1
|
MacIntyre CR, Chen X, Kunasekaran M, Quigley A, Lim S, Stone H, Paik HY, Yao L, Heslop D, Wei W, Sarmiento I, Gurdasani D. Artificial intelligence in public health: the potential of epidemic early warning systems. J Int Med Res 2023; 51:3000605231159335. [PMID: 36967669 PMCID: PMC10052500 DOI: 10.1177/03000605231159335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The use of artificial intelligence (AI) to generate automated early warnings in epidemic surveillance by harnessing vast open-source data with minimal human intervention has the potential to be both revolutionary and highly sustainable. AI can overcome the challenges faced by weak health systems by detecting epidemic signals much earlier than traditional surveillance. AI-based digital surveillance is an adjunct to-not a replacement of-traditional surveillance and can trigger early investigation, diagnostics and responses at the regional level. This narrative review focuses on the role of AI in epidemic surveillance and summarises several current epidemic intelligence systems including ProMED-mail, HealthMap, Epidemic Intelligence from Open Sources, BlueDot, Metabiota, the Global Biosurveillance Portal, Epitweetr and EPIWATCH. Not all of these systems are AI-based, and some are only accessible to paid users. Most systems have large volumes of unfiltered data; only a few can sort and filter data to provide users with curated intelligence. However, uptake of these systems by public health authorities, who have been slower to embrace AI than their clinical counterparts, is low. The widespread adoption of digital open-source surveillance and AI technology is needed for the prevention of serious epidemics.
Collapse
Affiliation(s)
- Chandini Raina MacIntyre
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, Australia
- College of Public Service & Community Solutions, Arizona State University, Tempe, United States
| | - Xin Chen
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Mohana Kunasekaran
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ashley Quigley
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Samsung Lim
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, Australia
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia
| | - Haley Stone
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Hye-Young Paik
- School of Computer Science and Engineering, Faulty of Engineering, University of New South Wales, Sydney, Australia
| | - Lina Yao
- School of Computer Science and Engineering, Faulty of Engineering, University of New South Wales, Sydney, Australia
| | - David Heslop
- School of Population Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Wenzhao Wei
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ines Sarmiento
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Deepti Gurdasani
- William Harvey Research Institute, Queen Mary University of London, United Kingdom
| |
Collapse
|
2
|
Ortenzi F, Marten R, Valentine NB, Kwamie A, Rasanathan K. Whole of government and whole of society approaches: call for further research to improve population health and health equity. BMJ Glob Health 2022; 7:bmjgh-2022-009972. [PMID: 35906017 PMCID: PMC9344990 DOI: 10.1136/bmjgh-2022-009972] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
| | - Robert Marten
- Alliance for Health Policy and Systems Research, WHO, Geneva, Switzerland
| | | | - Aku Kwamie
- Alliance for Health Policy and Systems Research, WHO, Geneva, Switzerland
| | | |
Collapse
|
3
|
Long CM, Marzi A. Biodefence research two decades on: worth the investment? THE LANCET. INFECTIOUS DISEASES 2021; 21:e222-e233. [PMID: 34331891 DOI: 10.1016/s1473-3099(21)00382-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
For the past 20 years, the notion of bioterror has been a source of considerable fear and panic worldwide. In response to the terror attacks of 2001 in the USA, extensive research funding was awarded to investigate bioterror-related pathogens. The global scientific legacy of this funding has extended into the present day, highlighted by the ongoing COVID-19 pandemic. Unsurprisingly, the surge in biodefence-related research and preparedness has been met with considerable apprehension and opposition. Here, we briefly outline the history of modern bioterror threats and biodefence research, describe the scientific legacy of biodefence research by highlighting advances pertaining to specific bacterial and viral pathogens, and summarise the future of biodefence research and its relevance today. We sought to address the sizeable question: have the past 20 years of investment into biodefence research and preparedness been worth it? The legacy of modern biodefence funding includes advancements in biosecurity, biosurveillence, diagnostics, medical countermeasures, and vaccines. In summary, we feel that these advances justify the substantial biodefence funding trend of the past two decades and set a precedent for future funding.
Collapse
Affiliation(s)
- Carrie M Long
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
4
|
Cho HW, Chu C. A Joint Exercise against Intentional Biothreats. Osong Public Health Res Perspect 2018; 9:1-2. [PMID: 29503798 PMCID: PMC5831684 DOI: 10.24171/j.phrp.2018.9.1.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hae-Wol Cho
- Osong Public Health and Research Perspectives, Korea Centers for Disease Control and Prevention, Cheongju, Korea.,College of Medicine, Eulji University, Daejeon, Korea
| | - Chaeshin Chu
- Osong Public Health and Research Perspectives, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| |
Collapse
|