1
|
Ravizza T, Volpedo G, Riva A, Striano P, Vezzani A. Intestinal microbiome alterations in pediatric epilepsy: Implications for seizures and therapeutic approaches. Epilepsia Open 2025. [PMID: 40232107 DOI: 10.1002/epi4.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
The intestinal microbiome plays a pivotal role in maintaining host health through its involvement in gastrointestinal, immune, and central nervous system (CNS) functions. Recent evidence underscores the bidirectional communication between the microbiota, the gut, and the brain and the impact of this axis on neurological diseases, including epilepsy. In pediatric patients, alterations in gut microbiota composition-called intestinal dysbiosis-have been linked to seizure susceptibility. Preclinical models revealed that gut dysbiosis may exacerbate seizures, while microbiome-targeted therapies, including fecal microbiota transplantation, pre/pro-biotics, and ketogenic diets, show promise in reducing seizures. Focusing on clinical and preclinical studies, this review examines the role of the gut microbiota in pediatric epilepsy with the aim of exploring its implications for seizure control and management of epilepsy. We also discuss mechanisms that may underlie mutual gut-brain communication and emerging therapeutic strategies targeting the gut microbiome as a novel approach to improve outcomes in pediatric epilepsy. PLAIN LANGUAGE SUMMARY: Reciprocal communication between the brain and the gut appears to be dysfunctional in pediatric epilepsy. The composition of bacteria in the intestine -known as microbiota- and the gastrointestinal functions are altered in children with drug-resistant epilepsy and animal models of pediatric epilepsies. Microbiota-targeted interventions, such as ketogenic diets, pre-/post-biotics administration, and fecal microbiota transplantation, improve both gastrointestinal dysfunctions and seizures in pediatric epilepsy. These findings suggest that the gut and its microbiota represent potential therapeutic targets for reducing drug-resistant seizures in pediatric epilepsy.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Greta Volpedo
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Universita' Degli Studi di Genova, Genoa, Italy
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
2
|
De Meulemeester AS, Reid C, Auvin S, Carlen PL, Andrew CJ, Szlendak R, Di Sapia R, Moshé SL, Sankar R, O’Brien TJ, Baulac S, Henshall DC, Akman Ö, Galanopoulou AS. WONOEP appraisal: Modeling early onset epilepsies. Epilepsia 2024; 65:2553-2566. [PMID: 39042520 PMCID: PMC11534511 DOI: 10.1111/epi.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
Epilepsy has a peak incidence during the neonatal to early childhood period. These early onset epilepsies may be severe conditions frequently associated with comorbidities such as developmental deficits and intellectual disability and, in a significant percentage of patients, may be medication-resistant. The use of adult rodent models in the exploration of mechanisms and treatments for early life epilepsies is challenging, as it ignores significant age-specific developmental differences. More recently, models developed in immature animals, such as rodent pups, or in three-dimensional organoids may more closely model aspects of the immature brain and could result in more translatable findings. Although models are not perfect, they may offer a more controlled screening platform in studies of mechanisms and treatments, which cannot be done in pediatric patient cohorts. On the other hand, more simplified models with higher throughput capacities are required to deal with the large number of epilepsy candidate genes and the need for new treatment options. Therefore, a combination of different modeling approaches will be beneficial in addressing the unmet needs of pediatric epilepsy patients. In this review, we summarize the discussions on this topic that occurred during the XVI Workshop on Neurobiology of Epilepsy, organized in 2022 by the Neurobiology Commission of the International League Against Epilepsy. We provide an overview of selected models of early onset epilepsies, discussing their advantages and disadvantages. Heterologous expression models provide initial functional insights, and zebrafish, rodent models, and brain organoids present increasingly complex platforms for modeling and validating epilepsy-related phenomena. Together, these models offer valuable insights into early onset epilepsies and accelerate hypothesis generation and therapy discovery.
Collapse
Affiliation(s)
- Ann-Sofie De Meulemeester
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Christopher Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Stéphane Auvin
- AP-HP, Robert-Debré University Hospital, Pediatric Neurology Department, CRMR épilepsies rares, EpiCARE member, Paris, France
- Université Paris Cité, INSERM NeuroDiderot, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Peter L. Carlen
- Krembil Research Institute, 60 Leonard Ave, 7KDT430, Toronto, ON, Canada M5T 0S8
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College St Room 407, Toronto, ON, Canada, M5S 3G9
- Departments of Medicine and Physiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON, Canada, M5S 1A8
| | - Cole J. Andrew
- MGH Epilepsy Service, Division of Clinical Neurophysiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roza Szlendak
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
- Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Raman Sankar
- Department of Neurology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Terence J. O’Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004 Victoria, Australia
- Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004 Victoria, Australia
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France
| | - David C. Henshall
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, D02 YN7
| | - Özlem Akman
- Demiroglu Bilim University, Faculty of Medicine Department of Physiology, Istanbul, Turkey
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
- Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
3
|
Riva A, Sahin E, Volpedo G, Petretto A, Lavarello C, Di Sapia R, Barbarossa D, Zaniani NR, Craparotta I, Barbera MC, Sezerman U, Vezzani A, Striano P, Ravizza T. Identification of an epilepsy-linked gut microbiota signature in a pediatric rat model of acquired epilepsy. Neurobiol Dis 2024; 194:106469. [PMID: 38485093 DOI: 10.1016/j.nbd.2024.106469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
A dysfunctional gut microbiota-brain axis is emerging as a potential pathogenic mechanism in epilepsy, particularly in pediatric forms of epilepsy. To add new insights into gut-related changes in acquired epilepsy that develops early in life, we used a multi-omics approach in a rat model with a 56% incidence of epilepsy. The presence of spontaneous seizures was assessed in adult rats (n = 46) 5 months after status epilepticus induced by intra-amygdala kainate at postnatal day 13, by 2 weeks (24/7) ECoG monitoring. Twenty-six rats developed epilepsy (Epi) while the remaining 20 rats (No-Epi) did not show spontaneous seizures. At the end of ECoG monitoring, all rats and their sham controls (n = 20) were sacrificed for quantitative histopathological and immunohistochemical analyses of the gut structure, glia and macrophages, as well as RTqPCR analysis of inflammation/oxidative stress markers. By comparing Epi, No-Epi rats, and sham controls, we found structural, cellular, and molecular alterations reflecting a dysfunctional gut, which were specifically associated with epilepsy. In particular, the villus height-to-crypt depth ratio and number of Goblet cells were reduced in the duodenum of Epi rats vs both No-Epi rats and sham controls (p < 0.01). Villus height and crypt depth in the duodenum and jejunum (p < 0.01) were increased in No-Epi vs both Epi and sham controls. We also detected enhanced Iba1-positive macrophages, together with increased IL1b and NFE2L2 transcripts and TNF protein, in the small intestine of Epi vs both No-Epi and sham control rats (p < 0.01), denoting the presence of inflammation and oxidative stress. Astroglial GFAP-immunostaining was similar in all experimental groups. Metagenomic analysis in the feces collected 5 months after status epilepticus showed that the ratio of two dominant phyla (Bacteroidota-to-Firmicutes) was similarly increased in Epi and No-Epi rats vs sham control rats. Notably, the relative abundance of families, genera, and species associated with SCFA production differed in Epi vs No-Epi rats, describing a bacterial imprint associated with epilepsy. Furthermore, Epi rats showed a blood metabolic signature characterized by changes in lipid metabolism compared to both No-Epi and sham control rats. Our study provides new evidence of long-term gut alterations, along with microbiota-related metabolic changes, occurring specifically in rats that develop epilepsy after brain injury early in life.
Collapse
Affiliation(s)
- Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Eray Sahin
- Acıbadem University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Turkey
| | - Greta Volpedo
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | | | | | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Davide Barbarossa
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Nasibeh Riahi Zaniani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ilaria Craparotta
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Maria Chiara Barbera
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Uğur Sezerman
- Acıbadem University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Turkey
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
4
|
Riluzole and novel naphthalenyl substituted aminothiazole derivatives prevent acute neural excitotoxic injury in a rat model of temporal lobe epilepsy. Neuropharmacology 2023; 224:109349. [PMID: 36436594 PMCID: PMC9843824 DOI: 10.1016/j.neuropharm.2022.109349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Epileptogenic seizures, or status epilepticus (SE), leads to excitotoxic injury in hippocampal and limbic neurons in the kainic acid (KA) animal model of temporal lobe epilepsy (TLE). Here, we have further characterized neural activity regulated methylaminoisobutryic acid (MeAIB)/glutamine transport activity in mature rat hippocampal neurons in vitro that is inhibited by riluzole (IC50 = 1 μM), an anti-convulsant benzothiazole agent. We screened a library of riluzole derivatives and identified SKA-41 followed by a second screen and synthesized several novel chlorinated aminothiazoles (SKA-377, SKA-378, SKA-379) that are also potent MeAIB transport inhibitors in vitro, and brain penetrant following systemic administration. When administered before KA, SKA-378 did not prevent seizures but still protected the hippocampus and several other limbic areas against SE-induced neurodegeneration at 3d. When SKA-377 - 379, (30 mg/kg) were administered after KA-induced SE, acute neural injury in the CA3, CA1 and CA4/hilus was also largely attenuated. Riluzole (10 mg/kg) blocks acute neural injury. Kinetic analysis of SKA-378 and riluzoles' blockade of Ca2+-regulated MeAIB transport in neurons in vitro indicates that inhibition occurs via a non-competitive, indirect mechanism. Sodium channel NaV1.6 antagonism blocks neural activity regulated MeAIB/Gln transport in vitro (IC50 = 60 nM) and SKA-378 is the most potent inhibitor of NaV1.6 (IC50 = 28 μM) compared to NaV1.2 (IC50 = 118 μM) in heterologous cells. However, pharmacokinetic analysis suggests that sodium channel blockade may not be the predominant mechanism of neuroprotection here. Riluzole and our novel aminothiazoles are agents that attenuate acute neural hippocampal injury following KA-induced SE and may help to understand mechanisms involved in the progression of epileptic disease.
Collapse
|
5
|
De Vito A, Mankad K, Pujar S, Chari A, Ippolito D, D’Arco F. Narrative review of epilepsy: getting the most out of your neuroimaging. Transl Pediatr 2021; 10:1078-1099. [PMID: 34012857 PMCID: PMC8107872 DOI: 10.21037/tp-20-261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/26/2020] [Indexed: 02/05/2023] Open
Abstract
Neuroimaging represents an important step in the evaluation of pediatric epilepsy. The crucial role of brain imaging in the diagnosis, follow-up and presurgical assessment of patients with epilepsy is noted and has to be familiar to all neuroradiologists and trainees approaching pediatric brain imaging. Morphological qualitative imaging shows the majority of cerebral lesions/alterations underlying focal epilepsy and can highlight some features which are useful in the differential diagnosis of the different types of epilepsy. Recent advances in MRI acquisitions including diffusion-weighted imaging (DWI), post-acquisition image processing techniques, and quantification of imaging data are increasing the accuracy of lesion detection during the last decades. Functional MRI (fMRI) can be really useful and helps to identify cortical eloquent areas that are essential for language, motor function, and memory, and diffusion tensor imaging (DTI) can reveal white matter tracts that are vital for these functions, thus reducing the risk of epilepsy surgery causing new morbidities. Also positron emission tomography (PET), single photon emission computed tomography (SPECT), simultaneous electroencephalogram (EEG) and fMRI, and electrical and magnetic source imaging can be used to assess the exact localization of epileptic foci and help in the design of intracranial EEG recording strategies. The main role of these "hybrid" techniques is to obtain quantitative and qualitative informations, a necessary step to evaluate and demonstrate the complex relationship between abnormal structural and functional data and to manage a "patient-tailored" surgical approach in epileptic patients.
Collapse
Affiliation(s)
- Andrea De Vito
- Department of Neuroradiology, H. S. Gerardo Monza, Monza, Italy
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - Suresh Pujar
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Aswin Chari
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| | | | - Felice D’Arco
- Department of Radiology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
6
|
ATP1A3-related epilepsy: Report of seven cases and literature-based analysis of treatment response. J Clin Neurosci 2020; 72:31-38. [PMID: 31959558 DOI: 10.1016/j.jocn.2020.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 11/24/2022]
Abstract
ATP1A3 related disease is a clinically heterogeneous condition currently classified as alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss. Recently, it has become apparent that a remarkably large subgroup is suffering from often difficult-to-treat epilepsy. The aim of the present study was to assess the prevalence and efficacy of commonly used anti-epileptic-drugs (AEDs) in patients with ATP1A3 related seizures. Therefore, we performed a retrospective study of patients in combination with a systematic literature-based review. Inclusion criteria were: verified ATP1A3 mutation, seizures and information about AED treatment. The literature review yielded records for 188 epileptic ATP1A3 patients. For 14/188 cases, information about anti-epileptic treatment was available. Combined with seven unpublished records of ATP1A3 patients, a sample size of 21 patients was reached. Most used AED were levetiracetam (n = 9), phenobarbital (n = 8), valproic acid (n = 7), and topiramate (n = 5). Seizure reduction was reported for 57% of patients (n = 12). No individual AEDs used (either alone or combined) had a success rate over 50%. There was no significant difference in the response rate between various AEDs. Ketogenic diet was effective in 2/4 patients. 43% of patients (n = 9) did not show any seizure relief. Even though Epilepsy is a significant clinical issue in ATP1A3 patients, only a minority of publications provide any information about patients' anti-epileptic treatment. The findings of treatment effectiveness in only 57% (or lower) of patients, and the non-existence of a clear first-line AED in ATP1A3 related epilepsy stresses the need for further research.
Collapse
|
7
|
Farmania R, Garg D, Sharma S. Status Epilepticus in Neonates and Infants. Ann Indian Acad Neurol 2020; 23:747-754. [PMID: 33688122 PMCID: PMC7900746 DOI: 10.4103/aian.aian_189_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
Status epilepticus (SE) is a common neurological emergency in childhood associated with high mortality and morbidity. Acute management of seizures along with aggressive evaluation for establishing the underlying cause are crucial determinants of outcome. Neonatal status epilepticus carries the burden of poor neurological outcomes and may lead to global developmental delay as well as persistent seizures. The aetiology and pathophysiological mechanisms of SE in neonates and young infants differ compared to older children and adults. The most common causes of SE in neonates includes hypoxic sequelae, ischemic stroke and intracranial haemorrhage. In infants, febrile status epilepticus and acute symptomatic seizures are more common than remote symptomatic causes. Recent advances in neuroimaging modalities and molecular diagnostic techniques have facilitated better diagnostic precision. There is deplorable lack of evidence evaluating management strategies of SE in this age group. In addition to prompt initiation of antiseizure medications, vitamin supplementation needs to be empirically added. Simultaneously, meticulous evaluation to determine cause must also be conducted. In this review, we discuss challenges and an algorithmic approach to the diagnosis and management of SE in neonates and infants.
Collapse
Affiliation(s)
- Rajni Farmania
- Paediatric Neurologist, BL Kapoor Hospital, New Delhi, India
| | - Divyani Garg
- Department of Neurology, Lady Hardinge Medical College, New Delhi, India
| | - Suvasini Sharma
- Paediatrics, Lady Hardinge Medical College, New Delhi, India,Address for correspondence: Dr. Suvasini Sharma, Associate Professor, Department of Paediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi - 110 001, India. E-mail:
| |
Collapse
|
8
|
Cheng Y, Mai Q, Zeng X, Wang H, Xiao Y, Tang L, Li J, Zhang Y, Ding H. Propionate relieves pentylenetetrazol-induced seizures, consequent mitochondrial disruption, neuron necrosis and neurological deficits in mice. Biochem Pharmacol 2019; 169:113607. [PMID: 31491413 DOI: 10.1016/j.bcp.2019.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
The present research was designed to evaluate the protective effects and underlying mechanisms of propionate, a bioactive food additive, on mitochondrial disruption, neuron necrosis and neurological deficits after epilepsy seizures. Epilepsy seizures was induced by repetitive injections of pentylenetetrazol at a dose of 37 mg per kg. Propionate (37.5, 50 and 75 mg/kg) as well as sodium valproate (300 mg/kg) were administrated intragastrically (i.g.) 1 h before each PTZ injection and continued for 40 days. The influence of propionate was assessed by many biochemical assays and neurobehavioral experiments. The results of gas chromatography (GC) analysis indicated that increased concentration of propionate can be explored in hippocampus area of propionate + PTZ treated animals. Propionate decreased epilepsy seizure intensity, increased latency of seizures. Meanwhile, propionate treatment reversed the structure disruption of the mitochondria, improved ATP level and lessened 8-OHdG level in the brains of animals with seizures. In addition, we find propionate pretreated can increase activities of the antioxidant enzymes (CAT, SOD, as well as GSH-Px) in mitochondria. Additionally, propionate reduced neuronal loss in hippocampus and our results suggest that HIF-1α/ERK pathway and neuron necrosis exists potential linkage during epileptogenesis. Moreover, as a result, propionate administration can significantly improve the neurological function estimated by a battery of functional tests. In conclusion, treatment with propionate attenuates mitochondrial disruption, hippocampal apoptosis and neurological deficits in a mouse model of epilepsy seizures. Therefore, propionate, currently used as a food preservative, has a potential additional advantage of ameliorating epilepsy seizures.
Collapse
Affiliation(s)
- Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Qianting Mai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Xin Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Huiling Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yao Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Liu Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Jing Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
9
|
Terrone G, Balosso S, Pauletti A, Ravizza T, Vezzani A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 2019; 167:107742. [PMID: 31421074 DOI: 10.1016/j.neuropharm.2019.107742] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/10/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation and reactive oxygen and nitrogen species are rapidly induced in the brain after acute cerebral injuries that are associated with an enhanced risk for epilepsy in humans and related animal models. These phenomena reinforce each others and persist during epileptogenesis as well as during chronic spontaneous seizures. Anti-inflammatory and anti-oxidant drugs transiently administered either before, or shortly after the clinical onset of symptomatic epilepsy, similarly block the progression of spontaneous seizures, and may delay their onset. Moreover, neuroprotection and rescue of cognitive deficits are also observed in the treated animals. Therefore, although these treatments do not prevent epilepsy development, they offer clinically relevant disease-modification effects. These therapeutic effects are mediated by targeting molecular signaling pathways such as the IL-1β-IL-1 receptor type 1 and TLR4, P2X7 receptors, the transcriptional anti-oxidant factor Nrf2, while the therapeutic impact of COX-2 inhibition for reducing spontaneous seizures remains controversial. Some anti-inflammatory and anti-oxidant drugs that are endowed of disease modification effects in preclinical models are already in medical use and have a safety profile, therefore, they provide potential re-purposed treatments for improving the disease course and for reducing seizure burden. Markers of neuroinflammation and oxidative stress can be measured in blood or by neuroimaging, therefore they represent testable prognostic and predictive biomarkers for selecting the patient's population at high risk for developing epilepsy therefore eligible for novel treatments. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Gaetano Terrone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alberto Pauletti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
10
|
Marchionni I, Oberoi M, Soltesz I, Alexander A. Ripple-related firing of identified deep CA1 pyramidal cells in chronic temporal lobe epilepsy in mice. Epilepsia Open 2019; 4:254-263. [PMID: 31168492 PMCID: PMC6546014 DOI: 10.1002/epi4.12310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/02/2019] [Accepted: 01/19/2019] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is often associated with memory deficits. Reactivation of memory traces in the hippocampus occurs during sharp-wave ripples (SWRs; 140-250 Hz). To better understand the mechanisms underlying high-frequency oscillations and cognitive comorbidities in epilepsy, we evaluated how rigorously identified deep CA1 pyramidal cells (dPCs) discharge during SWRs in control and TLE mice. METHODS We used the unilateral intraamygdala kainate model of TLE in video-electroencephalography (EEG) verified chronically epileptic adult mice. Local field potential and single-cell recordings were performed using juxtacellular recordings from awake control and TLE mice resting on a spherical treadmill, followed by post hoc identification of the recorded cells. RESULTS Hippocampal SWRs in TLE mice occurred with increased intraripple frequency compared to control mice. The frequency of SWR events was decreased, whereas the overall frequency of SWRs, interictal epileptiform discharges, and high-frequency ripples (250-500 Hz) together was not altered. CA1 dPCs in TLE mice showed significantly increased firing during ripples as well as between the ripple events. The strength of ripple modulation of dPC discharges increased in TLE without alteration of the preferred phase of firing during the ripple waves. SIGNIFICANCE These juxtacellular electrophysiology data obtained from identified CA1 dPCs from chronically epileptic mice are in general agreement with recent findings indicating distortion of normal firing patterns during offline SWRs as a mechanism underlying deficits in memory consolidation in epilepsy. Because the primary seizure focus in our experiments was in the amygdala and we recorded from the CA1 region, these results are also in agreement with the presence of altered high-frequency oscillations in areas of secondary seizure spread.
Collapse
Affiliation(s)
- Ivan Marchionni
- Department of Anatomy & NeurobiologyUniversity of CaliforniaIrvineCalifornia
- Department of Biomedical Sciences and Padova Neuroscience CenterUniversity of PadovaPadovaItaly
| | - Michelle Oberoi
- Department of Anatomy & NeurobiologyUniversity of CaliforniaIrvineCalifornia
- University of CaliforniaRiverside School of MedicineRiversideCalifornia
| | - Ivan Soltesz
- Department of Anatomy & NeurobiologyUniversity of CaliforniaIrvineCalifornia
- Department of NeurosurgeryStanford UniversityStanfordCalifornia
| | - Allyson Alexander
- Department of NeurosurgeryAnschutz School of MedicineUniversity of Colorado DenverAuroraColorado
- Department of NeurosurgeryChildren's Hospital ColoradoAuroraColorado
| |
Collapse
|
11
|
Han K, Wang QY, Wang CX, Luan SY, Tian WP, Wang Y, Zhang RY. Ghrelin improves pilocarpine‑induced cerebral cortex inflammation in epileptic rats by inhibiting NF‑κB and TNF‑α. Mol Med Rep 2018; 18:3563-3568. [PMID: 30106107 PMCID: PMC6131597 DOI: 10.3892/mmr.2018.9381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/27/2016] [Indexed: 12/28/2022] Open
Abstract
Ghrelin has a protective function in the nervous system, including anti‑inflammatory and antiapoptotic. The objective of the present study was to examine the anti‑inflammatory effects of the ghrelin on nuclear factor‑κB (NF‑κB) and tumor necrosis factor‑α (TNF‑α) gene and protein expression in an epileptic seizure model. Epileptic seizures were induced in healthy male Wistar rats (~3 weeks old) with 300 mg/kg pilocarpine, and brains from rats with Racine stage IV or V seizures were investigated further in the present study. The effect of ghrelin treatment on TNF‑α and NF‑κB protein and mRNA expression was assessed by immunohistochemistry and semi‑quantitative reverse transcription polymerase chain reaction, respectively. TNF‑α and NF‑κB protein and mRNA expression were significantly increased in the pilocarpine and the pilocarpine + saline groups compared with the control group. Ghrelin intervention significantly decreased TNF‑α and NF‑κB protein and mRNA expression compared with the pilocarpine and the pilocarpine + saline groups, although it did not reduce expression levels to those seen in the normal control group. Ghrelin reduces inflammation in cortical neurons following epileptic seizure, and therefore may reduce necrosis and the loss of nerve cells, preserving the normal function of the cortex. Ghrelin may alleviate cortex inflammation reaction by adjusting the TNF‑α and NF‑κB so as to reduce child epilepsy attack repeatedly. The findings of the present study may contribute to the clarification of the role of Ghrelin in the brain in seizure‑induced immune system physiology and may also present novel approaches to the etiology and treatment of epileptic seizures.
Collapse
Affiliation(s)
- Kun Han
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Qing-Yi Wang
- Department of Pain Medicine, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Cai-Xia Wang
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Shao-Yong Luan
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Wen-Peng Tian
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Yue Wang
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Rui-Yun Zhang
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
12
|
Chi Y, Wu B, Guan J, Xiao K, Lu Z, Li X, Xu Y, Xue S, Xu Q, Rao J, Guo Y. Establishment of a rhesus monkey model of chronic temporal lobe epilepsy using repetitive unilateral intra-amygdala kainic acid injections. Brain Res Bull 2017; 134:273-282. [PMID: 28842304 DOI: 10.1016/j.brainresbull.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is a common type of acquired epilepsy refractory to medical treatment. As such, establishing animal models of this disease is critical to developing new and effective treatment modalities. Because of their small head size, rodents are not suitable for comprehensive electroencephalography (EEG) evaluation via scalp or subdural electrodes. Therefore, a larger primate model that closely recapitulates signs of TLE is needed; here we describe a rhesus monkey model resembling chronic TLE. METHODS Eight monkeys were divided into two groups: kainic acid (KA) group (n=6) and saline control group (n=2). Intra-amygdala KA injections were performed biweekly via an Ommaya device until obvious epileptiform discharges were recorded. Video-EEG recording was conducted intermittently throughout the experiment using both scalp and subdural electrodes. Brains were then analyzed for Nissl and glial fibrillary acid protein (GFAP) immunostaining. RESULTS After 2-4 injections of KA (approximately 1.2-2.4mg, 0.12-0.24mg/kg), interictal epileptiform discharges (IEDs) were recorded in all KA-treated animals. Spontaneous recurrent seizures (SRSs) accompanied by symptoms mimicking temporal lobe absence (undetectable without EEG recording), but few mild motor signs, were recorded in 66.7% (four of six) KA-treated animals. Both IEDs and seizures indicated a primary epileptic zone in the right temporal region and contralateral discharges were later detected. Segmental pyramidal cell loss and gliosis were detected in the brain of a KA-treated monkey. CONCLUSIONS Through a modified protocol of unilateral repetitive intra-amygdala KA injections, a rhesus monkey model with similar behavioral and brain electrical features as TLE was developed.
Collapse
Affiliation(s)
- Yajie Chi
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Department of Neurosurgery, Shunde Hospital of Southern Medical University, Foshan, 528300, China
| | - Bolin Wu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianwei Guan
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Kuntai Xiao
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ziming Lu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiao Li
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuting Xu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shan Xue
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Qiang Xu
- Department of Neurosurgery, Affiliated Shunde Heping Surgical Hospital of GUCM, Foshan, 528308, China.
| | - Junhua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510282, China.
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
13
|
Kienzler-Norwood F, Costard L, Sadangi C, Müller P, Neubert V, Bauer S, Rosenow F, Norwood BA. A novel animal model of acquired human temporal lobe epilepsy based on the simultaneous administration of kainic acid and lorazepam. Epilepsia 2017; 58:222-230. [PMID: 28157273 DOI: 10.1111/epi.13579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Kainic acid (KA) is a potent glutamate analog that is used to induce neurodegeneration and model temporal lobe epilepsy (TLE) in rodents. KA reliably induces severe, prolonged seizures, that is, convulsive status epilepticus (cSE), which is typically fatal without pharmacologic intervention. Although the use of KA to model human epilepsy has proven unquestionably valuable for >30 years, significant variability and mortality continue to confound results. These issues are probably the consequence of cSE, an all-or-nothing response that is inherently capricious and uncontrollable. The relevance of cSE to the human condition is dubious, however, as most patients with epilepsy never experienced it. We sought to develop a simple, KA-based animal model of TLE that avoids cSE and its confounds. METHODS Adult, male Sprague-Dawley rats received coincident subcutaneous injections of KA (5 mg) and lorazepam (0.25 mg), approximately 15.0 and 0.75 mg/kg, respectively. Continuous video-electroencephalography (EEG) was used to monitor acute seizure activity and detect spontaneous seizures. Immunocytochemistry, Fluoro-Jade B staining, and Timm staining were used to characterize both acute and chronic neuropathology. RESULTS Acutely, focal hippocampal seizures were induced, which began after about 30 min and were self-terminating after a few hours. Widespread hippocampal neurodegeneration was detected after 4 days. Spontaneous, focal hippocampal seizures began after an average of 12 days in all animals. Classic hippocampal sclerosis and mossy fiber sprouting characterized the long-term neuropathology. Morbidity and mortality rates were both 0%. SIGNIFICANCE We show here that the effects of systemic KA can be limited to the hippocampus simply with coadministration of a benzodiazepine at a low dose. This means that lorazepam can block convulsive seizures without truly stopping seizure activity. This novel, cSE-free animal model reliably mimics the defining characteristics of acquired mesial TLE: hippocampal sclerosis and spontaneous hippocampal-onset seizures after a prolonged seizure-free period, without significant morbidity, mortality, or nonresponders.
Collapse
Affiliation(s)
- Friederike Kienzler-Norwood
- Department of Neurology, Epilepsy Center-Marburg, Philipps University, Marburg, Germany.,Department of Neurology, Epilepsy Center-Frankfurt Rhein-Main, Goethe University, Frankfurt am Main, Germany.,Expesicor LLC, Kalispell, Montana, U.S.A
| | - Lara Costard
- Department of Neurology, Epilepsy Center-Marburg, Philipps University, Marburg, Germany
| | - Chinmaya Sadangi
- Department of Neurology, Epilepsy Center-Marburg, Philipps University, Marburg, Germany
| | - Philipp Müller
- Department of Neurology, Epilepsy Center-Marburg, Philipps University, Marburg, Germany
| | - Valentin Neubert
- Department of Neurology, Epilepsy Center-Marburg, Philipps University, Marburg, Germany
| | - Sebastian Bauer
- Department of Neurology, Epilepsy Center-Marburg, Philipps University, Marburg, Germany.,Department of Neurology, Epilepsy Center-Frankfurt Rhein-Main, Goethe University, Frankfurt am Main, Germany
| | - Felix Rosenow
- Department of Neurology, Epilepsy Center-Marburg, Philipps University, Marburg, Germany.,Department of Neurology, Epilepsy Center-Frankfurt Rhein-Main, Goethe University, Frankfurt am Main, Germany
| | - Braxton A Norwood
- Department of Neurology, Epilepsy Center-Marburg, Philipps University, Marburg, Germany.,Department of Neurology, Epilepsy Center-Frankfurt Rhein-Main, Goethe University, Frankfurt am Main, Germany.,Expesicor LLC, Kalispell, Montana, U.S.A
| |
Collapse
|
14
|
Reynolds CD, Smith G, Jefferson T, Lugo JN. The effect of early life status epilepticus on ultrasonic vocalizations in mice. Epilepsia 2016; 57:1377-85. [PMID: 27378279 DOI: 10.1111/epi.13450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Infant crying is a series of innate vocal patterns intended to elicit the attention of adult caregivers for fulfillment of specific needs such as pain, hunger, or hypostimulation. It is one of the earliest forms of observable communication. In neonatal rodents, this behavior has recently been investigated as a potential early behavioral marker of neural deficits in neurodevelopmental disorders. However, few studies have examined the effects of seizures on vocalization behavior during the neonatal period. The purpose of this study is to investigate the effect of a single kainate-induced early life seizure on vocalization behavior in mice. This study also investigates the subsequent effect of seizures on two pathways critical for early neural development and epileptogenesis: the phosphoinositide 3-kinase|serine/threonine kinase|mammalian target of rapamycin (PI3K-Akt-mTOR) and canonical (Wingless-Int Wnt) intracellular signaling pathways. METHODS On postnatal day 10, male and female 129SvEvTac mice received a single intraperitoneal injection of kainic acid (2.5 mg/kg) or vehicle injection. The kainate administration resulted in 1-2 h of status epilepticus. On postnatal days 11 and 12, the quantity and duration of isolation-induced ultrasonic vocalizations were recorded. Western blotting analyses were performed using male and female pups on postnatal day 12. RESULTS There was significant, male-specific suppression in the quantity and total duration of 50-kHz calls on postnatal day 12 following seizures. The hippocampi of male mice on this postnatal day also revealed male-specific changes in the PI3K-Akt-mTOR intracellular signaling pathway, as well as changes in phosphorylated fragile × mental retardation protein. SIGNIFICANCE These findings demonstrate that early life seizures can disrupt communication behavior in neonatal mice.
Collapse
Affiliation(s)
- Conner D Reynolds
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, U.S.A
| | - Gregory Smith
- Institute of Biomedical Sciences, Baylor University, Waco, Texas, U.S.A
| | - Taylor Jefferson
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, U.S.A
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, U.S.A.,Institute of Biomedical Sciences, Baylor University, Waco, Texas, U.S.A
| |
Collapse
|
15
|
Rodriguez-Alvarez N, Jimenez-Mateos EM, Dunleavy M, Waddington JL, Boylan GB, Henshall DC. Effects of hypoxia-induced neonatal seizures on acute hippocampal injury and later-life seizure susceptibility and anxiety-related behavior in mice. Neurobiol Dis 2015; 83:100-14. [PMID: 26341542 DOI: 10.1016/j.nbd.2015.08.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/06/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022] Open
Abstract
Seizures are common during the neonatal period, often due to hypoxic-ischemic encephalopathy and may contribute to acute brain injury and the subsequent development of cognitive deficits and childhood epilepsy. Here we explored short- and long-term consequences of neonatal hypoxia-induced seizures in 7 day old C57BL/6J mice. Seizure activity, molecular markers of hypoxia and histological injury were investigated acutely after hypoxia and response to chemoconvulsants and animal behaviour was explored at adulthood. Hypoxia was induced by exposing pups to 5% oxygen for 15 min (global hypoxia). Electrographically defined seizures with behavioral correlates occurred in 95% of these animals and seizures persisted for many minutes after restitution of normoxia. There was minimal morbidity or mortality. Pre- or post-hypoxia injection of phenobarbital (50mg/kg) had limited efficacy at suppressing seizures. The hippocampus from neonatal hypoxia-seizure mice displayed increased expression of vascular endothelial growth factor and the immediate early gene c-fos, minimal histological evidence of cell injury and activation of caspase-3 in scattered neurons. Behavioral analysis of mice five weeks after hypoxia-induced seizures detected novel anxiety-related and other behaviors, while performance in a spatial memory test was similar to controls. Seizure threshold tests with kainic acid at six weeks revealed that mice previously subject to neonatal hypoxia-induced seizures developed earlier, more frequent and longer-duration seizures. This study defines a set of electro-clinical, molecular, pharmacological and behavioral consequences of hypoxia-induced seizures that indicate short- and long-term deleterious outcomes and may be a useful model to investigate the pathophysiology and treatment of neonatal seizures in humans.
Collapse
Affiliation(s)
| | - Eva M Jimenez-Mateos
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mark Dunleavy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John L Waddington
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Geraldine B Boylan
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland; Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland.
| |
Collapse
|
16
|
P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus. Epilepsy Behav 2015; 49:8-12. [PMID: 25843343 DOI: 10.1016/j.yebeh.2015.02.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/11/2022]
Abstract
There remains a need for more efficacious treatments for status epilepticus. Prolonged seizures result in the release of ATP from cells which activates the P2 class of ionotropic and metabotropic purinoceptors. The P2X receptors gate depolarizing sodium and calcium entry and are expressed by both neurons and glia throughout the brain, and a number of subtypes are upregulated after status epilepticus. Recent studies have explored the in vivo effects of targeting ATP-gated P2X receptors in preclinical models of status epilepticus, with particular focus on the P2X7 receptor (P2X7R). The P2X7R mediates microglial activation and the release of the proepileptogenic inflammatory cytokine interleukin 1β. The receptor may also directly modulate neurotransmission and gliotransmission and promote the recruitment of immune cells into brain parenchyma. Data from our group and collaborators show that status epilepticus produced by intraamygdala microinjection of kainic acid increases P2X7R expression in the hippocampus and neocortex of mice. Antagonism of the P2X7R in the model reduced seizure severity, microglial activation and interleukin 1β release, and neuronal injury. Coadministration of a P2X7R antagonist with a benzodiazepine also provided seizure suppression in a model of drug-refractory status epilepticus when either treatment alone was minimally effective. More recently, we showed that status epilepticus in immature rats is also reduced by P2X7R antagonism. Together, these findings suggest that P2X receptors may be novel targets for seizure control and interruption of neuroinflammation after status epilepticus. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
|
17
|
Dunleavy M, Schindler CK, Shinoda S, Crilly S, Henshall DC. Neurogenic function in rats with unilateral hippocampal sclerosis that experienced early-life status epilepticus. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2014; 6:199-208. [PMID: 25755841 PMCID: PMC4348706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/13/2014] [Indexed: 06/04/2023]
Abstract
Status epilepticus in the adult brain invariably causes an increase in hippocampal neurogenesis and the appearance of ectopic cells and this has been implicated as a causal factor in epileptogenesis. The effect of status epilepticus on neurogenesis in the developing brain is less well characterized and models of early-life seizures typically do not reproduce the hippocampal damage common to human mesial temporal sclerosis. We recently reported that evoking status epilepticus by intra-amygdala microinjection of kainic acid in post-natal (P) day 10 rats caused substantial acute neuronal death within the ipsilateral hippocampus and rats later developed unilateral hippocampal sclerosis and spontaneous recurrent seizures. Here, we examined the expression of a selection of genes associated with neurogenesis and assessed neurogenic function in this model. Protein levels of several markers of neurogenesis including polysialic acid neural cell adhesion molecule, neuroD and doublecortin were reduced in the hippocampus three days after status epilepticus in P10 rats. In contrast, protein levels of neurogenesis markers were similar to control in rats at P55. Pulse-chase experiments using thymidine analogues suggested there was a reduction in new neurons at 72 h after status epilepticus in P10 rats, whereas numbers of new neurons labelled in epileptic rats at P55 with hippocampal sclerosis were similar to controls. The present study suggests that status epilepticus in the immature brain suppresses neurogenesis but the neurogenic potential is retained in animals that later develop hippocampal sclerosis.
Collapse
Affiliation(s)
- Mark Dunleavy
- Department of Physiology & Medical Physics, Royal College of Surgeons in IrelandDublin, Ireland
| | - Clara K Schindler
- Robert S. Dow Neurobiology Laboratories, Legacy ResearchPortland, OR, USA
| | - Sachiko Shinoda
- Robert S. Dow Neurobiology Laboratories, Legacy ResearchPortland, OR, USA
- Department of Neurosurgery, Mie University School of MedicineMie, Tsu, Japan
| | - Shane Crilly
- Department of Physiology & Medical Physics, Royal College of Surgeons in IrelandDublin, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in IrelandDublin, Ireland
- Irish Centre for Fetal and Neonatal Translational ResearchCork, Ireland
| |
Collapse
|
18
|
In vivo effects of bumetanide at brain concentrations incompatible with NKCC1 inhibition on newborn DGC structure and spontaneous EEG seizures following hypoxia-induced neonatal seizures. Neuroscience 2014; 286:203-15. [PMID: 25463517 DOI: 10.1016/j.neuroscience.2014.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
Abstract
Neonatal seizures caused by perinatal asphyxia and hypoxic-ischemic encephalopathy can be refractory to conventional anticonvulsants. This may be due to the depolarizing effects of gamma-aminobutyric acid (GABA) achieved by the activity of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). The aim of this study is to evaluate the long-term effects of bumetanide, a NKCC1 inhibitor, on hippocampal neurogenesis and seizure susceptibility in hypoxia-induced neonatal seizure model. Wistar rats were subjected to hypoxia-induced neonatal seizures at postnatal day 10 (P10). Following acute seizures, the rats were treated with intraperitoneal injection (i.p.) of bumetanide at a dose of 0.5mg/kg for 3 weeks. In later adulthood, hypoxia-induced seizures increased the number of newborn dentate gyrus cells (DGCs), promoted mossy fiber sprouting (MFS) and reduced the apical dendritic complexity of newborn DGCs 1 month after the insults. In addition, these seizures resulted in long-lasting consequences, such as spontaneous electroencephalography (EEG) seizures, though spatial learning impairments were not seen. Bumetanide treatments significantly enhanced cell proliferation and dendritic development of newborn DGCs after neonatal seizures, accompanied by the decreased seizure activity. However, systemic administration of bumetanide resulted in much lower brain concentrations, and was incompatible with NKCC1 inhibition in blood-brain barrier (BBB)-protected brain tissue. Our results suggested that bumetanide might have long-term effects in suppressing seizure activity, and altering the neurogenesis after neonatal seizures. These effects of bumetanide may be mediated by the targets outside the BBB-protected central nerve system (CNS) or CNS-located target(s) other than NKCC1.
Collapse
|
19
|
Abstract
A significant proportion of temporal lobe epilepsy (TLE), a common, intractable brain disorder, arises in children with febrile status epilepticus (FSE). Preventative therapy development is hampered by our inability to identify early the FSE individuals who will develop TLE. In a naturalistic rat model of FSE, we used high-magnetic-field MRI and long-term video EEG to seek clinically relevant noninvasive markers of epileptogenesis and found that reduced amygdala T2 relaxation times in high-magnetic-field MRI hours after FSE predicted experimental TLE. Reduced T2 values likely represented paramagnetic susceptibility effects derived from increased unsaturated venous hemoglobin, suggesting augmented oxygen utilization after FSE termination. Indeed, T2 correlated with energy-demanding intracellular translocation of the injury-sensor high-mobility group box 1 (HMGB1), a trigger of inflammatory cascades implicated in epileptogenesis. Use of deoxyhemoglobin-sensitive MRI sequences enabled visualization of the predictive changes on lower-field, clinically relevant scanners. This novel MRI signature delineates the onset and suggests mechanisms of epileptogenesis that follow experimental FSE.
Collapse
|
20
|
Akman O, Moshé SL, Galanopoulou AS. Sex-specific consequences of early life seizures. Neurobiol Dis 2014; 72 Pt B:153-66. [PMID: 24874547 DOI: 10.1016/j.nbd.2014.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/07/2014] [Accepted: 05/17/2014] [Indexed: 12/29/2022] Open
Abstract
Seizures are very common in the early periods of life and are often associated with poor neurologic outcome in humans. Animal studies have provided evidence that early life seizures may disrupt neuronal differentiation and connectivity, signaling pathways, and the function of various neuronal networks. There is growing experimental evidence that many signaling pathways, like GABAA receptor signaling, the cellular physiology and differentiation, or the functional maturation of certain brain regions, including those involved in seizure control, mature differently in males and females. However, most experimental studies of early life seizures have not directly investigated the importance of sex on the consequences of early life seizures. The sexual dimorphism of the developing brain raises the question that early seizures could have distinct effects in immature females and males that are subjected to seizures. We will first discuss the evidence for sex-specific features of the developing brain that could be involved in modifying the susceptibility and consequences of early life seizures. We will then review how sex-related biological factors could modify the age-specific consequences of induced seizures in the immature animals. These include signaling pathways (e.g., GABAA receptors), steroid hormones, growth factors. Overall, there are very few studies that have specifically addressed seizure outcomes in developing animals as a function of sex. The available literature indicates that a variety of outcomes (histopathological, behavioral, molecular, epileptogenesis) may be affected in a sex-, age-, region-specific manner after seizures during development. Obtaining a better understanding for the gender-related mechanisms underlying epileptogenesis and seizure comorbidities will be necessary to develop better gender and age appropriate therapies.
Collapse
Affiliation(s)
- Ozlem Akman
- Department of Physiology, Faculty of Medicine, Istanbul Bilim University, 34394 Istanbul, Turkey.
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
21
|
Mesuret G, Engel T, Hessel EV, Sanz-Rodriguez A, Jimenez-Pacheco A, Miras-Portugal MT, Diaz-Hernandez M, Henshall DC. P2X7 receptor inhibition interrupts the progression of seizures in immature rats and reduces hippocampal damage. CNS Neurosci Ther 2014; 20:556-64. [PMID: 24750893 DOI: 10.1111/cns.12272] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 12/15/2022] Open
Abstract
AIMS Early-life seizures, particularly when prolonged, may be harmful to the brain. Current pharmacotherapy is often ineffective; therefore, novel neuro- and/or glio-transmitter systems should be explored for targeting. The P2X7 receptor is a cation-permeable channel with trophic and excitability effects on neurons and glia which is activated by high amounts of ATP that may be released in the setting of injury after severe seizures. Here, we tested the effects of A-438079, a potent and selective P2X7 receptor antagonist in a lesional model of early-life status epilepticus. METHODS Seizures were induced by intra-amygdala kainic acid in 10-day-old rat pups. Electrographic seizure severity, changes to P2X7 receptor expression, inflammatory responses and histological effects were evaluated. RESULTS Seizures induced by intra-amygdala kainic acid increased levels of P2X7 receptor protein and interleukin-1β and caused significant cell death within the ipsilateral hippocampus. A-438079 rapidly reached the brain following systemic injection in P10 rats. Intraperitoneal injection of A-438079 (5 and 15 mg/kg) 60 min after triggering seizures reduced seizure severity and neuronal death within the hippocampus. A-438079 had superior neuroprotective effects compared with an equally seizure-suppressive dose of phenobarbital (25 mg/kg). CONCLUSIONS These results suggest P2X7 receptor antagonists may be suitable as frontline or adjunctive treatments of pediatric status epilepticus or other early-life seizures, particularly when associated with brain damage.
Collapse
Affiliation(s)
- Guillaume Mesuret
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Çarçak N, Zheng T, Ali I, Abdullah A, French C, Powell KL, Jones NC, van Raay L, Rind G, Onat F, O'Brien TJ. The effect of amygdala kindling on neuronal firing patterns in the lateral thalamus in the GAERS model of absence epilepsy. Epilepsia 2014; 55:654-665. [DOI: 10.1111/epi.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology; Faculty of Pharmacy; Istanbul University; Istanbul Turkey
| | - Thomas Zheng
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Idrish Ali
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Ahmad Abdullah
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Chris French
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
- Department of Neurology; Royal Melbourne Hospital; Melbourne Vic. Australia
| | - Kim L. Powell
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Nigel C. Jones
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Leena van Raay
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Gil Rind
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
| | - Filiz Onat
- Department of Pharmacology and Clinical Pharmacology; Marmara University School of Medicine; Istanbul Turkey
| | - Terence J. O'Brien
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Vic. Australia
- Department of Neurology; Royal Melbourne Hospital; Melbourne Vic. Australia
| |
Collapse
|
23
|
Harward SC, McNamara JO. Aligning animal models with clinical epilepsy: where to begin? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:243-51. [PMID: 25012381 DOI: 10.1007/978-94-017-8914-1_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Treatment of the epilepsies have benefitted immensely from study of animal models, most notably in the development of diverse anti-seizure medications in current clinical use. However, available drugs provide only symptomatic relief from seizures and are often ineffective. As a result, a critical need remains for developing improved symptomatic or disease-modifying therapies - or ideally, preventive therapies. Animal models will undoubtedly play a central role in such efforts. To ensure success moving forward, a critical question arises, namely "How does one make laboratory models relevant to our clinical understanding and treatment?" Our answer to this question: It all begins with a detailed understanding of the clinical phenotype one seeks to model. To make our case, we point to two examples - Fragile X syndrome and status epilepticus-induced mesial temporal lobe epilepsy - and examine how development of animal models for these distinct syndromes is based upon observations by astute clinicians and systematic study of the disorder. We conclude that the continuous and effective interaction of skilled clinicians and bench scientists is critical to the optimal design and study of animal models to facilitate insight into the nature of human disorders and enhance likelihood of improved therapies.
Collapse
Affiliation(s)
- Stephen C Harward
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA,
| | | |
Collapse
|
24
|
Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev 2013; 37:2887-99. [PMID: 24184743 DOI: 10.1016/j.neubiorev.2013.10.011] [Citation(s) in RCA: 425] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
The kainic acid model of temporal lobe epilepsy has greatly contributed to the understanding of the molecular, cellular and pharmacological mechanisms underlying epileptogenesis and ictogenesis. This model presents with neuropathological and electroencephalographic features that are seen in patients with temporal lobe epilepsy. It is also characterized by a latent period that follows the initial precipitating injury (i.e., status epilepticus) until the appearance of recurrent seizures, as observed in the human condition. Finally, the kainic acid model can be reproduced in a variety of species using either systemic, intrahippocampal or intra-amygdaloid administrations. In this review, we describe the various methodological procedures and evaluate their differences with respect to the behavioral, electroencephalographic and neuropathological correlates. In addition, we compare the kainic acid model with other animal models of temporal lobe epilepsy such as the pilocarpine and the kindling model. We conclude that the kainic acid model is a reliable tool for understanding temporal lobe epilepsy, provided that the differences existing between methodological procedures are taken into account.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, QC, Canada H3A 2B4
| | | |
Collapse
|
25
|
Helgager J, Liu G, McNamara JO. The cellular and synaptic location of activated TrkB in mouse hippocampus during limbic epileptogenesis. J Comp Neurol 2013; 521:499-521, Spc1. [PMID: 22987780 DOI: 10.1002/cne.23225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/18/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023]
Abstract
Understanding the mechanisms of limbic epileptogenesis in cellular and molecular terms may provide novel therapeutic targets for its prevention. The neurotrophin receptor tropomyosin-related kinase B (TrkB) is thought to be critical for limbic epileptogenesis. Enhanced activation of TrkB, revealed by immunodetection of enhanced phosphorylated TrkB (pTrkB), a surrogate measure of its activation, has been identified within the hippocampus in multiple animal models. Knowledge of the cellular locale of activated TrkB is necessary to elucidate its functional consequences. Using an antibody selective to pTrkB in conjunction with confocal microscopy and cellular markers, we determined the cellular and subcellular locale of enhanced pTrkB induced by status epilepticus (SE) evoked by infusion of kainic acid into the amygdala of adult mice. SE induced enhanced pTrkB immunoreactivity in two distinct populations of principal neurons within the hippocampus-the dentate granule cells and CA1 pyramidal cells. Enhanced immunoreactivity within granule cells was found within mossy fiber axons and giant synaptic boutons. By contrast, enhanced immunoreactivity was found within apical dendritic shafts and spines of CA1 pyramidal cells. A common feature of this enhanced pTrkB at these cellular locales is its localization to excitatory synapses between excitatory neurons, presynaptically in the granule cells and postsynaptically in CA1 pyramidal cells. Long-term potentiation (LTP) is one cellular consequence of TrkB activation at these excitatory synapses that may promote epileptogenesis.
Collapse
Affiliation(s)
- Jeffrey Helgager
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
26
|
Brennan GP, Jimenez-Mateos EM, McKiernan RC, Engel T, Tzivion G, Henshall DC. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo. PLoS One 2013; 8:e54491. [PMID: 23359526 PMCID: PMC3554740 DOI: 10.1371/journal.pone.0054491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/12/2012] [Indexed: 01/05/2023] Open
Abstract
14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ) isoform has been linked to endoplasmic reticulum (ER) function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.
Collapse
Affiliation(s)
- Gary P. Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eva M. Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross C. McKiernan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Guri Tzivion
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
27
|
Motamedi M, Zandieh A, Hajimirzabeigi A, Tahsini M, Vakhshiteh F, Rahimian E. Hippocampal body changes in pure partial onset sleep and pure partial onset waking epileptic patients. Neurol Sci 2013; 34:1529-35. [PMID: 23283529 DOI: 10.1007/s10072-012-1275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/12/2012] [Indexed: 11/28/2022]
Abstract
The aim of the current study was to evaluate for the first time the hippocampal changes in patients with pure sleep and pure waking epilepsy. A total of 35 patients with pure partial onset sleep epilepsy and 35 patients with pure partial onset waking epilepsy matched for age and sex ratio were enrolled. MR images were analyzed to determine hippocampal body changes. Rounding ratio of hippocampal body was defined as short axis divided by long axis and hippocampal bodies with ratios ≥ 0.70 were considered rounded. Hippocampal sclerosis and atrophy were found in nine (25.7 %) and seven (20.0 %) patients with pure sleep epilepsy, and in 12 (34.3 %) and 11 (31.4 %) patients with pure waking epilepsy, respectively (P > 0.05 for the comparison between sleep and waking epilepsy). However, proportion of subjects with rounded hippocampal bodies (15, 42.9 % vs. 3, 8.6 % for patients with sleep and waking epilepsy, respectively) and rounding ratios of both left and right hippocampal bodies (0.66 ± 0.13 and 0.61 ± 0.12, respectively for left and right hippocampal bodies in sleep epileptic patients vs. 0.57 ± 0.11 and 0.55 ± 0.11, respectively for left and right hippocampal bodies in waking epileptic patients) were increased in patients with sleep epilepsy (P < 0.05). Further, in sleep epileptic patients with left sided hippocampal body rounding, epileptiform discharges were more readily lateralized to the left temporal lobe (P < 0.05). In conclusion, hippocampal sclerosis and atrophy are not different between pure partial onset sleep and waking epileptic patients. However, rounding ratio and frequency of hippocampal body rounding are increased in sleep epileptic patients.
Collapse
Affiliation(s)
- Mahmood Motamedi
- Department of Neurology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran,
| | | | | | | | | | | |
Collapse
|
28
|
Staley K. Neonatal encephalopathy, MRI lesions, and later epilepsy: no harm, no foul? Epilepsy Curr 2012; 12:128-30. [PMID: 22936880 PMCID: PMC3423207 DOI: 10.5698/1535-7511-12.4.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Matsufuji M, Utsunomiya H, Inoue T, Yasumoto S, Takashima S, Mitsudome A. Magnetic resonance imaging volumetry and clinical analysis of epilepsy patients with unilateral hippocampal abnormality. Pediatr Int 2012; 54:19-26. [PMID: 21810153 DOI: 10.1111/j.1442-200x.2011.03444.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND In order to clarify the correlation between morphological characteristics and clinical features in epilepsy patients with unilateral hippocampal abnormality, morphological and morphometric magnetic resonance imaging studies were performed. METHODS We selected a series of childhood-onset epilepsy patients with unilateral hippocampal abnormality. The volume of hippocampal formation and anterior temporal lobe were measured, and the hippocampal morphology was compared with their clinical features. The morphological characteristics of the hippocampal formation were classified into three groups: group I, diffuse and severe volume reduction of the hippocampal formation and anterior temporal lobe with abnormal signal; group II, focal atrophy or focal abnormal signal in the hippocampal formation; and group III, no significant volume reduction but an enlargement of the temporal horn. RESULTS All of the patients in group I had a history of status epilepticus in infancy. Temporal lobe epilepsy (TLE) was found in three of four patients. Group II contained TLE in three and frontal lobe epilepsy in one. One patient with intractable TLE had a history of status epilepticus in infancy. Group III contained miscellaneous epilepsies, including benign partial epilepsy with centro-temporal spikes in three of seven patients. Five patients in group III showed some characteristic features of hippocampal malrotation, which refers to incomplete hippocampal infolding. CONCLUSIONS Diffuse and severe volume reduction of the hippocampal formation and anterior temporal lobe with unilateral hippocampal sclerosis was strongly associated with status epilepticus in infancy. Both hippocampal sclerosis and hippocampal malrotation suggest significant roles in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Mayumi Matsufuji
- Department of Pediatrics, Fukuoka University School of Medicine, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Hippocampal sclerosis in children younger than 2 years. Pediatr Radiol 2011; 41:1239-45. [PMID: 21735179 DOI: 10.1007/s00247-011-2166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 05/19/2011] [Accepted: 05/25/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hippocampal sclerosis (HS) is rarely considered as a diagnosis in children younger than 2 years. OBJECTIVE To describe imaging features in conjunction with clinical information in patients with hippocampal sclerosis who are younger than 2 years. MATERIALS AND METHODS We retrospectively reviewed MR brain imaging and clinical information in five children in whom the diagnosis of HS was made both clinically and by MRI prior to 2 years of age. RESULTS Imaging features establishing the diagnosis of hippocampal sclerosis were bright T2 signal and volume loss, while the internal architecture of the hippocampal formation was preserved in almost all children. Clinically, all children had an infectious trigger. CONCLUSION It is necessary for radiologists to consider HS in children with certain clinical features to plan an MRI protocol that is appropriate for detection of hippocampal pathology.
Collapse
|
31
|
Li T, Lytle N, Lan JQ, Sandau US, Boison D. Local disruption of glial adenosine homeostasis in mice associates with focal electrographic seizures: a first step in epileptogenesis? Glia 2011; 60:83-95. [PMID: 21964979 DOI: 10.1002/glia.21250] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/09/2011] [Indexed: 12/20/2022]
Abstract
Astrogliosis and associated dysfunction of adenosine homeostasis are pathological hallmarks of the epileptic brain and thought to contribute to seizure generation in epilepsy. The authors hypothesized that astrogliosis-an early component of the epileptogenic cascade-might be linked to focal seizure onset. To isolate the contribution of astrogliosis to ictogenesis from other pathological events involved in epilepsy, the authors used a minimalistic model of epileptogenesis in mice, based on a focal onset status epilepticus triggered by intra-amygdaloid injection of kainic acid. The authors demonstrate acute neuronal cell loss restricted to the injected amygdala and ipsilateral CA3, followed 3 weeks later by focal astrogliosis and overexpression of the adenosine-metabolizing enzyme adenosine kinase (ADK). Using synchronous electroencephalographic recordings from multiple depth electrodes, the authors identify the KA-injected amygdala and ipsilateral CA3 as two independent foci for the initiation of non-synchronized electrographic subclinical seizures. Importantly, seizures remained focal and restricted to areas of ADK overexpression. However, after systemic application of a non-convulsive dose of an adenosine A(1) -receptor antagonist, seizures in amygdala and CA3 immediately synchronized and spread throughout the cortex, leading to convulsive seizures. This focal seizure phenotype remained stable over at least several weeks. We conclude that astrogliosis via disruption of adenosine homeostasis per se and in the absence of any other overt pathology, is associated with the emergence of spontaneous recurrent subclinical seizures, which remain stable over space and time. A secondary event, here mimicked by brain-wide disruption of adenosine signaling, is likely required to turn pre-existing subclinical seizures into a clinical seizure phenotype.
Collapse
Affiliation(s)
- Tianfu Li
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon 97232, USA
| | | | | | | | | |
Collapse
|
32
|
Moreira JD, de Siqueira LV, Lague VM, Porciúncula LO, Vinadé L, Souza DO. Short-term alterations in hippocampal glutamate transport system caused by one-single neonatal seizure episode: implications on behavioral performance in adulthood. Neurochem Int 2011; 59:217-23. [PMID: 21693144 DOI: 10.1016/j.neuint.2011.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/12/2011] [Accepted: 05/04/2011] [Indexed: 12/14/2022]
Abstract
Impairment in the activity and expression of glutamate transporters has been found in experimental models of epilepsy in adult animals. However, there are few studies investigating alterations on glutamate transporters caused by epilepsy in newborn animals, especially in the early periods after seizures. In this study, alterations in the hippocampal glutamate transporters activity and immunocontent were investigated in neonatal rats (7 days old) submitted to kainate-induced seizures model. Glutamate uptake, glutamate transporters (GLT-1, GLAST, EAAC1) and glutamine synthetase (GS) were assessed in hippocampal slices obtained 12 h, 24 h, 48 h, 72 h and 60 days after seizures. Immunoreactivity for hippocampal GFAP, NeuN and DAPI were assessed 24 h after seizure. Behavioral analysis (elevated-plus maze and inhibitory avoidance task) was also investigated in the adult animals (60 days old). The decrease on glutamate uptake was observed in hippocampal slices obtained 24 h after seizures. The immunocontent of GLT-1 increased at 12 h and decreased at 24 h (+62% and -20%, respectively), while GLAST increased up to 48 h after seizures. No alterations were observed for EAAC1 and GS. It should be mentioned that there were no long-term changes in tested glutamate transporters at 60 days after kainate treatment. GFAP immunoreactivity increased in all hippocampal subfields (CA1, CA3 and dentate gyrus) with no alterations in NeuN and DAPI staining. In the adulthood, kainate-treated rats showed anxiety-related behavior and lower performance in the inhibitory avoidance task. Our findings indicate that acute modifications on hippocampal glutamate transporters triggered by a single convulsive event in early life may play a role in the behavioral alterations observed in adulthood.
Collapse
Affiliation(s)
- Júlia D Moreira
- Post-graduate Program in Biological Sciences-Biochemistry, Department of Biochemistry, Health and Basic Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600 Anexo, 90035-003 Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
33
|
Rajasekaran K, Zanelli SA, Goodkin HP. Lessons from the laboratory: the pathophysiology, and consequences of status epilepticus. Semin Pediatr Neurol 2010; 17:136-43. [PMID: 20727481 PMCID: PMC2943667 DOI: 10.1016/j.spen.2010.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Status epilepticus (SE) is the most common neurologic emergency of childhood. Experimental models parallel several clinical features of SE including (1) treatment is complicated by an increasing probability that benzodiazepines will fail with increasing seizure duration and (2) outcome varies with age and etiology. Studies using these models showed that the activity-dependent trafficking of GABA(A) receptors contributes in part to the progressive decline in GABA-mediated inhibition and the failure of the benzodiazepines. Furthermore, laboratory studies have provided evidence that age and inciting stimulus interact to determine the neuronal circuits activated during SE (ie, functional anatomy) and that differences in functional anatomy can partially account for variations in SE outcome. Future laboratory studies are likely to provide an additional understanding of the cellular and molecular mechanisms that underlie SE and its consequences. Such studies are necessary in the development of rational emergent therapy for SE and its long-term outcomes.
Collapse
|