the cytotrophoblast (CTB) or syncytiotrophoblast (STB), are significantly impacted due to Cav1 ablation in mice. Interestingly, specific genes related to brain development and neurogenesis were significantly differentially expressed in trophoblast cells due to Cav1 deletion. Comparison of single-cell gene expression between the placenta and the fetal brain further showed that specific genes such as plexin A1 (Plxna1), phosphatase and actin regulator 1 (Phactr1) and amyloid precursor-like protein 2 (Aplp2) were differentially expressed between the EVT and STB cells of the placenta, and also, between the radial glia and ependymal cells of the fetal brain. Bulk RNA-seq analysis of the whole placenta and the fetal brain further identified genes differentially expressed in a similar manner between the placenta and the fetal brain due to the absence of Cav1. The deconvolution of reference cell types from the bulk RNA-seq data further showed that the loss of Cav1 impacted the abundance of EVT cells relative to the stromal cells in the placenta, and that of the glia cells relative to the neuronal cells in the fetal brain. Together, the results of this study suggest that the ablation of Cav1 causes deregulated gene expression in specific cell types of the placenta and the fetal brain in mice.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Wang Y, Halawa M, Chatterjee A, Eshwaran R, Qiu Y, Wibowo YC, Pan J, Wieland T, Feng Y. Sufficient Cav-1 levels in the endothelium are critical for the maintenance of the neurovascular unit in the retina. Mol Med 2023; 29:152. [PMID: 37923999 PMCID: PMC10623831 DOI: 10.1186/s10020-023-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Caveolin-1 (Cav-1) is a pivotal protein in the plasma membrane. Studies on homozygous Cav-1 deficient mice revealed that Cav-1 is essential for endothelial function and angiogenesis in the retina. However, whether a reduction in Cav-1 content hampers the neurovascular unit (NVU) in the retina is unclear. Thus, this study examines the NVU in the retinas of heterozygous Cav-1 deficient (Cav-1+/-) mice and analyzes possible underlying mechanisms. METHODS The vascular, glial and neuronal components in the retina were evaluated using retinal morphometry, whole mount retinal immunofluorescence staining, histological analysis and optical coherence tomography. In addition, immunoblotting and immunofluorescence staining, subcellular fractionation, biotin labeling of cell surface proteins, and proximity ligation assay were employed to detect expression and localization of proteins in the retina or endothelial cells (ECs) upon knockdown of Cav-1 with Cav-1 siRNA. RESULTS Cav-1+/- retinas showed a significant reduction in pericyte coverage along with an increase in acellular capillaries compared to controls at 8 months of age, but not at 1 month. A significant loss and obvious morphological abnormalities of smooth muscle cells were observed in 8-month-old Cav-1+/- retinal arterioles. Macroglial and microglial cells were activated in the Cav-1+/- retinas. A transient significant delay in retinal angiogenesis was detected in Cav-1+/- retinas at p5, which was however no longer detectable at p10. The Cav-1+/- retinas displayed increased vascular permeability and a notable reduction in VEGFR2 content at 8 months. In vitro, siRNA-mediated knockdown experiments in ECs revealed that the loss of Cav-1 in ECs resulted in decreased levels of VEGFR2, VE-Cadherin and their interaction at the plasma membrane as well. CONCLUSION Our results indicate that a sufficient Cav-1 level over 50% of its normal abundance is vital for the proper localization of VEGFR2 and VE-cadherin, likely in a complex, at the plasma membrane, which is essential for the maintenance of normal NVU in the retina.
Collapse
Affiliation(s)
- Yixin Wang
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Mahmoud Halawa
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Anupriya Chatterjee
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Rachana Eshwaran
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Yi Qiu
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Yohanes Cakrapradipta Wibowo
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Jianyuan Pan
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
7
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
8
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Luo Y, Cao Z, Wu S, Sun X. Ring Finger Protein 213 in Moyamoya Disease With Pulmonary Arterial Hypertension: A Mini-Review. Front Neurol 2022; 13:843927. [PMID: 35401401 PMCID: PMC8987108 DOI: 10.3389/fneur.2022.843927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 11/28/2022] Open
Abstract
Moyamoya disease (MMD), most often diagnosed in children and adolescents, is a chronic cerebrovascular disease characterized by progressive stenosis at the terminal portion of the internal carotid artery and an abnormal vascular network at the base of the brain. Recently, many investigators show a great interest in MMD with pulmonary arterial hypertension (PAH). Ring finger protein 213 (RNF213) is a major susceptibility gene for MMD and also has strong correlations with PAH. Therefore, this review encapsulates current cases of MMD with PAH and discusses MMD with PAH in the aspects of epidemiology, pathology, possible pathogenesis, clinical manifestations, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yuting Luo
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhixin Cao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoqing Wu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shaoqing Wu
| | - Xunsha Sun
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xunsha Sun
| |
Collapse
|
10
|
Baranwal G, Creed HA, Cromer WE, Wang W, Upchurch BD, Smithhart MC, Vadlamani SS, Clark MC, Busbuso NC, Blais SN, Reyna AJ, Dongaonkar RM, Zawieja DC, Rutkowski JM. Dichotomous effects on lymphatic transport with loss of caveolae in mice. Acta Physiol (Oxf) 2021; 232:e13656. [PMID: 33793057 DOI: 10.1111/apha.13656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
AIM Fluid and macromolecule transport from the interstitium into and through lymphatic vessels is necessary for tissue homeostasis. While lymphatic capillary structure suggests that passive, paracellular transport would be the predominant route of macromolecule entry, active caveolae-mediated transcellular transport has been identified in lymphatic endothelial cells (LECs) in vitro. Caveolae also mediate a wide array of endothelial cell processes, including nitric oxide regulation. Thus, how does the lack of caveolae impact "lymphatic function"? METHODS Various aspects of lymphatic transport were measured in mice constitutively lacking caveolin-1 ("CavKO"), the protein required for caveolae formation in endothelial cells, and in mice with a LEC-specific Cav1 gene deletion (Lyve1-Cre x Cav1flox/flox ; "LyCav") and ex vivo in their vessels and cells. RESULTS In each model, lymphatic architecture was largely unchanged. The lymphatic conductance, or initial tissue uptake, was significantly higher in both CavKO mice and LyCav mice by quantitative microlymphangiography and the permeability to 70 kDa dextran was significantly increased in monolayers of LECs isolated from CavKO mice. Conversely, transport within the lymphatic system to the sentinel node was significantly reduced in anaesthetized CavKO and LyCav mice. Isolated, cannulated collecting vessel studies identified significantly reduced phasic contractility when lymphatic endothelium lacks caveolae. Inhibition of nitric oxide synthase was able to partially restore ex vivo vessel contractility. CONCLUSION Macromolecule transport across lymphatics is increased with loss of caveolae, yet phasic contractility reduced, resulting in reduced overall lymphatic transport function. These studies identify lymphatic caveolar biology as a key regulator of active lymphatic transport functions.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Heidi A. Creed
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Walter E. Cromer
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Wei Wang
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Bradley D. Upchurch
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Matt C. Smithhart
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Suman S. Vadlamani
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Mary‐Catherine C. Clark
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | | | - Stephanie N. Blais
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Andrea J. Reyna
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Ranjeet M. Dongaonkar
- Department of Veterinary Physiology & Pharmacology Texas A&M University College of Veterinary Medicine & Biomedical Sciences College Station TX USA
| | - David C. Zawieja
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| | - Joseph M. Rutkowski
- Division of Lymphatic Biology Department of Medical Physiology Texas A&M University College of Medicine Bryan TX USA
| |
Collapse
|
11
|
Caveolin-1, a novel player in cognitive decline. Neurosci Biobehav Rev 2021; 129:95-106. [PMID: 34237390 DOI: 10.1016/j.neubiorev.2021.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Cognitive decline (CD), which related to vascular dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and diabetes mellitus, is a growing health concern that has a great impact on the patients' quality of life. Although extensive efforts, the mechanisms of CD are still far from being clarified, not to mention the effective treatment and prevention strategies. Caveolin-1 (Cav-1), a trans-membrane protein, is a major component of the caveolae structure and scaffolding proteins. Recently, ample evidence depicts a strong correlation between Cav-1 and CD, however, the specific role of Cav-1 in CD has not been clearly examined and how they might be connected have yet to be identified. This review seeks to provide a comprehensive overview about how Cav-1 modulates pathogeneses of CD-associated diseases. In summary, Cav-1 can promote structural and functional plasticity of neurons, improve neurogenesis, relieve mitochondrial dysfunction, inhibit inflammation and suppress oxidative stress, which have shed light on the idea that Cav-1 may be an efficacious therapeutic target to treat CD.
Collapse
|
12
|
Neuropilin 1 Regulation of Vascular Permeability Signaling. Biomolecules 2021; 11:biom11050666. [PMID: 33947161 PMCID: PMC8146136 DOI: 10.3390/biom11050666] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium acts as a selective barrier to regulate macromolecule exchange between the blood and tissues. However, the integrity of the endothelium barrier is compromised in an array of pathological settings, including ischemic disease and cancer, which are the leading causes of death worldwide. The resulting vascular hyperpermeability to plasma molecules as well as leukocytes then leads to tissue damaging edema formation and inflammation. The vascular endothelial growth factor A (VEGFA) is a potent permeability factor, and therefore a desirable target for impeding vascular hyperpermeability. However, VEGFA also promotes angiogenesis, the growth of new blood vessels, which is required for reperfusion of ischemic tissues. Moreover, edema increases interstitial pressure in poorly perfused tumors, thereby affecting the delivery of therapeutics, which could be counteracted by stimulating the growth of new functional blood vessels. Thus, targets must be identified to accurately modulate the barrier function of blood vessels without affecting angiogenesis, as well as to develop more effective pro- or anti-angiogenic therapies. Recent studies have shown that the VEGFA co-receptor neuropilin 1 (NRP1) could be playing a fundamental role in steering VEGFA-induced responses of vascular endothelial cells towards angiogenesis or vascular permeability. Moreover, NRP1 is involved in mediating permeability signals induced by ligands other than VEGFA. This review therefore focuses on current knowledge on the role of NRP1 in the regulation of vascular permeability signaling in the endothelium to provide an up-to-date landscape of the current knowledge in this field.
Collapse
|
13
|
Abstract
Since the initial reports implicating caveolin-1 (CAV1) in neoplasia, the scientific community has made tremendous strides towards understanding how CAV1-dependent signaling and caveolae assembly modulate solid tumor growth. Once a solid neoplastic tumor reaches a certain size, it will increasingly rely on its stroma to meet the metabolic demands of the rapidly proliferating cancer cells, a limitation typically but not exclusively addressed via the formation of new blood vessels. Landmark studies using xenograft tumor models have highlighted the importance of stromal CAV1 during neoplastic blood vessel growth from preexisting vasculature, a process called angiogenesis, and helped identify endothelium-specific signaling events regulated by CAV1, such as vascular endothelial growth factor (VEGF) receptors as well as the endothelial nitric oxide (NO) synthase (eNOS) systems. This chapter provides a glimpse into the signaling events modulated by CAV1 and its scaffolding domain (CSD) during endothelial-specific aspects of neoplastic growth, such as vascular permeability, angiogenesis, and mechanotransduction.
Collapse
Affiliation(s)
- Pascal Bernatchez
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia (UBC), 2176 Health Sciences mall, room 217, Vancouver, BC, V6T 1Z3, Canada. .,Centre for Heart & Lung Innovation, St. Paul's Hospital, Vancouver, Canada.
| |
Collapse
|
14
|
Affiliation(s)
- Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
15
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
16
|
Wang S, Head BP. Caveolin-1 in Stroke Neuropathology and Neuroprotection: A Novel Molecular Therapeutic Target for Ischemic-Related Injury. Curr Vasc Pharmacol 2020; 17:41-49. [PMID: 29412114 DOI: 10.2174/1570161116666180206112215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/18/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease and associated cerebral stroke are a global epidemic attributed to genetic and epigenetic factors, such as diet, life style and an increasingly sedentary existence due to technological advances in both the developing and developed world. There are approximately 5.9 million stroke-related deaths worldwide annually. Current epidemiological data indicate that nearly 16.9 million people worldwide suffer a new or recurrent stroke yearly. In 2014 alone, 2.4% of adults in the United States (US) were estimated to experience stroke, which is the leading cause of adult disability and the fifth leading cause of death in the US There are 2 main types of stroke: Hemorrhagic (HS) and ischemic stroke (IS), with IS occurring more frequently. HS is caused by intra-cerebral hemorrhage mainly due to high blood pressure, while IS is caused by either embolic or thrombotic stroke. Both result in motor impairments, numbness or abnormal sensations, cognitive deficits, and mood disorders (e.g. depression). This review focuses on the 1) pathophysiology of stroke (neuronal cell loss, defective blood brain barrier, microglia activation, and inflammation), 2) the role of the membrane protein caveolin- 1 (Cav-1) in normal brain physiology and stroke-induced changes, and, 3) we briefly discussed the potential therapeutic role of Cav-1 in recovery following stroke.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
17
|
Moyamoya Disease and Spectrums of RNF213 Vasculopathy. Transl Stroke Res 2019; 11:580-589. [DOI: 10.1007/s12975-019-00743-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
|
18
|
Choi EH, Lee H, Chung JW, Seo WK, Kim GM, Ki CS, Kim YC, Bang OY. Ring Finger Protein 213 Variant and Plaque Characteristics, Vascular Remodeling, and Hemodynamics in Patients With Intracranial Atherosclerotic Stroke: A High-Resolution Magnetic Resonance Imaging and Hemodynamic Study. J Am Heart Assoc 2019; 8:e011996. [PMID: 31590595 PMCID: PMC6818025 DOI: 10.1161/jaha.119.011996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Intracranial atherosclerotic stroke is prevalent in Asians. We hypothesized that patients with the ring finger protein 213 (RNF213) variant, a susceptibility locus for moyamoya disease in Asians, have different neuroimaging characteristics in terms of the vessel wall and hemodynamics. Methods and Results We analyzed consecutive patients with ischemic events in middle cerebral artery distribution and relevant plaques of the distal internal carotid artery or proximal middle cerebral artery on high‐resolution magnetic resonance imaging. Patients with carotid/cardiac sources of embolism or moyamoya disease were excluded. High‐resolution magnetic resonance imaging features (eg, outer vessel diameters and plaque characteristics) and fractional flow (as measured by adjusted signal intensity ratio on time‐of‐flight magnetic resonance angiography) were compared between RNF213 p.Arg4810Lys variant carriers and noncarriers. Among 144 patients included, 44 (29.9%) had the RNF213 variant. Clinical characteristics, including age, sex, body mass index, and vascular risk factors, were not significantly different between RNF213 variant carriers and noncarriers. However, the outer vessel diameter was smaller in RNF213 variant carriers than in noncarriers (P<0.0001 for middle cerebral artery of relevant stenosis [2.05‐mm analysis of RNF213 gene for moyamoya disease in the Chinese HAN population 2.75 mm]; P<0.0001 for contralateral side [2.42 versus 3.00 mm] and P<0.001 for basilar artery [3.19 versus 3.53 mm]). Other high‐resolution magnetic resonance imaging features, including plaque morphology and eccentricity, were not significantly different. Fractional flow was diminished in patients with smaller‐diameter intracranial arteries with a similar degree of stenosis. Conclusions The RNF213 variant may be associated with vasculogenesis, but not with atherogenesis. Patients with this variant had small intracranial arteries predisposing hemodynamic compromise in the presence of intracranial atherosclerosis. In addition to antiatherosclerotic strategies, further studies are warranted to develop novel therapeutic strategies against RNF213 vasculopathy in Asians. See Editorial Liu and Gutierrez
Collapse
Affiliation(s)
- Eun-Hyeok Choi
- Department of Neurology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Hanul Lee
- Department of Neurology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Jong-Won Chung
- Department of Neurology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea.,Translational and Stem Cell Research Laboratory on Stroke Samsung Medical Center Seoul Korea
| | - Woo-Keun Seo
- Department of Neurology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Gyeong-Moon Kim
- Department of Neurology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics Green Cross Genome Youngin Korea
| | - Yoon-Chul Kim
- Clinical Research Institute Samsung Medical Center Seoul Korea
| | - Oh Young Bang
- Department of Neurology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea.,Translational and Stem Cell Research Laboratory on Stroke Samsung Medical Center Seoul Korea
| |
Collapse
|
19
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
20
|
Chung JW, Kim DH, Oh MJ, Cho YH, Kim EH, Moon GJ, Ki CS, Cha J, Kim KH, Jeon P, Yeon JY, Kim GM, Kim JS, Hong SC, Bang OY. Cav-1 (Caveolin-1) and Arterial Remodeling in Adult Moyamoya Disease. Stroke 2019; 49:2597-2604. [PMID: 30355208 DOI: 10.1161/strokeaha.118.021888] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Moyamoya disease (MMD) is a unique cerebrovascular occlusive disease characterized by progressive stenosis and negative remodeling of the distal internal carotid artery (ICA). We hypothesized that cav-1 (caveolin-1)-a protein that controls the regulation of endothelial vesicular trafficking and signal transduction-is associated with negative remodeling in MMD. Methods- We prospectively recruited 77 consecutive patients with MMD diagnosed via conventional angiography. Seventeen patients with intracranial atherosclerotic stroke and no RNF213 mutation served as controls. The outer distal ICA diameters were examined using high-resolution magnetic resonance imaging. We evaluated whether the degree of negative remodeling in the patients with MMD was associated with RNF213 polymorphism, cav-1 levels, or various clinical and vascular risk factors. We also investigated whether the derived factor was associated with negative remodeling at the cellular level using the tube formation and apoptosis assays. Results- The serum cav-1 level was lower in the patients with MMD than in the controls (0.47±0.29 versus 0.86±0.68 ng/mL; P=0.034). The mean ICA diameter was 2.48±0.98 mm for the 126 affected distal ICAs in patients with MMD and 3.84±0.42 mm for the asymptomatic ICAs in the controls ( P<0.001). After adjusting for confounders, cav-1 levels (coefficient, 1.018; P<0.001) were independently associated with the distal ICA diameter in patients with MMD. In vitro analysis showed that cav-1 downregulation suppressed angiogenesis in the endothelial cells and induced apoptosis in the smooth muscle cells. Conclusions- Our findings suggest that cav-1 may play a major role in negative arterial remodeling in MMD.
Collapse
Affiliation(s)
- Jong-Won Chung
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology (J.-W.C., G.-M.K., O.Y.B.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Hee Kim
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea (D.H.K., O.Y.B.)
| | - Mi Jeong Oh
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea
| | - Yeon Hee Cho
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea
| | - Eun Hee Kim
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea
| | - Gyeong Joon Moon
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea (G.J.M.)
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics (C.-S.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihoon Cha
- Department of Radiology, Yonsei University Medical Center, Yonsei University College of Medicine, Seoul, Republic of Korea (J.C.)
| | - Keon Ha Kim
- Department of Radiology (K.H.K., P.J.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Pyoung Jeon
- Department of Radiology (K.H.K., P.J.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Je Young Yeon
- Department of Neurosurgery (J.Y.Y., J.-S.K., S.C.H.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gyeong-Moon Kim
- Department of Neurology (J.-W.C., G.-M.K., O.Y.B.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Soo Kim
- Department of Neurosurgery (J.Y.Y., J.-S.K., S.C.H.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Chyul Hong
- Department of Neurosurgery (J.Y.Y., J.-S.K., S.C.H.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Oh Young Bang
- From the Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., D.H.K., M.J.O.,Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Institute (M.J.O., Y.H.C., E.H.K., O.Y.B.), Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology (J.-W.C., G.-M.K., O.Y.B.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea (D.H.K., O.Y.B.)
| |
Collapse
|
21
|
Eser Ocak P, Ocak U, Tang J, Zhang JH. The role of caveolin-1 in tumors of the brain - functional and clinical implications. Cell Oncol (Dordr) 2019; 42:423-447. [PMID: 30993541 DOI: 10.1007/s13402-019-00447-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Caveolin-1 (cav-1) is the major structural protein of caveolae, the flask-shaped invaginations of the plasma membrane mainly involved in cell signaling. Today, cav-1 is believed to play a role in a variety of disease processes including cancer, owing to the variations of its expression in association with tumor progression, invasive behavior, metastasis and therapy resistance. Since first detected in the brain, a number of studies has particularly focused on the role of cav-1 in the various steps of brain tumorigenesis. In this review, we discuss the different roles of cav-1 and its contributions to the molecular mechanisms underlying the pathobiology and natural behavior of brain tumors including glial, non-glial and metastatic subtypes. These contributions could be attributed to its co-localization with important players in tumorigenesis within the lipid-enriched domains of the plasma membrane. In that regard, the ability of cav-1 to interact with various cell signaling molecules as well as the impact of caveolae depletion on important pathways acting in brain tumor pathogenesis are noteworthy. We also discuss conversant causes hampering the treatment of malignant glial tumors such as limited transport of chemotherapeutics across the blood tumor barrier and resistance to chemoradiotherapy, by focusing on the molecular fundamentals involving cav-1 participation. CONCLUSIONS Cav-1 has the potential to pivot the molecular basis underlying the pathobiology of brain tumors, particularly the malignant glial subtype. In addition, the regulatory effect of cav-1-dependent and caveola-mediated transcellular transport on the permeability of the blood tumor barrier could be of benefit to overcome the restricted transport across brain barriers when applying chemotherapeutics. The association of cav-1 with tumors of the brain other than malignant gliomas deserves to be underlined, as well given the evidence suggesting its potential in predicting tumor grade and recurrence rates together with determining patient prognosis in oligodendrogliomas, ependymomas, meningiomas, vestibular schwannomas and brain metastases.
Collapse
Affiliation(s)
- Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
22
|
Caveolin1 Is Required for Th1 Cell Infiltration, but Not Tight Junction Remodeling, at the Blood-Brain Barrier in Autoimmune Neuroinflammation. Cell Rep 2018; 21:2104-2117. [PMID: 29166603 DOI: 10.1016/j.celrep.2017.10.094] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/16/2017] [Accepted: 10/25/2017] [Indexed: 01/24/2023] Open
Abstract
Lymphocytes cross vascular boundaries via either disrupted tight junctions (TJs) or caveolae to induce tissue inflammation. In the CNS, Th17 lymphocytes cross the blood-brain barrier (BBB) before Th1 cells; yet this differential crossing is poorly understood. We have used intravital two-photon imaging of the spinal cord in wild-type and caveolae-deficient mice with fluorescently labeled endothelial tight junctions to determine how tight junction remodeling and caveolae regulate CNS entry of lymphocytes during the experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis. We find that dynamic tight junction remodeling occurs early in EAE but does not depend upon caveolar transport. Moreover, Th1, but not Th17, lymphocytes are significantly reduced in the inflamed CNS of mice lacking caveolae. Therefore, tight junction remodeling facilitates Th17 migration across the BBB, whereas caveolae promote Th1 entry into the CNS. Moreover, therapies that target both tight junction degradation and caveolar transcytosis may limit lymphocyte infiltration during inflammation.
Collapse
|
23
|
Santos AL, Preta G. Lipids in the cell: organisation regulates function. Cell Mol Life Sci 2018; 75:1909-1927. [PMID: 29427074 PMCID: PMC11105414 DOI: 10.1007/s00018-018-2765-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022]
Abstract
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.
Collapse
Affiliation(s)
- Ana L Santos
- Institut National de la Santé et de la Recherche Médicale, U1001 and Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Giulio Preta
- Institute of Biochemistry, Vilnius University, Sauletekio 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
24
|
Computational Approach to Investigating Key GO Terms and KEGG Pathways Associated with CNV. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8406857. [PMID: 29850576 PMCID: PMC5925134 DOI: 10.1155/2018/8406857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 12/25/2022]
Abstract
Choroidal neovascularization (CNV) is a severe eye disease that leads to blindness, especially in the elderly population. Various endogenous and exogenous regulatory factors promote its pathogenesis. However, the detailed molecular biological mechanisms of CNV have not been fully revealed. In this study, by using advanced computational tools, a number of key gene ontology (GO) terms and KEGG pathways were selected for CNV. A total of 29 validated genes associated with CNV and 17,639 nonvalidated genes were encoded based on the features derived from the GO terms and KEGG pathways by using the enrichment theory. The widely accepted feature selection method-maximum relevance and minimum redundancy (mRMR)-was applied to analyze and rank the features. An extensive literature review for the top 45 ranking features was conducted to confirm their close associations with CNV. Identifying the molecular biological mechanisms of CNV as described by the GO terms and KEGG pathways may contribute to improving the understanding of the pathogenesis of CNV.
Collapse
|
25
|
Garg J, Feng YX, Jansen SR, Friedrich J, Lezoualc'h F, Schmidt M, Wieland T. Catecholamines facilitate VEGF-dependent angiogenesis via β2-adrenoceptor-induced Epac1 and PKA activation. Oncotarget 2018; 8:44732-44748. [PMID: 28512254 PMCID: PMC5546514 DOI: 10.18632/oncotarget.17267] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 01/16/2023] Open
Abstract
Chronic stress has been associated with the progression of cancer and antagonists for β-adrenoceptors (βAR) are regarded as therapeutic option. As they are also used to treat hemangiomas as well as retinopathy of prematurity, a role of endothelial β2AR in angiogenesis can be envisioned. We therefore investigated the role of β2AR-induced cAMP formation by analyzing the role of the cAMP effector molecules exchange factor directly activated by cAMP 1 (Epac1) and protein kinase A (PKA) in endothelial cells (EC). Epac1-deficient mice showed a reduced amount of pre-retinal neovascularizations in the model of oxygen-induced retinopathy, which is predominantly driven by vascular endothelial growth factor (VEGF). siRNA-mediated knockdown of Epac1 in human umbilical vein EC (HUVEC) decreased angiogenic sprouting by lowering the expression of the endothelial VEGF-receptor-2 (VEGFR-2). Conversely, Epac1 activation by β2AR stimulation or the Epac-selective activator cAMP analog 8-p-CPT-2’-O-Me-cAMP (8-pCPT) increased VEGFR-2 levels and VEGF-dependent sprouting. Similar to Epac1 knockdown, depletion of the monomeric GTPase Rac1 decreased VEGFR-2 expression. As Epac1 stimulation induces Rac1 activation, Epac1 might regulate VEGFR-2 expression through Rac1. In addition, we found that PKA was also involved in the regulation of angiogenesis in EC since the adenylyl cyclase (AC) activator forskolin (Fsk), but not 8-pCPT, increased sprouting in Epac1-depleted HUVEC and this increase was sensitive to a selective synthetic peptide PKA inhibitor. In accordance, β2AR- and AC-activation, but not Epac1 stimulation increased VEGF secretion in HUVEC. Our data indicate that high levels of catecholamines, which occur during chronic stress, prime the endothelium for angiogenesis through a β2AR-mediated increase in endothelial VEGFR-2 expression and VEGF secretion.
Collapse
Affiliation(s)
- Jaspal Garg
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yu-Xi Feng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sepp R Jansen
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julian Friedrich
- 5th Medical Clinic, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Lezoualc'h
- Institute of Cardiovascular and Metabolic Diseases, Inserm UMR-1048, Université Toulouse -Paul Sabatier, Toulouse, France
| | - Martina Schmidt
- Department of Molecular Pharmacology, Center of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
26
|
Codrici E, Albulescu L, Popescu ID, Mihai S, Enciu AM, Albulescu R, Tanase C, Hinescu ME. Caveolin-1-Knockout Mouse as a Model of Inflammatory Diseases. J Immunol Res 2018; 2018:2498576. [PMID: 30246033 PMCID: PMC6136523 DOI: 10.1155/2018/2498576] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (CAV1) is the scaffold protein of caveolae, which are minute invaginations of the cell membrane that are involved in endocytosis, cell signaling, and endothelial-mediated inflammation. CAV1 has also been reported to have a dual role as either a tumor suppressor or tumor promoter, depending on the type of cancer. Inflammation is an important player in tumor progression, but the role of caveolin-1 in generating an inflammatory milieu remains poorly characterized. We used a caveolin-1-knockout (CAV1-/-) mouse model to assess the inflammatory status via the quantification of the pro- and anti-inflammatory cytokine levels, as well as the ability of circulating lymphocytes to respond to nonspecific stimuli by producing cytokines. Here, we report that the CAV1-/- mice were characterized by a low-grade systemic proinflammatory status, with a moderate increase in the IL-6, TNF-α, and IL-12p70 levels. CAV1-/- circulating lymphocytes were more prone to cytokine production upon nonspecific stimulation than the wild-type lymphocytes. These results show that CAV1 involvement in cell homeostasis is more complex than previously revealed, as it plays a role in the inflammatory process. These findings indicate that the CAV1-/- mouse model could prove to be a useful tool for inflammation-related studies.
Collapse
Affiliation(s)
- Elena Codrici
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Lucian Albulescu
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | | | - Simona Mihai
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Ana-Maria Enciu
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- 2Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Radu Albulescu
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- 3National Institute for Chemical Pharmaceutical R&D, Bucharest, Romania
| | - Cristiana Tanase
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- 4Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihail E. Hinescu
- 1Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- 2Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| |
Collapse
|
27
|
Liakouli V, Elies J, El-Sherbiny YM, Scarcia M, Grant G, Abignano G, Derrett-Smith EC, Esteves F, Cipriani P, Emery P, Denton CP, Giacomelli R, Mavria G, Del Galdo F. Scleroderma fibroblasts suppress angiogenesis via TGF-β/caveolin-1 dependent secretion of pigment epithelium-derived factor. Ann Rheum Dis 2017; 77:431-440. [PMID: 29259049 PMCID: PMC5867407 DOI: 10.1136/annrheumdis-2017-212120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/30/2022]
Abstract
Objectives Systemic sclerosis (SSc) is characterised by tissue fibrosis and vasculopathy with defective angiogenesis. Transforming growth factor beta (TGF-β) plays a major role in tissue fibrosis, including downregulation of caveolin-1 (Cav-1); however, its role in defective angiogenesis is less clear. Pigment epithelium-derived factor (PEDF), a major antiangiogenic factor, is abundantly secreted by SSc fibroblasts. Here, we investigated the effect of TGF-β and Cav-1 on PEDF expression and the role of PEDF in the ability of SSc fibroblasts to modulate angiogenesis. Methods PEDF and Cav-1 expression in fibroblasts and endothelial cells were evaluated by means of immunohistochemistry on human and mouse skin biopsies. PEDF and Cav-1 were silenced in cultured SSc and control fibroblasts using lentiviral short-hairpin RNAs. Organotypic fibroblast–endothelial cell co-cultures and matrigel assays were employed to assess angiogenesis. Results PEDF is highly expressed in myofibroblasts and reticular fibroblasts with low Cav-1 expression in SSc skin biopsies, and it is induced by TGF-β in vitro. SSc fibroblasts suppress angiogenesis in an organotypic model. This model is reproduced by silencing Cav-1 in normal dermal fibroblasts. Conversely, silencing PEDF in SSc fibroblasts rescues their antiangiogenic phenotype. Consistently, transgenic mice with TGF-β receptor hyperactivation show lower Cav-1 and higher PEDF expression levels in skin biopsies accompanied by reduced blood vessel density. Conclusions Our data reveal a new pathway by which TGF-β suppresses angiogenesis in SSc, through decreased fibroblast Cav-1 expression and subsequent PEDF secretion. This pathway may present a promising target for new therapeutic interventions in SSc.
Collapse
Affiliation(s)
- Vasiliki Liakouli
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila, Italy
| | - Jacobo Elies
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Yasser Mohamed El-Sherbiny
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds Teaching Hospital NHS Trust, Leeds, UK
| | - Margherita Scarcia
- Signal Transduction and Tumour Microenvironment Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Gary Grant
- Signal Transduction and Tumour Microenvironment Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Giuseppina Abignano
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Rheumatology Department of Lucania, Rheumatology Institute of Lucania (IReL), San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy.,Rheumatology Institute of Lucania (IReL), San Carlo Hospital of Potenza, Potenza, Italy
| | - Emma C Derrett-Smith
- Centre for Rheumatology and Connective Tissue, UCL Medical School Royal Free Campus, London, UK
| | - Filomena Esteves
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila, Italy
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds Teaching Hospital NHS Trust, Leeds, UK
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue, UCL Medical School Royal Free Campus, London, UK
| | - Roberto Giacomelli
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila, Italy
| | - Georgia Mavria
- Signal Transduction and Tumour Microenvironment Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds Teaching Hospital NHS Trust, Leeds, UK
| |
Collapse
|
28
|
Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci U S A 2017; 114:10737-10742. [PMID: 28923916 DOI: 10.1073/pnas.1706394114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ocular neovascularization is a devastating pathology of numerous ocular diseases and is a major cause of blindness. Caveolin-1 (Cav-1) plays important roles in the vascular system. However, little is known regarding its function and mechanisms in ocular neovascularization. Here, using comprehensive model systems and a cell permeable peptide of Cav-1, cavtratin, we show that Cav-1 is a critical player in ocular neovascularization. The genetic deletion of Cav-1 exacerbated and cavtratin administration inhibited choroidal and retinal neovascularization. Importantly, combined administration of cavtratin and anti-VEGF-A inhibited neovascularization more effectively than monotherapy, suggesting the existence of other pathways inhibited by cavtratin in addition to VEGF-A. Indeed, we found that cavtratin suppressed multiple critical components of pathological angiogenesis, including inflammation, permeability, PDGF-B and endothelial nitric oxide synthase expression (eNOS). Mechanistically, we show that cavtratin inhibits CNV and the survival and migration of microglia and macrophages via JNK. Together, our data demonstrate the unique advantages of cavtratin in antiangiogenic therapy to treat neovascular diseases.
Collapse
|
29
|
Chen H, Chen L, Liang R, Wei J. Ultrasound and magnetic resonance molecular imaging of atherosclerotic neovasculature with perfluorocarbon magnetic nanocapsules targeted against vascular endothelial growth factor receptor 2 in rats. Mol Med Rep 2017; 16:5986-5996. [PMID: 28849045 PMCID: PMC5865790 DOI: 10.3892/mmr.2017.7314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/15/2017] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the feasibility of using ultrasonography (US) and magnetic resonance (MR) for bimodal molecular imaging of atherosclerotic neovasculature with liquid perfluorocarbon magnetic nanocapsules (NCs) targeted to vascular endothelial growth factor receptor 2 (VEGFR-2). By incorporating perfluorooctyl bromide (PFOB) and superparamagnetic iron oxide (SPIO) into polylactic acid, a SPIO-embedded PFOB NC was constructed; subsequently, a VEGFR-2-targeted NC (VTNC) containing dual detectable probes was created by covalently linking a VEGFR-2 antibody onto the surface of the SPIO-embedded PFOB NC. Target specificity was verified in vitro by incubating VTNC with VEGFR-2+ or VEGFR-2− endothelial cells. Rats with vulnerable plaques were assigned to receive either an injection of VTNC (Targeted group; n=8) or an injection of NC (Nontargeted group; n=8); control rats also received an injection of VTNC (Control group; n=8). US and MR imaging of the abdominal aorta were performed to detect VTNC by measuring of the ultrasonic grayscale intensity (GSI) and MR contrast-to-noise ratio (CNR) prior to and at successive time points following VTNC and NC injections. The percent positive area (PPA) of CD31+ (PPACD31+) or VEGFR-2+ (PPAVEGFR-2+) expression was quantified by immunohistochemical staining. CD31 was used to verify the existence of endothelial cells as it is widely expressed on the surface of endothelial cells whether activated or not. The results demonstrated that VTNC was able to highly and selectively detect VEGFR-2+ endothelial cells, and GSI, CNR, PPACD31+ and PPAVEGFR-2+ were significantly increased in the targeted group compared with the nontargeted and control groups. In the control group, no atherosclerotic plaques or angiogenesis was identified, thus no expression of PPACD31+ and PPAVEGFR-2 (data not shown). There were strong correlations among GSI, CNR, PPACD31+ and PPAVEGFR-2+. In conclusion, two-probe VTNC is feasible for bimodal US and MR molecular imaging of atherosclerotic neovasculature, which may offer complementary information for the more reliable prediction of plaque vulnerability.
Collapse
Affiliation(s)
- Hua Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Rongxi Liang
- Department of Ultrasonography, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jin Wei
- Department of Imaging, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
30
|
Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab 2017; 37:2471-2484. [PMID: 27629102 PMCID: PMC5531345 DOI: 10.1177/0271678x16669365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nucleoside diphosphate kinase B (NDPK-B) is an enzyme required for nucleoside triphosphate homeostasis, which has been shown to interact with caveolin-1 (Cav-1). In endothelial cells (ECs), NDPK-B contributes to the regulation of angiogenesis and adherens junction (AJ) integrity. We therefore investigated whether an interaction of NDPK-B with Cav-1 in ECs is required for this regulation and the involvement of VEGF signaling herein. We report that simultaneous depletion of NDPK-B/Cav-1 in HUVECs synergistically impaired sprouting angiogenesis. NDPK-B depletion alone impaired caveolae formation, VEGF-induced phosphorylation of c-Src/Cav-1 but not of ERK1/2/AKT/eNOS. In vivo, Cav-1-/- mice showed impaired retinal vascularization at postnatal-day five, whereas NDPK-B-/- mice did not. Primary mouse brain ECs (MBMECs) from NDPK-B-/- mice showed no change in caveolae content and transendothelial-electrical resistance upon VEGF stimulation. Interestingly, NDPK-B-/- MBMECs displayed an accumulation of intracellular vesicles and increased Cav-1 levels. Dextran tracer analysis showed increased vascular permeability in the brain of NDPK-B-/- mice compared to wild type. In conclusion, our data indicate that NDPK-B is required for the correct localization of Cav-1 at the plasma membrane and the formation of caveolae. The genetic ablation of NDPK-B could partially be compensated by an increased Cav-1 content, which restored caveolae formation and some endothelial functions.
Collapse
Affiliation(s)
- Shalini Gross
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Yuxi Feng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Thomas Wieland, Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University Maybachstr. 14, 68169 Mannheim, Germany.
| |
Collapse
|
31
|
Thompson C, Rahim S, Arnold J, Hielscher A. Loss of caveolin-1 alters extracellular matrix protein expression and ductal architecture in murine mammary glands. PLoS One 2017; 12:e0172067. [PMID: 28187162 PMCID: PMC5302825 DOI: 10.1371/journal.pone.0172067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) is abnormal in breast tumors and has been reported to contribute to breast tumor progression. One factor, which may drive ongoing matrix synthesis in breast tumors, is the loss of stromal caveolin-1 (cav-1), a scaffolding protein of caveolae, which has been linked to breast tumor aggressiveness. To determine whether loss of cav-1 results in the abnormal expression of matrix proteins, mammary glands from cav- 1-/- and cav- 1 +/+ mice were investigated for differences in expression of several ECM proteins. In addition, the presence of myofibroblasts, changes in the vessel density, and differences in duct number and size were assessed in the mammary glands of both animal models. Using immunohistochemistry, expression of fibronectin, tenascin-C, collagens and αSMA were significantly increased in the mammary glands of cav-1-/- mice. Second harmonic generation revealed more organized collagen fibers in cav-1 -/- glands and supported immunohistochemical analyses of increased collagen abundance in the glands of cav-1 -/- mice. Analysis of the ductal structure demonstrated a significant increase in the number of proliferating ducts in addition to significant increases in the duct circumference and area in cav-1 -/- glands compared to cav- 1 +/+ glands. Differences in microvessel density weren't apparent between the animal models. In summary, we found that the loss of cav-1 resulted in increased ECM and α-SMA protein expression in murine mammary glands. Furthermore, we found that an abnormal ductal architecture accompanied the loss of cav-1. These data support a role for cav-1 in maintaining mammary gland structure.
Collapse
Affiliation(s)
- Christopher Thompson
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
| | - Sahar Rahim
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
| | - Jeremiah Arnold
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
| | - Abigail Hielscher
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Unique Extrancranial-to-Intracranial Neovascularization Found on Diagnostic Angiography Prior to Skull Base Atypical Grade 2 Meningioma Resection: A Case Report and Hypothesis. World Neurosurg 2016; 95:617.e1-617.e6. [DOI: 10.1016/j.wneu.2016.08.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 11/24/2022]
|
33
|
Gu X, Reagan AM, McClellan ME, Elliott MH. Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res 2016; 56:84-106. [PMID: 27664379 DOI: 10.1016/j.preteyeres.2016.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function.
Collapse
Affiliation(s)
- Xiaowu Gu
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alaina M Reagan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark E McClellan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael H Elliott
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
34
|
Bang OY, Chung JW, Kim SJ, Oh MJ, Kim SY, Cho YH, Cha J, Yeon JY, Kim KH, Kim GM, Chung CS, Lee KH, Ki CS, Jeon P, Kim JS, Hong SC, Moon GJ. Caveolin-1, Ring finger protein 213, and endothelial function in Moyamoya disease. Int J Stroke 2016; 11:999-1008. [PMID: 27462098 DOI: 10.1177/1747493016662039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 06/02/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Moyamoya disease is a unique cerebrovascular occlusive disease of unknown etiology. Ring finger protein 213 (RNF213) was identified as a susceptibility gene for Moyamoya disease in East Asian countries. However, the pathogenesis of Moyamoya disease remains unclear. METHODS We prospectively analyzed clinical data for 139 patients with Moyamoya disease (108 bilateral Moyamoya disease, 31 unilateral Moyamoya disease), 61 patients with intracranial atherosclerotic stroke, and 68 healthy subjects. We compared the genetic (RNF213 variant) and protein biomarkers for caveolae (caveolin-1), angiogenesis (vascular endothelial growth factor (VEGF) and receptor (VEGFR2), and antagonizing cytokine (endostatin)) and endothelial dysfunction (asymmetric dimethylarginine (ADMA), and nitric oxide and its metabolites (nitrite and nitrate)) between patients with Moyamoya disease and intracranial atherosclerotic stroke. We then performed path analysis to evaluate whether a certain protein biomarker mediates the association between genes and Moyamoya disease. RESULTS Caveolin-1 level was decreased in patients with Moyamoya disease and markedly decreased in RNF213 variant carriers. Circulating factors such as VEGF and VEGFR2 did not differ among the groups. Markers for endothelial dysfunction were significantly higher in patients with intracranial atherosclerotic stroke but normal in those with Moyamoya disease. Path analysis showed that the presence of the RNF213 variant was associated with caveolin-1 levels that could lead to Moyamoya disease. The level of combined marker of Moyamoya disease (caveolin-1) and intracranial atherosclerotic stroke (ADMA, an endothelial dysfunction marker) predicted Moyamoya disease with good sensitivity and specificity. CONCLUSION Our results suggest that Moyamoya disease is a caveolae disorder but is not related to endothelial dysfunction or dysregulation of circulating cytokines.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea .,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea
| | - Jong-Won Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea
| | - Suk Jae Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mi Jeong Oh
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Soo Yoon Kim
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Yeon Hee Cho
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jihoon Cha
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Je Young Yeon
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keon Ha Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gyeong-Moon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chin-Sang Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kwang Ho Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang-Seok Ki
- Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Pyoung Jeon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Soo Kim
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Chyul Hong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gyeong Joon Moon
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
35
|
Bang OY, Chung JW, Cha J, Lee MJ, Yeon JY, Ki CS, Jeon P, Kim JS, Hong SC. A Polymorphism in RNF213 Is a Susceptibility Gene for Intracranial Atherosclerosis. PLoS One 2016; 11:e0156607. [PMID: 27253870 PMCID: PMC4890790 DOI: 10.1371/journal.pone.0156607] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Both intracranial atherosclerotic stenosis (ICAS) and moyamoya disease (MMD) are prevalent in Asians. We hypothesized that the Ring Finger protein 213 gene polymorphism (RNF213), a susceptibility locus for MMD in East Asians, is also a susceptibility gene for ICAS in patients whose diagnosis had been confirmed by conventional angiography (absence of basal collaterals) and high-resolution MRI (HR-MRI, presence of plaque). Methods We analyzed 532 consecutive patients with ischemic events in the middle cerebral artery (MCA) distribution and relevant stenotic lesion on the distal internal carotid artery or proximal MCA, but no demonstrable carotid or cardiac embolism sources. Additional angiography was performed on 370 (69.5%) patients and HR-MRI on 283 (53.2%) patients. Results Based on angiographic and HR-MRI findings, 234 patients were diagnosed with ICAS and 288 with MMD. The RNF213 variant was observed in 50 (21.4%) ICAS patients and in 119 (69.1%) MMD patients. The variant was observed in 25.2% of patients with HR-MRI-confirmed ICAS. Similarly, 15.8% of ICAS patients in whom MMD was excluded by angiography had this variant. Among the ICAS patients, RNF213 variant carriers were younger and more likely to have a family history of MMD than non-carriers were. Multivariate testing showed that only the age of ICAS onset was independently associated with the RNF213 variant (odds ratio, 0.97; 95% CI, 0.944–0.99). Conclusions RNF213 is a susceptibility gene not only for MMD but also for ICAS in East Asians. Further studies are needed on RNF213 variants in ICAS patients outside East Asian populations.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- * E-mail:
| | - Jong-Won Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihoon Cha
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mi Ji Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Je Young Yeon
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Pyoung Jeon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Soo Kim
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Chyul Hong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol 2016; 131:753-73. [PMID: 26932603 PMCID: PMC4835530 DOI: 10.1007/s00401-016-1551-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 12/20/2022]
Abstract
The homeostasis of the central nervous system is maintained by the blood-brain barrier (BBB). Angiopoietins (Ang-1/Ang-2) act as antagonizing molecules to regulate angiogenesis, vascular stability, vascular permeability and lymphatic integrity. However, the precise role of angiopoietin/Tie2 signaling at the BBB remains unclear. We investigated the influence of Ang-2 on BBB permeability in wild-type and gain-of-function (GOF) mice and demonstrated an increase in permeability by Ang-2, both in vitro and in vivo. Expression analysis of brain endothelial cells from Ang-2 GOF mice showed a downregulation of tight/adherens junction molecules and increased caveolin-1, a vesicular permeability-related molecule. Immunohistochemistry revealed reduced pericyte coverage in Ang-2 GOF mice that was supported by electron microscopy analyses, which demonstrated defective intra-endothelial junctions with increased vesicles and decreased/disrupted glycocalyx. These results demonstrate that Ang-2 mediates permeability via paracellular and transcellular routes. In patients suffering from stroke, a cerebrovascular disorder associated with BBB disruption, Ang-2 levels were upregulated. In mice, Ang-2 GOF resulted in increased infarct sizes and vessel permeability upon experimental stroke, implicating a role of Ang-2 in stroke pathophysiology. Increased permeability and stroke size were rescued by activation of Tie2 signaling using a vascular endothelial protein tyrosine phosphatase inhibitor and were independent of VE-cadherin phosphorylation. We thus identified Ang-2 as an endothelial cell-derived regulator of BBB permeability. We postulate that novel therapeutics targeting Tie2 signaling could be of potential use for opening the BBB for increased CNS drug delivery or tighten it in neurological disorders associated with cerebrovascular leakage and brain edema.
Collapse
|
37
|
Park-Windhol C, D'Amore PA. Disorders of Vascular Permeability. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:251-81. [PMID: 26907525 DOI: 10.1146/annurev-pathol-012615-044506] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endothelial barrier maintains vascular and tissue homeostasis and modulates many physiological processes, such as angiogenesis. Vascular barrier integrity can be disrupted by a variety of soluble permeability factors, and changes in barrier function can exacerbate tissue damage during disease progression. Understanding endothelial barrier function is critical for vascular homeostasis. Many of the signaling pathways promoting vascular permeability can also be triggered during disease, resulting in prolonged or uncontrolled vascular leak. It is believed that recovery of the normal vasculature requires diminishing this hyperpermeable state. Although the molecular mechanisms governing vascular leak have been studied over the last few decades, recent advances have identified new therapeutic targets that have begun to show preclinical and clinical promise. These approaches have been successfully applied to an increasing number of disease conditions. New perspectives regarding how vascular leak impacts the progression of various diseases are highlighted in this review.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Patricia A D'Amore
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
38
|
Cheng JPX, Mendoza-Topaz C, Howard G, Chadwick J, Shvets E, Cowburn AS, Dunmore BJ, Crosby A, Morrell NW, Nichols BJ. Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J Cell Biol 2016; 211:53-61. [PMID: 26459598 PMCID: PMC4602045 DOI: 10.1083/jcb.201504042] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study provides direct in vivo evidence that endothelial cell caveolae disassemble and hence flatten out under increased mechanical stress and that the presence of caveolae protects endothelial cell plasma membranes from damage. Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1−/− mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo.
Collapse
Affiliation(s)
- Jade P X Cheng
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Carolina Mendoza-Topaz
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Gillian Howard
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Jessica Chadwick
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elena Shvets
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrew S Cowburn
- Department of Physiology, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Alexi Crosby
- Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Benjamin J Nichols
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
39
|
Bang OY, Fujimura M, Kim SK. The Pathophysiology of Moyamoya Disease: An Update. J Stroke 2016; 18:12-20. [PMID: 26846756 PMCID: PMC4747070 DOI: 10.5853/jos.2015.01760] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 11/23/2022] Open
Abstract
Moyamoya disease (MMD) is a unique cerebrovascular disease characterized by the progressive stenosis of large intracranial arteries and a hazy network of basal collaterals called moyamoya vessels. Because the etiology of MMD is unknown, its diagnosis is based on characteristic angiographic findings. Re-vascularization techniques (e.g., bypass surgery) are used to restore perfusion, and are the primary treatment for MMD. There is no specific treatment to prevent MMD progression. This review summarizes the recent advances in MMD pathophysiology, including the genetic and circulating factors related to disease development. Genetic and environmental factors may play important roles in the development of the vascular stenosis and aberrant angiogenesis in complex ways. These factors include the related changes in circulating endothelial/smooth muscle progenitor cells, cytokines related to vascular remodeling and angiogenesis, and endothelium, such as caveolin which is a plasma membrane protein. With a better understanding of MMD pathophysiology, nonsurgical approaches targeting MMD pathogenesis may be available to stop or slow the progression of this disease. The possible strategies include targeting growth factors, retinoic acid, caveolin-1, and stem cells.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea
| | - Miki Fujimura
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Cheng JPX, Nichols BJ. Caveolae: One Function or Many? Trends Cell Biol 2015; 26:177-189. [PMID: 26653791 DOI: 10.1016/j.tcb.2015.10.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
Caveolae are small, bulb-shaped plasma membrane invaginations. Mutations that ablate caveolae lead to diverse phenotypes in mice and humans, making it challenging to uncover their molecular mechanisms. Caveolae have been described to function in endocytosis and transcytosis (a specialized form of endocytosis) and in maintaining membrane lipid composition, as well as acting as signaling platforms. New data also support a model in which the central function of caveolae could be related to the protection of cells from mechanical stress within the plasma membrane. We present evidence for these diverse roles and consider in vitro and in vivo experiments confirming a mechanoprotective role. We conclude by highlighting current gaps in our knowledge of how mechanical signals may be transduced by caveolae.
Collapse
Affiliation(s)
- Jade P X Cheng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Benjamin J Nichols
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
41
|
Abstract
Similarities between tumors and the inflammatory response associated with wound healing have been recognized for more than 150 years and continue to intrigue. Some years ago, based on our then recent discovery of vascular permeability factor (VPF)/VEGF, I suggested that tumors behaved as wounds that do not heal. More particularly, I proposed that tumors co-opted the wound-healing response to induce the stroma they required for maintenance and growth. Work over the past few decades has supported this hypothesis and has put it on a firmer molecular basis. In outline, VPF/VEGF initiates a sequence of events in both tumors and wounds that includes the following: increased vascular permeability; extravasation of plasma, fibrinogen and other plasma proteins; activation of the clotting system outside the vascular system; deposition of an extravascular fibrin gel that serves as a provisional stroma and a favorable matrix for cell migration; induction of angiogenesis and arterio-venogenesis; subsequent degradation of fibrin and its replacement by "granulation tissue" (highly vascular connective tissue); and, finally, vascular resorption and collagen synthesis, resulting in the formation of dense fibrous connective tissue (called "scar tissue" in wounds and "desmoplasia" in cancer). A similar sequence of events also takes place in a variety of important inflammatory diseases that involve cellular immunity.
Collapse
Affiliation(s)
- Harold F Dvorak
- The Center for Vascular Biology Research and the Departments of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
42
|
Fiering S, Ang LH, Lacoste J, Smith TD, Griner E. Registered report: Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. eLife 2015; 4:e04796. [PMID: 26179155 PMCID: PMC4503935 DOI: 10.7554/elife.04796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/26/2015] [Indexed: 11/16/2022] Open
Abstract
The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replicating selected results from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012 were selected on the basis of citations and Altimetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from ‘Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis’ by Goetz and colleagues, published in Cell in 2011 (Goetz et al., 2011). The key experiments being replicated are those reported in Figures 7C (a-d), Supplemental Figure S2A, and Supplemental Figure S7C (a-c) (Goetz et al., 2011). In these experiments, which are a subset of all the experiments reported in the original publication, Goetz and colleagues show in a subcutaneous xenograft model that stromal caveolin-1 remodels the intratumoral microenvironment, which is correlated with increased metastasis formation. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife. DOI:http://dx.doi.org/10.7554/eLife.04796.001
Collapse
Affiliation(s)
- Steven Fiering
- Transgenics and Genetic Constructs Shared Resource Center, Dartmouth University, Lebanon, United States
| | - Lay-Hong Ang
- Confocal Imaging Core, Harvard Medical School, Boston, United States
| | | | - Tim D Smith
- University of California, Irvine, Irvine, United States
| | - Erin Griner
- University of Virginia, Charlottesville, United States
| | | |
Collapse
|
43
|
Abstract
The vasculature, composed of vessels of different morphology and function, distributes blood to all tissues and maintains physiological tissue homeostasis. In pathologies, the vasculature is often affected by, and engaged in, the disease process. This may result in excessive formation of new, unstable, and hyperpermeable vessels with poor blood flow, which further promotes hypoxia and disease propagation. Chronic vessel permeability may also facilitate metastatic spread of cancer. Thus, there is a strong incentive to learn more about an important aspect of vessel biology in health and disease: the regulation of vessel permeability. The current review aims to summarize current insights into different mechanisms of vascular permeability, its regulatory factors, and the consequences for disease.
Collapse
Affiliation(s)
- Lena Claesson-Welsh
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
44
|
Liu Y, Jang S, Xie L, Sowa G. Host deficiency in caveolin-2 inhibits lung carcinoma tumor growth by impairing tumor angiogenesis. Cancer Res 2014; 74:6452-62. [PMID: 25269481 DOI: 10.1158/0008-5472.can-14-1408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Caveolin-2 (Cav-2), a member of caveolin protein family, is largely different from better known caveolin-1 (Cav-1) and thus might play distinct functions. Here, we provide the first genetic evidence suggesting that host-expressed Cav-2 promotes subcutaneous tumor growth and tumor-induced neovascularization using two independent syngeneic mouse models. Host deficiency in Cav-2 resulted in defective and reduced growth of subcutaneously implanted Lewis lung carcinoma (LLC) and B16-F10 melanoma tumors, respectively. Consistent with the defective growth, LLC and B16-F10 melanoma tumors implanted into Cav-2 KO mice displayed reduced microvascular density (MVD) determined by IHC with anti-CD31 antibodies, suggesting impaired pathologic angiogenesis. Additional studies involving LLC tumors extracted from Cav-2 KO mice just 10 days after implantation determined reduced cell proliferation, massive necrotic cell death, and fibrosis. In contrast with day 10, only MVD but not cell proliferation and survival was reduced in the earliest palpable LLC tumors extracted 6 days after implantation into Cav-2 KO mice, suggesting that impaired angiogenesis is the causative factor. Mechanistically, impaired LLC tumor growth and angiogenesis in Cav-2 KO mice was associated with increased expression levels of antiangiogenic thrombospondin-1 and inhibited S1177 phosphorylation of endothelial nitric oxide synthase. Taken together, our data suggest that host deficiency in Cav-2 impairs tumor-induced angiogenesis, leading to compromised tumor cell survival/proliferation manifested by the defective tumor growth. In conclusion, host-expressed Cav-2 may promote tumor growth via supporting tumor-induced angiogenesis. Thus, Cav-2 expressed in tumor microenvironment may potentially become a novel target for cancer therapy.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Sungchan Jang
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Leike Xie
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.
| |
Collapse
|
45
|
Ezetimibe suppresses cholesterol accumulation in lipid-loaded vascular smooth muscle cells in vitro via MAPK signaling. Acta Pharmacol Sin 2014; 35:1129-36. [PMID: 25087996 DOI: 10.1038/aps.2014.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 07/14/2014] [Indexed: 01/30/2023] Open
Abstract
AIM To investigate the mechanisms of anti-atherosclerotic action of ezetimibe in rat vascular smooth muscle cells (VSMCs) in vitro. METHODS VSMCs of SD rats were cultured in the presence of Chol:MβCD (10 μg/mL) for 72 h, and intracellular lipid droplets and cholesterol levels were evaluated using Oil Red O staining, HPLC and Enzymatic Fluorescence Assay, respectively. The expression of caveolin-1, sterol response element-binding protein-1 (SREBP-1) and ERK1/2 were analyzed using Western blot assays. Translocation of SREBP-1 and ERK1/2 was detected with immunofluorescence. RESULTS Treatment with Chol:MβCD dramatically increased the cellular levels of total cholesterol (TC), cholesterol ester (CE) and free cholesterol (FC) in VSMCs, which led to the formation of foam cells. Furthermore, Chol:MβCD treatment significantly decreased the expression of caveolin-1, and stimulated the expression and nuclear translocation of SREBP-1 in VSMCs. Co-treatment with ezetimibe (3 μmol/L) significantly decreased the cellular levels of TC, CE and FC, which was accompanied by elevation of caveolin-1 expression, and by a reduction of SREBP-1 expression and nuclear translocation. Co-treatment with ezetimibe dose-dependently decreased the expression of phosphor-ERK1/2 (p-ERK1/2) in VSMCs. The ERK1/2 inhibitor PD98059 (50 μmol/L) altered the cholesterol level and the expression of p-ERK1/2, SREBP-1 and caveolin-1 in the same manner as ezetimibe did. CONCLUSION Ezetimibe suppresses cholesterol accumulation in rat VSMCs in vitro by regulating SREBP-1 and caveolin-1 expression, possibly via the MAPK signaling pathway.
Collapse
|
46
|
Liu Y, Sowa G. Role of caveolin-2 in subcutaneous tumor growth and angiogenesis associated with syngeneic mouse Lewis lung carcinoma and B16 melanoma models. ACTA ACUST UNITED AC 2014; 1. [PMID: 26005706 DOI: 10.14800/ccm.439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In addition to cancer cells, primary tumors are composed of a multitude of stromal cell types. Among others, the stromal cell types involved in tumor growth and progression include endothelial cells, fibroblasts, pericytes, stem cells and various cell types of immune origin. While the role of oncogenes or tumor suppressor proteins expressed in cancer cells has been extensively studied, far less is known about potential involvement of proteins expressed in stromal cell types present within the tumor microenvironment. Recent experimental evidence from our laboratory suggests that caveolin-2 (Cav-2) protein expressed in stromal cell types of the tumor microenvironment promotes subcutaneous tumor growth in two independent syngeneic mouse models, i.e., Lewis lung carcinoma (LLC) and B16-F10 melanoma. Mechanistically, the tumor growth promoting role of Cav-2 is associated with enhanced tumor induced neovascularization. At the molecular level, host-expressed Cav-2 appears to prevent excessive expression of anti-angiogenic thrombospondin-1 (TSP-1) and promote phosphorylation of pro-angiogenic endothelial nitric oxide synthase (eNOS) at serine 1177. Taken together, our recent findings suggest that Cav-2 expressed within the tumor microenvironment could be a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212
| | - Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
47
|
Gu X, Fliesler SJ, Zhao YY, Stallcup WB, Cohen AW, Elliott MH. Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:541-55. [PMID: 24326256 DOI: 10.1016/j.ajpath.2013.10.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/13/2013] [Accepted: 10/28/2013] [Indexed: 12/20/2022]
Abstract
Blood-retinal barrier (BRB) breakdown and related vascular changes are implicated in several ocular diseases. The molecules and mechanisms regulating BRB integrity and pathophysiology are not fully elucidated. Caveolin-1 (Cav-1) ablation results in loss of caveolae and microvascular pathologies, but the role of Cav-1 in the retina is largely unknown. We examined BRB integrity and vasculature in Cav-1 knockout mice and found a significant increase in BRB permeability, compared with wild-type controls, with branch veins being frequent sites of breakdown. Vascular hyperpermeability occurred without apparent alteration in junctional proteins. Such hyperpermeability was not rescued by inhibiting eNOS activity. Veins of Cav-1 knockout retinas exhibited additional pathological features, including i) eNOS-independent enlargement, ii) altered expression of mural cell markers (eg, down-regulation of NG2 and up-regulation of αSMA), and iii) dramatic alterations in mural cell phenotype near the optic nerve head. We observed a significant NO-dependent increase in retinal artery diameter in Cav-1 knockout mice, suggesting that Cav-1 plays a role in autoregulation of resistance vessels in the retina. These findings implicate Cav-1 in maintaining BRB integrity in retinal vasculature and suggest a previously undefined role in the retinal venous system and associated mural cells. Our results are relevant to clinically significant retinal disorders with vascular pathologies, including diabetic retinopathy, uveoretinitis, and primary open-angle glaucoma.
Collapse
Affiliation(s)
- Xiaowu Gu
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Steven J Fliesler
- Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, New York; Department of Ophthalmology, University at Buffalo, State University of New York, Buffalo, New York; Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York; SUNY Eye Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - You-Yang Zhao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois; Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois
| | - William B Stallcup
- Tumor Microenvironment Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Alex W Cohen
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael H Elliott
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
48
|
Li HH, Li J, Wasserloos KJ, Wallace C, Sullivan MG, Bauer PM, Stolz DB, Lee JS, Watkins SC, St Croix CM, Pitt BR, Zhang LM. Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells. PLoS One 2013; 8:e81903. [PMID: 24312378 PMCID: PMC3842245 DOI: 10.1371/journal.pone.0081903] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
Although a critical role for caveolae-mediated albumin transcytosis in pulmonary endothelium is well established, considerably less is known about caveolae-independent pathways. In this current study, we confirmed that cultured rat pulmonary microvascular (RPMEC) and pulmonary artery (RPAEC) endothelium endocytosed Alexa488-labeled albumin in a saturable, temperature-sensitive mode and internalization resulted in co-localization by fluorescence microscopy with cholera B toxin and caveolin-1. Although siRNA to caveolin-1 (cav-1) in RPAEC significantly inhibited albumin uptake, a remnant portion of albumin uptake was cav-1-independent, suggesting alternative pathways for albumin uptake. Thus, we isolated and cultured mouse lung endothelial cells (MLEC) from wild type and cav-1(-/-) mice and noted that ~ 65% of albumin uptake, as determined by confocal imaging or live cell total internal reflectance fluorescence microscopy (TIRF), persisted in total absence of cav-1. Uptake of colloidal gold labeled albumin was evaluated by electron microscopy and demonstrated that albumin uptake in MLEC from cav-1(-/-) mice was through caveolae-independent pathway(s) including clathrin-coated pits that resulted in endosomal accumulation of albumin. Finally, we noted that albumin uptake in RPMEC was in part sensitive to pharmacological agents (amiloride [sodium transport inhibitor], Gö6976 [protein kinase C inhibitor], and cytochalasin D [inhibitor of actin polymerization]) consistent with a macropinocytosis-like process. The amiloride sensitivity accounting for macropinocytosis also exists in albumin uptake by both wild type and cav-1(-/-) MLEC. We conclude from these studies that in addition to the well described caveolar-dependent pulmonary endothelial cell endocytosis of albumin, a portion of overall uptake in pulmonary endothelial cells is cav-1 insensitive and appears to involve clathrin-mediated endocytosis and macropinocytosis-like process.
Collapse
Affiliation(s)
- Hui-Hua Li
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jin Li
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karla J. Wasserloos
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Callen Wallace
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mara G. Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Philip M. Bauer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Donna B. Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Janet S. Lee
- Division of Pulmonary Allergy Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Claudette M. St Croix
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bruce R. Pitt
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (LMZ); (BRP)
| | - Li-Ming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (LMZ); (BRP)
| |
Collapse
|
49
|
Nagy JA, Dvorak AM, Dvorak HF. Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med 2013; 2:a006544. [PMID: 22355795 DOI: 10.1101/cshperspect.a006544] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It has been known for more than half a century that the tumor microvasculature is hyperpermeable to plasma proteins. However, the identity of the leaky vessels and the consequences of vascular hyperpermeability have received little attention. This article places tumor vascular hyperpermeability in a broader context, relating it to (1) the low-level "basal" permeability of the normal vasculature; (2) the "acute," short-term hyperpermeability induced by vascular permeability factor/vascular endothelial growth factor (VPF/VEGF-A) and other vascular permeabilizing agents; and (3) the "chronic" hyperpermeability associated with longer-term exposure to agents such as VPF/VEGF-A that accompanies many types of pathological angiogenesis. Leakage of plasma protein-rich fluids is important because it activates the clotting system, depositing an extravascular fibrin gel provisional matrix that serves as the first step in stroma generation.
Collapse
Affiliation(s)
- Janice A Nagy
- Center for Vascular Biology Research and the Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
50
|
Deharvengt SJ, Tse D, Sideleva O, McGarry C, Gunn JR, Longnecker DS, Carriere C, Stan RV. PV1 down-regulation via shRNA inhibits the growth of pancreatic adenocarcinoma xenografts. J Cell Mol Med 2012; 16:2690-700. [PMID: 22568538 PMCID: PMC3435473 DOI: 10.1111/j.1582-4934.2012.01587.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/02/2012] [Indexed: 12/11/2022] Open
Abstract
PV1 is an endothelial-specific protein with structural roles in the formation of diaphragms in endothelial cells of normal vessels. PV1 is also highly expressed on endothelial cells of many solid tumours. On the basis of in vitro data, PV1 is thought to actively participate in angiogenesis. To test whether or not PV1 has a function in tumour angiogenesis and in tumour growth in vivo, we have treated pancreatic tumour-bearing mice by single-dose intratumoural delivery of lentiviruses encoding for two different shRNAs targeting murine PV1. We find that PV1 down-regulation by shRNAs inhibits the growth of established tumours derived from two different human pancreatic adenocarcinoma cell lines (AsPC-1 and BxPC-3). The effect observed is because of down-regulation of PV1 in the tumour endothelial cells of host origin, PV1 being specifically expressed in tumour vascular endothelial cells and not in cancer or other stromal cells. There are no differences in vascular density of tumours treated or not with PV1 shRNA, and gain and loss of function of PV1 in endothelial cells does not modify either their proliferation or migration, suggesting that tumour angiogenesis is not impaired. Together, our data argue that down-regulation of PV1 in tumour endothelial cells results in the inhibition of tumour growth via a mechanism different from inhibiting angiogenesis.
Collapse
MESH Headings
- Adenocarcinoma/blood supply
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Animals
- Base Sequence
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Movement/genetics
- Down-Regulation
- Drug Screening Assays, Antitumor
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lentivirus/genetics
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Mice, Nude
- Molecular Sequence Data
- Neovascularization, Pathologic/genetics
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/pharmacology
- Stromal Cells/metabolism
- Stromal Cells/pathology
Collapse
Affiliation(s)
- Sophie J Deharvengt
- Departments of Pathology, Geisel School of Medicine at DartmouthLebanon, NH, USA
| | - Dan Tse
- Departments of Pathology, Geisel School of Medicine at DartmouthLebanon, NH, USA
| | - Olga Sideleva
- Departments of Pathology, Geisel School of Medicine at DartmouthLebanon, NH, USA
| | - Caitlin McGarry
- Departments of Pathology, Geisel School of Medicine at DartmouthLebanon, NH, USA
| | - Jason R Gunn
- Norris Cotton Cancer Center, Geisel School of Medicine at DartmouthLebanon, NH, USA
- Department of Engineering Sciences, Thayer School of EngineeringHanover, NH, USA
| | - Daniel S Longnecker
- Departments of Pathology, Geisel School of Medicine at DartmouthLebanon, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at DartmouthLebanon, NH, USA
| | - Catherine Carriere
- Medicine, Geisel School of Medicine at DartmouthLebanon, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at DartmouthLebanon, NH, USA
| | - Radu V Stan
- Departments of Pathology, Geisel School of Medicine at DartmouthLebanon, NH, USA
- Microbiology and Immunology, Geisel School of Medicine at DartmouthLebanon, NH, USA
- Heart and Vascular Research Center, Geisel School of Medicine at DartmouthLebanon, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at DartmouthLebanon, NH, USA
| |
Collapse
|