1
|
Zhi L, Zhang G, He M, Ma Y, Qin Q, Huang X, Huang Y. Grouper FTR14 negatively regulates inflammatory response by targeting TRAF4 and TRAF6. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110306. [PMID: 40180201 DOI: 10.1016/j.fsi.2025.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Accumulated evidence indicates that tripartite motif (TRIM) family proteins play crucial roles in host antiviral defense. Notably, the functions of members of fish-specific TRIM (FTR, also known as finTRIM) subfamily remained largely unknown. Our recent results revealed that grouper FTR14 (EcFTR14) could negatively regulate interferon response by targeting TBK1-IRF3 axis. In this study, the regulatory mechanism underlying the action of EcFTR14 on host inflammatory response was elucidated. Using yeast two-hybrid screening, we found that EcFTR14 interacted with EcTRAF4 and EcTRAF6 which was further confirmed by Co-immunoprecipitation (Co-IP) assay. EcFTR14 could recruit the interacting proteins for their co-localization in vitro. Moreover, EcFTR14 hindered the activation of the NF-κB promoter induced by EcTRAF6, but enhanced the inhibitory effect of EcTRAF4. Consistently, overexpression of EcFTR14 significantly reduced the transcriptional levels of pro-inflammatory factors induced by EcTRAF6. Additionally, EcFTR14 degraded EcTRAF6 via the ubiquitin-proteasome pathway, leading to the abatement of EcTRAF6-induced antiviral effects. Conversely, overexpression of EcFTR14 enhanced the pro-viral effect of EcTRAF4. Together, our results suggested that EcFTR14 could negatively regulate the inflammatory response by targeting TRAF4/6, which might be an alternative mechanism for its function as a pro-viral factor.
Collapse
Affiliation(s)
- Linyong Zhi
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guimei Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Min He
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yiting Ma
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
2
|
He L, Mao M, Ge H, Zhang J, Zhang J, Yan Q. lafK contributes the regulation of swarming motility of Pseudomonas plecoglossicida and bacterial-host interaction. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110071. [PMID: 39637951 DOI: 10.1016/j.fsi.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Flagella-mediated swarming motility plays a crucial role in facilitating the rapid colonization and dissemination of bacterial within the host. The swarming motility of Pseudomonas plecoglossicida is intricately associated with its lateral flagella, and notably, the lateral flagella system of P. plecoglossicida encompasses a transcriptional regulator known as LafK. However, the regulatory role of LafK and its impact on bacteria-host interactions remain to be elucidated. In this study, we systematically investigated the regulatory role of LafK by constructing lafK deletion strain on the biological characteristics, virulence, and pathogenic process of P. plecoglossicida, as well as its impact on the host immune response. Our findings demonstrated that the deletion of lafK led to a significant down-regulation in the expression of type III secretion system-associated genes within the lateral flagella of P. plecoglossicida, consequently impairing bacterial swarming motility, biofilm formation, adhesion, and chemotaxis ability. Furthermore, in vitro infection experiments demonstrated that the deletion of lafK resulted in a diminished pathogenicity of P. plecoglossicida through down-regulation of flagella-related genes, thereby triggering an expedited immune response for bacterial clearance, and subsequently leading to reduced bacterial load within the host and attenuated tissue damage during infection. In summary, this study presents a novel theoretical framework for elucidating the regulatory mechanism of virulence in P. plecoglossicida.
Collapse
Affiliation(s)
- Li He
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Meiqin Mao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Hui Ge
- Fisheries Research Institute of Fujian, Xiamen, Fujian, 361000, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
3
|
He L, Mao MQ, Zhao LM, Li Q, Ge H, Zhang JN, Zhang JL, Yan QP. sRNA113 regulates Pseudomonas plecoglossicida motility to affect immune response against infection in pearl gentian grouper. Zool Res 2025; 46:152-164. [PMID: 39846193 DOI: 10.24272/j.issn.2095-8137.2024.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Small RNAs (sRNAs) are a class of molecules capable of perceiving environmental changes and exerting post-transcriptional regulation over target gene expression, thereby influencing bacterial virulence and host immune responses. Pseudomonas plecoglossicida is a pathogenic bacterium that poses a significant threat to aquatic animal health. However, the regulatory mechanisms of sRNAs in P. plecoglossicida remain unclear. This study focused on sRNA113, previously identified as a potential regulator of the fliP gene, a key component of the lateral flagellar type III secretion system. To investigate the effects of sRNA113 on P. plecoglossicida virulence, as well as its role in regulating pathogenic processes and host immune responses, mutant strains lacking this sRNA were generated and analyzed. Deletion of sRNA113 resulted in the up-regulation of lateral flagellar type III secretion system-related genes in P. plecoglossicida, which enhanced bacterial swarming motility, biofilm formation, and chemotaxis ability in vitro. In vivo infection experiments with pearl gentian grouper revealed that sRNA113 deletion enhanced the pathogenicity of P. plecoglossicida. This heightened virulence was attributed to the up-regulation of genes associated with the lateral flagellar type III secretion system, resulting in higher bacterial loads within host tissues. This amplification of pathogenic activity intensified tissue damage, disrupted immune responses, and impaired the ability of the host to clear infection, ultimately leading to mortality. These findings underscore the critical role of sRNA113 in regulating the virulence of P. plecoglossicida and its interaction with host immune defenses. This study provides a foundation for further exploration of sRNA-mediated mechanisms in bacterial pathogenesis and host-pathogen interactions, contributing to a deeper understanding of virulence regulation and immune evasion in aquatic pathogens.
Collapse
Affiliation(s)
- Li He
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Mei-Qin Mao
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Ling-Min Zhao
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Hui Ge
- Fisheries Research Institute of Fujian, Xiamen, Fujian 361000, China
| | - Jiao-Nan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian 350308, China
| | - Jiao-Lin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian 350308, China
| | - Qing-Pi Yan
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China. E-mail:
| |
Collapse
|
4
|
Nie L, Wu XY, Zhao ZY, Fei CJ, Zhu TF, Shao JZ, Chen J. Palmitoylation-mediated NLRP3 inflammasome activation in teleosts highlights evolutionary divergence in immune regulation. Zool Res 2025; 46:3-14. [PMID: 39757016 DOI: 10.24272/j.issn.2095-8137.2024.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
NLRP3 inflammasome activation is pivotal for cytokine secretion and pyroptosis in response to diverse stimuli, playing a crucial role in innate immunity. While extensively studied in mammals, the regulatory mechanisms governing NLRP3 activation in non-mammalian vertebrates remain largely unexplored. Teleosts, as basal vertebrates, represent an ideal model for exploring the evolutionary trajectory of inflammasome regulation. In this study, ABE assays, confocal microscopy, and biochemical analyses were applied to systematically characterize the mechanisms underlying NLRP3 inflammasome in teleosts, using large yellow croakers ( Larimichthys crocea, Lc) and zebrafish ( Danio rerio, Dr) as representative models. Our findings revealed a previously unrecognized palmitoylation-dependent regulatory mechanism essential for teleost NLRP3 activation. Specifically, zDHHC18-mediated palmitoylation at a teleost-specific cysteine residue (C946 in LcNLRP3, C1037 in DrNLRP3) was required for the translocation of NLRP3 to the dispersed trans-Golgi network, facilitating its subsequent recruitment to the microtubule-organizing center. This membrane trafficking was crucial for inflammasome assembly and downstream inflammatory responses. These findings provide new insights into the distinct regulatory mechanisms of NLRP3 activation in teleosts, highlighting an evolutionary divergence that contributes to innate immunity adaptation in early vertebrates.
Collapse
Affiliation(s)
- Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China. E-mail:
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zi-Yue Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ting-Fang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China. E-mail:
| |
Collapse
|
5
|
Zhang H, Wang J, Jing Y. Larimichthys crocea (large yellow croaker): A bibliometric study. Heliyon 2024; 10:e37393. [PMID: 39296167 PMCID: PMC11409083 DOI: 10.1016/j.heliyon.2024.e37393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Larimichthys crocea is an important economic fish of East Asia, and numerous studies have been conducted on its breeding, aquaculture, preservation and processing; however, there is no systematic review of the literature on the research of Larimichthys crocea. Derwent Data Analyzer (DDA) was used to analyze 1192 Larimichthys crocea research papers indexed by SCI-E, CSCD and KCI from 2001 to 2023. The number of research publications on Larimichthys crocea has rapidly increased, and institutions and scholars from China, the United States, South Korea, Japan, and Norway have conducted the majority of Larimichthys crocea research. The immune response, Pseudomonas plecoglossicida, gene expression, lipid immune response, transcriptomics and other areas have attracted the most attention. To increase the immunity and disease resistance of Larimichthys crocea and improve its survival, growth, storage and transport, researchers have carried out a large amount of research, which has promoted not only the culture of Larimichthys crocea but also the restoration of wild Larimichthys crocea and the rehabilitation of the ecological environment.
Collapse
Affiliation(s)
- Hongyan Zhang
- Library, Zhejiang Ocean University, Zhoushan, 316000, PR China
| | - Jiacan Wang
- School of Economics and Management, Zhejiang Ocean University, Zhoushan, 316000, PR China
| | - Yuan Jing
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
6
|
He L, Mao M, Zhao L, Li Q, Zhuang Z, Wang X, Huang H, Wang Q, Yan Q. A novel small non-coding RNA 562 mediates the virulence of Pseudomonas plecoglossicida by regulating the expression of fliP, a key component of flagella T3SS. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109752. [PMID: 38977112 DOI: 10.1016/j.fsi.2024.109752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Pseudomonas plecoglossicida is a vital pathogen that poses a substantial risk to aquaculture. Small RNAs (sRNAs) are non-coding regulatory molecules capable of sensing environmental changes and modulating virulence-associated signaling pathways, such as the assembly of flagella. However, the relevant researches on P. plecoglossicida are an urgent need. Here, we report a novel sRNA, sRNA562, which has potential to regulate the post-transcriptional of fliP, a key component of the lateral flagellar type III secretion system. In this study, the effects of sRNA562 on the virulence of P. plecoglossicida and its role in regulating the pathogenic process were investigated through the use of a constructed sRNA562 deletion strain. The deletion of sRNA562 resulted in an up-regulation of fliP in P. plecoglossicida, and leading to increased swarming motility and enhanced the ability of biofilm formation, adhesion and chemotaxis. Subsequent artificial infection experiment demonstrated that the deletion of sRNA562 increased the virulence of P. plecoglossicida towards hybrid grouper, as evidenced by a reduction in survival rate, elevation of tissue bacterial load, and the exacerbation of histopathological damage. Further studies have found that the deletion of sRNA562 lead to an up-regulation of fliP expression during hybrid grouper infection, thereby enhancing bacterial swarming ability and ultimately heightening pathogenicity, leading to a dysregulated host response to infection, tissue damage and eventually death. Our work revealed a sRNA that exerts negative regulation on the expression of lateral flagella in P. plecoglossicida, thereby impacting its virulence. These findings provide a new perspective on the virulence regulation mechanism of P. plecoglossicida, contributing to a more comprehensive understanding in the field of pathogenicity research.
Collapse
Affiliation(s)
- Li He
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Meiqin Mao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Haosi Marine Biotechnology Co., Ltd, Shanghai, 200000, China.
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
7
|
Shi L, Zhao L, Li Q, Huang L, Qin Y, Zhuang Z, Wang X, Huang H, Zhang J, Zhang J, Yan Q. Role of the Pseudomonas plecoglossicida fliL gene in immune response of infected hybrid groupers (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Front Immunol 2024; 15:1415744. [PMID: 39026675 PMCID: PMC11254626 DOI: 10.3389/fimmu.2024.1415744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Pseudomonas plecoglossicida, a gram-negative bacterium, is the main pathogen of visceral white-point disease in marine fish, responsible for substantial economic losses in the aquaculture industry. The FliL protein, involved in torque production of the bacterial flagella motor, is essential for the pathogenicity of a variety of bacteria. In the current study, the fliL gene deletion strain (ΔfliL), fliL gene complement strain (C-ΔfliL), and wild-type strain (NZBD9) were compared to explore the influence of the fliL gene on P. plecoglossicida pathogenicity and its role in host immune response. Results showed that fliL gene deletion increased the survival rate (50%) and reduced white spot disease progression in the hybrid groupers. Moreover, compared to the NZBD9 strain, the ΔfliL strain was consistently associated with lower bacterial loads in the grouper spleen, head kidney, liver, and intestine, coupled with reduced tissue damage. Transcriptomic analysis identified 2 238 differentially expressed genes (DEGs) in the spleens of fish infected with the ΔfliL strain compared to the NZBD9 strain. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the DEGs were significantly enriched in seven immune system-associated pathways and three signaling molecule and interaction pathways. Upon infection with the ΔfliL strain, the toll-like receptor (TLR) signaling pathway was activated in the hybrid groupers, leading to the activation of transcription factors (NF-κB and AP1) and cytokines. The expression levels of proinflammatory cytokine-related genes IL-1β, IL-12B, and IL-6 and chemokine-related genes CXCL9, CXCL10, and CCL4 were significantly up-regulated. In conclusion, the fliL gene markedly influenced the pathogenicity of P. plecoglossicida infection in the hybrid groupers. Notably, deletion of fliL gene in P. plecoglossicida induced a robust immune response in the groupers, promoting defense against and elimination of pathogens via an inflammatory response involving multiple cytokines.
Collapse
Affiliation(s)
- Lian Shi
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
8
|
Wang Y, Liu S, Wang W, Liu L, Zhao Y, Qin Q, Huang X, Huang Y. SGIV VP82 inhibits the interferon response by degradation of IRF3 and IRF7. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109611. [PMID: 38734119 DOI: 10.1016/j.fsi.2024.109611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
During virus-host co-evolution, viruses have developed multiple strategies to dampen IFN response and prevent its antiviral activity in host cells. To date, the interactions between host IFN response and the immune evasion strategies exploited by fish iridoviruses still remain largely uncertain. Here, a potential immune evasion protein candidate of Singapore grouper iridovirus (SGIV), VP82 (encoded by SGIV ORF82) was screened and its roles during viral replication were investigated in detail. Firstly, VP82 overexpression dramatically decreased IFN or ISRE promoter activity and the transcription levels of IFN stimulated genes (ISGs) stimulated by grouper cyclic GMP-AMP synthase (EccGAS)/stimulator of interferon genes (EcSTING), TANK-binding kinase 1 (EcTBK1), IFN regulatory factor 3 (EcIRF3)and EcIRF7. Secondly, Co-IP assays indicated that VP82 interacted with EcIRF3 and EcIRF7, but not EcSTING and EcTBK1, which was consistent with the co-localization between VP82 and EcIRF3 or EcIRF7. Furthermore, VP82 promoted the degradation of EcIRF3 and EcIRF7 in a dose-dependent manner via the autophagy pathway. Finally, VP82 overexpression accelerated SGIV replication, evidenced by the increased transcriptions of viral core genes and viral production. Moreover, the antiviral action of EcIRF3 or EcIRF7 was significantly depressed in VP82 overexpressed cells. Together, VP82 was speculated to exert crucial roles for SGIV replication by inhibiting the IFN response via the degradation of IRF3 and IRF7. Our findings provided new insights into understanding the immune evasion strategies utilized by fish iridovirus through IFN regulation.
Collapse
Affiliation(s)
- Yu Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shanxing Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenji Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Lin Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yin Zhao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
9
|
Jiang Z, Qin L, Chen A, Tang X, Gao W, Gao X, Jiang Q, Zhang X. rpoS involved in immune response of Macrobrachium nipponens to Vibrio mimicus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109440. [PMID: 38342414 DOI: 10.1016/j.fsi.2024.109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Vibrio mimicus is a pathogenic bacterium that cause red body disease in Macrobrachium nipponense, leading to high mortality and financial loss. Based on previous studies, rpoS gene contribute to bacterial pathogenicity during infection, but the role of RpoS involved in the immune response of M. nipponense under V. mimicus infection remains unclear. In this study, the pathogen load and the RNA-seq of M. nipponense under wild-type and ΔrpoS strain V. mimicus infection were investigated. Over the entire infection period, the ΔrpoS strain pathogen load was always lower than that of the wild-type strain in the M. nipponense hemolymph, hepatopancreas, gill and muscle. Furthermore, the expression level of rpoS gene in the hepatopancreas was the highest at 24 hours post infection (hpi), then the samples of hepatopancreas tissue infected with the wild type and ΔrpoS strain at 24 hpi were selected for RNA-seq sequencing. The results revealed a significant change in the transcriptomes of the hepatopancreases infected with ΔrpoS strain. In contrast to the wild-type infected group, the ΔrpoS strain infected group exhibited differentially expressed genes (DEGs) enriched in 181 KEGG pathways at 24 hpi. Among these pathways, 8 immune system-related pathways were enriched, including ECM-receptor interaction, PI3K-Akt signaling pathway, Rap1 signaling pathway, Gap junction, and Focal adhesion, etc. Among these pathways, up-regulated genes related to Kazal-type serine protease inhibitors, S-antigen protein, copper zinc superoxide dismutase, tight junction protein, etc. were enriched. This study elucidates that rpoS can affect tissue bacterial load and immune-related pathways, thereby impacting the survival rate of M. nipponense under V. mimicus infection. These findings validate the potential of rpoS as a promising target for the development of a live attenuated vaccine against V. mimicus.
Collapse
Affiliation(s)
- Ziyan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Lijie Qin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Anting Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinzhe Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Weifeng Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Xiong C, Xiong C, Lu J, Long R, Jiao H, Li Y, Wang B, Lin Y, Ye H, Lin L, Wu R. flgL mutation reduces pathogenicity of Aeromonas hydrophila by negatively regulating swimming ability, biofilm forming ability, adherence and virulence gene expression. Int J Biol Macromol 2024; 261:129676. [PMID: 38272420 DOI: 10.1016/j.ijbiomac.2024.129676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Aeromonas hydrophila is a serious human and animal co-pathogenic bacterium. Flagellum, a key virulence factor, is vital for bacterium tissue colonization and invasion. flgL is a crucial gene involved in the composition of flagellum. However, the impact of flgL on virulence is not yet clear. In this study, we constructed a stable mutant strain (△flgL-AH) using homologous recombination. The results of the attack experiments indicated a significant decrease in the virulence of △flgL-AH. The biological properties analysis revealed a significant decline in swimming ability and biofilm formation capacity in △flgL-AH and the transmission electron microscope results showed that the ∆flgL-AH strain did not have a flagellar structure. Moreover, a significant decrease in the adhesion capacity of ∆flgL-AH was found using absolute fluorescence quantitative polymerase chain reaction (PCR). The quantitative real-time PCR results showed that the expression of omp and the eight flagellum-related genes were down-regulated. In summary, flgL mutation leads to a reduction in pathogenicity possibly via decreasing the swimming ability, biofilm formation capacity and adhesion capacity, these changes might result from the down expression of omp and flagellar-related genes.
Collapse
Affiliation(s)
- Caijiang Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chuanyu Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jiahui Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Rui Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hanyang Jiao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Ying Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Lingyun Lin
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Lu J, Xiong C, Wei J, Xiong C, Long R, Yu Y, Ye H, Ozdemir E, Li Y, Wu R. The role and molecular mechanism of flgK gene in biological properties, pathogenicity and virulence genes expression of Aeromonas hydrophila. Int J Biol Macromol 2024; 258:129082. [PMID: 38161026 DOI: 10.1016/j.ijbiomac.2023.129082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Aeromonas hydrophila is a highly pathogenic aquatic resident bacterium that can cause co-morbidity in aquatic animals, waterfowl, poultry, and humans. Flagellum is the motility organ of bacteria important for bacterium tissue colonization and invasion. The flgK gene encodes a flagellar hook protein essential for normal flagellar formation. In order to explore the role of flgK in A. hydrophila, a flgK gene mutant strain of A. hydrophila (∆flgK-AH) was constructed using an efficient suicide plasmid-mediated homologous recombination method, and gene sequencing confirmed successful mutation of the flgK gene. The biological properties, pathogenicity and virulence genes expression were compared. The results showed that there was no significant difference in the growth, hemolytic, and swarming abilities, but the swimming and biofilm formation abilities of ∆flgK-AH were significantly reduced and the transmission electron microscope (TEM) results showed that the ∆flgK-AH strain did not have a flagellar structure. The median lethal dose (LD50) value of the ∆flgK-AH in Carassius auratus was 1.47-fold higher than that of the wild-type strain (WT-AH). The quantitative real-time PCR results showed that only the expression level of the lapA gene was up-regulated by 1.47 times compared with the WT-AH, while the expression levels of other genes were significantly down-regulated. In conclusion, flgK gene mutant led to a decline in the pathogenicity possibly by reducing swimming and biofilm formation abilities, these biological properties might result from the down-regulated expression of flagellate and pilus-related genes.
Collapse
Affiliation(s)
- Jiahui Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chuanyu Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jinming Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Caijiang Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Rui Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongxiang Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Eda Ozdemir
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
12
|
He L, Zhao L, Li Q, Huang L, Qin Y, Zhuang Z, Wang X, Huang H, Zhang J, Zhang J, Yan Q. Pseudomonas plecoglossicida fliP gene affects the immune response of Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂ to infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108971. [PMID: 37481102 DOI: 10.1016/j.fsi.2023.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Pseudomonas plecoglossicida is a pathogen that causes visceral white spot disease in a variety of teleosts. The protein encoded by fliP gene is involved in the assembly of bacterial flagella, which plays a vital role in bacterial pathogenicity. However, the roles of the fliP gene on the host immune response remain unclear. Here, we compared the pathogenicity of fliP gene-deleted (ΔfliP) strain, fliP gene-complemented (C-ΔfliP) strain and wild-type (NZBD9) strain of P. plecoglossicida to hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂), and explored the impacts of fliP gene on the immune response of hybrid grouper to P. plecoglossicida infection by using RNA-seq. In this study, the grouper in the ΔfliP strain-infected group had a 30% higher survival rate than those in the NZBD9 strain-infected group. In addition, the deletion of fliP gene decreased bacterial load in the spleen, intestine, liver as well as head kidney of hybrid grouper and the tissues damage were weakened. Moreover, the infection of hybrid grouper spleen by the ΔfliP strain induced 1,189 differential expression genes compared with the counterpart infected by NZBD9 strain. KEGG enrichment analysis showed that 9 immune-related pathways, 5 signal transduction pathways, and 3 signaling molecules and interaction pathways were significantly enriched. qRT-PCR analysis revealed that the ΔfliP strain mainly up-regulated the expression of inflammation related genes (IL-6, IL-12, IL-1β, IL-10, CXCL8, CXCL10) and immune regulation related genes (TLR2, P65, MyD88, P85, AKT), but down-regulated the expression of cell death related genes (FoxO1, Bim, PLK2 and LDHA) during infection. Based on the above results, fliP gene contributed to the pathogenicity of P. plecoglossicida to hybrid grouper (E. fuscoguttatus ♀ × E. lanceolatus ♂), deletion of fliP gene promoted the inflammation and immune response of hybrid grouper to P. plecoglossicida infection, which accelerating host clearance of pathogen and reducing tissue damages.
Collapse
Affiliation(s)
- Li He
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
13
|
Zhang L, Wang F, Jia L, Yan H, Gao L, Tian Y, Su X, Zhang X, Lv C, Ma Z, Xue Y, Lin Q, Wang K. Edwardsiella piscicida infection reshapes the intestinal microbiome and metabolome of big-belly seahorses: mechanistic insights of synergistic actions of virulence factors. Front Immunol 2023; 14:1135588. [PMID: 37215132 PMCID: PMC10193291 DOI: 10.3389/fimmu.2023.1135588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Uncovering the mechanism underlying the pathogenesis of Edwardsiella piscicida-induced enteritis is essential for global aquaculture. In the present study, we identified E. piscicida as a lethal pathogen of the big-belly seahorse (Hippocampus abdominalis) and revealed its pathogenic pattern and characteristics by updating our established bacterial enteritis model and evaluation system. Conjoint analysis of metagenomic and metabolomic data showed that 15 core virulence factors could mutually coordinate the remodeling of intestinal microorganisms and host metabolism and induce enteritis in the big-belly seahorse. Specifically, the Flagella, Type IV pili, and Lap could significantly increase the activities of the representative functional pathways of both flagella assembly and bacterial chemotaxis in the intestinal microbiota (P < 0.01) to promote pathogen motility, adherence, and invasion. Legiobactin, IraAB, and Hpt could increase ABC transporter activity (P < 0.01) to compete for host nutrition and promote self-replication. Capsule1, HP-NAP, and FarAB could help the pathogen to avoid phagocytosis. Upon entering epithelial cells and phagocytes, Bsa T3SS and Dot/Icm could significantly increase bacterial secretion system activity (P < 0.01) to promote the intracellular survival and replication of the pathogen and the subsequent invasion of the neighboring tissues. Finally, LPS3 could significantly increase lipopolysaccharide biosynthesis (P < 0.01) to release toxins and kill the host. Throughout the pathogenic process, BopD, PhoP, and BfmRS significantly activated the two-component system (P < 0.01) to coordinate with other VFs to promote deep invasion. In addition, the levels of seven key metabolic biomarkers, Taurine, L-Proline, Uridine, L-Glutamate, Glutathione, Xanthosine, and L-Malic acid, significantly decreased (P < 0.01), and they can be used for characterizing E. piscicida infection. Overall, the present study systematically revealed how a combination of virulence factors mediate E. piscicida-induced enteritis in fish for the first time, providing a theoretical reference for preventing and controlling this disease in the aquaculture of seahorses and other fishes.
Collapse
Affiliation(s)
- Lele Zhang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Fang Wang
- Department of Pathology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Longwu Jia
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Hansheng Yan
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Longkun Gao
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Yanan Tian
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Xiaolei Su
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Xu Zhang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Chunhui Lv
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Zhenhao Ma
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Yuanyuan Xue
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Qiang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kai Wang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| |
Collapse
|
14
|
Wang J, Xiu L, Qiao Y, Zhang Y. Virulence regulation of Zn2+ uptake system znuABC on mesophilic Aeromonas salmonicida SRW-OG1. Front Vet Sci 2023; 10:1172123. [PMID: 37065252 PMCID: PMC10090552 DOI: 10.3389/fvets.2023.1172123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Psychrophilic Aeromonas salmonicida could not grow above 25°C and therefore thought unable to infect mammals and humans. In our previous study, a mesophilic A. salmonicida SRW-OG1 was isolated from Epinephelus coioides with furunculosis. Through the analysis of preliminary RNA-seq, it was found that the Zn2+ uptake related genes znuA, znuB and znuC might be involved in the virulence regulation of A. salmonicida SRW-OG1. Therefore, the purpose of this study was to explore the effect of znuABC silencing on the virulence regulation of A. salmonicida SRW-OG1. The results showed that the growth of the znuA-RNAi, znuB-RNAi, and znuC-RNAi strains was severely restricted under the Fe2+ starvation, but surprisingly there was no significant difference under the Zn2+ restriction. In the absence of Zn2+ and Fe2+, the expression level of znuABC was significantly increased. The motility, biofilm formation, adhesion and hemolysis of the znuA-RNAi, znuB-RNAi, and znuC-RNAi strains were significantly reduced. We also detected the expression of znuABC under different growth periods, temperatures, pH, as well as Cu2+ and Pb2+ stresses. The results showed that znuABC was significantly up-regulated in the logarithmic phase and the decline phase of A. salmonicida. Interestingly, the trend of expression levels of the znuABC at 18, 28, and 37°C was reversed to another Zn2+ uptake related gene zupT. Taken together, these indicated that the znuABC was necessary for A. salmonicida SRW-OG1 pathogenicity and environmental adaptability, and was cross regulated by iron starvation, but it was not irreplaceable for A. salmonicida SRW-OG1 Zn2+ uptake in the host.
Collapse
Affiliation(s)
- Jiajia Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lijun Xiu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Ying Qiao
- Fourth Institute of Oceanography, Key Laboratory of Tropical Marine Ecosystem and Bioresource, Ministry of Natural Resources, Beihai, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, China
- *Correspondence: Youyu Zhang
| |
Collapse
|
15
|
Zhou Z, Leng C, Wang Z, Long L, Lv Y, Gao Z, Wang Y, Wang S, Li P. The potential regulatory role of the lncRNA-miRNA-mRNA axis in teleost fish. Front Immunol 2023; 14:1065357. [PMID: 36895573 PMCID: PMC9988957 DOI: 10.3389/fimmu.2023.1065357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Research over the past two decades has confirmed that noncoding RNAs (ncRNAs), which are abundant in cells from yeast to vertebrates, are no longer "junk" transcripts but functional regulators that can mediate various cellular and physiological processes. The dysregulation of ncRNAs is closely related to the imbalance of cellular homeostasis and the occurrence and development of various diseases. In mammals, ncRNAs, such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to serve as biomarkers and intervention targets in growth, development, immunity, and disease progression. The regulatory functions of lncRNAs on gene expression are usually mediated by crosstalk with miRNAs. The most predominant mode of lncRNA-miRNA crosstalk is the lncRNA-miRNA-mRNA axis, in which lncRNAs act as competing endogenous RNAs (ceRNAs). Compared to mammals, little attention has been given to the role and mechanism of the lncRNA-miRNA-mRNA axis in teleost species. In this review, we provide current knowledge about the teleost lncRNA-miRNA-mRNA axis, focusing on its physiological and pathological regulation in growth and development, reproduction, skeletal muscle, immunity to bacterial and viral infections, and other stress-related immune responses. Herein, we also explored the potential application of the lncRNA-miRNA-mRNA axis in the aquaculture industry. These findings contribute to an enhanced understanding of ncRNA and ncRNA-ncRNA crosstalk in fish biology to improve aquaculture productivity, fish health and quality.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Cuibo Leng
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Zhan Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yiju Lv
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ziru Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Yang D, Zhao L, Li Q, Huang L, Qin Y, Wang P, Zhu C, Yan Q. flgC gene is involved in the virulence regulation of Pseudomonas plecoglossicida and affects the immune response of Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108512. [PMID: 36587883 DOI: 10.1016/j.fsi.2022.108512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
As a pathogen of cultured teleosts, Pseudomonas plecoglossicida has caused significant economic losses. flgC plays an important role in encoding flagellar basal-body rod proteins. Our previous studies revealed the high expression of P. plecoglossicida flgC in infected Epinephelus coioides. To explore the role of flgC in the virulence of P. plecoglossicida and the immune response of E. coioides to the infection of P. plecoglossicida, flgC gene of P. plecoglossicida was knocked down by RNA interference (RNAi). The results showed that the flgC gene in all four mutants of P. plecoglossicida was significantly knocked down, and the mutant with the best knockdown efficiency of 94.3% was selected for subsequent studies. Compared with the NZBD9 strain of P. plecoglossicida, the flgC-RNAi strain showed a significantly decrease in chemotaxis, motility, adhesion, and biofilm formation. Furthermore, compared with the E. coioides infected with the NZBD9 strain, the infection of flgC-RNAi strain resulted in the infected E. coioides a 1.5-day delay in the time of first death and an 80% increase in survival rate, far fewer white nodules upon the spleen surfaces, and lower pathogen load in the spleens. RNAi of flgC significantly influenced the metabolome and transcriptome of the spleen in infected E. coioides. KEGG enrichment analysis exhibited that the Toll-like receptor signaling pathway was the most enriched immune pathway; the most significantly enriched metabolic pathways were associated with Linoleic acid metabolism, Choline metabolism in cancer, and Glycerophospholipid metabolism. Further combined analysis of transcriptome and metabolome indicated significant correlations among pantothenate and CoA biosynthesis, beta-alanine metabolism, lysosome metabolites, and related genes. These results suggested that flgC was a pathogenic gene of P. plecoglossicida; flgC was associated with the regulation of chemotaxis, motility, biofilm formation, and adhesion; flgC influenced the immune response of E. coioides to the infection of P. plecoglossicida.
Collapse
Affiliation(s)
- Dou Yang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Pan Wang
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd., Zhangzhou, Fujian, 363503, China
| | - Chuanzhong Zhu
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd., Zhangzhou, Fujian, 363503, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
17
|
Li Q, Jiang B, Zhang Z, Huang Y, Xu Z, Chen X, Huang Y, Jian J, Yan Q. α-MSH is partially involved in the immunomodulation of Nile tilapia (Oreochromis niloticus) antibacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 131:929-938. [PMID: 36343851 DOI: 10.1016/j.fsi.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
α-Melanocyte-stimulating hormone (α-MSH) is a well-studied neuropeptide controlling skin and hair color. Besides, numerous immunomodulation roles of α-MSH were recorded in humans and mice. However, the regulatory effects of α-MSH in teleost immunity haven't been well elucidated. In this study, several precursor molecules of α-MSH (POMCs) and its receptors (MCRs) in Nile tilapia (Oreochromis niloticus) were characterized, and their expression characteristics and specific functions on antibacterial immunity were determined. Overall, POMCs and MCRs were principally detected in the brain, skin, and liver, and were remarkably promoted post Streptococcus agalactiae infection. However, tiny POMCs and MCRs were observed in tilapia immune organs (head kidney and spleen) or lymphocytes, and no evident immunomodulation effect was detected in vitro. Moreover, the in vivo challenge experiments revealed that α-MSH protects tilapia from bacterial infection by regulating responses in the brain and intestine. This study lays theoretical data for a deeper comprehension of the immunomodulation mechanisms of teleost α-MSH and the evolutional process of the vertebrate melanocortin system.
Collapse
Affiliation(s)
- Qi Li
- Fisheries College, Jimei University, Xiamen, China; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhou Xu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Xinjin Chen
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China.
| |
Collapse
|