1
|
Dakal TC, Kakde GS, Maurya PK. Genomic, epigenomic and transcriptomic landscape of glioblastoma. Metab Brain Dis 2024; 39:1591-1611. [PMID: 39180605 DOI: 10.1007/s11011-024-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
The mostly aggressive and extremely malignant type of central nervous system is Glioblastoma (GBM), which is characterized by an extremely short average survival time of lesser than 16 months. The primary cause of this phenomenon can be attributed to the extensively altered genome of GBM, which is characterized by the dysregulation of numerous critical signaling pathways and epigenetics regulations associated with proliferation, cellular growth, survival, and apoptosis. In light of this, different genetic alterations in critical signaling pathways and various epigenetics regulation mechanisms are associated with GBM and identified as distinguishing markers. Such GBM prognostic alterations are identified in PI3K/AKT, p53, RTK, RAS, RB, STAT3 and ZIP4 signaling pathways, metabolic pathway (IDH1/2), as well as alterations in epigenetic regulation genes (MGMT, CDKN2A-p16INK4aCDKN2B-p15INK4b). The exploration of innovative diagnostic and therapeutic approaches that specifically target these pathways is utmost importance to enhance the future medication for GBM. This study provides a comprehensive overview of dysregulated epigenetic mechanisms and signaling pathways due to mutations, methylation, and copy number alterations of in critical genes in GBM with prevalence and emphasizing their significance.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia, University, Udaipur, Rajasthan, 313001, India.
| | - Ganesh S Kakde
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
2
|
Suvarnapathaki S, Serrano-Farias A, Dudley JC, Bettegowda C, Rincon-Torroella J. Unlocking the Potential of Circulating miRNAs as Biomarkers in Glioblastoma. Life (Basel) 2024; 14:1312. [PMID: 39459612 PMCID: PMC11509808 DOI: 10.3390/life14101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Using microRNAs (miRNAs) as potential circulating biomarkers in diagnosing and treating glioblastoma (GBM) has garnered a lot of scientific and clinical impetus in the past decade. As an aggressive primary brain tumor, GBM poses challenges in early detection and effective treatment with significant current diagnostic constraints and limited therapeutic strategies. MiRNA dysregulation is present in GBM. The intricate involvement of miRNAs in altering cell proliferation, invasion, and immune escape makes them prospective candidates for identifying and monitoring GBM diagnosis and response to treatment. These miRNAs could play a dual role, acting as both potential diagnostic markers and targets for therapy. By modulating the activity of various oncogenic and tumor-suppressive proteins, miRNAs create opportunities for precision medicine and targeted therapies in GBM. This review centers on the critical role and function of circulating miRNA biomarkers in GBM diagnosis and treatment. It highlights their significance in providing insights into disease progression, aiding in early diagnosis, and potential use as targets for novel therapeutic interventions. Ultimately, the study of miRNA would contribute to improving patient outcomes in the challenging landscape of GBM management.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Antolin Serrano-Farias
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jonathan C. Dudley
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| |
Collapse
|
3
|
Chen LL, Zhao XY. MiR-182 in Glioma: An insufficiently explored and controversial research area. J Neurol Sci 2024; 458:122911. [PMID: 38309250 DOI: 10.1016/j.jns.2024.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Affiliation(s)
- Lin-Lin Chen
- Department of Neurology, Liaocheng Third People's Hospital of Shandong Province, Liaocheng 252000, PR China
| | - Xiao-Yang Zhao
- Department of Neurology, Liaocheng Third People's Hospital of Shandong Province, Liaocheng 252000, PR China.
| |
Collapse
|
4
|
Quraishi R, Sanyal S, Dwivedi M, Moitra M, Dwivedi M. Genetic Factors and MicroRNAs in the Development of Gallbladder Cancer: The Prospective Clinical Targets. Curr Drug Targets 2024; 25:375-387. [PMID: 38544392 DOI: 10.2174/0113894501182288240319074330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/01/2024] [Indexed: 07/19/2024]
Abstract
Gallbladder cancer (GBC) is an uncommon condition in which malignant (cancer) cells are detected in gallbladder tissue. Cancer is often triggered when normal cells turn malignant and begin to spread. Cancer can also be caused by genetic anomalies that result in uncontrolled cell proliferation and tumor development. MicroRNAs (also known as miRNAs or miRs) are a group of small, endogenous, non-coding RNAs of 19-23 nucleotides in length, which play a key role in post-transcriptional gene regulation. These miRNAs serve as negative gene regulators by supervising target genes and regulating biological processes, including cell proliferation, migration, invasion, and apoptosis. Cancer development and progression relate to aberrant miRNA expression. This review demonstrated the implication of various genetic factors and microRNAs in developing and regulating GBC. This suggests the potential of genes and RNAs as the diagnostic, prognostic, and therapeutic targets in gallbladder cancer.
Collapse
Affiliation(s)
- Roshni Quraishi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
| | - Somali Sanyal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
| | - Medha Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
| | - Monika Moitra
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
| |
Collapse
|
5
|
Zheng Y, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zhao R, Chubarev V, Fan R, Liu J. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res 2023; 13:6147-6175. [PMID: 38187051 PMCID: PMC10767355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Small non-coding RNAs (microRNA, miR), powerful epigenetic regulators, were found involved in the regulation of most biological functions via post-translational inhibition of protein expression. Increased expression of pro-oncogenic miRs (known as miR cancer biomarkers) and inhibition of pro-apoptotic miR expression have been demonstrated in different tumors. The recently identified miR-183 was found implicated in gastrointestinal tumor metabolism regulation. Elevated miR-183 expression and cancer-promoting effects were reported in esophageal and colorectal cancers, which was partially contradicted by controversial data observed in gastric cancers. Anti-cancer effect of miR-183 in gastric cancer cells was associated with the Bim-1 and Ezrin genes regulation. Many studies indicated that miR-183 can inhibit tumor suppressor genes in most cell lines, promoting tumor cell proliferation and migration. Increased miR-183 level results in the downregulation of FOXO1, PDCD4, and other tumor suppressor genes in gastrointestinal tumor cells. MiR-183 also influences the signaling of PI3K/AKT/mTOR, Wnt/β-catenin, and Bcl-2/p53 signaling pathways. Mir-183 inhibits apoptosis and autophagy, and promotes epithelial-to-mesenchymal transition, cancer cell proliferation, and migration. Accordingly, gastrointestinal cancer occurrence, development of chemoradiotherapy resistance, recurrence/metastasis, and prognosis were associated with miR-183 expression. The current study assessed reported miR-183 functions and signaling, providing new insights for the diagnosis and treatment of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Yufei Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Olga Sukocheva
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Ruiwen Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Vladimir Chubarev
- Sechenov First Moscow State Medical University (Sechenov University)8-2 Trubetskaya St., Moscow 119991, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
6
|
Akdaş EY, Temizci B, Karabay A. miR96- and miR182-driven regulation of cytoskeleton results in inhibition of glioblastoma motility. Cytoskeleton (Hoboken) 2023; 80:367-381. [PMID: 36961307 DOI: 10.1002/cm.21754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common forms of brain tumor. As an excessively invasive tumor type, GBM cannot be fully cured due to its invasion ability into healthy brain tissues. Therefore, molecular mechanisms behind GBM migration and invasion need to be deeply investigated for the development of effective GBM treatments. Cellular motility and invasion are strictly associated with the cytoskeleton, especially with actins and tubulins. Palladin, an actin-binding protein, tightly bundles actins during initial invadopodia and contraction fiber formations, which are essential for cellular motility. Spastin, a microtubule-binding protein, cuts microtubules into small pieces and acts on invadopodia elongation and cellular trafficking of invadopodia-associated proteins. Regulation of proteins such as spastin and palladin involved in dynamic reorganization of the cytoskeleton, are rapidly carried out by microRNAs at the posttranscriptional level. Therefore, determining possible regulatory miRNAs of spastin and palladin is critical to elucidate GBM motility. miR96 and miR182 down-regulate SPAST and PALLD at both transcript and protein levels. Over-expression of miR96 and miR182 resulted in inhibition of the motility. However, over-expression of spastin and palladin induced the motility. Spastin and palladin rescue of miR96- or miR182-transfected U251 MG cells resulted in diminished effects of the miRNAs and rescued the motility. Our results demonstrate that miR96 and miR182 over-expressions inhibit GBM motility by regulating cytoskeleton through spastin and palladin. These findings suggest that miR96 and miR182 should be investigated in more detail for their potential use in GBM therapy.
Collapse
Affiliation(s)
- Enes Yağız Akdaş
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Benan Temizci
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
7
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
8
|
Avgoulas DI, Tasioulis KS, Papi RM, Pantazaki AA. Therapeutic and Diagnostic Potential of Exosomes as Drug Delivery Systems in Brain Cancer. Pharmaceutics 2023; 15:pharmaceutics15051439. [PMID: 37242681 DOI: 10.3390/pharmaceutics15051439] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is designated as one of the principal causes of mortality universally. Among different types of cancer, brain cancer remains the most challenging one due to its aggressiveness, the ineffective permeation ability of drugs through the blood-brain barrier (BBB), and drug resistance. To overcome the aforementioned issues in fighting brain cancer, there is an imperative need for designing novel therapeutic approaches. Exosomes have been proposed as prospective "Trojan horse" nanocarriers of anticancer theranostics owing to their biocompatibility, increased stability, permeability, negligible immunogenicity, prolonged circulation time, and high loading capacity. This review provides a comprehensive discussion on the biological properties, physicochemical characteristics, isolation methods, biogenesis and internalization of exosomes, while it emphasizes their therapeutic and diagnostic potential as drug vehicle systems in brain cancer, highlighting recent advances in the research field. A comparison of the biological activity and therapeutic effectiveness of several exosome-encapsulated cargo including drugs and biomacromolecules underlines their great supremacy over the non-exosomal encapsulated cargo in the delivery, accumulation, and biological potency. Various studies on cell lines and animals give prominence to exosome-based nanoparticles (NPs) as a promising and alternative approach in the management of brain cancer.
Collapse
Affiliation(s)
- Dimitrios I Avgoulas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos S Tasioulis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Stupak EV, Veryasikina YA, Titov SE, Askandaryan AS, Hiana JC, Zhimulyov IF, Stupak VV. MicroRNAs in the Diagnosis of Malignancy of Supratentorial Brain Gliomas and Prognosis of Disease Progression. Cureus 2023; 15:e35906. [PMID: 37033545 PMCID: PMC10081567 DOI: 10.7759/cureus.35906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
INTRODUCTION The study of brain tumors has shown that microRNAs can act as both oncogenes and tumor suppressors and, consequently, can be used as biomarkers for the diagnosis and prognosis of such tumors. Thus, big interest arises in the role of microRNA and its part in oncogenesis in the human brain to find key molecules that can act as tumor markers for diagnostic and prognostic purposes, as well as potential therapeutic agents. STUDY AIM The sim of this study was to assess histological, molecular, and genetic metrics in patients with supratentorial gliomas, and indicate diagnostic and prognostic abilities of microRNA usage as biomarkers of the grade of malignancy of the tumor. MATERIALS AND METHODS Clinical and genetic studies were performed in 107 operated patients with supratentorial gliomas of different malignancies. The expression levels of 10 microRNAs (-16, -21¸ -31, -124, - 125b, -181b, -191, -221, -223, and -451) were analyzed using real-time polymerase chain reaction (PCR). The results were analyzed statistically using Statistica 12.0 (Statistica, Hamburg, Germany) and GraphPad Prism 9 software (GraphPad Software Inc., Boston, Massachusetts, United States). RESULTS Based on a comprehensive statistical analysis involving the database of the clinical results of treatment of all 107 patients (combined treatment methods, quality of life, and survival) and microRNA expression levels, specific profiles of microRNA expression typical of different histotypes of gliomas of different malignancy were identified, the prognostic significance of the studied microRNAs as potential predictors of survival in patients with brain gliomas was determined, and microRNAs with the highest prognostic value were identified among them.
Collapse
|
10
|
Abstract
An ideal biomarker must meet several parameters to enable its successful adoption; however, the nature of glioma makes it challenging to discover valuable biomarkers. While biomarkers require simplicity for clinical implementation, anatomical features and the complexity of the brain make it challenging to perform histological examination. Therefore, compared to biomarkers from general histological examination, liquid biomarkers for brain disease offer many more advantages in these minimally invasive methods. Ideal biomarkers should have high sensitivity and specificity, especially in malignant tumors. The heterogeneous nature of glioma makes it challenging to determine useful common biomarkers, and no liquid biomarker has yet been adopted clinically. The low incidence of brain tumors also hinders research progress. To overcome these problems, clinical applications of new types of specimens, such as extracellular vesicles and comprehensive omics analysis, have been developed, and some candidate liquid biomarkers have been identified. As against previous reviews, we focused on and reviewed the sensitivity and specificity of each liquid biomarker for its clinical application. Perusing an ideal glioma biomarker would help uncover the common underlying mechanism of glioma and develop new therapeutic targets. Further multicenter studies based on these findings will help establish new treatment strategies in the future.
Collapse
|
11
|
Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. Int J Mol Sci 2023; 24:3521. [PMID: 36834933 PMCID: PMC9965735 DOI: 10.3390/ijms24043521] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common, malignant, poorly promising primary brain tumor. GBM is characterized by an infiltrating growth nature, abundant vascularization, and a rapid and aggressive clinical course. For many years, the standard treatment of gliomas has invariably been surgical treatment supported by radio- and chemotherapy. Due to the location and significant resistance of gliomas to conventional therapies, the prognosis of glioblastoma patients is very poor and the cure rate is low. The search for new therapy targets and effective therapeutic tools for cancer treatment is a current challenge for medicine and science. microRNAs (miRNAs) play a key role in many cellular processes, such as growth, differentiation, cell division, apoptosis, and cell signaling. Their discovery was a breakthrough in the diagnosis and prognosis of many diseases. Understanding the structure of miRNAs may contribute to the understanding of the mechanisms of cellular regulation dependent on miRNA and the pathogenesis of diseases underlying these short non-coding RNAs, including glial brain tumors. This paper provides a detailed review of the latest reports on the relationship between changes in the expression of individual microRNAs and the formation and development of gliomas. The use of miRNAs in the treatment of this cancer is also discussed.
Collapse
Affiliation(s)
- Marianna Makowska
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
12
|
Stafford MYC, McKenna DJ. MiR-182 Is Upregulated in Prostate Cancer and Contributes to Tumor Progression by Targeting MITF. Int J Mol Sci 2023; 24:ijms24031824. [PMID: 36768146 PMCID: PMC9914973 DOI: 10.3390/ijms24031824] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Altered expression of microRNA-182-5p (miR-182) has been consistently linked with many cancers, but its specific role in prostate cancer remains unclear. In particular, its contribution to epithelial-to-mesenchymal transition (EMT) in this setting has not been well studied. Therefore, this paper profiles the expression of miR-182 in prostate cancer and investigates how it may contribute to progression of this disease. In vitro experiments on prostate cancer cell lines and in silico analyses of The Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) datasets were performed. PCR revealed miR-182 expression was significantly increased in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of TCGA PRAD data similarly showed upregulation of miR-182 was significantly associated with prostate cancer and clinical markers of disease progression. Functional enrichment analysis confirmed a significant association of miR-182 and its target genes with EMT. The EMT-linked gene MITF (melanocyte inducing transcription factor) was subsequently shown to be a novel target of miR-182 in prostate cancer cells. Further TCGA analysis suggested miR-182 expression can be an indicator of patient outcomes and disease progression following therapy. In summary, this is the first study to report that miR-182 over-expression in prostate cancer may contribute to EMT by targeting MITF expression. We propose miR-182 as a potentially useful diagnostic and prognostic biomarker for prostate cancer and other malignancies.
Collapse
|
13
|
Schneider B, William D, Lamp N, Zimpfer A, Henker C, Classen CF, Erbersdobler A. The miR-183/96/182 cluster is upregulated in glioblastoma carrying EGFR amplification. Mol Cell Biochem 2022; 477:2297-2307. [PMID: 35486213 PMCID: PMC9395473 DOI: 10.1007/s11010-022-04435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GBM) is one of the most frequent primary brain tumors. Limited therapeutic options and high recurrency rates lead to a dismal prognosis. One frequent, putative driver mutation is the genomic amplification of the oncogenic receptor tyrosine kinase EGFR. Often accompanied by variants like EGFRvIII, heterogenous expression and ligand independent signaling render this tumor subtype even more difficult to treat, as EGFR-directed therapeutics show only weak effects at best. So EGFR-amplified GBM is considered to have an even worse prognosis, and therefore, deeper understanding of molecular mechanisms and detection of potential targets for novel therapeutic strategies is urgently needed. In this study, we looked at the level of microRNAs (miRs), small non-coding RNAs frequently deregulated in cancer, both acting as oncogenes and tumor suppressors. Comparative analysis of GBM with and without EGFR amplification should give insight into the expression profiles of miRs, which are considered both as potential targets for directed therapies or as therapeutic reagents. Comparison of miR profiles of EGFR-amplified and EGFR-normal GBM revealed an upregulation of the miR-183/96/182 cluster, which is associated with oncogenic properties in several tumor entities. One prominent target of this miR cluster is FOXO1, a pro-apoptotic factor. By observing FOXO1 downregulation in EGFR-amplified tumors, we can see a significant correlation of EGFR amplification, miR-183/96/182 cluster upregulation, and repression of FOXO1. Although no significant difference in overall survival is shown, these data may contribute to the molecular understanding of this tumor subtype and offer potential targets for miR-based therapies.
Collapse
Affiliation(s)
- Björn Schneider
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Doreen William
- Children and Adolescents Hospital, University Medicine Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
- Present Address: ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Nora Lamp
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Annette Zimpfer
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Christian Henker
- Department of Neurosurgery, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Carl Friedrich Classen
- Children and Adolescents Hospital, University Medicine Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Andreas Erbersdobler
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| |
Collapse
|
14
|
Liang D, Zhang X, Wang Y, Huo T, Qian M, Xie Y, Li W, Yu Y, Shi W, Liu Q, Zhu J, Luo C, Cao Z, Huang R. Magnetic covalent organic framework nanospheres-based miRNA biosensor for sensitive glioma detection. Bioact Mater 2022; 14:145-151. [PMID: 35310355 PMCID: PMC8892165 DOI: 10.1016/j.bioactmat.2021.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dong Liang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Xiaoyi Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yi Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, China
- Corresponding author
| | - Taotao Huo
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Min Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yibo Xie
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Wenshuai Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yunqiu Yu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
- Corresponding author
| | - Wei Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qianqian Liu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhijuan Cao
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
- Corresponding author.
| |
Collapse
|
15
|
Li X, Sun C, Chen J, Ma JF, Pan YH. Suppression of FAM83D Inhibits Glioma Proliferation, Invasion and Migration by Regulating the AKT/mTOR Signaling Pathway. Transl Oncol 2022; 22:101454. [PMID: 35617811 PMCID: PMC9136185 DOI: 10.1016/j.tranon.2022.101454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/23/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
FAM83D is upregulated in the glioma cells and tissues. Silencing FAM83D inhibits the proliferation, invasion and migration of glioma cells. Silencing FAM83D inhibits the activity of AKT/mTOR signaling pathway. FAM83D inhibition limits the in vivo growth of glioma cells.
Objective To explore the mechanism by which the family with sequence similarity 83, member D (FAM83D)-mediated AKT/mTOR signaling pathway activation affects the proliferation and metastasis of glioma cells. Methods FAM83D protein expression in glioma cells and tissues was detected by western blotting. Glioma U87 and U251 cells were selected and divided into the Mock, siNC, siFAM83D, FAM83D, MK2206 and FAM83D + MK2206 groups. Cell proliferation was assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and clone formation assays, while invasion and migration were evaluated by Transwell assays and wound healing tests. The protein expression of members of the AKT/mTOR pathway was determined via western blotting. Xenograft models were also established in nude mice to observe the in vivo effect of FAM83D on the growth of glioma. Results FAM83D was upregulated in glioma patients, especially in those with Stage III-IV. In addition, cells treated with siFAM83D had significant downregulation of p-AKT/AKT and p-mTOR/mTOR, with decreased proliferation and colony numbers, as well as decreased invasion and migration compared to the Mock group. However, FAM83D overexpression could activate the Akt/mTOR pathway and promote the proliferation, invasion and migration of glioma cells. Moreover, treatment with MK2206, an inhibitor of AKT, reversed the promoting effect of FAM83D on the growth of glioma cells. The in vivo experiments demonstrated that silencing FAM83D could inhibit the in vivo growth of glioma cells Conclusion FAM83D was upregulated in glioma and silencing FAM83D suppressed the proliferation, invasion and migration of glioma cells via inhibition of the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xia Li
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Cui Sun
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jing Chen
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ji-Fen Ma
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yi-Heng Pan
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
16
|
Laghari AA, Suchal ZA, Avani R, Khan DA, Kabani AS, Nouman M, Enam SA. Prognostic Potential of MicroRNAs in Glioma Patients: A Meta-Analysis. ASIAN JOURNAL OF ONCOLOGY 2022. [DOI: 10.1055/s-0042-1744448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Abstract
Introduction MicroRNAs are a noncoding RNA involved in affecting several transcription and translation pathways. Their use has been discussed as potential predictors of several tumors. Their use as potential biomarker in glioma patients is still controversial. The purpose of this meta-analysis is to explore the possible role of such microRNAs in glioma patients.
Methods After an extensive literature search done on PubMed and Embase, 20 studies were chosen for our analyses with the 9 discussing 11 tumor promoting microRNAs and 11 studies discussing 11 tumor suppressing microRNAs. The data needed was extracted from these studies including the hazard ratio that was used as the effect size for the purpose of our analysis. The needed analysis was performed using Stata and Excel.
Results The pooled hazard ratio for our analysis with patients having a lower microRNA expression for tumor promoting microRNAs came to be 2.63 (p < 0.001), while the hazard ratio for patients with higher expression of tumor promoting microRNA was 2.47 (p < 0.001) with both results being statistically significant. However, as significant heterogeneity was observed a random effect model for analysis was used. Subgroup analysis was further performed using grade, cutoff value (mean or median), sample type (Serum or Blood), and Karnofsky performance score, all of them showing a high hazard ratio.
Conclusion Our results showed that both tumor inhibitory and promoting microRNA can be used as prognostic tool in glioma patients with a poorer prognosis associated with a lower expression in tumor suppressive and higher expression in tumor promoting microRNA, respectively. However, to support this, future studies on a much larger scale would be needed.
Collapse
Affiliation(s)
- Altaf Ali Laghari
- Division of Neurosurgery, Aga Khan University, Stadium Road, Karachi, Pakistan
| | | | - Rohan Avani
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | | | - Muhammad Nouman
- Biological Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Syed Ather Enam
- Department of Surgery, Aga Khan University, Stadium Road, Karachi, Pakistan
| |
Collapse
|
17
|
Ma C, He D, Tian P, Wang Y, He Y, Wu Q, Jia Z, Zhang X, Zhang P, Ying H, Jin ZB, Hu G. miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proc Natl Acad Sci U S A 2022; 119:e2114006119. [PMID: 35105806 PMCID: PMC8833194 DOI: 10.1073/pnas.2114006119] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
The protumor roles of alternatively activated (M2) tumor-associated macrophages (TAMs) have been well established, and macrophage reprogramming is an important therapeutic goal. However, the mechanisms of TAM polarization remain incompletely understood, and effective strategies for macrophage targeting are lacking. Here, we show that miR-182 in macrophages mediates tumor-induced M2 polarization and can be targeted for therapeutic macrophage reprogramming. Constitutive miR-182 knockout in host mice and conditional knockout in macrophages impair M2-like TAMs and breast tumor development. Targeted depletion of macrophages in mice blocks the effect of miR-182 deficiency in tumor progression while reconstitution of miR-182-expressing macrophages promotes tumor growth. Mechanistically, cancer cells induce miR-182 expression in macrophages by TGFβ signaling, and miR-182 directly suppresses TLR4, leading to NFκb inactivation and M2 polarization of TAMs. Importantly, therapeutic delivery of antagomiR-182 with cationized mannan-modified extracellular vesicles effectively targets macrophages, leading to miR-182 inhibition, macrophage reprogramming, and tumor suppression in multiple breast cancer models of mice. Overall, our findings reveal a crucial TGFβ/miR-182/TLR4 axis for TAM polarization and provide rationale for RNA-based therapeutics of TAM targeting in cancer.
Collapse
Affiliation(s)
- Chengxin Ma
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dasa He
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pu Tian
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunfei He
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiuyao Wu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenchang Jia
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xue Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peiyuan Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Ying
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Lab of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
18
|
Weiss BG, Anczykowski MZ, Ihler F, Bertlich M, Spiegel JL, Haubner F, Canis M, Küffer S, Hess J, Unger K, Kitz J, Jakob M. MicroRNA-182-5p and microRNA-205-5p as potential biomarkers for prognostic stratification of p16-positive oropharyngeal squamous cell carcinoma. Cancer Biomark 2021; 33:331-347. [PMID: 34542062 DOI: 10.3233/cbm-203149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND MicroRNAs constitute promising biomarkers. OBJECTIVE The aim was to investigate diagnostic and prognostic implications of miR-182-5p and miR-205-5p in p16-positive and p16-negative oropharyngeal squamous cell carcinomas (OPSCCs). METHODS Expression of miR-182-5p, miR-205-5p were determined via quantitative real-time-PCR in fresh frozen tissues of 26 p16-positive, 19 p16-negative OPSCCs and 18 HPV-negative oropharyngeal controls. Associations between miRNA-expression, clinicopathological characteristics and prognosis were analyzed. RESULTS Higher miR-182-5p expression was associated with significant inferior disease-specific survival for p16-positive OPSCCs (HR = 1.98E+09, 95% CI 0-Inf; P= 0.028) and a similar trend was observed for p16-negative OPSCCs (HR = 1.56E+09, 95% CI 0-Inf; P= 0.051). Higher miR-205-5p expression was associated with an inferior progression-free survival (HR = 4.62, 95% CI 0.98-21.83; P= 0.034) and local control rate (HR = 2.18E+09, 95% CI 0-Inf; P= 0.048) for p16-positive OPSCCs. CONCLUSIONS Results indicate that miR-182-5p and miR-205-5p can further stratify patients with p16-positive OPSCC into prognostic groups.
Collapse
Affiliation(s)
- Bernhard G Weiss
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mahalia Zoe Anczykowski
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, Göttingen, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Friedrich Ihler
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Jennifer L Spiegel
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Julia Kitz
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
19
|
Zhang D, Ma S, Zhang C, Li P, Mao B, Guan X, Zhou W, Peng J, Wang X, Li S, Jia W. MicroRNA-935 Directly Targets FZD6 to Inhibit the Proliferation of Human Glioblastoma and Correlate to Glioma Malignancy and Prognosis. Front Oncol 2021; 11:566492. [PMID: 33791198 PMCID: PMC8006443 DOI: 10.3389/fonc.2021.566492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in human glioblastoma (GB). MiR-935 has been reported to have both tumor-inhibiting and tumorigenesis effects, but its role in GB remains unclear. Because of the high mortality and morbidity associated with the malignancy of GB, a deeper understanding of the molecular crosstalk that occurs in GB is needed to identify new potential targets for treatment. At present, the mechanism of GB at the molecular level is not fully understood. With the aid of bioinformatic analysis, miR-935 was significantly downregulated in GB, and it presented a poorer outcome. In the glioma cell line and in the nude mice model, the miR-935 inhibited cell proliferation by modulating cell circles in vitro and in vivo. Then, the target genes of miR-935 were analyzed by using the online database, and the direct binding was tested with a luciferase analysis. FZD6 was found to be the direct target of miR-935. The effect of miR-935 was recovered by the overexpression of FZD6 in vitro. In addition, the negative correlation of miR-935 and the expression of FZD6 were confirmed in our clinical samples, and the expression of FZD6 has a strong correlation with tumor malignancy and prognosis. This study showed that miR-935 directly inhibited the expression of FZD6 and inhibited the cell proliferation, thereby suppressing the development of GB, suggesting that miR-935 is a cancer suppressor miRNA and may become a prognostic biomarker or a promising potential therapeutic target for human GBs.
Collapse
Affiliation(s)
- Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shunchang Ma
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Peiliang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Ditan Hospital, Capital Medical University, Beijing, China
| | - Beibei Mao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiayi Peng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Chen W, Hong L, Hou C, Wang Y, Wang F, Zhang J. MicroRNA-585 inhibits human glioma cell proliferation by directly targeting MDM2. Cancer Cell Int 2020; 20:469. [PMID: 33005102 PMCID: PMC7523344 DOI: 10.1186/s12935-020-01528-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators for cancer cell proliferation. miR-585 has been shown to inhibit the proliferation of several types of cancer, however, little is known about its role in human glioma cells. Methods miR-585 levels in human glioma clinical samples and cell lines were examined by quantitative real-time PCR (qRT-PCR) analysis. Cell proliferation was measured by Cell Counting Kit-8 (CCK-8) and EdU incorporation assays in vitro. For in vivo investigations, U251 cells were intracranially inoculated in BALB/c nude mice and xenografted tumors were visualized by magnetic resonance imaging (MRI). Results miR-585 expression is downregulated in human glioma tissues and cell lines compared with non-cancerous counterparts. Additionally, miR-585 overexpression inhibits and its knockdown promotes human glioma cell proliferation in vitro. Moreover, miR-585 overexpression also inhibits the growth of glioma xenografts in vivo, suggesting that miR-585 may act as a tumor suppressor to inhibit the proliferation of human glioma. Furthermore, miR-585 directly targets and decreases the expression of oncoprotein murine double minute 2 (MDM2). More importantly, the restoration of MDM2 via enforced overexpression markedly rescues miR-585 inhibitory effect on human glioma cell proliferation, thus demonstrating that targeting MDM2 is a critical mechanism by which miR-585 inhibits human glioma cell proliferation. Conclusions Our study unveils the anti-proliferative role of miR-585 in human glioma cells, and also implicates its potential application in clinical therapy.
Collapse
Affiliation(s)
- Wangsheng Chen
- Department of Radiology, Hainan General Hospital/Hainan Hospital of Hainan Medical University, Haikou, 570311 China
| | - Lan Hong
- Department of Gynecology, Hainan General Hospital/Hainan Hospital of Hainan Medical University, Haikou, 570311 China
| | - Changlong Hou
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, No 150, JiMo Road, Pudong New Area, Shanghai, 200120 China
| | - Yibin Wang
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, No 150, JiMo Road, Pudong New Area, Shanghai, 200120 China
| | - Fei Wang
- Department of Radiology, Hainan General Hospital/Hainan Hospital of Hainan Medical University, Haikou, 570311 China
| | - Jianhua Zhang
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, No 150, JiMo Road, Pudong New Area, Shanghai, 200120 China
| |
Collapse
|
21
|
Cardoso AMS, Sousa M, Morais CM, Oancea-Castillo LR, Régnier-Vigouroux A, Rebelo O, Tão H, Barbosa M, Pedroso MCDL, Jurado AS. MiR-144 overexpression as a promising therapeutic strategy to overcome glioblastoma cell invasiveness and resistance to chemotherapy. Hum Mol Genet 2020; 28:2738-2751. [PMID: 31087038 DOI: 10.1093/hmg/ddz099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and common form of primary brain tumor, characterized by fast proliferation, high invasion, and resistance to current standard treatment. The average survival rate post-diagnosis is only of 14.6 months, despite the aggressive standard post-surgery treatment approaches of radiotherapy concomitant with chemotherapy with temozolomide. Altered cell metabolism has been identified as an emerging cancer hallmark, including in GB, thus offering a new target for cancer therapies. On the other hand, abnormal expression levels of miRNAs, key regulators of multiple molecular pathways, have been correlated with pathological manifestations of cancer, such as chemoresistance, proliferation, and resistance to apoptosis. In this work, we hypothesized that gene therapy based on modulation of a miRNA with aberrant expression in GB and predicted to target crucial metabolic enzymes might impair tumor cell metabolism. We found that the increase of miR-144 levels, shown to be downregulated in U87 and DBTRG human GB cell lines, as well as in GB tumor samples, promoted the downregulation of mRNA of enzymes involved in bioenergetic pathways, with consequent alterations in cell metabolism, impairment of migratory capacity, and sensitization of DBTRG cells to a chemotherapeutic drug, the dichloroacetate (DCA). Taken together, our findings provide evidence that the miR-144 plus DCA combined therapy holds promise to overcome GB-acquired chemoresistance, therefore deserving to be explored toward its potential application as a complementary therapeutic approach to the current treatment options for this type of brain tumor.
Collapse
Affiliation(s)
- Ana M S Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research of the University of Coimbra, 3030-789 Coimbra, Portugal
| | - Madalena Sousa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Catarina M Morais
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Liliana R Oancea-Castillo
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Anne Régnier-Vigouroux
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal
| | - Hermínio Tão
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal
| | - Marcos Barbosa
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Amália S Jurado
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
22
|
Mazurek M, Litak J, Kamieniak P, Osuchowska I, Maciejewski R, Roliński J, Grajkowska W, Grochowski C. Micro RNA Molecules as Modulators of Treatment Resistance, Immune Checkpoints Controllers and Sensitive Biomarkers in Glioblastoma Multiforme. Int J Mol Sci 2020; 21:ijms21041507. [PMID: 32098401 PMCID: PMC7073212 DOI: 10.3390/ijms21041507] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Based on genome sequencing, it is estimated that over 90% of genes stored in human genetic material are transcribed, but only 3% of them contain the information needed for the production of body proteins. This group also includes micro RNAs representing about 1%–3% of the human genome. Recent studies confirmed the hypothesis that targeting molecules called Immune Checkpoint (IC) open new opportunities to take control over glioblastoma multiforme (GBM). Detection of markers that indicate the presence of the cancer occupies a very important place in modern oncology. This function can be performed by both the cancer cells themselves as well as their components and other substances detected in the patients’ bodies. Efforts have been made for many years to find a suitable marker useful in the diagnosis and monitoring of gliomas, including glioblastoma.
Collapse
Affiliation(s)
- Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.)
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.)
- Department of Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.)
| | - Ida Osuchowska
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (I.O.); (R.M.)
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (I.O.); (R.M.)
| | - Jacek Roliński
- Department of Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Wiesława Grajkowska
- Department of Oncopathology and Biostructure, „Pomnik-Centrum Zdrowia Dziecka” Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (I.O.); (R.M.)
- Laboratory of Virtual Man, Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
- Correspondence:
| |
Collapse
|
23
|
Yao XG, Tan Q, Liu PP, Feng LJ. Tissue microRNA-182 expression level and its potential prognostic value for papillary thyroid carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3128-3133. [PMID: 31934155 PMCID: PMC6949707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/23/2015] [Indexed: 06/10/2023]
Abstract
BACKGROUND In previous study, qRT-PCR analysis revealed significantly higher miR-182 levels in papillary thyroid carcinoma (PTC) than matched normal tissues. However, the clinical significance and prognostic value of miR-182 have not been investigated in PTC until now. METHODS 151 pairs of PTC and adjacent normal thyroid tissues were obtained from Affiliated Hospital of Weifang Medical University from February 2008 to January 2015. The Chi square test was used to analyze the relationship between miR-182 expression and the clinicopathological characteristics. We used the Kaplan-Meier method and the log-rank test in univariate survival analysis, and we used the Cox proportional hazards regression model in our multivariate analysis. RESULTS The relative expression of miR-182 in PTC samples was significantly higher than that of matched normal tissues (P<0.001). The high expression level of tissue miR-182 was statistically correlated with extrathyroidal invasion (P=0.009), cervical lymphnode metastasis (P=0.015), and TNM staging (P=0.001). The Kaplan-Meier method revealed that higher miR-182 expression level was correlated with significantly reduced overall survival. Furthermore, multivariate survival analysis revealed that miR-182 expression level (HR=2.882, 95% CI: 1.289-10.928, P=0.013) was significantly correlated with the poor prognosis of PTC patients. CONCLUSIONS Overexpression of miR-182 is associated with aggressive clinicopathologic characteristics of PTC, and miR-182 might be a novel prognostic molecular marker of PTC.
Collapse
Affiliation(s)
- Xing-Guo Yao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Weifang Medical UniversityWeifang 261031, Shandong Province, China
| | - Qiang Tan
- Department of Respiratory Medicine, Weifang People’s HospitalWeifang 261041, Shandong Province, China
| | - Ping-Ping Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Weifang Medical UniversityWeifang 261031, Shandong Province, China
| | - Ling-Jun Feng
- Department of Thyroid & Breast Surgery, Affiliated Hospital of Weifang Medical UniversityWeifang 261031, Shandong Province, China
| |
Collapse
|
24
|
Chen J, Deng Y, Ao L, Song Y, Xu Y, Wang CC, Choy KW, Tony Chung KH, Du Q, Sui Y, Yang T, Yang J, Li H, Zou C, Tang T. The high-risk HPV oncogene E7 upregulates miR-182 expression through the TGF-β/Smad pathway in cervical cancer. Cancer Lett 2019; 460:75-85. [PMID: 31247272 DOI: 10.1016/j.canlet.2019.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 01/08/2023]
Abstract
Accumulating experimental evidence has shown that the aberrant expression of microRNAs (miRNAs) is involved in the development and progression of human cervical cancer. Previously, we identified miR-182 as an oncomiRNA in cervical cancer. However, the mechanism by which miR-182 is regulated and the interaction between human papillomavirus (HPV) and miR-182 in cervical cancer development remains unknown. In the present study, we explored the link between HPV E7 and miR-182 and verified that high-risk HPV E7 upregulated miR-182 expression through TGF-β/Smad4 signaling pathway in cervical cancer. By contrast, low-risk HPV E7 did not affect the expression of TGF-β and miR-182. Mechanistically, as high-risk HPV E7 bound to pRb, E2F was released from the complex and bound to the TGF-β promoter region, resulting in TGF-β overexpression. Furthermore, the Smad4 signaling pathway was activated upon TGF-β overexpression, which led to an interaction between Smad4 and the miR-182 promoter region, subsequently inducing the upregulation of miR-182 in both cervical cancer cells and the surrounding normal cells. In conclusion, this newly identified high-risk HPV E7/TGF-β/miR-182 regulatory network might inform the development of specific therapeutic strategies for cervical cancer.
Collapse
Affiliation(s)
- Jiao Chen
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Deng
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liangfei Ao
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Song
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yan Xu
- Department of Obstetrics & Gynaecology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kwong Wai Choy
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kwok Hung Tony Chung
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Quan Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking, University, Beijing, China
| | - Yi Sui
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong, Medical Center, Shanghai, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hu Li
- Department of Obstetrics & Gynaecology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, 518020, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Tao Tang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Obstetrics & Gynaecology, Guangzhou Panyu Central Hospital, Guangzhou, China.
| |
Collapse
|
25
|
Wei Q, Li X, Yu W, Zhao K, Qin G, Chen H, Gu Y, Ding F, Zhu Z, Fu X, Sun M. microRNA-messenger RNA regulatory network of esophageal squamous cell carcinoma and the identification of miR-1 as a biomarker of patient survival. J Cell Biochem 2019; 120:12259-12272. [PMID: 31017699 DOI: 10.1002/jcb.28166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
Emerging evidence indicates that microRNAs (miRNAs) play an important role in tumor carcinogenesis and progression by targeting gene expression. The goal of this study was to comprehensively analyze the vital functional miRNAs and their target genes in esophageal squamous cell carcinoma (ESCC) and to explore the clinical significance and mechanisms of miR-1 in ESCC. First, the miRNA and messenger RNA (mRNA) expression profiles of ESCC were determined with microarray technology. Using an integrated analysis of miRNAs and their target genes with multistep bioinformatics methods, the miRNA-mRNA regulatory network in ESCC was constructed. Next, miR-1 expression in 292 ESCC patients and its relationship with clinicopathological features and prognosis were detected by in situ hybridization. Furthermore, the biological functions of miR-1 were determined with in vitro and in vivo functional experiments. Finally, real-time quantitative reverse transcription polymerase chain reaction, Western blot analysis, and luciferase reporter assays were performed to verify the target genes of miR-1. In this study, 67 miRNAs and 2992 genes were significantly differentially expressed in ESCC tissues compared with their expression in adjacent normal tissues, and an miRNA-mRNA regulatory network comprising 59 miRNAs and 162 target mRNAs was identified. Low miR-1 expression was correlated with pathological T stage, lymph node metastasis, vessel invasion, and poor clinical outcome. miR-1 suppressed ESCC cell proliferation and invasion and promoted ESCC cell apoptosis. Fibronectin 1 (FN1) was verified as a direct target of miR-1. Taken together, the present results suggest that miR-1 may be a valuable prognostic predictor for ESCC, and the miR-1/FN1 axis may be a therapeutic target.
Collapse
Affiliation(s)
- Qiao Wei
- Department of Radiation Oncology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiyi Li
- Department of Pathology Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiwei Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kuaile Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guangqi Qin
- Department of Pathology Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huan Chen
- Department of Pathology Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanzi Gu
- Department of Pathology Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Ding
- Department of Pathology Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Menghong Sun
- Department of Pathology Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Zhang Y, Chen J, Xue Q, Wang J, Zhao L, Han K, Zhang D, Hou L. Prognostic Significance of MicroRNAs in Glioma: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4015969. [PMID: 31032345 PMCID: PMC6457304 DOI: 10.1155/2019/4015969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/06/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Different microRNAs (miRs) have been demonstrated to relate with the outcome of glioma patients, while the conclusions are inconsistent. We perform a meta-analysis to clarify the relationship between different miRs and prognosis of glioma. METHODS Related studies were retrieved from PubMed, Embase, and Cochrane Library. Pooled hazard ratios (HRs) of different miRs expression for survival and 95% confidence intervals (CIs) were calculated using random-effects model. RESULTS A total of 15 miRs with 4708 glioma patients were ultimately included. Increased expression of miR-15b (HR, 1.584; 95% CI, 1.199-2.092), 21 (HR, 1.591; 95% CI, 1.278-1.981), 148a (HR, 1.122; 95% CI, 1.023-1.231), 196 (HR, 1.877; 95% CI, 1.033-3.411), 210 (HR, 1.251; 95% CI, 1.010-1.550), and 221 (HR, 1.269; 95% CI, 1.054-1.527) or decreased expression of miR-106a (HR, 0.809; 95% CI, 0.655-0.998) and 124 (HR, 0.833; 95% CI, 0.729-0.952) was correlated with poor outcome of glioma patients. CONCLUSIONS miR-15b, 21, 148a, 196, 210, 221, 106a, and 124 are valuable biomarkers for the prognosis of glioma which might be used in clinical settings.
Collapse
Affiliation(s)
- Yanming Zhang
- Second Sub-Team, Fourth Team, Undergraduate Management Team, Second Military Medical University, Shanghai, China
| | - Jigang Chen
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Xue
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junyu Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Zhao
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kaiwei Han
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
27
|
Ebrahimkhani S, Vafaee F, Hallal S, Wei H, Lee MYT, Young PE, Satgunaseelan L, Beadnall H, Barnett MH, Shivalingam B, Suter CM, Buckland ME, Kaufman KL. Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ Precis Oncol 2018; 2:28. [PMID: 30564636 PMCID: PMC6290767 DOI: 10.1038/s41698-018-0071-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
Exosomes are nano-sized extracellular vesicles released by many cells that contain molecules characteristic of their cell of origin, including microRNA. Exosomes released by glioblastoma cross the blood–brain barrier into the peripheral circulation and carry molecular cargo distinct to that of “free-circulating” miRNA. In this pilot study, serum exosomal microRNAs were isolated from glioblastoma (n = 12) patients and analyzed using unbiased deep sequencing. Results were compared to sera from age- and gender-matched healthy controls and to grade II–III (n = 10) glioma patients. Significant differentially expressed microRNAs were identified, and the predictive power of individual and subsets of microRNAs were tested using univariate and multivariate analyses. Additional sera from glioblastoma patients (n = 4) and independent sets of healthy (n = 9) and non-glioma (n = 10) controls were used to further test the specificity and predictive power of this unique exosomal microRNA signature. Twenty-six microRNAs were differentially expressed in serum exosomes from glioblastoma patients relative to healthy controls. Random forest modeling and data partitioning selected seven miRNAs (miR-182-5p, miR-328-3p, miR-339-5p, miR-340-5p, miR-485-3p, miR-486-5p, and miR-543) as the most stable for classifying glioblastoma. Strikingly, within this model, six iterations of these miRNA classifiers could distinguish glioblastoma patients from controls with perfect accuracy. The seven miRNA panel was able to correctly classify all specimens in validation cohorts (n = 23). Also identified were 23 dysregulated miRNAs in IDHMUT gliomas, a partially overlapping yet distinct signature of lower-grade glioma. Serum exosomal miRNA signatures can accurately diagnose glioblastoma preoperatively. miRNA signatures identified are distinct from previously reported “free-circulating” miRNA studies in GBM patients and appear to be superior. A diagnostic test for short regulatory RNA molecules contained within tiny secreted vesicles in the bloodstream can accurately pick up signs of glioblastoma brain cancer. Researchers in Australia led by Michael Buckland and Kim Kaufman from the Royal Prince Alfred Hospital and the University of Sydney isolated circulating vesicles, called exosomes, from patients with glioblastoma or lower-grade brain cancers known as gliomas as well as healthy controls. Next-generation sequencing revealed a panel of 26 microRNAs contained within the exosomes that were differentially expressed in glioblastoma samples relative to healthy controls. (A different but partially overlapping set of 23 microRNAs also helped distinguish patients with a mutant subtype of glioma.) The researchers narrowed down the list to the seven microRNAs with the most predictive power. Testing for just these microRNAs reliably diagnosed glioblastoma with greater precision than previously reported panels of “free-circulating” microRNAs.
Collapse
Affiliation(s)
- Saeideh Ebrahimkhani
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia.,2Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - Fatemeh Vafaee
- 3School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW Australia
| | - Susannah Hallal
- 2Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - Heng Wei
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | - Maggie Yuk T Lee
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | - Paul E Young
- 4Division of Molecular Structural and Computational Biology, Victor Chang Cardiac Research Institute, Sydney, NSW Australia
| | - Laveniya Satgunaseelan
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia.,5Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW Australia
| | - Heidi Beadnall
- 6Department of Neurology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW Australia
| | - Michael H Barnett
- 6Department of Neurology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW Australia
| | - Brindha Shivalingam
- 7Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW Australia.,8Department of Neurosurgery, Royal Prince Alfred Hospital, Sydney, NSW Australia
| | - Catherine M Suter
- 4Division of Molecular Structural and Computational Biology, Victor Chang Cardiac Research Institute, Sydney, NSW Australia.,9Faculty of Medicine, University of New South Wales, Sydney, NSW Australia
| | - Michael E Buckland
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia.,2Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - Kimberley L Kaufman
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia.,10School of Life and Environmental Sciences, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
28
|
Wang R, Zuo X, Wang K, Han Q, Zuo J, Ni H, Liu W, Bao H, Tu Y, Xie P. MicroRNA-485-5p attenuates cell proliferation in glioma by directly targeting paired box 3. Am J Cancer Res 2018; 8:2507-2517. [PMID: 30662807 PMCID: PMC6325470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/01/2018] [Indexed: 06/09/2023] Open
Abstract
MicroRNA-485-5p (miR-485-5p) has been reported to be involved in the development and progression of human cancers; however, its role in glioma remains unclear. In the present study, we found that miR-485-5p was significantly down-regulated in both glioma tissues and cell lines. Functional experiments indicated that enhanced expression of miR-485-5p attenuated glioma cell proliferation in vitro and in vivo, and induced glioma cells cycle arrest in G1. MiR-485-5p was found to directly bind to the 3'-UTR of paired box 3 (PAX3) and decrease its expression of protein level, which further inhibits the proliferation of glioma. The decreasing of PAX3 was found to lead to the accumulation of p-JNK. Mechanistic studies revealed that restoring the expression of PAX3 alleviated miR-485-5p-induced inhibition of proliferation of glioma cells. Taken together, these findings suggest that PAX3 modulation by miR-485-5p has an important role in regulating glioma proliferation, and miR-485-5p might be a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Ren Wang
- Department of Pediatric Surgery, Huai’an Women and Children’s HospitalHuai’an 223002, Jiangsu, PR China
| | - Xiaohua Zuo
- Department of Pain Management, Huai’an Hospital Affiliated to Xuzhou Medical University, Second People’s Hospital of Huai’anHuai’an, Jiangsu, PR China
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, Jiangsu, PR China
| | - Kai Wang
- Department of Neurosurgery, Huai’an Hospital Affiliated to Xuzhou Medical University, Second People’s Hospital of Huai’anHuai’an, Jiangsu, PR China
| | - Qiu Han
- Department of Neurosurgery, Huai’an Hospital Affiliated to Xuzhou Medical University, Second People’s Hospital of Huai’anHuai’an, Jiangsu, PR China
| | - Jiandong Zuo
- Department of Neurosurgery, Huai’an Hospital Affiliated to Xuzhou Medical University, Second People’s Hospital of Huai’anHuai’an, Jiangsu, PR China
| | - Hongzao Ni
- Department of Neurosurgery, Huai’an Hospital Affiliated to Xuzhou Medical University, Second People’s Hospital of Huai’anHuai’an, Jiangsu, PR China
| | - Wenguang Liu
- Department of Neurosurgery, Huai’an Hospital Affiliated to Xuzhou Medical University, Second People’s Hospital of Huai’anHuai’an, Jiangsu, PR China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, Jiangsu, PR China
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu, PR China
| | - Peng Xie
- Department of Neurosurgery, Huai’an Hospital Affiliated to Xuzhou Medical University, Second People’s Hospital of Huai’anHuai’an, Jiangsu, PR China
| |
Collapse
|
29
|
Fiscon G, Conte F, Paci P. SWIM tool application to expression data of glioblastoma stem-like cell lines, corresponding primary tumors and conventional glioma cell lines. BMC Bioinformatics 2018; 19:436. [PMID: 30497369 PMCID: PMC6266956 DOI: 10.1186/s12859-018-2421-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND It is well-known that glioblastoma contains self-renewing, stem-like subpopulation with the ability to sustain tumor growth. These cells - called cancer stem-like cells - share certain phenotypic characteristics with untransformed stem cells and are resistant to many conventional cancer therapies, which might explain the limitations in curing human malignancies. Thus, the identification of genes controlling the differentiation of these stem-like cells is becoming a successful therapeutic strategy, owing to the promise of novel targets for treating malignancies. METHODS Recently, we developed SWIM, a software able to unveil a small pool of genes - called switch genes - critically associated with drastic changes in cell phenotype. Here, we applied SWIM to the expression profiling of glioblastoma stem-like cells and conventional glioma cell lines, in order to identify switch genes related to stem-like phenotype. RESULTS SWIM identifies 171 switch genes that are all down-regulated in glioblastoma stem-like cells. This list encompasses genes like CAV1, COL5A1, COL6A3, FLNB, HMMR, ITGA3, ITGA5, MET, SDC1, THBS1, and VEGFC, involved in "ECM-receptor interaction" and "focal adhesion" pathways. The inhibition of switch genes highly correlates with the activation of genes related to neural development and differentiation, such as the 4-core OLIG2, POU3F2, SALL2, SOX2, whose induction has been shown to be sufficient to reprogram differentiated glioblastoma into stem-like cells. Among switch genes, the transcription factor FOSL1 appears as the brightest star since: it is down-regulated in stem-like cells; it highly negatively correlates with the 4-core genes that are all up-regulated in stem-like cells; the promoter regions of the 4-core genes harbor a consensus binding motif for FOSL1. CONCLUSIONS We suggest that the inhibition of switch genes in stem-like cells could induce the deregulation of cell communication pathways, contributing to neoplastic progression and tumor invasiveness. Conversely, their activation could restore the physiological equilibrium between cell adhesion and migration, hampering the progression of cancer. Moreover, we posit FOSL1 as promising candidate to orchestrate the differentiation of cancer stem-like cells by repressing the 4-core genes' expression, which severely halts cancer growth and might affect the therapeutic outcome. We suggest FOSL1 as novel putative therapeutic and prognostic biomarker, worthy of further investigation.
Collapse
Affiliation(s)
- Giulia Fiscon
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Via dei Taurini 19, Rome, 00185 Italy
- SysBio Centre for Systems Biology, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Via dei Taurini 19, Rome, 00185 Italy
- SysBio Centre for Systems Biology, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Via dei Taurini 19, Rome, 00185 Italy
- SysBio Centre for Systems Biology, Rome, Italy
| |
Collapse
|
30
|
Jiang L, Yu X, Ma X, Liu H, Zhou S, Zhou X, Meng Q, Wang L, Jiang W. Identification of transcription factor-miRNA-lncRNA feed-forward loops in breast cancer subtypes. Comput Biol Chem 2018; 78:1-7. [PMID: 30476706 DOI: 10.1016/j.compbiolchem.2018.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/18/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022]
Abstract
Previous studies have demonstrated that transcription factor-miRNA-gene feed-forward loops (FFLs) played important roles in tumorigenesis. However, the lncRNA-involved FFLs have not been explored very well. Understanding the characteristics of lncRNA-involved FFLs in breast cancer subtypes may be a key question with clinical implications. In this study, we firstly constructed an integrated background regulatory network. Then, based on mRNA, miRNA, and lncRNA differential expression, we identified 147, 140, 284, 1031 dysregulated FFLs for luminal A, luminal B, HER2+ and basal-like subtype of breast cancer, respectively. Importantly, the known breast cancer-associated lncRNAs and miRNAs were enriched in the identified dysregulated FFLs. Through merging the dysregulated FFLs, we constructed the regulatory sub-network for each subtype. We found that all sub-networks were enriched in the well-known cancer-related pathways, such as cell cycle, pathways in cancer. Next, we also identified potential prognostic FFLs for subtypes of breast cancer, such as the hsa-miR-182-5p_JUN_XIST in basal-like subtype. Finally, we also discussed the potential application of inferring the candidate drugs for breast cancer treatment through modulating the lncRNA expression in the dysregulated FFLs. Collectively, this study elucidated the roles of lncRNA-involved FFLs in breast cancer subtypes, which could contribute to understanding breast cancer pathogenesis and improving the treatment.
Collapse
Affiliation(s)
- Leiming Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 21106, China; College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xuexin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xueyan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Haizhou Liu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 21106, China
| | - Shunheng Zhou
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 21106, China
| | - Xu Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qianqian Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Lihong Wang
- Department of Pathophysiology, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Wei Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 21106, China; College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
31
|
Huang YX, Nie XG, Li GD, Fan DS, Song LL, Zhang XL. Downregulation of microRNA‑182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation. Int J Oncol 2018; 53:2615-2626. [PMID: 30320366 DOI: 10.3892/ijo.2018.4587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/02/2018] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma (RB) is a well‑vascularized tumor dependent on angiogenesis. The present study aimed to explore whether microRNA (miR)‑182 regulates cell viability, invasion and angiogenesis in RB via the phosphatidylinositol‑3‑OH kinase (PI3K)/protein kinase B (AKT) signaling pathway and by targeting cell adhesion molecule 2 (CADM2). The expression levels of miR‑182 and CADM2 were initially detected in RB tissues from patients with RB who underwent ophthalmectomy, and normal retinal tissues collected from other trauma patients who underwent eye enucleation. To determine whether CADM2 was targeted by miR‑182, a dual luciferase reporter assay was conducted. Subsequently, Y79 and WERI‑Rb‑1 RB cells were transfected with a miR‑182 mimic or miR‑182 inhibitor, or small interfering RNA against CADM2, in order to investigate the effects of miR‑182 on viability and invasion, which were detected using MTT and Transwell assays, respectively. In addition, to determine whether the regulatory mechanism underlying the effects of miR‑182 was associated with the PI3K/AKT signaling pathway, the expression levels of associated genes were detected by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. A xenograft tumor model in nude mice was also established, in order to evaluate the effects of miR‑182 on tumor growth and angiogenesis. The results indicated that miR‑182 expression was increased and CADM2 expression was reduced in RB tissues; CADM2 was confirmed to be targeted and negatively regulated by miR‑182. When the expression of miR‑182 was downregulated, cell viability, invasion, tumor volume and angiogenesis were significantly decreased. Furthermore, the expression levels of PI3K/AKT signaling pathway‑associated genes were increased in response to miR‑182 overexpression or CADM2 silencing. Taken together, these results suggested that inhibition of miR‑182 may suppress cell viability, invasion and angiogenesis in RB through inactivation of the PI3K/AKT pathway and CADM2 upregulation. This mechanism may reveal a novel potential therapeutic target.
Collapse
Affiliation(s)
- Yan-Xia Huang
- Department of Ophthalmology, Luoyang Central Hospital, Luoyang, Henan 471009, P.R. China
| | - Xin-Gang Nie
- Department of Ophthalmology, Luoyang Central Hospital, Luoyang, Henan 471009, P.R. China
| | - Guang-Da Li
- Department of Ophthalmology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Dong-Sheng Fan
- Department of Ophthalmology, Luoyang Central Hospital, Luoyang, Henan 471009, P.R. China
| | - Li-Li Song
- Department of Ophthalmology, Luoyang Central Hospital, Luoyang, Henan 471009, P.R. China
| | - Xin-Lin Zhang
- Department of Ophthalmology, Luoyang Central Hospital, Luoyang, Henan 471009, P.R. China
| |
Collapse
|
32
|
Teng YD, Abd-El-Barr M, Wang L, Hajiali H, Wu L, Zafonte RD. Spinal cord astrocytomas: progresses in experimental and clinical investigations for developing recovery neurobiology-based novel therapies. Exp Neurol 2018; 311:135-147. [PMID: 30243796 DOI: 10.1016/j.expneurol.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 12/25/2022]
Abstract
Spinal cord astrocytomas (SCAs) have discernibly unique signatures in regards to epidemiology, clinical oncological features, genetic markers, pathophysiology, and research and therapeutic challenges. Overall, there are presently very limited clinical management options for high grade SCAs despite progresses made in validating key molecular markers and standardizing tumor classification. The endeavors were aimed to improve diagnosis, therapy design and prognosis assessment, as well as to define more effective oncolytic targets. Efficacious treatment for high grade SCAs still remains an unmet medical demand. This review is therefore focused on research state updates that have been made upon analyzing clinical characteristics, diagnostic classification, genetic and molecular features, tumor initiation cell biology, and current management options for SCAs. Particular emphasis was given to basic and translational research endeavors targeting SCAs, including establishment of experimental models, exploration of unique profiles of SCA stem cell-like tumor survival cells, characterization of special requirements for effective therapeutic delivery into the spinal cord, and development of donor stem cell-based gene-directed enzyme prodrug therapy. We concluded that precise understanding of molecular oncology, tumor survival mechanisms (e.g., drug resistance, metastasis, and cancer stem cells/tumor survival cells), and principles of Recovery Neurobiology can help to create clinically meaningful experimental models of SCAs. Establishment of such systems will expedite the discovery of efficacious therapies that not only kill tumor cells but simultaneously preserve and improve residual neural function.
Collapse
Affiliation(s)
- Yang D Teng
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA.
| | - Muhammad Abd-El-Barr
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA; Current affiliation: Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Lei Wang
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Hadi Hajiali
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Liqun Wu
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Ross D Zafonte
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
33
|
Zhang L, Wang Q, Wang F, Zhang X, Zhang L, Tang Y, Wang S. LncRNA LINC01446 promotes glioblastoma progression by modulating miR-489-3p/TPT1 axis. Biochem Biophys Res Commun 2018; 503:1484-1490. [PMID: 30029885 DOI: 10.1016/j.bbrc.2018.07.067] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates that long noncoding RNA (lncRNA) is implicated in human diseases, including cancers. However, how lncRNA regulates glioblastoma (GBM) progression is poorly understood. Our study revealed a novel lncRNA LINC01446 whose expression was elevated in GBM tissues. Besides, high expression of LINC01446 indicated a poor prognosis in GBM patients. Functionally, LINC01446 knockdown dramatically inhibited GBM cell proliferation, arrested cell-cycle progression and attenuated invasion in vitro. Furthermore, the xenograft mouse model showed that LINC01446 silence led to impaired tumor growth in vivo. Mechanistically, bioinformatics analysis showed that LINC01446 acted as a sponge for miR-489-3p which targeted TPT1. Though inhibiting miR-489-3p availability, LINC01446 promoted TPT1 expression in GBM cells. Rescue experiments demonstrated that restoration of TPT1 could significantly rescued the effects of LINC01446 silence or miR-489-3p overexpression. Taken together, this study demonstrates a novel singling pathway of LINC01446/miR-489-3p/TPT1 cascade that regulates GBM progression.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/metabolism
- Disease Progression
- Female
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/metabolism
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- RNA, Long Noncoding/biosynthesis
- RNA, Long Noncoding/metabolism
- RNA, Long Noncoding/pharmacology
- Tumor Cells, Cultured
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Li Zhang
- Experiment Center of Basic Medical Sciences of Kunming Medical University, Kunming, 650500, China
| | - Qin Wang
- Geriatrics Hospital of Yunnan, Kunming, 650033, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiang Zhang
- Experiment Center of Basic Medical Sciences of Kunming Medical University, Kunming, 650500, China
| | - Li Zhang
- Editorial Department of Journal of Kunming Medical University, Kunming, 650500, China
| | - Ying Tang
- The Electron Microscopy Laboratory, Experiment Center for Medical Science Research of Kunming Medical University, Kunming, 650500, China
| | - Shaoyun Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650106, China.
| |
Collapse
|
34
|
Chang H, Liu YH, Wang LL, Wang J, Zhao ZH, Qu JF, Wang SF. MiR-182 promotes cell proliferation by suppressing FBXW7 and FBXW11 in non-small cell lung cancer. Am J Transl Res 2018; 10:1131-1142. [PMID: 29736206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE MicroRNAs have been found to be deregulated in lung cancers, which play crucial roles in tumorigenesis and progression. FBXW7 and FBXW11, two important F-box proteins of the ubiquitin-proteasome system (UPS), can target multiple substrates for degradation, in order to regulate cell proliferation and survival in cancers. In the present study, we aimed to explore the potential role and regulating mechanism of miR-182 in non-small cell lung cancer (NSCLC). METHODS MiRNA expression was evaluated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). FBXW7, FBXW11, c-Jun, c-Myc and cyclin D protein levels were detected by western blot. Cell growth was determined using cell counting kit (CCK)-8 reagent and colony formation experiment. Then, cell apoptosis and the cell cycle were analyzed on flow cytometry. The target binding activity of miR-182 with FBXW7 or FBXW11 was evaluated through the Dual-Luciferase Reporter Assay System. RESULTS It was confirmed that miR-182 was significantly upregulated in tumor tissues, compared with adjacent normal tissues, and this was inversely correlated to the protein levels of FBXW7 and FBXW11. The overexpression of miR-182 in NSCLC cells dramatically promoted cell growth, colony formation capacity and cell cycle progression, and inhibited apoptosis in NSCLC cells. In contrast, the downregulation of miR-182 significantly alleviated these properties in vitro. Furthermore, we demonstrated that miR-182 exerted an oncogenic role in NSCLC by directly targeting FBXW7 and FBXW11. CONCLUSION These results bring new insights into the oncogenic role of miR-182 in NSCLC, indicating that miR-182 might be a novel biomarker for the diagnosis and prognosis of NSCLC.
Collapse
Affiliation(s)
- Hao Chang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Yue-Hong Liu
- Department of Endocrinology, The First Hospital of Harbin Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Li-Li Wang
- Department of Thoracic Surgery, The First Hospital of Harbin Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Ju Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Zhi-Hong Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Jun-Feng Qu
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Sheng-Fa Wang
- Department of Thoracic Surgery, The First Hospital of Harbin Harbin 150001, Heilongjiang Province, People's Republic of China
| |
Collapse
|
35
|
Lin LT, Liu SY, Leu JD, Chang CY, Chiou SH, Lee TC, Lee YJ. Arsenic trioxide-mediated suppression of miR-182-5p is associated with potent anti-oxidant effects through up-regulation of SESN2. Oncotarget 2018; 9:16028-16042. [PMID: 29662624 PMCID: PMC5882315 DOI: 10.18632/oncotarget.24678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 02/24/2018] [Indexed: 01/15/2023] Open
Abstract
Arsenic trioxide (ATO) is a traditional Chinese medicine that can induce oxidative stress for treatment of cancer cells. However, ATO may generate anti-oxidative responses to compromise the cytotoxic effect, but the underlying mechanisms remain unclear. Here we found that ATO could inhibit miR-182-5p expression in patient-derived primary S1 glioblastoma (GBM) cells accompanied by up-regulation of Sestrin-2 (SESN2) mRNA, a known anti-oxidant molecule. This phenomenon was also detected in a U87MG glioma cell line, human lung adenocarcinoma H1299 cell line and A549 cell line. Pretreatment with a free radical scavenger N-acetylcysteine (NAC) reduced the oxidative stress induced by ATO. Concomitantly, ATO mediated suppression of miR-182-5p and enhancement of SESN2 expression were also compromised. The MTT assay further showed that ATO induced cytotoxicity was enhanced by transfection of miR-182-5p mimics. Overexpression of miR-182-5p mimics significantly suppressed the expression of SENS2 and a firefly luciferase reporter gene fused to 3’- untranslated region (UTR) of SESN2 mRNA. Use of ribonucleoprotein immunoprecipitation (RNP-IP), ATO mediated suppression of miR-182-5p led to the stabilization of SESN2 mRNA as a result of Argonaute-2 (AGO2) dependent gene silencing. Furthermore, high expression of miR-182-5p and low expression of SESN2 mRNA tend to be associated with longer survival of glioma or lung cancer patients using public available gene expression datasets and online tools for prediction of clinical outcomes. Taken together, current data suggest that the miR-182-5p/SENS2 pathway is involved in ATO induced anti-oxidant responses, which may be important for the design of novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Liang-Ting Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Current address: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Shin-Yi Liu
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jyh-Der Leu
- Division of Radiation Oncology, Taipei City Hospital Ren Ai Branch, Taipei, Taiwan.,Institute of Neuroscience, National Chengchi University, Taipei, Taiwan
| | - Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
36
|
Clinical utility of miR-143/miR-182 levels in prognosis and risk stratification specificity of BFM-treated childhood acute lymphoblastic leukemia. Ann Hematol 2018; 97:1169-1182. [PMID: 29556721 DOI: 10.1007/s00277-018-3292-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/05/2018] [Indexed: 12/22/2022]
Abstract
Although childhood acute lymphoblastic leukemia (ALL) is characterized by high remission rates, there are still patients who experience poor response to therapy or toxic effects due to intensive treatment. In the present study, we examined the expression profile of miR-143 and miR-182 in childhood ALL and evaluated their clinical significance for patients receiving Berlin-Frankfurt-Münster (BFM) protocol. Bone marrow specimens from 125 childhood ALL patients upon diagnosis and the end-of-induction (EoI; day 33), as well as from 64 healthy control children undergone RNA extraction, polyadenylation, and reverse transcription. Expression levels of miRNAs were quantified by qPCR analysis. Patients' cytogenetic, immunohistotype and MRD evaluation was performed according to international guidelines. Median follow-up time was 86.0 months (95% CI 74.0-98.0), while patients' mean DFS and OS intervals were 112.0 months (95% CI 104.2-119.8) and 109.2 months (95% CI 101.2-117.3), respectively. Bone marrow levels of miR-143/miR-182 were significantly decreased in childhood ALL patients at diagnosis and increased in more than 90% of patients at the EoI. Patients' survival analysis highlighted that children overexpressing miR-143/miR-182 at the EoI presented significantly higher risk for short-term relapse (log-rank test: p = 0.021; Cox regression: HR = 4.911, p = 0.038) and death (log-rank test: p = 0.028; Cox regression: HR = 4.590, p = 0.046). Finally, the evaluation of the miR-143/miR-182 EoI levels along with the established disease prognostic markers resulted to improved prediction of BFM-treated patients' survival outcome and response to therapy and additionally to superior BFM risk stratification specificity. Concluding, miR-143 and miR-182 could serve as novel prognostic molecular markers for pediatric ALL treated with BFM chemotherapy.
Collapse
|
37
|
Jiang G, Huang C, Li J, Huang H, Wang J, Li Y, Xie F, Jin H, Zhu J, Huang C. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells. Carcinogenesis 2018; 39:482-492. [PMID: 29409027 PMCID: PMC5862297 DOI: 10.1093/carcin/bgy015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.
Collapse
Affiliation(s)
- Guosong Jiang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Haishan Huang
- Department of Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Wang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Yawei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Xie
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Honglei Jin
- Department of Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlan Zhu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| |
Collapse
|
38
|
Ma Y, Liang AJ, Fan YP, Huang YR, Zhao XM, Sun Y, Chen XF. Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget 2018; 7:42805-42825. [PMID: 27081087 PMCID: PMC5173173 DOI: 10.18632/oncotarget.8715] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
Previous studies have reported aberrant expression of the miR-183-96-182 cluster in a variety of tumors, which indicates its' diagnostic or prognostic value. However, a key characteristic of the miR-183-96-182 cluster is its varied expression levels, and pleomorphic functional roles in different tumors or under different conditions. In most tumor types, the cluster is highly expressed and promotes tumorigenesis, cancer progression and metastasis; yet tumor suppressive effects have also been reported in some tumors. In the present study, we discuss the upstream regulators and the downstream target genes of miR-183-96-182 cluster, and highlight the dysregulation and functional roles of this cluster in various tumor cells. Newer insights summarized in this review will help readers understand the different facets of the miR-183-96-182 cluster in cancer development and progression.
Collapse
Affiliation(s)
- Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - A-Juan Liang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yu-Ping Fan
- Reproductive Medicine Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Ran Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Ming Zhao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Fiore D, Donnarumma E, Roscigno G, Iaboni M, Russo V, Affinito A, Adamo A, De Martino F, Quintavalle C, Romano G, Greco A, Soini Y, Brunetti A, Croce CM, Condorelli G. miR-340 predicts glioblastoma survival and modulates key cancer hallmarks through down-regulation of NRAS. Oncotarget 2017; 7:19531-47. [PMID: 26799668 PMCID: PMC4991399 DOI: 10.18632/oncotarget.6968] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/01/2016] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults; with a survival rate of 12 months from diagnosis. However, a small subgroup of patients, termed long-term survivors (LTS), has a survival rate longer then 12–14 months. There is thus increasing interest in the identification of molecular signatures predicting glioblastoma prognosis and in how to improve the therapeutic approach. Here, we report miR-340 as prognostic tumor-suppressor microRNA for glioblastoma. We analyzed microRNA expression in > 500 glioblastoma patients and found that although miR-340 is strongly down-regulated in glioblastoma overall, it is up-regulated in LTS patients compared to short-term survivors (STS). Indeed, miR-340 expression predicted better prognosis in glioblastoma patients. Coherently, overexpression of miR-340 in glioblastoma cells was found to produce a tumor-suppressive activity. We identified NRAS mRNA as a critical, direct target of miR-340: in fact, miR-340 negatively influenced multiple aspects of glioblastoma tumorigenesis by down-regulating NRAS and downstream AKT and ERK pathways. Thus, we demonstrate that expression of miR-340 in glioblastoma is responsible for a strong tumor-suppressive effect in LTS patients by down-regulating NRAS. miR-340 may thus represent a novel marker for glioblastoma diagnosis and prognosis, and may be developed into a tool to improve treatment of glioblastoma.
Collapse
Affiliation(s)
- Danilo Fiore
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | | | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.,IEOS, CNR, Naples, Italy
| | - Margherita Iaboni
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Valentina Russo
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Assunta Adamo
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Fabio De Martino
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Cristina Quintavalle
- Institute of Pathology, Molecular Pathology Division, University of Basel, Basel, Switzerland
| | - Giulia Romano
- Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Adelaide Greco
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy.,Ceinge, Biotecnologie Avanzate, Scarl, Naples, Italy
| | - Ylermi Soini
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
| | - Arturo Brunetti
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy.,Ceinge, Biotecnologie Avanzate, Scarl, Naples, Italy
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.,IEOS, CNR, Naples, Italy
| |
Collapse
|
40
|
A 4-miRNA signature to predict survival in glioblastomas. PLoS One 2017; 12:e0188090. [PMID: 29136645 PMCID: PMC5685622 DOI: 10.1371/journal.pone.0188090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas are among the most lethal cancers; however, recent advances in survival have increased the need for better prognostic markers. microRNAs (miRNAs) hold great prognostic potential being deregulated in glioblastomas and highly stable in stored tissue specimens. Moreover, miRNAs control multiple genes representing an additional level of gene regulation possibly more prognostically powerful than a single gene. The aim of the study was to identify a novel miRNA signature with the ability to separate patients into prognostic subgroups. Samples from 40 glioblastoma patients were included retrospectively; patients were comparable on all clinical aspects except overall survival enabling patients to be categorized as short-term or long-term survivors based on median survival. A miRNome screening was employed, and a prognostic profile was developed using leave-one-out cross-validation. We found that expression patterns of miRNAs; particularly the four miRNAs: hsa-miR-107_st, hsa-miR-548x_st, hsa-miR-3125_st and hsa-miR-331-3p_st could determine short- and long-term survival with a predicted accuracy of 78%. Heatmap dendrograms dichotomized glioblastomas into prognostic subgroups with a significant association to survival in univariate (HR 8.50; 95% CI 3.06–23.62; p<0.001) and multivariate analysis (HR 9.84; 95% CI 2.93–33.06; p<0.001). Similar tendency was seen in The Cancer Genome Atlas (TCGA) using a 2-miRNA signature of miR-107 and miR-331 (miR sum score), which were the only miRNAs available in TCGA. In TCGA, patients with O6-methylguanine-DNA-methyltransferase (MGMT) unmethylated tumors and low miR sum score had the shortest survival. Adjusting for age and MGMT status, low miR sum score was associated with a poorer prognosis (HR 0.66; 95% CI 0.45–0.97; p = 0.033). A Kyoto Encyclopedia of Genes and Genomes analysis predicted the identified miRNAs to regulate genes involved in cell cycle regulation and survival. In conclusion, the biology of miRNAs is complex, but the identified 4-miRNA expression pattern could comprise promising biomarkers in glioblastoma stratifying patients into short- and long-term survivors.
Collapse
|
41
|
Chai Z, Fan H, Li Y, Song L, Jin X, Yu J, Li Y, Ma C, Zhou R. miR-1908 as a novel prognosis marker of glioma via promoting malignant phenotype and modulating SPRY4/RAF1 axis. Oncol Rep 2017; 38:2717-2726. [PMID: 29048686 PMCID: PMC5780024 DOI: 10.3892/or.2017.6003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are reported to be involved in the development of glioma. However, study on miRNAs in glioma is limited. The present study aimed to identify miRNAs which can act as potential novel prognostic markers for glioma and analyze its possible mechanism. We show that miR-1908 correlates with shorter survival time of glioma patients via promoting cell proliferation, invasion, anti-apoptosis and regulating SPRY4/RAF1 axis. Analysis of GEO and TCGA database found that miR-1908 was significantly upregulated in glioma tissues, and strongly associated with shorter survival time of glioma patients. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that miR-1908 is mainly involved in regulating cell proliferation, invasion and apoptosis. To further confirm the above results, in vitro, glioma U251 cells were transfected with miR-1908 mimics or inhibitor, and upregulated miR-1908 promoted U251 cell proliferation, and enhanced the ability of invasion by Transwell assay. In addition, upregulated miR-1908 also enhanced anti-apoptosis ability of U251 cells through decreasing pro-apoptosis protein Bax expression. Since miRNAs regulate numerous biological processes by targeting broad set of messenger RNAs, validated target genes of miR-1908 in glioma were analyzed by TargetScan and miRTarBase databases. Among them SPRY4 was significantly decreased in glioma tissues and associated with short survival time, which was selected as the key target gene of miR-1908. Moreover, protein-protein interaction (PPI) showed that SPRY4 could interacted with pro-oncogene RAF1 and negatively correlated with RAF1 expression. Consistent with above analysis, in vitro, western blot analysis identified that miR-1908 upregulated significantly decreased SPRY4 expression and increased RAF1 expression. Hence, miR-1908 was correlated with poor prognosis of glioma via promoting cell proliferation, invasion, anti-apoptosis and regulating SPRF4/RAF1 axis. Our results elucidated the tumor promoting role of miR-1908 and established miR-1908 as a potential novel prognostic marker for glioma.
Collapse
Affiliation(s)
- Zhi Chai
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Huijie Fan
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Yanyan Li
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Lijuan Song
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Xiaoming Jin
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Yanhua Li
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Cungen Ma
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Ran Zhou
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
42
|
Zhang J, Zhang J, Zhang J, Qiu W, Xu S, Yu Q, Liu C, Wang Y, Lu A, Zhang J, Lu X. MicroRNA-625 inhibits the proliferation and increases the chemosensitivity of glioma by directly targeting AKT2. Am J Cancer Res 2017; 7:1835-1849. [PMID: 28979807 PMCID: PMC5622219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023] Open
Abstract
Glioma is a malignant tumor for which new therapies are needed. Growing evidence has demonstrated that microRNAs (miRNAs) have a major effect on glioma development. Here, we aimed to characterize a novel anti-cancer miRNA, miR-625, by investigating its expression, function, and mechanism of action in glioma progression. The expression of miR-625 and its target mRNA in human glioma tissues and cell lines was assessed by real-time PCR, western blotting, and immunohistochemistry. Functional significance was assessed by examining cell cycle progression, proliferation, apoptosis, and chemosensitivity to temozolomide in vitro, and by examining growth of subcutaneous glioblastoma in a mouse model in vivo. We found that miR-625 expression was significantly lower in human glioma samples and cell lines than in normal brain tissue and human astrocytes. Furthermore, miR-625 overexpression not only suppressed glioma cell proliferation in culture and in the tumor xenograft model but also induced cell cycle arrest and apoptosis. AKT2 was identified as a direct miR-625 target in glioma cell lines, and AKT2 overexpression reversed the suppressive effects of miR-625 in the cell lines and the tumor xenograft model. Finally, we found that the sensitivity of glioma cells to temozolomide was increased by miR-625 overexpression, and this was reversed by concomitant AKT2 expression. In conclusion, our findings suggest that the miR-625-AKT2 axis could be a new prognostic marker and diagnostic target for gliomas.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University300 Guangzhou Road, Guiyang 550004, Guizhou Province, People’s Republic of China
| | - Shuo Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Qun Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Chengke Liu
- Department of Neurosurgery, Liyang Hospital of TCM121# Xihou Street, Liyang 213300, Jiangsu Province, People’s Repubulic of China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Ailin Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| | - Xiaoming Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People’s Republic of China
| |
Collapse
|
43
|
Xu X, Wang X, Geng C, Nie X, Bai C. Long-chain non-coding RNA DAPK1 targeting miR-182 regulates pancreatic cancer invasion and metastasis through ROCK-1/rhoa signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9273-9283. [PMID: 31966799 PMCID: PMC6965977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/02/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the expression of long-chain non-coding RNAs DAPK1 and miR-182 in pancreatic cancer tissues and the role of DAPK1 and miR-182 in pancreatic cancer cell invasion and migration and its mechanism. METHODS The expression of DAPK1 and miR-182 in different pancreatic cancer and adjacent tissues and different pancreatic cancer cells were detected by qPCR. Transwell invasion assay was used to detect the invasion ability of pancreatic cancer cells after DAPK1 expression. The changes of the migration ability of pancreatic cancer cells after DAPK1 expression were detected by scratch test. Double luciferase reporter gene was used to detect the interaction between DAPK1 and miR-182. Transwell invasion assay showed that miR-182 overexpression of DAPK1 could restore the invasive ability of pancreatic cancer cells. Western blot was used to detect the expression of ROCK-1/RhoA pathway protein after overexpression of miR-182 in DAPK1 cells. Phalloidin was used to label the cytoskeleton. The effect of miR-182 overexpression of DAPK1 on tumor size and volume of pancreatic cancer was detected by subcutaneous tumor formation in nude mice. RESULTS The expression of DAPK1 was significantly decreased in pancreatic cancer tissues compared with adjacent tissues, and the expression of DAPK1 decreased gradually and the expression of miR-182 was opposite with the progression of tumor. DAPK1 was associated with pathological stage of pancreatic cancer and lymph node metastasis, while miR-182 was positively correlated. The expression level of DAPK1 in pancreatic cancer cell HS766T was the lowest. Overexpression of DAPK1 could inhibit the invasion and migration of pancreatic cancer cells. DAPK1 could bind specifically to 3'UTR of miR-182. Overexpression of miR-182 could restore the invasion and migration of pancreatic cancer cells after overexpression of DAPK1. The expression of ROCK-1/RhoA pathway protein was down-regulated by miR-182 after expression of DAPK1, and the expression of ROCK-1/RhoA pathway protein was restored. The expression of F-actin in LV5-DAPK1 group was significantly decreased, the formation of cell membrane wrinkles was significantly reduced, and the formation of pseudopodia was significantly reduced compared with LV5-DAPK1 + miR-182-mimic group. The tumor volume and weight of tumor-bearing mice in LV5-DAPK1 + miR-182-mimic group were significantly increased compared with LV5-DAPK1 group. CONCLUSION DAPK1 plays an important role in the development and progression of pancreatic cancer. DAPK1 can regulate the invasion and migration of pancreatic cancer cells through the regulation of miR-82 through ROCK-1/RhoA signaling pathway.
Collapse
Affiliation(s)
- Xinjian Xu
- Department of General Surgery, Digestive and Vascular Center, 1st Affiliated Hospital of Xinjiang Medical UniversityUrumqi, China
| | - Xiyan Wang
- Tumor Hospital of Xinjiang Medical UniversityUrumqi, China
| | - Cheng Geng
- Department of General Surgery, Digestive and Vascular Center, 1st Affiliated Hospital of Xinjiang Medical UniversityUrumqi, China
| | - Xiaohan Nie
- Department of General Surgery, Digestive and Vascular Center, 1st Affiliated Hospital of Xinjiang Medical UniversityUrumqi, China
| | - Chenguang Bai
- Department of General Surgery, Digestive and Vascular Center, 1st Affiliated Hospital of Xinjiang Medical UniversityUrumqi, China
| |
Collapse
|
44
|
Wang Y, Zhang J, Zhao W, Wang D, Ma W, Shang S, Feng C, Yu H. MicroRNA expression in esophageal squamous cell carcinoma: Novel diagnostic and prognostic biomarkers. Mol Med Rep 2017; 15:3833-3839. [PMID: 28440443 DOI: 10.3892/mmr.2017.6479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/22/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to identify more effective molecular diagnostic biomarkers for esophageal squamous cell carcinoma (ESCC). The non‑coding RNA profile GSE43732, generated from 238 paired frozen tissues from 119 patients, was analyzed. Raw data were preprocessed and the differentially expressed miRNAs were screened by limma package with log2 fold change >2. Prognosis‑associated miRNAs were identified using receiver operating characteristic (ROC) and Kaplan-Meier (KM) curve analysis. miRNAs with an area under the ROC curve of ≥0.7 were selected. miRNA target genes were identified from verification and predictive databases, and an miRNA regulatory network was constructed and visualized using Cytoscape software. Gene Ontology and pathway enrichment analyses of the target genes were performed using TargetMine. A total of 107 differentially expressed miRNAs, including 54 upregulated and 53 downregulated miRNAs, were obtained. The KM survival curves revealed that 44 miRNAs were significantly associated with prognosis. Furthermore, 9 upregulated and 3 downregulated miRNAs were obtained. Two upregulated miRNAs, hsa‑miR‑143‑3p and hsa‑miR‑145‑5p, and two downregulated miRNAs, hsa‑miR‑182‑5p and hsa‑miR‑455‑5p, were identified and demonstrated to be associated with prognosis in ESCC. In addition, 8 known and 245 predicted target genes of hsa‑miR‑455‑5p were screened and the regulatory networks were constructed. Furthermore, these genes were functionally associated with macromolecule metabolic process and melanoma. In conclusion, two novel tumor suppressive miRNAs including miR‑182‑5p and miR‑455‑5p were identified. miR‑455‑5p in particular may be involved in the regulation of ESCC. These miRNAs may be used to predict the prognosis of ESCC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jinnan Zhang
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wei Zhao
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Donglin Wang
- Department of General Surgery, Green Garden Changchun City Hospital, Changchun, Jilin 130062, P.R. China
| | - Wenduan Ma
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Shengtao Shang
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chao Feng
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Haixin Yu
- Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
45
|
Chen Y, Min L, Ren C, Xu X, Yang J, Sun X, Wang T, Wang F, Sun C, Zhang X. miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer. PLoS One 2017; 12:e0171751. [PMID: 28199399 PMCID: PMC5310808 DOI: 10.1371/journal.pone.0171751] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023] Open
Abstract
Lung cancer is the leading cause of cancer death in the world, and aberrant expression of miRNA is a common feature during the cancer initiation and development. Our previous study showed that levels of miRNA-148a assessed by quantitative real-time polymerase chain reaction (qRT-PCR) were a good prognosis factor for non-small cell lung cancer (NSCLC) patients. In this study, we used high-throughput formalin-fixed and paraffin-embedded (FFPE) lung cancer tissue arrays and in situ hybridization (ISH) to determine the clinical significances of miRNA-148a and aimed to find novel target of miRNA-148a in lung cancer. Our results showed that there were 86 of 159 patients with low miRNA-148a expression and miRNA-148a was significantly down-regulated in primary cancer tissues when compared with their adjacent normal lung tissues. Low expression of miRNA-148a was strongly associated with high tumor grade, lymph node (LN) metastasis and a higher risk of tumor-related death in NSCLC. Lentivirus mediated overexpression of miRNA-148a inhibited migration and invasion of A549 and H1299 lung cancer cells. Furthermore, we validated Wnt1 as a direct target of miRNA-148a. Our data showed that the Wnt1 expression was negatively correlated with the expression of miRNA-148a in both primary cancer tissues and their corresponding adjacent normal lung tissues. In addition, overexpression of miRNA-148a inhibited Wnt1 protein expression in cancer cells. And knocking down of Wnt-1 by siRNA had the similar effect of miRNA-148a overexpression on cell migration and invasion in lung cancer cells. In conclusion, our results suggest that miRNA-148a inhibited cell migration and invasion through targeting Wnt1 and this might provide a new insight into the molecular mechanisms of lung cancer metastasis.
Collapse
Affiliation(s)
- Yong Chen
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingfeng Min
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuanli Ren
- Departments of Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingxiang Xu
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqi Yang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinchen Sun
- Department of Radiotherapy, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Wang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Wang
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Changjiang Sun
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (XZZ); (CJS)
| | - Xizhi Zhang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (XZZ); (CJS)
| |
Collapse
|
46
|
Wang J, Wang W, Li J, Wu L, Song M, Meng Q. miR182 activates the Ras-MEK-ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1. Onco Targets Ther 2017; 10:667-679. [PMID: 28223824 PMCID: PMC5308578 DOI: 10.2147/ott.s121864] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The constitutive activation of the Ras–MEK–ERK signaling pathway in oral cavity squamous cell carcinoma (OSCC) has been found to be tightly controlled at multiple levels under physiological conditions. RASA1 and SPRED1 are two important negative regulators of this pathway, but the exact regulating mechanism remains unclear. In this study, we aimed to explore the potential regulating mechanisms involved in the Ras–MEK–ERK signaling pathway in OSCC. Materials and methods MicroRNA (miRNA) expression was detected by quantitative reverse-transcription polymerase chain reaction. The protein levels of RASA1, SPRED1, and signaling proteins were detected by Western blot. Cell growth was determined using CCK-8 reagent, colony formation was stained by crystal violet, and cell invasion was tested using transwell chambers. Cell apoptosis and the cell cycle were then analyzed by flow cytometry. The binding of miR182 with RASA1 or SPRED1 was evaluated by luciferase reporter assays on a dual-luciferase reporter system. Results The expression of miR182 was found to be upregulated significantly in malignant oral carcinoma tissues compared with the adjacent nonmalignant tissues, and was inversely correlated with protein levels of RASA1 and SPRED1. Overexpression of miR182 in OSCC cell lines sustained Ras–MEK–ERK signaling-pathway activation, and promoted cell proliferation, cell-cycle progression, colony formation, and invasion capacity, whereas miR182 downregulation alleviated these properties significantly in vitro. Furthermore, we demonstrated that miR182 exerted its oncogenic role in OSCC by directly targeting and suppressing RASA1 and SPRED1. Conclusion Our results bring new insights into the important role of miR182 in the activation of the Ras–MEK–ERK signaling pathway, and suggest that miR182 may be used as a potential target for treatment of OSCC, prompting further investigation into miRNA antisense oligonucleotides for cancer therapy.
Collapse
Affiliation(s)
- Jinhui Wang
- Department of Clinical Laboratory, Harbin First Hospital
| | - Wei Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University
| | - Jichen Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University
| | - Liji Wu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University
| | - Mei Song
- Department of Clinical Laboratory, Harbin First Hospital
| | - Qinggang Meng
- Department of Osteological Surgery, Harbin First Hospital, Harbin, People's Republic of China
| |
Collapse
|
47
|
Pavlakis E, Tonchev AB, Kaprelyan A, Enchev Y, Stoykova A. Interaction between transcription factors PAX6/PAX6-5a and specific members of miR-183-96-182 cluster, may contribute to glioma progression in glioblastoma cell lines. Oncol Rep 2017; 37:1579-1592. [DOI: 10.3892/or.2017.5411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/02/2017] [Indexed: 11/06/2022] Open
|
48
|
Wang L, Jiang H, Li W, Jia C, Zhang H, Sun Y, Chen X, Song X. Overexpression of TP53 mutation-associated microRNA-182 promotes tumor cell proliferation and migration in head and neck squamous cell carcinoma. Arch Oral Biol 2017; 73:105-112. [DOI: 10.1016/j.archoralbio.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/14/2023]
|
49
|
Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, Segura MF, Zhang X, Hu G. MicroRNA-182 targets SMAD7 to potentiate TGFβ-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun 2016; 7:13884. [PMID: 27996004 PMCID: PMC5187443 DOI: 10.1038/ncomms13884] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/09/2016] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor β (TGFβ) pathway plays critical roles during cancer cell epithelial-mesenchymal transition (EMT) and metastasis. SMAD7 is both a transcriptional target and a negative regulator of TGFβ signalling, thus mediating a negative feedback loop that may potentially restrain TGFβ responses of cancer cells. Here, however, we show that TGFβ treatment induces SMAD7 transcription but not its protein level in a panel of cancer cells. Mechanistic studies reveal that TGFβ activates the expression of microRNA-182 (miR-182), which suppresses SMAD7 protein. miR-182 silencing leads to SMAD7 upregulation on TGFβ treatment and prevents TGFβ-induced EMT and invasion of cancer cells. Overexpression of miR-182 promotes breast tumour invasion and TGFβ-induced osteoclastogenesis for bone metastasis. Furthermore, miR-182 expression inversely correlates with SMAD7 protein in human tumour samples. Therefore, our data reveal the miR-182-mediated disruption of TGFβ self-restraint and provide a mechanism to explain the unleashed TGFβ responses in metastatic cancer cells. SMAD7 is a transcriptional target and a negative regulator of TGFβ signalling forming a negative feedback loop. Here the authors show that in cancer cells TGFβ activates the expression of microRNA-182 that suppresses SMAD7 protein, promoting TGFβ-mediated breast tumour invasion and bone metastasis.
Collapse
Affiliation(s)
- Jingyi Yu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Lei
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueqian Zhuang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxun Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miguel F Segura
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Xue Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
50
|
Cui H, Mu Y, Yu L, Xi YG, Matthiesen R, Su X, Sun W. Methylation of the miR-126 gene associated with glioma progression. Fam Cancer 2016; 15:317-24. [PMID: 26463235 DOI: 10.1007/s10689-015-9846-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gliomas are the most common and the most malignant brain tumors, accouting for 45-55% of all intracranial tumors. The incidence of glioma worldwide is about 6-12 per 100,000. Recently, several studies showed that the activation of the oncogenes and the inactivation and/or loss of the tumor suppressor genes, especially for miRNA-21, let-7 and so on, are the most primary molecule event in gliomas. MicroRNAs (miRNAs) are a class of endogenously expressed small noncoding RNAs which are usually 21-23 nucleotides long. miRNAs regulate gene expression and play important roles in a variety of physiological and pathological processes, such as cell proliferation, differentiation and apoptosis. To date, Growing evidence has shown that mi RNAs are frequently dysregulated in human cancers and can act as both tumor suppressors and oncogenes. Along with the discovery of micro RNA, more and more research focusing on its relationship with glioma was carried out to investigate the biological features of glioma and to provide experimental evidence for glioma mechanism. In the present study, we aimed to verify the miRNA-126 down-regulation which showed in the results of glioma tissue miRNAs chip and discuss the miRNA-126 methylation in patients with glioma. A total of 50 samples from patients with glioma and 20 control samples from patients with cerebral trauma were included in this study. The expression levels of the miR-126 gene were detected using quantitative polymerase chain reaction (PCR), and the methylation status of miR-126 was examined using methylation-specific PCR-denaturing high-performance liquid chromatography (MSP-DHPLC). The expression level of miRNA-126 was found to be significantly higher in the control group (0.6134 ± 0.1214) than in the glioma group (0.2771 ± 0.1529; P < 0.05). The expression was also significantly elevated in low-grade gliomas (0.3117 ± 0.1474) compared with high-grade gliomas (0.1582 ± 0.1345; P < 0.05). In addition, increased methylation of miR-126 was found in 40% of glioma patients in our study (20/50 cases), resulting in significantly decreased miR-126 expression (0.1715 ± 0.1376; P < 0.05). Our results indicate that we verified successfully the miRNA-126 down-regulation phenomenon in patients with glioma which showed in the results of glioma tissue miRNAs chip and the miRNA-126 down-regulation through methylation in patients with glioma. So we could say that epigenetic modification is a crucial mechanism for controlling the expression of miR-126 in glioma.
Collapse
Affiliation(s)
- Hongwei Cui
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yongping Mu
- Clinical Laboratory of Inner Mongolia Autonomous Region Tumor Hospital, Hohhot, Inner Mongolia, China
| | - Lei Yu
- Pharmacy Department of Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
| | - Ya-guang Xi
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Rune Matthiesen
- Department of Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wenjie Sun
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China. .,School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|