1
|
Dafalla AI, Mhalhal TR, Hiscocks K, Heath J, Sayegh AI. Non-sulfated cholecystokinin-8 increases enteric and hindbrain Fos-like immunoreactivity in male Sprague Dawley rats. Brain Res 2018; 1708:200-206. [PMID: 30571983 DOI: 10.1016/j.brainres.2018.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
Recently, we reported that non-sulfated cholecystokinin-8 (NS CCK-8) reduces food intake by cholecystokinin-B receptors (CCK-BR). To examine a possible site of action for this peptide, and based on the fact that both NS CCK-8 and CCK-BR are found centrally and peripherally, in the current study we hypothesized that NS CCK-8 increases Fos-like immunoreactivity (Fos-LI, a neuronal activation marker) in the dorsal vagal complex (DVC) of the hindbrain and the myenteric and submucosal plexuses of the small intestine. We found that intraperitoneal NS CCK-8 (0.5 nmol/kg) increases Fos-LI in the DVC, the myenteric and the submucosal plexuses of the duodenum and the myenteric plexus of the jejunum. The findings suggest, but does not prove, a potential role for the DVC and the enteric neurons in the feeding responses evoked by NS CCK-8.
Collapse
Affiliation(s)
- Amged I Dafalla
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee AL36088, United States
| | - Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee AL36088, United States
| | - Kenneth Hiscocks
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee AL36088, United States
| | - John Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee AL36088, United States
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee AL36088, United States.
| |
Collapse
|
2
|
The Role of Cholecystokinin Receptors in the Short-Term Control of Food Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:277-316. [DOI: 10.1016/b978-0-12-386933-3.00008-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Hunt JV, Washington MC, Sayegh AI. Exenatide and feeding: possible peripheral neuronal pathways. Peptides 2012; 33:285-90. [PMID: 22222610 DOI: 10.1016/j.peptides.2011.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 01/24/2023]
Abstract
Intraperitoneal (i.p.) administration of the synthetic agonist of the glucagon like peptide-1 (GLP-1) receptor exenatide reduces food intake. Here, we evaluated possible peripheral pathways for this reduction. Exenatide (0.5 μg/kg, i.p.) was given to three, overnight food-deprived, groups of rats: total subdiaphragmatic vagotomy (VGX, severs the vagus nerve), celiaco-mesenteric ganglionectomy (CMGX, severs the splanchnic nerve) and combined VGX/CMGX. Following the injection, meal sizes (MSs) and intermeal intervals (IMIs) were determined for a total of 120 min. We found that exenatide reduced the sizes of the first two meals but failed to prolong the IMI between them, that VGX attenuated the reduction of the first MS, and that VGX, CMGX and combined VGX/CMGX attenuated the reduction of the second MS by exenatide. Therefore, the vagus nerve appears necessary for the reduction of the first MS by exenatide, whereas both nerves appear necessary for the reduction of the second MS by this peptide.
Collapse
Affiliation(s)
- Jizette V Hunt
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | | | | |
Collapse
|
4
|
Wright SA, Washington MC, Garcia C, Sayegh AI. Gastrin releasing peptide-29 requires vagal and splanchnic neurons to evoke satiation and satiety. Peptides 2012; 33:125-31. [PMID: 22210008 DOI: 10.1016/j.peptides.2011.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 11/24/2022]
Abstract
We have shown that gastrin-releasing peptide-29 (GRP-29), the large molecular form of GRP in rats, reduces meal size (MS, intake of 10% sucrose solution) and prolongs the intermeal interval (IMI). In these studies, we first investigated possible pathways for these responses in rats undergoing total subdiaphragmatic vagotomy (VGX, removal of vagal afferent and efferent innervation of the gut), celiaco-mesenteric ganglionectomy (CMGX, removal of splanchnic afferent and efferent innervation of the gut) and combined VGX and CMGX. Second, we examined if the duodenum communicates the feeding signals (MS and IMI) of GRP-29 (0, 0.3, 1.0, 2.1, 4.1, 10.3 and 17.2 nmol/kg) with the feeding control areas of the hindbrain by performing duodenal myotomy (MYO), a procedure that severs some layers of the duodenal wall including the vagal, splanchnic and enteric neurons. We found that GRP-29 (2.1, 4.1, 10.3, 17.2 nmol/kg) reduced the size of the first meal (10% sucrose) and (1, 4.1, 10.3 nmol/kg) prolongs the first IMI but did not affect the subsequent meals or IMIs. In addition, CMGX and combined VGX/CMGX attenuated reduction of MS by GRP-29 and all surgeries attenuated the prolongation of the IMI. Therefore, reduction of MS and prolongation of IMI by GRP-29 require vagal and splanchnic nerves, and the duodenum is the major conduit that communicates prolongation of IMI by GRP-29 with the brain.
Collapse
Affiliation(s)
- Susan A Wright
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | | | | | | |
Collapse
|
5
|
|
6
|
Washington MC, Sayegh AI. Gastrin releasing peptides increase Fos-like immunoreactivity in the enteric nervous system and the dorsal vagal complex. Peptides 2011; 32:1600-5. [PMID: 21745514 DOI: 10.1016/j.peptides.2011.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 11/28/2022]
Abstract
We and others have shown that gastrin-releasing peptide (GRP) reduces food intake. In this study, we determined the activation of the gastrointestinal and dorsal vagal complex (DVC) neurons by various forms of GRP to determine the pathway involved in this reduction. We found the following: (1) GRP-10, -27 and -29 (2.1 nmol/kg, i.p.) increased the Fos-like immunoreactivity (Fos-LI, a marker for neuronal activation) in the myenteric neurons of the stomach and the area postrema (AP) of the DVC; (2) GRP-27 and GRP-29 increased the Fos-LI in the myenteric plexus of the duodenum; and (3) only GRP-29 increased the Fos-LI in the submucosal plexus of the duodenum. In conclusion, GRP may reduce food intake by activating the area postrema. The enteric neurons may have a potential role in this reduction through the direct activation of the AP or exerting local gut actions, such as the stimulation of gut motility or secretions.
Collapse
Affiliation(s)
- Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | | |
Collapse
|
7
|
Washington MC, Murry CR, Raboin SJ, Roberson AE, Mansour MM, Williams CS, Sayegh AI. Cholecystokinin-8 activates myenteric neurons in 21- and 35-day old but not 4- and 14-day old rats. Peptides 2011; 32:272-80. [PMID: 21093507 DOI: 10.1016/j.peptides.2010.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 01/31/2023]
Abstract
Cholecystokinin (CCK) activates the myenteric neurons of adult rats. The goal of this work is to determine the ontogeny of this activation by CCK-8 in the myenteric plexus of the duodenum (2cm immediately following the pyloric sphincter aborally) and compare it with that of the dorsal vagal complex (DVC) - which occurs in 1-day old pups. Despite the existence of both of the CCK receptors, CCK(1) and CCK(2), in 4, 14, 21 and 35 day old rats, CCK-8 (0, 5, 10, 20 and 40μg/kg, i.p.) increased Fos-like immunoreactivity (Fos-LI, a marker for neuronal activation) in the myenteric neurons of 21- and 35-day old rats but in the DVC of all age groups. As such, this belated activation of myenteric neurons by CCK-8 compared to the DVC may reflect a delayed role for these neurons in CCK-related functions.
Collapse
|
8
|
Elliott RL, Cameron KO, Chin JE, Bartlett JA, Beretta EE, Chen Y, Jardine PDS, Dubins JS, Gillaspy ML, Hargrove DM, Kalgutkar AS, LaFlamme JA, Lame ME, Martin KA, Maurer TS, Nardone NA, Oliver RM, Scott DO, Sun D, Swick AG, Trebino CE, Zhang Y. Discovery of N-benzyl-2-[(4S)-4-(1H-indol-3-ylmethyl)-5-oxo-1-phenyl-4,5-dihydro-6H-[1,2,4]triazolo[4,3-a][1,5]benzodiazepin-6-yl]-N-isopropylacetamide, an orally active, gut-selective CCK1 receptor agonist for the potential treatment of obesity. Bioorg Med Chem Lett 2010; 20:6797-801. [PMID: 20851601 DOI: 10.1016/j.bmcl.2010.08.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 12/14/2022]
Abstract
We describe the design, synthesis, and structure-activity relationships of triazolobenzodiazepinone CCK1 receptor agonists. Analogs in this series demonstrate potent agonist activity as measured by in vitro and in vivo assays for CCK1 agonism. Our efforts resulted in the identification of compound 4a which significantly reduced food intake with minimal systemic exposure in rodents.
Collapse
Affiliation(s)
- Richard L Elliott
- Department of Cardiovascular, Metabolic, and Endocrine Diseases, Pfizer Global Research and Development, Groton, CT 06340, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Exenatide reduces food intake and activates the enteric nervous system of the gastrointestinal tract and the dorsal vagal complex of the hindbrain in the rat by a GLP-1 receptor. Brain Res 2010; 1344:124-33. [DOI: 10.1016/j.brainres.2010.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/23/2010] [Accepted: 05/03/2010] [Indexed: 01/29/2023]
|
10
|
Raboin SJ, Reeve JR, Cooper MS, Green GM, Sayegh AI. Activation of submucosal but not myenteric plexus of the gastrointestinal tract accompanies reduction of food intake by camostat. ACTA ACUST UNITED AC 2008; 150:73-80. [PMID: 18620003 DOI: 10.1016/j.regpep.2008.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 05/23/2008] [Accepted: 06/15/2008] [Indexed: 11/29/2022]
Abstract
UNLABELLED It has been shown in the rat that endogenous cholecystokinin (CCK), released in response to the non-nutrient trypsin inhibitor camostat, reduces food intake at meals and increases Fos-like immunoreactivity (Fos-LI; a marker for neuronal activation) in the dorsal vagal complex (DVC) of the hindbrain but not the myenteric plexus of the duodenum and jejunum. Experiment 1: We examined Fos-LI in the myenteric and the submucosal plexuses of the gut in response to orogastric gavage of camostat in rats. As we reported previously, camostat failed to increase Fos-LI in the myenteric plexus. We show here that camostat increased Fos-LI in the submucosal plexus of the duodenum and jejunum. Camostat also increased Fos-LI in the DVC. Experiment 2: Pretreatment with devazepide, a specific CCK(1) receptor antagonist abolished camostat-induced Fos-LI in the submucosal plexus and the DVC. Experiment 3: Bilateral subdiaphragmatic vagotomy reduced camostat-induced Fos-LI in the submucosal plexus approximately 40% and abolished it in the DVC. CONCLUSIONS Activation of the submucosal plexus by cholecystokinin at the CCK(1) receptor accompanies stimulation of the dorsal vagal complex of the hindbrain and inhibition of food intake. Unlike the submucosal plexus, activation of the myenteric plexus is not necessary for cholecystokinin's influence on the dorsal vagal complex and food intake. The lack of activation in the myenteric plexus after camostat stimulation, in contrast to nutrient releasers of CCK such as oleate, suggests that intestinal stimulants can either release different amounts of CCK or cause release of CCK from I cells with different molecular forms of CCK. This would suggest that CCK-8 is released by camostat and is not able to travel to the myenteric plexus while a more stable form of CCK such as CCK-58 can travel to this site that is further away from the I cell.
Collapse
Affiliation(s)
- Shannon J Raboin
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama, United States
| | | | | | | | | |
Collapse
|
11
|
Cholecystokinin-58 and cholecystokinin-8 produce similar but not identical activations of myenteric plexus and dorsal vagal complex. ACTA ACUST UNITED AC 2008; 148:88-94. [PMID: 18455815 DOI: 10.1016/j.regpep.2008.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 03/15/2008] [Accepted: 03/15/2008] [Indexed: 11/22/2022]
Abstract
The enteric nervous system (ENS: myenteric and submucosal plexuses) of the gastrointestinal tract may have a role in the reduction of food intake by cholecystokinin (CCK). Exogenous cholecystokinin-8 (CCK-8) activates the myenteric plexus and the feeding control areas of the dorsal vagal complex (DVC) of the brainstem. An increasing number of reports, however, have shown that CCK-58 is the sole or the major circulating form of CCK in rat, human and dog, and that it is qualitatively different from CCK-8 in evoking various gastrointestinal physiological responses (e.g., contraction of the gallbladder and exocrine pancreatic secretion). In the current report, we compared the abilities of exogenous CCK-58 to activate the myenteric plexus and the dorsal vagal complex with those of exogenous CCK-8 by quantifying Fos-like immunoreactivity (Fos-LI; a marker for neuronal activation). We report that CCK-58 (1, 3, and 5 nmol/kg) increased Fos-LI in the myenteric plexus (p<0.001) and in the DVC (p<0.001) compared to the saline vehicle. The highest dose of CCK-58 increased Fos-LI more than an equimolar dose of CCK-8 in the myenteric plexus and the area postrema. Thus, CCK-8 and CCK-58 produce the same qualitative pattern of activation of central and peripheral neurons, but do not provoke identical quantitative patterns at higher doses. The different patterns produced by the two peptides at higher doses, in areas open to the circulation (myenteric plexus and area postrema) may reflect endocrine actions not observed at lower doses.
Collapse
|
12
|
The antagonism of cholecystokinin octapeptide-8 to the peroxynitrite oxidation on a diabetic cataractal rat model. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200609010-00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
13
|
Raboin SJ, Gulley S, Henley SC, Chang WC, Esdaile AR, Jackson CA, Sayegh AI. Effect of adrenalectomy on cholecystokinin-8–induced Fos-like immunoreactivity in myenteric neurons and the dorsal vagal complex in rats. Am J Vet Res 2006; 67:1552-6. [PMID: 16948600 DOI: 10.2460/ajvr.67.9.1552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effect of adrenalectomy on cholecystokinin-8 (CCK-8)-induced Fos-like immunoreactivity (Fos-LI) in the myenteric neurons of the dorsal vagal complex (DVC) in rats. ANIMALS 16 male Sprague Dawley rats. PROCEDURES Rats were allocated to 1 of 2 groups and underwent adrenalectomy or a sham adrenalectomy procedure. Rats were challenged with a supraphysiologic dose of CCK-8 (40 microg/kg) or physiologic saline (0.9% NaCl) solution (0.5 mL) administered IP; after 90 minutes, rats were euthanized, and Fos-LI was quantified in the DVC (at the levels of the area postrema, nucleus tractus solitarii, and dorsal motor nucleus of the vagus) and the myenteric neurons of the duodenum and jejunum by use of a diaminobenzidine reaction enhanced with nickel. The Fos-LI-positive cells were counted by use of an automated system and manually in the DVC and intestinal samples, respectively. Counts of Fos-LI in the different hindbrain levels and myenteric neurons were compared between the adrenalectomy--and shamtreated groups and between the CCK-8- and saline solution-treated groups. RESULTS After adrenalectomy, CCK-8-induced Fos-LI was attenuated only in the myenteric neurons of the duodenum. CONCLUSIONS AND CLINICAL RELEVANCE Results indicate that the adrenal gland has a role in the activation of myenteric neurons by CCK-8 in rats.
Collapse
Affiliation(s)
- Shannon J Raboin
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Raboin SJ, Gulley S, Henley SC, Chan WC, Esdaile AR, Jackson CA, Billups LH, Sayegh AI. Effect of sympathectomy and demedullation on increased myenteric and dorsal vagal complex Fos-like immunoreactivity by cholecystokinin-8. ACTA ACUST UNITED AC 2006; 134:141-8. [PMID: 16600401 DOI: 10.1016/j.regpep.2006.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 11/18/2022]
Abstract
Chemical sympathectomy with daily, intraperitoneal (IP) injections of guanethidine sulfate to adult rats, attenuated myenteric, but not dorsal vagal complex (DVC) Fos-like immunoreactivity (Fos-LI) by cholecystokinin-8 (CCK). This technique destroys only 60-70% of the sympathetic neurons, and spares the hormonal source of catecholamines, the adrenal medulla. The goal of the current study is to evaluate the effect of complete sympathectomy or destroying 100% of the sympathetic neurons by injecting guanethidine to 1-day-old pups (40 mg/kg daily for 5 weeks), and surgically removing the adrenal medulla. In the DVC, demedullation and sympathectomy-demedullation increased Fos-LI by CCK in the area postrema and nucleus of the solitary tract, but sympathectomy-demedullation increased it only in the area postrema. In the myenteric plexus, sympathectomy increased this response in the duodenum, and demedullation increased it in the duodenum and jejunum. On the other hand, sympathectomy-demedullation attenuated myenteric Fos-LI in the jejunum. These results indicate that catecholamines may play an inhibitory role on the activation of the DVC neurons by CCK. In the myenteric neurons, however, catecholamines may have both inhibitory and excitatory roles depending on the level of the intestine e.g., duodenum vs. jejunum. This may also indicate that CCK activates the enteric neurons by different mechanisms or through different pathways.
Collapse
Affiliation(s)
- Shannon J Raboin
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Webb T, Gulley S, Pruitt F, Esdaile AR, Sharma SK, Cox JE, Smith GP, Sayegh AI. Cholecystokinin-8 increases Fos-like immunoreactivity in myenteric neurons of the duodenum and jejunum more after intraperitoneal than after intravenous injection. Neurosci Lett 2005; 389:157-62. [PMID: 16105718 DOI: 10.1016/j.neulet.2005.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/14/2005] [Accepted: 07/22/2005] [Indexed: 11/23/2022]
Abstract
The objective of this study was to measure the relative efficacy and potency of cholecystokinin-8 (CCK-8) given by intraperitoneal (i.p.) and intravenous (i.v.) injection to stimulate Fos-like immunoreactivity (Fos-LI) in neurons of the myenteric plexus in the duodenum and jejunum. The subjects for his experiment were 40 male Sprague-Dawley rats divided into eight treatment groups (n=5 rats per treatment). Four groups of rats were injected with 5, 10, and 40 microg/kg sulfated CCK-8 and saline (control) i.p., and the remaining groups with the same treatments i.v. We then detected Fos-LI, a marker for neuronal activation, in the myenteric plexus of the duodenum and jejunum, in response to the previous doses and routes. All of the CCK-8 doses administered by both routes increased Fos-LI in the myenteric plexus of the duodenum and jejunum significantly more than saline did. Although both routes were efficacious in increasing Fos-LI, CCK-8 i.p. was significantly more potent than CCK-8 i.v. These data provide immunohistochemical evidence that i.p. administration of CCK-8 is a more potent stimulant of Fos-LI in the neurons of the myenteric plexus of the duodenum and jejunum than i.v. injection.
Collapse
Affiliation(s)
- Tennille Webb
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gulley S, Raboin SJ, Henley SC, Chan WC, Sharma SK, Billups LH, Esdaile AR, Sullivan CN, Moran TH, Sayegh AI. Chemical sympathectomy attenuates myenteric but not dorsal vagal complex Fos-like immunoreactivity induced by cholecystokinin-8 in the rat. Brain Res 2005; 1064:119-25. [PMID: 16298351 DOI: 10.1016/j.brainres.2005.09.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/21/2005] [Accepted: 09/25/2005] [Indexed: 11/19/2022]
Abstract
Vagotomy and capsaicin treatment attenuate dorsal vagal complex (DVC) but not myenteric Fos-like immunoreactivity (Fos-LI) induced by cholecystokinin-8 (CCK-8). The goal of this experiment is to test the role of the sympathetic nervous system in the pathway by which CCK-8 increases myenteric Fos-LI. Adult male Sprague-Dawley rats were pretreated with guanethidine sulfate (40 mg/kg daily for 5 weeks) or vehicle intraperitoneally (IP), and injected with CCK-8 (40 microg/kg) or saline IP. Fos-LI was then quantified in the DVC and the myenteric neurons of the duodenum and jejunum using a diaminobenzidine reaction. Guanethidine pretreatment attenuated myenteric but not DVC Fos-LI induced by CCK-8. These findings demonstrate that sympathetic neurons play a role in mediating the myenteric Fos-LI response to CCK. They also suggest differential mediation of myenteric and DVC responses to CCK.
Collapse
Affiliation(s)
- Stephen Gulley
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gulley S, Sharma SK, Mansour M, Sullivan CN, Moran TH, Sayegh AI. Strain differences in myenteric neuron number and CCK1 receptor mRNA expression may account for differences in CCK induced c-Fos activation. Brain Res 2005; 1058:109-19. [PMID: 16169531 DOI: 10.1016/j.brainres.2005.07.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/26/2005] [Accepted: 07/28/2005] [Indexed: 11/20/2022]
Abstract
We utilized a diaminobenzidine reaction enhanced with nickel to compare dorsal vagal complex (DVC) and myenteric neuronal Fos-Like immunoreactivity (Fos-LI), in response to sulfated cholecystokinin-8 (CCK-8) (5, 10, 20, 40 microg/kg), among Sprague-Dawley (SD), Standard Long-Evans (SLE), Otsuka Long-Evans Tokushima Fatty (OLETF), and Long-Evans Tokushima Otsuka (LETO) rats. All rat strains but OLETF expressed Fos-LI in response to CCK-8. In addition, SD rats expressed more Fos-LI in the area postrema and myenteric neurons than SLE and LETO rats. To investigate the basis for these differences, we utilized cuprolinic blue staining, which stains neuronal cell bodies, to quantify the number of myenteric neurons, and a reverse transcriptase chain polymerase reaction to measure the gene expression of CCK(1) receptor in the gut. We found that SD rats have significantly more duodenal myenteric neurons than the other strains. In addition, this strain expressed significantly higher levels of the CCK(1) gene in both the duodenum and jejunum than the other strains. In conclusion, SD rats may express more myenteric Fos-LI in response to CCK due to increased numbers of myenteric neurons or more intestinal CCK(1) receptors than the other strains of rats.
Collapse
Affiliation(s)
- Stephen Gulley
- Department of Biomedical Sciences, Gastroenterology Laboratory, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | | | | | |
Collapse
|
18
|
Gulley S, Sharma SK, Moran TH, Sayegh AI. Cholecystokinin-8 increases Fos-like immunoreactivity in the brainstem and myenteric neurons of rats through CCK1 receptors. Peptides 2005; 26:1617-22. [PMID: 16112401 DOI: 10.1016/j.peptides.2005.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/18/2005] [Accepted: 02/21/2005] [Indexed: 11/17/2022]
Abstract
To examine the role of cholecystokinin1 receptor (CCK1) in the activation of brainstem and myenteric neurons by CCK, we compared the ability of exogenous CCK-8 to induce Fos-like immunoreactivity (Fos-LI) in these neurons in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, lacking CCK1 receptors, and Long-Evans Tokushima Otsuka (LETO) controls. Five groups (n=4 rats per group) of OLETF rats, and five LETO control groups, were injected intraperitoneally (IP) with 5, 10, 20, and 40 microg/kg CCK-8 or saline. Forty-micrometer brainstem sections containing the area postrema, nucleus of the solitary tract, and the dorsal motor nucleus of the vagus, and myenteric neurons of the duodenum, jejunum, and ileum underwent a diaminobenzidine reaction enhanced with nickel to reveal Fos-LI. CCK-8 did not increase Fos-LI in any of the tested neurons in the OLETF rats. CCK-8 increased Fos-LI in the brainstem of the LETO rats in a dose dependent manner. In the LETO rats only 40 microg/kg CCK-8 increased Fos-LI in the myenteric plexus of the jejunum. This study demonstrates that CCK-8 activates the brainstem and myenteric neurons through the CCK1 receptor.
Collapse
Affiliation(s)
- Stephen Gulley
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | |
Collapse
|
19
|
Gulley S, Covasa M, Ritter RC, Sayegh AI. Cholecystokinin1 receptors mediate the increase in Fos-like immunoreactivity in the rat myenteric plexus following intestinal oleate infusion. Physiol Behav 2005; 86:128-35. [PMID: 16098547 DOI: 10.1016/j.physbeh.2005.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Revised: 05/20/2005] [Accepted: 07/06/2005] [Indexed: 11/24/2022]
Abstract
Intestinal infusion of nutrients, such as glucose and oleic acid, increase Fos-like immunoreactivity (Fos-LI) in both the enteric nervous system and neurons of the dorsal vagal complex (DVC) of the hindbrain. To test the hypothesis that increased Fos-LI in enteric neurons and the DVC, following intestinal nutrient infusions is mediated by cholecystokinin(1) receptors (CCK(1)), we counted enteric and DVC neurons that expressed Fos-LI following intestinal infusion of oleate or glucose, with and without pretreatment with the CCK(1) receptor antagonist, lorglumide. Both oleate and glucose infusions increased Fos-LI in the DVC. Oleate also increased Fos-LI in the myenteric and submucosal plexuses of the duodenum and the jejunum, but not the ileum, while glucose only increased Fos-LI in the submucosal plexus of the ileum. The CCK(1) receptor antagonist, lorglumide, abolished Fos-LI in the DVC following infusions of either oleate or glucose. In addition, lorglumide attenuated oleate-induced Fos-LI in the myenteric and submucosal plexuses of the duodenum and jejunum. However, lorglumide failed to attenuate glucose-induced Fos-LI in the submucosal plexus of the ileum. These data confirm previous reports indicating that CCK(1) receptors mediate increased DVC Fos-LI following intestinal infusion of oleate or glucose. CCK(1) receptors also contribute to increased Fos-LI in enteric neurons following intestinal oleate infusion. However, failure of lorglumide to attenuate the increase of Fos-LI in the ileal submucosal plexus following intestinal glucose suggests that some intestinal nutrients trigger Fos-LI induction via CCK(1) receptor-independent pathways.
Collapse
Affiliation(s)
- Stephen Gulley
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, AL 36088, USA
| | | | | | | |
Collapse
|
20
|
Webb T, Gulley S, Esdaile AR, Pruitt F, Sharma SK, Williams CS, Sayegh AI. Effects of cholecystokinin-receptor antagonists on Fos-like immunoreactivity stimulated by sulfated cholecystokinin-8 in neurons of the myenteric plexus and hindbrain of rats. Am J Vet Res 2005; 66:1308-13. [PMID: 16173470 DOI: 10.2460/ajvr.2005.66.1308] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the role of cholecystokinin (CCK)-receptor antagonists in the activation of enteric and hindbrain neurons by sulfated CCK-8. ANIMALS 81 male Sprague-Dawley rats. PROCEDURE Rats were allocated to 10 groups (5 to 22 rats/group). Each rat received 2 IP injections (15 minutes between injections). The first injection consisted of a specific CCK2-receptor (CCK2R) antagonist (L365,260; 150, 500, or 1,000 microg/kg), a specific CCK1-receptor (CCK1R) antagonist (devazepide; 150 microg/kg), or 1% dimethyl sulfoxide (DMSO [ie, vehicle]), and the second injection consisted of sulfated CCK-8 (10 microg/kg) or saline (0.9% NaCl) solution. Rats were anesthetized and perfused with 500 mL of Krebs saline solution, and the myenteric plexuses of the duodenum and jejunum were collected. Rats were then perfused with 500 mL of phosphate-buffered 4% formaldehyde solution; rats were then euthanatized, and the hindbrain of each was harvested. Tissues were stained by use of a diaminobenzidine reaction enhanced with nickel to reveal Fos-like immunoreactivity (Fos-LI), a marker of neuronal activation, in the aforementioned neurons. RESULTS Sulfated CCK-8 significantly increased Fos-LI in the myenteric and hindbrain neurons, compared with values for the DMSO injections. All dosages of L365,260 failed to attenuate this increase; however, injection of devazepide attenuated the increase in Fos-LI. CONCLUSIONS AND CLINICAL RELEVANCE Analysis of the results of this study reveals that sulfated CCK-8 activates myenteric and hindbrain neurons of rats primarily through CCK1 R. It provides evidence that CCK2R are lacking or not functional in the gastrointestinal tract of rats.
Collapse
Affiliation(s)
- Tennille Webb
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | | | | | | | |
Collapse
|