1
|
Hobbs KJ, Bayless R, Sheats MK. A Comparative Review of Cytokines and Cytokine Targeting in Sepsis: From Humans to Horses. Cells 2024; 13:1489. [PMID: 39273060 PMCID: PMC11394191 DOI: 10.3390/cells13171489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
With the emergence of COVID-19, there is an increased focus in human literature on cytokine production, the implications of cytokine overproduction, and the development of novel cytokine-targeting therapies for use during sepsis. In addition to viral infections such as COVID-19, bacterial infections resulting in exposure to endotoxins and exotoxins in humans can also lead to sepsis, resulting in organ failure and death. Like humans, horses are exquisitely sensitive to endotoxin and are among the veterinary species that develop clinical sepsis similar to humans. These similarities suggest that horses may serve as a naturally occurring model of human sepsis. Indeed, evidence shows that both species experience cytokine dysregulation, severe neutropenia, the formation of neutrophil extracellular traps, and decreased perfusion parameters during sepsis. Sepsis treatments that target cytokines in both species include hemoperfusion therapy, steroids, antioxidants, and immunomodulation therapy. This review will present the shared cytokine physiology across humans and horses as well as historical and updated perspectives on cytokine-targeting therapy. Finally, this review will discuss the potential benefits of increased knowledge of equine cytokine mechanisms and their potential positive impact on human medicine.
Collapse
Affiliation(s)
- Kallie J. Hobbs
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27526, USA;
| | - Rosemary Bayless
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27526, USA;
| | - M. Katie Sheats
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27526, USA;
| |
Collapse
|
2
|
Samuels AN, Kamr AM, Reed SM, Slovis NM, Hostnik LD, Burns TA, Toribio RE. Association of the neutrophil-lymphocyte ratio with outcome in sick hospitalized neonatal foals. J Vet Intern Med 2024; 38:1196-1206. [PMID: 38284437 PMCID: PMC10937482 DOI: 10.1111/jvim.16995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The neutrophil-lymphocyte ratio (NLR) in human medicine is an objective biomarker that reflects prognosis. The NLR as an independent biomarker to help predict nonsurvival in hospitalized neonatal foals has not been thoroughly interrogated. OBJECTIVES/HYPOTHESIS Retrospectively evaluate if the NLR at admission is associated with nonsurvival in sick hospitalized foals <4 days old. We hypothesized that a lower NLR will be associated with nonsurvival. ANIMALS One thousand one hundred ninety-six client-owned foals <4 days old of any breed and sex: 993 hospitalized foals and 203 healthy foals. METHODS Retrospective multicenter study. Medical records of foals presenting to 3 equine referral hospitals were reviewed. Foals were included if they had complete CBCs, sepsis scores, and outcome data. The NLR was calculated by dividing the absolute neutrophil count by the absolute lymphocyte count. Data were analyzed by nonparametric methods and univariate analysis. RESULTS Of the 993 sick hospitalized foals, 686 were sick nonseptic and 307 were septic. The median NLR was lower in sick hospitalized foals (median [95% confidence interval], 3.55 [0.5-13.9]) compared with healthy foals (6.61 [3.06-18.1]). Septic foals had the lowest NLR (2.00 [0.20-9.71]). The NLR was lower in nonsurviving (1.97 [1.67-2.45]) compared with surviving foals (4.10 [3.76-4.33]). Nonsurviving septic foals had the lowest NLR (1.47 [1.70-3.01]). Foals with a NLR of <3.06 or <1.6 at admission had odds ratio of 3.21 (2.24-4.29) and 4.03 (2.86-5.67) for nonsurvival, respectively. CONCLUSIONS AND CLINICAL IMPORTANCE A NLR < 3.06 at admission in sick hospitalized foals is readily available and clinically useful variable to provide prognostic information.
Collapse
Affiliation(s)
- Amanda N. Samuels
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Ahmed M. Kamr
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | | | | | - Laura D. Hostnik
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Teresa A. Burns
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Ramiro E. Toribio
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
3
|
Scalco R, Aleman M, Nogueira CEW, Freitas NB, Curcio BR. Red cell distribution width values and red cell distribution width-to-platelet ratio in Thoroughbred foals in the first 24 hours of life. J Vet Emerg Crit Care (San Antonio) 2023; 33:217-222. [PMID: 36537889 DOI: 10.1111/vec.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To report red cell distribution width (RDW) values, to calculate RDW-to-platelet ratio (RPR), and to investigate a possible correlation of RDW and RPR index values in neonatal foals classified as healthy or at risk based on clinical information from a population of foals up to 24 hours of life. DESIGN Retrospective study conducted from records and CBCs of foals born between June and November from 2018 to 2020 foaling seasons. SETTING Breeding farm. ANIMALS Three hundred and nine neonatal full-term Thoroughbred foals. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Foals were evaluated by a veterinarian within 15 minutes after birth, and a blood sample was collected within 24 hours of life. Based on clinical information, 88 of 309 foals (28.4%) were considered at risk of perinatal disease, and 201 were healthy. Mean gestational age for the foals was 346.3 ± 9.7 days. RDW values did not differ between groups. Gestational length demonstrated to have a negative correlation with RDW (r = -0.156, P = 0.005) and mean corpuscular volume (r = -0.135, P = 0.01), indicating a link of these variables to foal maturity. RPR index was higher for at-risk (0.073 ± 0.018) than for healthy foals (0.068 ± 0.014, P = 0.01). CONCLUSION RPR might be a promising early indicator of disease for the field triage of neonatal foals.
Collapse
Affiliation(s)
- Rebeca Scalco
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
- Departamento de Clínicas Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Monica Aleman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Carlos E W Nogueira
- Departamento de Clínicas Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Natalia B Freitas
- Departamento de Clínicas Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bruna R Curcio
- Departamento de Clínicas Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Hu D, Tang Y, Wang C, Qi Y, Ente M, Li X, Zhang D, Li K, Chu H. The Role of Intestinal Microbial Metabolites in the Immunity of Equine Animals Infected With Horse Botflies. Front Vet Sci 2022; 9:832062. [PMID: 35812868 PMCID: PMC9257286 DOI: 10.3389/fvets.2022.832062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The microbiota and its metabolites play an important role in regulating the host metabolism and immunity. However, the underlying mechanism is still not well studied. Thus, we conducted the LC-MS/MS analysis and RNA-seq analysis on Equus przewalskii with and without horse botfly infestation to determine the metabolites produced by intestinal microbiota in feces and differentially expressed genes (DEGs) related to the immune response in blood and attempted to link them together. The results showed that parasite infection could change the composition of microbial metabolites. These identified metabolites could be divided into six categories, including compounds with biological roles, bioactive peptides, endocrine-disrupting compounds, pesticides, phytochemical compounds, and lipids. The three pathways involving most metabolites were lipid metabolism, amino acid metabolism, and biosynthesis of other secondary metabolites. The significant differences between the host with and without parasites were shown in 31 metabolites with known functions, which were related to physiological activities of the host. For the gene analysis, we found that parasite infection could alarm the host immune response. The gene of “cathepsin W” involved in innate and adaptive immune responses was upregulated. The two genes of the following functions were downregulated: “protein S100-A8” and “protein S100-A9-like isoform X2” involved in chemokine and cytokine production, the toll-like receptor signaling pathway, and immune and inflammatory responses. GO and KEGG analyses showed that immune-related functions of defense response and Th17 cell differentiation had significant differences between the host with and without parasites, respectively. Last, the relationship between metabolites and genes was determined in this study. The purine metabolism and pyrimidine metabolism contained the most altered metabolites and DEGs, which mainly influenced the conversion of ATP, ADP, AMP, GTP, GMP, GDP, UTP, UDP, UMP, dTTP, dTDP, dTMP, and RNA. Thus, it could be concluded that parasitic infection can change the intestinal microbial metabolic activity and enhance immune response of the host through the pathway of purine and pyrimidine metabolism. This results will be a valuable contribution to understanding the bidirectional association of the parasite, intestinal microbiota, and host.
Collapse
Affiliation(s)
- Dini Hu
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yujun Tang
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Chen Wang
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Yingjie Qi
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Make Ente
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Xuefeng Li
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Dong Zhang
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Kai Li
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- *Correspondence: Kai Li
| | - Hongjun Chu
- Institute of Forest Ecology, Xinjiang Academy of Forestry, Ürümqi, China
- Hongjun Chu
| |
Collapse
|
5
|
Taylor SD, Serpa PBS, Santos AP, Hart KA, Vaughn SA, Moore GE, Mukhopadhyay A, Page AE. Effects of intravenous administration of peripheral blood-derived mesenchymal stromal cells after infusion of lipopolysaccharide in horses. Vet Med (Auckl) 2022; 36:1491-1501. [PMID: 35698909 PMCID: PMC9308407 DOI: 10.1111/jvim.16447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND A systemic and dysregulated immune response to infection contributes to morbidity and mortality associated with sepsis. Peripheral blood-derived mesenchymal stromal cells (PB-MSC) mitigate inflammation in animal models of sepsis. Allogeneic PB-MSC administered IV to horses is well-tolerated but therapeutic benefits are unknown. HYPOTHESIS After IV lipopolysaccharide (LPS) infusion, horses treated with PB-MSC would have less severe clinical signs, clinicopathological abnormalities, inflammatory cytokine gene expression, and oxidative stress compared to controls administered a placebo. ANIMALS Sixteen horses were included in this study. METHODS A randomized placebo-controlled experimental trial was performed. Sixteen healthy horses were assigned to 1 of 2 treatment groups (1 × 109 PB-MSC or saline placebo). Treatments were administered 30 minutes after completion of LPS infusion of approximately 30 ng/kg. Clinical signs, clinicopathological variables, inflammatory cytokine gene expression, and oxidative stress markers were assessed at various time points over a 24-hour period. RESULTS A predictable response to IV LPS infusion was observed in all horses. At the dose administered, there was no significant effect of PB-MSC on clinical signs, clinicopathological variables, or inflammatory cytokine gene expression at any time point. Antioxidant potential was not different between treatment groups, but intracellular ROS increased over time in the placebo group. Other variables that changed over time were likely due to effects of IV LPS infusion. CONCLUSIONS AND CLINICAL IMPORTANCE Administration of allogeneic PB-MSC did not cause clinically detectable adverse effects in healthy horses. The dose of PB-MSC used here is unlikely to exert a beneficial effect in endotoxemic horses.
Collapse
Affiliation(s)
- Sandra D Taylor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Priscila B S Serpa
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Andrea P Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Kelsey A Hart
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Sarah A Vaughn
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - George E Moore
- Department of Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Abhijit Mukhopadhyay
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Allen E Page
- Gluck Equine Research Center, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Anderson MJ, Ibrahim AS, Cooper BR, Woolcock AD, Moore GE, Taylor SD. Effects of administration of ascorbic acid and low-dose hydrocortisone after infusion of sublethal doses of lipopolysaccharide to horses. J Vet Intern Med 2020; 34:2710-2718. [PMID: 33026127 PMCID: PMC7694830 DOI: 10.1111/jvim.15896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/07/2023] Open
Abstract
Background Sepsis is associated with ascorbic acid (AA) depletion and critical illness‐related corticosteroid insufficiency (CIRCI) in humans. Hypotheses Intravenous infusion of lipopolysaccharide (LPS) would (a) decrease endogneous AA concentrations, (b) induce CIRCI and (c) administration of a combination of AA and hydrocortisone (HC) would have decreased indices of inflammation compared to either drug alone. Animals Thirty‐two healthy horses. Methods Randomized placebo‐controlled experimental trial. Horses were assigned to 1 of 4 groups (saline, AA and HC, AA only, or HC only). Treatments were administered 1 hour after completion of LPS infusion. Clinical signs, clinicopathological variables, pro‐inflammatory cytokine gene expression and production, and plasma AA concentrations were assessed at various time points. Serum cortisol concentrations and ACTH stimulation tests were used to detect CIRCI. Results There was no effect of drug on clinical signs or pro‐inflammatory cytokine gene expression or production compared to controls at any time point. Administration of AA was associated with higher blood neutrophil counts 6 hours after LPS infusion (11.01 ± 1.02 K/μl) compared to other groups (8.99 ± 0.94 K/μL; P < .009). Adminstration of HC was associated with higher blood neutrophil counts 12 hours after LPS infusion (10.40 ± 0.75 K/μl) compared to other groups (6.88 ± 0.68 K/μl; P < .001). Serum cortisol increased from 5.11 ± 1.48 μg/dL before LPS administration to 9.59 ± 1.83 μg/dL 1 h after completion of LPS infusion (T1) without an effect of treatment (P = 0.59). Conclusions and Clinical Importance Ascorbic acid and HC appeared to protect against LPS‐induced neutrophil depletion and could be considered as adjunctive therapy in horses with endotoxemia.
Collapse
Affiliation(s)
- Melinda J Anderson
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Alina S Ibrahim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Bruce R Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
| | - Andrew D Woolcock
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - George E Moore
- Department of Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Sandra D Taylor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Mendoza Garcia FJ, Gonzalez-De Cara C, Aguilera-Aguilera R, Buzon-Cuevas A, Perez-Ecija A. Meloxicam ameliorates the systemic inflammatory response syndrome associated with experimentally induced endotoxemia in adult donkeys. J Vet Intern Med 2020; 34:1631-1641. [PMID: 32463537 PMCID: PMC7379049 DOI: 10.1111/jvim.15783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/26/2022] Open
Abstract
Background Little information is available about endotoxemia in donkeys. Characterizing the systemic inflammatory response (SIRS) to lipopolysaccharide (LPS) in donkeys would provide valuable clinical and therapeutic information. The effects of meloxicam on endotoxemia have not been studied in this species. Objectives To study the pathophysiology and gene expression associated with experimentally induced endotoxemia, and evaluate the effects of meloxicam on experimentally induced endotoxemia in donkeys and in equine monocyte cultures. Animals Six healthy adult female donkeys. Methods Endotoxemia was induced by an IV infusion of LPS for 30 minutes. Animals either received 20 mL of saline or 0.6 mg/kg of meloxicam IV after LPS infusion. The experiments lasted 6 hours. Blood samples were collected serially for hematology, serum biochemistry, interleukin measurement, and leukocyte gene expression analysis. Vital signs were recorded throughout the study. Monocyte cultures were used to test the effects of meloxicam on LPS‐activated monocytes. Results Lipopolysaccharide induced fever, leukopenia, and neutropenia of similar magnitude in both groups, but meloxicam attenuated increases in plasma lactate, tumor necrosis factor‐alpha (TNFα), and interleukin 1β concentrations compared to controls. No differences were detected between groups for cytokine mRNA expression. Furthermore, meloxicam decreased TNFα release in LPS‐activated monocyte cultures. Conclusions and Clinical Importance Meloxicam could be a feasible option for the treatment of endotoxemia and SIRS in donkeys. Additional studies are necessary to investigate possible meloxicam‐related posttranscriptional regulation and to compare this drug with other nonsteroidal anti‐inflammatory drugs (NSAIDs) in animals with endotoxemia.
Collapse
Affiliation(s)
- Francisco Javier Mendoza Garcia
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Rabanales, Road Madrid-Cadiz km 396, 14104, Cordoba, Spain
| | - Carlos Gonzalez-De Cara
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Rabanales, Road Madrid-Cadiz km 396, 14104, Cordoba, Spain
| | | | - Antonio Buzon-Cuevas
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Rabanales, Road Madrid-Cadiz km 396, 14104, Cordoba, Spain
| | - Alejandro Perez-Ecija
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Rabanales, Road Madrid-Cadiz km 396, 14104, Cordoba, Spain
| |
Collapse
|
8
|
Merlo B, Teti G, Lanci A, Burk J, Mazzotti E, Falconi M, Iacono E. Comparison between adult and foetal adnexa derived equine post-natal mesenchymal stem cells. BMC Vet Res 2019; 15:277. [PMID: 31375144 PMCID: PMC6679462 DOI: 10.1186/s12917-019-2023-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Little is known about the differences among adult and foetal equine mesenchymal stem cells (MSCs), and no data exist about their comparative ultrastructural morphology. The aim of this study was to describe and compare characteristics, immune properties, and ultrastructural morphology of equine adult (bone marrow: BM, and adipose tissue: AT) and foetal adnexa derived (umbilical cord blood: UCB, and Wharton’s jelly: WJ) MSCs. Results No differences were observed in proliferation during the first 3 passages. While migration ability was similar among cells, foetal MSCs showed a higher adhesion ability, forming smaller spheroids after hanging drop culture (P < 0.05). All MSCs differentiated toward adipogenic, chondrogenic and osteogenic lineages, only tenogenic differentiation was less evident for WJ-MSCs. Data obtained by PCR confirmed MHC1 expression and lack of MHC2 expression in all four cell types. Foetal adnexa MSCs were positive for genes specific for anti-inflammatory and angiogenic factors (IL6, IL8, ILβ1) and WJ-MSCs were the only positive for OCT4 pluripotency gene. At immunofluorescence all cells expressed typical mesenchymal markers (α-SMA, N-cadherin), except for BM-MSCs, which did not express N-cadherin. By transmission electron microscopy, it was observed that WJ-MSCs had a higher (P < 0.05) number of microvesicles compared to adult MSCs, and UCB-MSCs showed more microvesicles than BM-MSCs (P < 0.05). AT-MSCs had a lower number of mitochondria than WJ-MSCs (P < 0.05), and mitochondrial area was higher for WJ-MSCs compared to UCB and AT-MSCs (P < 0.05). Conclusions Results demonstrate that MSCs from adult and foetal tissues have different characteristics, and foetal MSCs, particularly WJ derived ones, seem to have some charactestics that warrant further investigation into potential advantages for clinical application.
Collapse
Affiliation(s)
- B Merlo
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - G Teti
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - A Lanci
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - J Burk
- Saxon Incubator for Clinical Translation, University of Leipzig, Leipzig, Germany.,Equine Clinic (Surgery), Justus Liebig University Giessen, Giessen, Germany
| | - E Mazzotti
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - M Falconi
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - E Iacono
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy. .,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.
| |
Collapse
|
9
|
Sheats MK. A Comparative Review of Equine SIRS, Sepsis, and Neutrophils. Front Vet Sci 2019; 6:69. [PMID: 30931316 PMCID: PMC6424004 DOI: 10.3389/fvets.2019.00069] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
The most recent definition of sepsis in human medicine can be summarized as organ dysfunction caused by a dysregulated host response to infection. In equine medicine, although no consensus definition is available, sepsis is commonly described as a dysregulated host systemic inflammatory response to infection. Defense against host infection is the primary role of innate immune cells known as neutrophils. Neutrophils also contribute to host injury during sepsis, making them important potential targets for sepsis prevention, diagnosis, and treatment. This review will present both historical and updated perspectives on the systemic inflammatory response (SIRS) and sepsis; it will also discuss the impact of sepsis on neutrophils, and the impact of neutrophils during sepsis. Future identification of clinically relevant sepsis diagnosis and therapy depends on a more thorough understanding of disease pathogenesis across species. To gain this understanding, there is a critical need for research that utilizes a clearly defined, and consistently applied, classification system for patients diagnosed with, and at risk of developing, sepsis.
Collapse
Affiliation(s)
- M. Katie Sheats
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States
| |
Collapse
|
10
|
|
11
|
Martin EM, Messenger KM, Sheats MK, Jones SL. Misoprostol Inhibits Lipopolysaccharide-Induced Pro-inflammatory Cytokine Production by Equine Leukocytes. Front Vet Sci 2017; 4:160. [PMID: 29034249 PMCID: PMC5624997 DOI: 10.3389/fvets.2017.00160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023] Open
Abstract
Pro-inflammatory cytokines including tumor necrosis factor α (TNFα), IL-1β, IL-6, and IL-8 are potent immune mediators that exacerbate multiple equine diseases such as sepsis and laminitis. Unfortunately, safe and effective cytokine-targeting therapies are lacking in horses; therefore, novel mechanisms of inhibiting cytokine production are critically needed. One potential mechanism for inhibiting cytokine synthesis is elevation of intracellular cyclic AMP (cAMP). In human leukocytes, intracellular cAMP production is induced by activation of E-prostanoid (EP) receptors 2 and 4. These receptors can be targeted by the EP2/4 agonist and prostaglandin E1 analog, misoprostol. Misoprostol is currently used as a gastroprotectant in horses but has not been evaluated as a cytokine-targeting therapeutic. Thus, we hypothesized that misoprostol treatment would inhibit pro-inflammatory cytokine production by lipopolysaccharide (LPS)-stimulated equine leukocytes in an in vitro inflammation model. To test this hypothesis, equine leukocyte-rich plasma (LRP) was collected from 12 healthy adult horses and used to model LPS-mediated inflammatory signaling. LRP was treated with varying concentrations of misoprostol either before (pretreated) or following (posttreated) LPS stimulation. LRP supernatants were assayed for 23 cytokines using an equine-specific multiplex bead immunoassay. Leukocytes were isolated from LRP, and leukocyte mRNA levels of four important cytokines were evaluated via RT-PCR. Statistical differences between treatments were determined using one-way RM ANOVA (Holm-Sidak post hoc testing) or Friedman's RM ANOVA on Ranks (SNK post hoc testing), where appropriate (p < 0.05, n = 3-6 horses). These studies revealed that misoprostol pre- and posttreatment inhibited LPS-induced TNFα and IL-6 protein production in equine leukocytes but had no effect on IL-8 protein. Interestingly, misoprostol pretreatment enhanced IL-1β protein synthesis following 6 h of LPS stimulation, while misoprostol posttreatment inhibited IL-1β protein production after 24 h of LPS stimulation. At the mRNA level, misoprostol pre- and posttreatment inhibited LPS-induced TNFα, IL-1β, and IL-6 mRNA production but did not affect IL-8 mRNA. These results indicate that misoprostol exerts anti-inflammatory effects on equine leukocytes when applied before or after a pro-inflammatory stimulus. However, the effects we observed were cytokine-specific and sometimes differed at the mRNA and protein levels. Further studies are warranted to establish the inhibitory effects of misoprostol on equine cytokine production in vivo.
Collapse
Affiliation(s)
- Emily Medlin Martin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Kristen M. Messenger
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Mary Katherine Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Samuel L. Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
12
|
Iacono E, Pascucci L, Rossi B, Bazzucchi C, Lanci A, Ceccoli M, Merlo B. Ultrastructural characteristics and immune profile of equine MSCs from fetal adnexa. Reproduction 2017; 154:509-519. [PMID: 28733347 DOI: 10.1530/rep-17-0032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
Both in human and equine species, mesenchymal stem cells (MSCs) from amniotic membrane (AM) and Wharton's jelly (WJ), may be particularly useful for immediate use or in later stages of life, after cryopreservation in cell bank. The aim of this study was to compare equine AM- and WJ-MSCs in vitro features that may be relevant for their clinical employment. MSCs were more easily isolated from WJ, even if MSCs derived from AM exhibited more rapid proliferation (P < 0.05). Osteogenic and chondrogenic differentiation were more prominent in MSCs derived from WJ. This is also suggested by the lower adhesion of AM cells, demonstrated by the greater volume of spheroids after hanging drop culture (P < 0.05). Data obtained by PCR confirmed the immunosuppressive function of AM and WJ-MSCs and the presence of active genes specific for anti-inflammatory and angiogenic factors (IL-6, IL 8, IL-β1). For the first time, by means of transmission electron microscopy (TEM), we ascertained that equine WJ-MSCs constitutively contain a very impressive number of large vesicular structures, scattered throughout the cytoplasm. Moreover, an abundant extracellular fibrillar matrix was located in the intercellular spaces among WJ-MSCs. Data recorded in this study reveal that MSCs from different fetal tissues have different characteristics that may drive their therapeutic use. These finding could be noteworthy for horses as well as for other mammalian species, including humans.
Collapse
Affiliation(s)
- Eleonora Iacono
- Department of Veterinary Medical SciencesUniversity of Bologna, Ozzano Emilia (BO), Italy
| | - Luisa Pascucci
- Department of Veterinary MedicineUniversity of Perugia, Perugia, Italy
| | - Barbara Rossi
- Department of Veterinary Medical SciencesUniversity of Bologna, Ozzano Emilia (BO), Italy
| | - Cinzia Bazzucchi
- Department of Veterinary MedicineUniversity of Perugia, Perugia, Italy
| | - Aliai Lanci
- Department of Veterinary Medical SciencesUniversity of Bologna, Ozzano Emilia (BO), Italy
| | - Monica Ceccoli
- Department of Veterinary Medical SciencesUniversity of Bologna, Ozzano Emilia (BO), Italy
| | - Barbara Merlo
- Department of Veterinary Medical SciencesUniversity of Bologna, Ozzano Emilia (BO), Italy
| |
Collapse
|
13
|
Dembek KA, Timko KJ, Johnson LM, Hart KA, Barr BS, David B, Burns TA, Toribio RE. Steroids, steroid precursors, and neuroactive steroids in critically ill equine neonates. Vet J 2017; 225:42-49. [PMID: 28720298 DOI: 10.1016/j.tvjl.2017.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/27/2017] [Accepted: 05/19/2017] [Indexed: 12/30/2022]
Abstract
Hypothalamic-pituitary-adrenal axis (HPAA) dysfunction has been associated with sepsis and mortality in foals. Most studies have focused on cortisol, while other steroids have not been investigated. The objectives of this study were to characterise the adrenal steroid and steroid precursor response to disease and to determine their association with the HPAA response to illness, disease severity, and mortality in hospitalised foals. All foals (n=326) were classified by two scoring systems into three categories: based on the sepsis score (septic, sick non-septic [SNS] and healthy) and the foal survival score (Group 1: 3-18%; Group 2: 38-62%; Group 3: 82-97% likelihood of survival). Blood concentrations of adrenocorticotropic hormone (ACTH) and steroids were determined by immunoassays. ACTH-cortisol imbalance (ACI) was defined as a high ACTH/cortisol ratio. Septic foals had higher ACTH, cortisol, progesterone, 17α-OH-progesterone, pregnenolone, and androstenedione concentrations as well as higher ACTH/cortisol, ACTH/progesterone, ACTH/aldosterone, and ACTH/DHEAS ratios than SNS and healthy foals (P<0.01). Foals with DHEAS of 0.4-5.4ng/mL were more likely to have ACI (OR=2.5). Foals in Group 1 had higher ACTH, aldosterone, progesterone, and cortisol concentrations as well as ACTH/cortisol, ACTH/progesterone, and ACTH/DHEAS ratios than foals in Groups 2 and 3 (P<0.01). High progesterone concentrations were associated with non-survival and the cutoff value below which survival could be predicted was 23.5ng/mL, with 75% sensitivity and 72% specificity. In addition to cortisol, the response to the stress of illness in foals is characterised by the release of multiple adrenal steroids. DHEAS and progesterone were good predictors of HPAA dysfunction and outcome in hospitalised foals.
Collapse
Affiliation(s)
- K A Dembek
- College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210, USA
| | - K J Timko
- College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210, USA
| | - L M Johnson
- College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210, USA
| | - K A Hart
- College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - B S Barr
- Rood and Riddle Equine Hospital, 2150 Georgetown Rd, Lexington, KY 40511, USA
| | - B David
- Hagyard Equine Medical Institute, 4250 Iron Works Pike, Lexington, KY 40511, USA
| | - T A Burns
- College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210, USA
| | - R E Toribio
- College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Suagee-Bedore JK, Wagner AL, Girard ID. Validation of the Postprandial Interleukin-1β Response in Horses Using Equine-Specific Antibodies. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2016.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Abstract
Sepsis and septic shock represent a major cause of morbidity and mortality in equine neonates and in all species. Early recognition of the condition is important, but definitive examination and laboratory variables to predict equine neonatal sepsis are lacking. Early and aggressive treatment should include broad-spectrum antimicrobial coverage, source control, and hemodynamic support. Field practitioners and intensive care clinicians work together in the management of this condition because the recognition and initial treatment should begin as early as possible.
Collapse
|
16
|
Vinther AML, Heegaard PMH, Skovgaard K, Buhl R, Andreassen SM, Andersen PH. Characterization and differentiation of equine experimental local and early systemic inflammation by expression responses of inflammation-related genes in peripheral blood leukocytes. BMC Vet Res 2016; 12:83. [PMID: 27250718 PMCID: PMC4888743 DOI: 10.1186/s12917-016-0706-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 05/22/2016] [Indexed: 01/17/2023] Open
Abstract
Background Local inflammation may progress into systemic inflammation. To increase our understanding of the basic immunological processes during transition of equine local inflammation into a systemic state, investigation into the equine systemic immune response to local inflammation is warranted. Therefore, the aim of this study was to investigate the innate peripheral blood leukocyte (PBL) immune response to local inflammation in horses, and to compare this response with the PBL immune response during the early phase of acute systemic inflammation. Expression of 22 selected inflammation-related genes was measured in whole blood leukocytes from 6 horses in an experimental cross-over model of lipopolysaccharide- (LPS-) induced acute synovitis (3 μg LPS intraarticularly; locally inflamed [LI] horses) and endotoxemia (1 μg LPS/kg intravenously; systemically inflamed [SI] horses). Multiple clinical and hematological/biochemical examinations were performed, and serial blood samples were analyzed by reverse transcription quantitative real-time PCR. Post-induction expression profiles of all genes were compared between study groups using principal component analysis (PCA) and hierarchical clustering. Results Moderate synovitis and mild systemic inflammation of approximately 24 h duration was confirmed by clinical and paraclinical observations in LI and SI horses, respectively. In the LI group, samples obtained 3–16 h post-injection showed distinct clustering in the PCA compared with baseline levels, indicating a transcriptional response to local inflammation in PBLs in this time interval. There was no clinical or hematological indication of actual systemic inflammation. There was a clear separation of all LI samples from all SI samples in two distinct clusters, indicating that expression profiles in the two study groups were different, independent of time since LPS injection. Co-regulated genes formed four clusters across study groups which were distinctly differently regulated. Only few of individual genes displayed different expression between the study groups at all times after LPS injection. Conclusions Local inflammation in horses initiated an innate transcriptional response in PBLs, which differed from the transcriptional response during the early phase of systemic inflammation. This study may provide new insights into the immunobiology of PBLs during the transition of local inflammation into a systemic state. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0706-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Mette L Vinther
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark.
| | - Peter M H Heegaard
- Innate Immunology Group, Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Kerstin Skovgaard
- Innate Immunology Group, Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Rikke Buhl
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Stine M Andreassen
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Pia H Andersen
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Defining the Systemic Inflammatory Response Syndrome in Equine Neonates. Vet Clin North Am Equine Pract 2015; 31:463-81. [DOI: 10.1016/j.cveq.2015.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
18
|
Vinther AML, Skovgaard K, Heegaard PMH, Andersen PH. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation. BMC Vet Res 2015; 11:134. [PMID: 26076814 PMCID: PMC4467047 DOI: 10.1186/s12917-015-0450-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/02/2015] [Indexed: 01/05/2023] Open
Abstract
Background In horses, insights into the innate immune processes in acute systemic inflammation are limited even though these processes may be highly important for future diagnostic and therapeutic advances in high-mortality disease conditions as the systemic inflammatory response syndrome (SIRS) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic inflammation was induced in 6 adult horses by the intravenous injection of 1 μg lipopolysaccharide (LPS) per kg btw. Sixteen blood samples were collected for each horse at predetermined intervals and analyzed by reverse transcription quantitative real-time PCR. Post-induction expression levels for each gene were compared with baseline levels. Results Systemic inflammation was confirmed by the presence of clinical and hematological changes which were consistent with SIRS. The clinical response to LPS was transient and brief as all horses except one showed unaltered general demeanor after 24 h. Twenty-two leukocyte genes were significantly regulated at at least one time point during the experimental period. By close inspection of the temporal responses the dynamic changes in mRNA abundance revealed a very rapid onset of both pro- and anti-inflammatory mediators and a substantial variation in both expression magnitudes and duration of changes between genes. A majority of the 22 significantly regulated genes peaked within the first 8 h after induction, and an on-going, albeit tightly controlled, regulation was seen after 24 h despite approximate clinical recovery. Conclusions This first broad study of gene expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0450-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Mette L Vinther
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark.
| | - Kerstin Skovgaard
- Innate Immunology Group, Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark.
| | - Peter M H Heegaard
- Innate Immunology Group, Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark.
| | - Pia H Andersen
- Department of Clinical Sciences, Faculty of Veterinary and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
19
|
Abstract
Sepsis is defined as an exaggerated, systemic inflammatory response to infection and is a common condition in horses. Systemic inflammatory response syndrome (SIRS) associated with bacterial infection is a hallmark of sepsis. Sepsis in neonatal foals is a common sequela of failure of passive transfer and, in addition to development of SIRS, may be characterised by bacteraemia, pneumonia, enterocolitis, omphalophlebitis, meningoencephalitis or arthritis. Sepsis in mature horses is most commonly observed secondary to gastrointestinal lesions that result in disrupted mucosa and bacterial translocation into circulation (endotoxaemia). Pleuropneumonia and metritis may also cause sepsis in mature horses. Diagnosis of sepsis is based on SIRS criteria as well as suspected or confirmed infection. Due to the relatively low sensitivity of microbial culture and the subjectivity of sepsis scoring, many sepsis biomarkers are being studied for their usefulness in diagnosis and prognostication of sepsis in horses. Treatment of sepsis requires an intensive care approach that includes antimicrobial drug administration, fluid resuscitation and pressure support, and treatment for inflammation, endotoxaemia and coagulopathy. Early recognition of sepsis and prompt antimicrobial drug treatment are critical for a successful outcome. Multiple organ dysfunction syndrome may occur in severe cases of sepsis, with common manifestations including laminitis and coagulopathies. Although prognosis for septic mature horses depends highly on the primary disease process, the overall survival rate in septic neonatal foals ranges from 26 to 86%, with most studies indicating a survival rate of 45-60%.
Collapse
Affiliation(s)
- S Taylor
- Veterinary Clinical Sciences Purdue University West Lafayette Indiana USA
| |
Collapse
|
20
|
Hackett ES, Lunn DP, Ferris RA, Horohov DW, Lappin MR, McCue PM. Detection of bacteraemia and host response in healthy neonatal foals. Equine Vet J 2014; 47:405-9. [DOI: 10.1111/evj.12307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/01/2014] [Indexed: 11/28/2022]
Affiliation(s)
- E. S. Hackett
- Department of Clinical Sciences; Colorado State University; Fort Collins USA
| | - D. P. Lunn
- College of Veterinary Medicine; North Carolina State University; Raleigh USA
| | - R. A. Ferris
- Department of Clinical Sciences; Colorado State University; Fort Collins USA
| | - D. W. Horohov
- Department of Veterinary Science; Maxwell H. Gluck Equine Research Center; University of Kentucky; Lexington USA
| | - M. R. Lappin
- Department of Clinical Sciences; Colorado State University; Fort Collins USA
| | - P. M. McCue
- Department of Clinical Sciences; Colorado State University; Fort Collins USA
| |
Collapse
|
21
|
Mariella J, Castagnetti C, Peli A, Morini M, Sorteni C, Bettini G, Pietra M. Mucosal mRNA Cytokines’ Profile of Gastric Wall in Neonatal Foals: Comparison with Endoscopy and Histology. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|