1
|
Economou A, Mallia I, Fioravanti A, Gentileschi S, Nacci F, Bellando Randone S, Lepri G, Guiducci S. The Role of Adipokines between Genders in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2024; 25:10865. [PMID: 39409194 PMCID: PMC11476677 DOI: 10.3390/ijms251910865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, degenerative joint disease characterized by joint pain, stiffness, and limited movement. It presents significant intra- and inter-individual variability-in particular, between genders. Recent research has increasingly focused on the role of adipokines-especially leptin, adiponectin, and resistin-in the development of OA. Adipokines, peptide hormones primarily secreted by adipose tissue, are involved in crucial physiological processes related to metabolism and immunity. They can also impact bone and cartilage turnover by interacting with joint cells such as osteoblasts, osteoclasts, chondrocytes, and mesenchymal stem cells, thereby linking inflammation with bone cartilage homeostasis. This review aims to elucidate the structure and functions of various adipokines, their serum and synovial levels, and their association with clinical presentation and radiographic progression in OA patients, with a focus on differences between sexes. A narrative literature review was conducted using three databases specifically analyzing sex differences. OA patients generally show elevated serum and synovial levels of leptin, chemerin, and visfatin, as well as high plasma levels of resistin and visfatin. In contrast, synovial levels of adiponectin and omentin are reduced in OA patients compared to healthy individuals, with an inverse relationship to disease severity, suggesting a potential protective role. Resistin and leptin were positively correlated with pain severity and radiographic progression, while adiponectin's role in OA remains controversial. Regarding sex differences, male OA patients exhibited higher serum levels of leptin, chemerin, and omentin compared to healthy controls, with a positive correlation to the BMI and estrogen levels, potentially explaining the sexual dimorphism observed in this condition. Studies on visfatin and lipocalin did not reveal significant differences in synovial or serum levels between the sexes. The role of resistin remains controversial. Adipokines influence the joint microenvironment and contribute to the progression of osteoarthritis (OA). However, the precise biological mechanisms are not yet fully understood due to the complex interactions between the metabolic, mechanical, and immune systems. Further research is needed to clarify their roles in OA and to identify targeted therapies for managing this degenerative disease.
Collapse
Affiliation(s)
- Alessio Economou
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Ilenia Mallia
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Antonella Fioravanti
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (A.F.); (S.G.)
| | - Stefano Gentileschi
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (A.F.); (S.G.)
| | - Francesca Nacci
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Silvia Bellando Randone
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Gemma Lepri
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Serena Guiducci
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| |
Collapse
|
2
|
Elnemr R, El Hamid MMA, Taleb RSZ, Khalil NFW, El-Sherif SM. Study of adiponectin gene (rs1501299) polymorphism and serum adiponectin level in patients with primary knee osteoarthritis. Hum Genomics 2024; 18:105. [PMID: 39313801 PMCID: PMC11421100 DOI: 10.1186/s40246-024-00670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND We aimed to study, for the first time in the Egyptian population, the relationship between the serum adiponectin level in knee osteoarthritis (KOA) patients and its correlation with clinical, radiological, and ultrasonographic characteristics. Additionally, investigate the relationship between the adiponectin (ADIPOQ) gene rs1501299 (+ 276G/T) polymorphism and KOA susceptibility and severity. METHODS This case-control study enrolled 40 patients with primary KOA and 40 matched controls. All patients underwent physical examination of the knee, pain assessment using the visual analogue scale (VAS), and functional evaluation by Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Severity of KOA was assessed by Kellgren Lawrence (KL) grading scale and ultrasonography grading systems. Serum adiponectin levels and adiponectin (ADIPOQ) gene single nucleotide polymorphism (SNP) (rs1501299) genotyping were done for all patients and controls. RESULTS The study included 40 patients with primary symptomatic KOA and 40 controls with comparable age, sex, and body mass index. The genotype of the rs1501299 (+ 276G/T) polymorphism of the ADIPOQ gene was determined using TaqMan allelic discrimination. An enzyme-linked immunosorbent test was used to measure the level of serum adiponectin. The Western Ontario and McMaster Universities Osteoarthritis (WOMAC) score was used to assess functional capability, while the visual analogue scale was utilised to assess knee pain. Using the Kellgren-Lawrence (KL) grading method and global femoral cartilage (GFC) ultrasound grading, the severity of KOA was assessed. No significant differences between patients and controls as regards the genotype distributions and allele frequencies (p = 0.400, p = 0.507, respectively) of ADIPOQ gene rs1501299 (+ 276G/T) polymorphism. Furthermore, serum adiponectin level was significantly higher in the patients compared to healthy subjects (p < 0.001). Additionally, adiponectin level had a significant negative correlation with disease severity as evaluated by KL and GFC grading (r=-0.351, p = 0.027 and r=-0.397, p = 0.011, respectively). CONCLUSIONS The ADIPOQ gene rs1501299 (+ 276G/T) polymorphism was not associated with KOA severity or vulnerability. The level of adiponectin considerably reduced as the severity of KOA rose, indicating that adiponectin may have a preventive effect in KOA.
Collapse
Affiliation(s)
- Rehab Elnemr
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Alexandria University, Medaan El-Khartoom Square, Al-Azaritah, Alexandria, Egypt
| | - Mowaffak Moustafa Abd El Hamid
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Alexandria University, Medaan El-Khartoom Square, Al-Azaritah, Alexandria, Egypt
| | - Raghda Saad Zaghloul Taleb
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Medaan El-Khartoom Square, Al-Azarita, Alexandria, 21561, Egypt
| | - Naylan Fayez Wahba Khalil
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Alexandria University, Medaan El-Khartoom Square, Al-Azaritah, Alexandria, Egypt
| | - Sherine Mahmoud El-Sherif
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Alexandria University, Medaan El-Khartoom Square, Al-Azaritah, Alexandria, Egypt.
| |
Collapse
|
3
|
Binvignat M, Sellam J, Berenbaum F, Felson DT. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat Rev Rheumatol 2024; 20:565-584. [PMID: 39112603 DOI: 10.1038/s41584-024-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
Obesity has a pivotal and multifaceted role in pain associated with osteoarthritis (OA), extending beyond the mechanistic influence of BMI. It exerts its effects both directly and indirectly through various modifiable risk factors associated with OA-related pain. Adipose tissue dysfunction is highly involved in OA-related pain through local and systemic inflammation, immune dysfunction, and the production of pro-inflammatory cytokines and adipokines. Adipose tissue dysfunction is intricately connected with metabolic syndrome, which independently exerts specific effects on OA-related pain, distinct from its association with BMI. The interplay among obesity, adipose tissue dysfunction and metabolic syndrome influences OA-related pain through diverse pain mechanisms, including nociceptive pain, peripheral sensitization and central sensitization. These complex interactions contribute to the heightened pain experience observed in individuals with OA and obesity. In addition, pain management strategies are less efficient in individuals with obesity. Importantly, therapeutic interventions targeting obesity and metabolic syndrome hold promise in managing OA-related pain. A deeper understanding of the intricate relationship between obesity, metabolic syndrome and OA-related pain is crucial and could have important implications for improving pain management and developing innovative therapeutic options in OA.
Collapse
Affiliation(s)
- Marie Binvignat
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Sorbonne University, INSERM UMRS_959, I3 Lab Immunology Immunopathology Immunotherapy, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France.
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Francis Berenbaum
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - David T Felson
- Boston University School of Medicine, Department of Medicine, Section of Rheumatology, Boston, MA, USA
| |
Collapse
|
4
|
Farrag Y, Farrag M, Varela-García M, Torrijos-Pulpón C, Capuozzo M, Ottaiano A, Lago F, Mera A, Pino J, Gualillo O. Adipokines as potential pharmacological targets for immune inflammatory rheumatic diseases: Focus on rheumatoid arthritis, osteoarthritis, and intervertebral disc degeneration. Pharmacol Res 2024; 205:107219. [PMID: 38763327 DOI: 10.1016/j.phrs.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Adipokines are a heterogeneous group of signalling molecules secreted prevalently by adipose tissue. Initially considered as regulators of energy metabolism and appetite, adipokines have been recognized for their substantial involvement in musculoskeletal disorders, including osteoarthritis, rheumatoid arthritis, and many others. Understanding the role of adipokines in rheumatic inflammatory and autoimmune diseases, as well as in other musculoskeletal diseases such as intervertebral disc degeneration, is crucial for the development of novel therapeutic strategies. Targeting adipokines, or their signalling pathways, may offer new opportunities for the treatment and management of these conditions. By modulating adipokines levels or activity, it may be possible to regulate inflammation, to maintain bone health, and preserve muscle mass, thereby improving the outcomes and quality of life for individuals affected by musculoskeletal diseases. The aim of this review article is to update the reader on the multifaceted role of adipokines in the main rheumatic diseases such as osteoarthritis and rheumatoid arthritis and to unravel the complex interplay among adipokines, cartilage metabolism, bone remodelling and muscles, which will pave the way for innovative therapeutic intervention in the future. For completeness, the role of adipokines in intervertebral disc degeneration will be also addressed.
Collapse
Affiliation(s)
- Yousof Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Mariam Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - María Varela-García
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Carlos Torrijos-Pulpón
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Maurizio Capuozzo
- Pharmaceutical Department, ASL-Napoli-3 Sud, Via Marittima 3, Ercolano 80056, Italy.
| | - Alessando Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy.
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Mera
- SERGAS, Servizo Galego de Saude, Santiago University Clinical Hospital, Division of Rheumatology, Santiago de Compostela 15706, Spain.
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain; International PhD School, University of Santiago de Compostela (EDIUS), Santiago de Compostela 15706, Spain; University of Santiago de Compostela, Department of Surgery and Medical Surgical Specialties, Santiago University Clinical Hospital, Trav. Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain; International PhD School, University of Santiago de Compostela (EDIUS), Santiago de Compostela 15706, Spain.
| |
Collapse
|
5
|
Ozcan M, Ayar A. Endocrine Aspects of Pain Pathophysiology: Focus on Adipose Tissue. Neuroendocrinology 2024; 114:894-906. [PMID: 38801814 DOI: 10.1159/000539531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Multiple factors, including neurobiological, hormonal, psychological, and social/cultural norms, influence the manner in which individuals experience pain. Adipose tissue, once considered solely an energy storage site, has been recognized as a significant endocrine organ that produces and releases a range of hormones and cytokines. In recent years, research has highlighted the role of adipose tissue and its endocrine factors in the pathophysiology of pain. SUMMARY This narrative review aimed to provide a comprehensive overview of the current knowledge on the endocrine aspects of pain pathophysiology, with a specific focus on adipose tissue. We examine the role of adipokines released by adipose tissue, such as leptin, adiponectin, resistin, visfatin, asprosin in pain perception and response. We also explore the clinical implications of these findings, including the potential for personalized pain management based on endocrine factors and adipose tissue. KEY MESSAGES Overall, given this background, this review intended to highlight the importance of understanding the endocrine aspects of pain pathophysiology, particularly focusing on the role of adipose tissue, in the development of chronic pain and adipokines. Better understanding the role of adipokines in pain modulation might have therapeutic implications by providing novel targets for addressing underlying mechanism rather than directly focusing on symptoms for chronic pain, particularly in obese individuals.
Collapse
Affiliation(s)
- Mete Ozcan
- Department of Biophysics, Firat University Medical Faculty, Elazig, Turkey
| | - Ahmet Ayar
- Department of Physiology, Karadeniz Technical University Medical Faculty, Trabzon, Turkey
| |
Collapse
|
6
|
Theyse LFH, Mazur EM. Osteoarthritis, adipokines and the translational research potential in small animal patients. Front Vet Sci 2024; 11:1193702. [PMID: 38831954 PMCID: PMC11144893 DOI: 10.3389/fvets.2024.1193702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Osteoartritis (OA) is a debilitating disease affecting both humans and animals. In the early stages, OA is characterized by damage to the extracellular matrix (ECM) and apoptosis and depletion of chondrocytes. OA progression is characterized by hyaline cartilage loss, chondrophyte and osteophyte formation, thickening of the joint capsule and function loss in the later stages. As the regenerative potential of cartilage is very limited and osteoarthritic changes are irreversible, prevention of OA, modulation of existing osteoarthritic joint inflammation, reducing joint pain and supporting joint function are the only options. Progression of OA and pain may necessitate surgical intervention with joint replacement or arthrodesis as end-stage procedures. In human medicine, the role of adipokines in the development and progression of OA has received increasing interest. At present, the known adipokines include leptin, adiponectin, visfatin, resistin, progranulin, chemerin, lipocalin-2, vaspin, omentin-1 and nesfatin. Adipokines have been demonstrated to play a pivotal role in joint homeostasis by modulating anabolic and catabolic balance, autophagy, apoptosis and inflammatory responses. In small animals, in terms of dogs and cats, naturally occurring OA has been clearly demonstrated as a clinical problem. Similar to humans, the etiology of OA is multifactorial and has not been fully elucidated. Humans, dogs and cats share many joint related degenerative diseases leading to OA. In this review, joint homeostasis, OA, adipokines and the most common joint diseases in small animals leading to naturally occurring OA and their relation with adipokines are discussed. The purpose of this review is highlighting the translational potential of OA and adipokines research in small animal patients.
Collapse
|
7
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
8
|
Lee YH, Song GG. Circulating leptin level in osteoarthritis and associations between leptin receptor polymorphisms and disease susceptibility: A meta-analysis. Int J Rheum Dis 2023. [PMID: 37183731 DOI: 10.1111/1756-185x.14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE This study aimed to systemically review the evidence on the relationship between the circulating leptin levels and osteoarthritis (OA), and the association between leptin and leptin receptor (LEPR) polymorphisms and OA susceptibility. METHODS To find relevant papers (up to February 2023) examining the association between circulating leptin levels, LEPR polymorphisms, and OA, the PUBMED, EMBASE, and Cochrane databases were searched. We performed a meta-analysis to examine the levels of synovial and serum/plasma leptin in OA patients compared with healthy controls, as well as the relationship between OA and LEPR polymorphisms. RESULTS Data from 15 investigations, totaling 2197 patients with OA and 2546 controls, were included in the meta-analysis. There were statistically significant differences in the levels of circulating leptin between the OA and control groups (standardized mean difference [SMD] 2.178, 95% confidence interval [CI] 1.208-3.139, P = 0.001). Leptin levels were also substantially greater in European, Asian, and Arab groups among OA patients. After adjusting for age, sex, and/or body mass index, the leptin levels of patients with OA were significantly higher. Similarly, regardless of sample size (n < 100 and n ≥ 100) or year of publication, leptin levels were considerably higher in the OA group. In addition, the synovial leptin level was greater in the OA group than in the control group (SMD 0.783; 95% CI 0.247-1.319, P = 0.004). In the LEPR rs1137101 polymorphism, the OA and AA genotypes were significantly associated (odds ratio 0.282, 95% CI 0.126-0.629, P = 0.002), according to the meta-analysis. Ethnic stratification revealed an association between OA and the LEPR rs1137101 AA genotype in Asian and Arab populations. CONCLUSION The results of this meta-analysis indicate that patients with OA had considerably greater levels of circulating leptin than did control individuals. In addition, synovial leptin levels were greater in OA patients than in healthy individuals, and the LEPR rs1137101 polymorphism was linked to an increased risk of developing OA. These results imply that leptin participates in the onset and progression of OA.
Collapse
Affiliation(s)
- Young Ho Lee
- Department of Rheumatology, Korea University College of Medicine, Seoul, South Korea
| | - Gwan Gyu Song
- Department of Rheumatology, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
González-Rodríguez M, Ruiz-Fernández C, Cordero-Barreal A, Ait Eldjoudi D, Pino J, Farrag Y, Gualillo O. Adipokines as targets in musculoskeletal immune and inflammatory diseases. Drug Discov Today 2022; 27:103352. [PMID: 36099964 DOI: 10.1016/j.drudis.2022.103352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Adipokines are the principal mediators in adipose signaling. Nevertheless, besides their role in energy storage, these molecules can be produced by other cells, such as immune cells or chondrocytes. Given their pleiotropic effects, research over the past few years has also focused on musculoskeletal diseases, showing that these adipokines might have relevant roles in worsening the disease or improving the treatment response. In this review, we summarize recent advances in our understanding of adipokines and their role in the most prevalent musculoskeletal immune and inflammatory disorders.
Collapse
Affiliation(s)
- María González-Rodríguez
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Drug Research and Development, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Medicine Clinical Research, Santiago de Compostela, Spain
| | - Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Molecular Medicine, Santiago de Compostela, Spain
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; Departamento de Cirurgía y Especialidades Médico-Cirúrgicas Área de Traumatología e Ortopedia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Gao SJ, Liu DQ, Li DY, Sun J, Zhang LQ, Wu JY, Song FH, Zhou YQ, Mei W. Adipocytokines: Emerging therapeutic targets for pain management. Biomed Pharmacother 2022; 149:112813. [PMID: 35279597 DOI: 10.1016/j.biopha.2022.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Although pain has lower mortality rates than cancer, diabetes and stroke, pain is a predominate source of distress and disability. However, the management of pain remains an enormous problem. Many drugs used to pain treatment have more or less side effects. Therefore, the development of novel therapeutic target is critical for the treatment of pain. Notably, studies have shown that adipocytokines have a dual role in pain. Growing shreds of evidence shows that the levels of adipocytokines are upregulated or downregulated in the development of pain. In addition, substantial evidence indicates that regulation of adipocytokines levels in models of pain attenuates or promotes pain behaviors. In this review, we summarized and discussed the effect of adipocytokines in pain. These evidence indicates that adipocytokines attenuate or promote pain behaviors through interacting with their receptors, activating serotonin pathway, interacting with μ-opioid receptor, activating microglia, infiltrating macrophage and so on. Overall, adipocytokines have some potential in treating pain, but the underlying mechanisms remain unclear and need to be further studied.
Collapse
Affiliation(s)
- Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dan-Yang Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Fan-He Song
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
11
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
12
|
Lambova SN, Batsalova T, Moten D, Stoyanova S, Georgieva E, Belenska-Todorova L, Kolchakova D, Dzhambazov B. Serum Leptin and Resistin Levels in Knee Osteoarthritis-Clinical and Radiologic Links: Towards Precise Definition of Metabolic Type Knee Osteoarthritis. Biomedicines 2021; 9:biomedicines9081019. [PMID: 34440223 PMCID: PMC8393571 DOI: 10.3390/biomedicines9081019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 01/23/2023] Open
Abstract
Obesity is considered a major risk factor for the development and progression of knee osteoarthritis (OA). Apart from the mechanical effect of obesity via increase in mechanical overload of weight-bearing joints, an association with hand OA has been observed. There has been increasing interest in the role of adipokines in the pathogenesis of OA in the recent years. It has been suggested that their systemic effects link obesity and OA. In this regard, the aim of the current study was measurement and analysis of serum levels of leptin and resistin in patients with knee OA with different body mass index (BMI). Seventy-three patients with primary symptomatic knee OA at the age between 35 and 87 years (mean age 66 years) were included in the study (67 women and 6 men). The patients were from 2nd to 4th radiographic stage according to Kellgren–Lawrence scale. 43 patients were with concomitant obesity (BMI ≥ 30 kg/m2, mean values 38.34 ± 8.20) and 30 patients with BMI < 30 kg/m2 (mean values 25.07 ± 2.95). Eleven individuals with different BMIs, including cases with obesity but without radiographic knee OA, were examined as a control group. Serum levels of leptin and resistin were measured via ELISA method. In patients with knee OA and BMI ≥ 30 kg/m2, serum levels of leptin (39.546 ± 12.918 ng/mL) were significantly higher as compared with healthy individuals (15.832 ± 16.531 ng/mL, p < 0.05) and the patients with low BMI (p < 0.05). In patients with BMI < 30 kg/m2 the levels of leptin (13.010 ± 10.94 ng/mL) did not differ significantly from the respective values in the control group (p = 0.48). Serum levels of resistin were also higher in knee OA patients in comparison with healthy controls, but the difference was statistically significant only for patients with high BMI (2.452 ± 1.002 ng/mL in the group with BMI ≥ 30 kg/m2; 2.401 ± 1.441 ng/mL in patients with BMI < 30 kg/m2; 1.610 ± 1.001 ng/mL in the control group, p < 0.05). A correlation was found between the serum levels of leptin and radiographic stage of OA, i.e., higher leptin levels were present in the more advanced 3rd and 4th radiographic stage, while for resistin a correlation was observed in the patient subgroup with BMI < 30 kg/m2. Serum leptin and resistin levels and clinical characteristics were analyzed in patients with different clinical forms of OA. Novel clinical correlations have been found in the current study in patients with isolated knee OA vs. cases with presence of other disease localizations. It has been observed that patients with isolated knee OA were significantly younger and had higher BMI as compared with cases in whom OA is combined with other localizations i.e., spondyloarthritis ± presence of hip OA and with generalized OA. This supports the hypothesis that presence of obesity promotes earlier development of knee OA as an isolated localization of the disease in younger patients before appearance of osteoarthritic changes at other sites. The levels of leptin and resistin in isolated knee OA were also higher. Serum levels of leptin and resistin in combination with patients’ clinical characteristics suggest existence of different clinical and laboratory profile through which more precise definition of metabolic phenotype of knee OA would be possible. Considering the fact that obesity is a modifiable risk factor that has an impact on progression of knee OA, different approaches to influence obesity may offer potential for future disease-modifying therapeutic interventions.
Collapse
Affiliation(s)
- Sevdalina Nikolova Lambova
- Department of Propaedeutics of Internal Diseases, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Department of Rheumatology, MHAT “Sveti Mina”, 4000 Plovdiv, Bulgaria
- Correspondence:
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Plovdiv University, Paisii Hilendarski, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.); (S.S.); (E.G.); (D.K.); (B.D.)
| | - Dzhemal Moten
- Department of Developmental Biology, Plovdiv University, Paisii Hilendarski, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.); (S.S.); (E.G.); (D.K.); (B.D.)
| | - Stela Stoyanova
- Department of Developmental Biology, Plovdiv University, Paisii Hilendarski, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.); (S.S.); (E.G.); (D.K.); (B.D.)
| | - Elenka Georgieva
- Department of Developmental Biology, Plovdiv University, Paisii Hilendarski, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.); (S.S.); (E.G.); (D.K.); (B.D.)
| | | | - Desislava Kolchakova
- Department of Developmental Biology, Plovdiv University, Paisii Hilendarski, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.); (S.S.); (E.G.); (D.K.); (B.D.)
| | - Balik Dzhambazov
- Department of Developmental Biology, Plovdiv University, Paisii Hilendarski, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.); (S.S.); (E.G.); (D.K.); (B.D.)
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Epidemiologic studies reveal that the link between obesity and osteoarthritis cannot be uniquely explained by overweight-associated mechanical overload. For this reason, much attention focuses on the endocrine activity of adipose tissues. In addition to the systemic role of visceral and subcutaneous adipose tissues, many arguments highlight the involvement of local adipose tissues in osteoarthritis. RECENT FINDINGS Alteration in MRI signal intensity of the infrapatellar fat pad may predict both accelerated knee osteoarthritis and joint replacement. In this context, recent studies show that mesenchymal stromal cells could play a pivotal role in the pathological remodelling of intra-articular adipose tissues (IAATs) in osteoarthritis. In parallel, recent findings underline bone marrow adipose tissue as a major player in the control of the bone microenvironment, suggesting its possible role in osteoarthritis. SUMMARY The recent description of adipose tissues of various phenotypes within an osteoarthritic joint allows us to evoke their direct involvement in the initiation and progression of the osteoarthritic process. We can expect in the near future the discovery of novel molecules targeting these tissues.
Collapse
Affiliation(s)
| | - Florent Eymard
- Department of Rheumatology, AP-HP Henri Mondor Hospital
- Gly-CRRET Research Unit 4397, Université Paris-Est Créteil
| | - Francis Berenbaum
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA)
- Sorbonne Université, INSERM CRSA, AP-HP Hopital Saint Antoine, Paris, France
| | - Xavier Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA)
| |
Collapse
|