1
|
Barata R, Saavedra MJ, Almeida G. A Decade of Antimicrobial Resistance in Human and Animal Campylobacter spp. Isolates. Antibiotics (Basel) 2024; 13:904. [PMID: 39335077 PMCID: PMC11429304 DOI: 10.3390/antibiotics13090904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: Campylobacter spp. remain a leading cause of bacterial gastroenteritis worldwide, with resistance to antibiotics posing significant challenges to treatment and public health. This study examines profiles in antimicrobial resistance (AMR) for Campylobacter isolates from human and animal sources over the past decade. Methods: We conducted a comprehensive review of resistance data from studies spanning ten years, analyzing profiles in resistance to key antibiotics, ciprofloxacin (CIP), tetracycline (TET), erythromycin (ERY), chloramphenicol (CHL), and gentamicin (GEN). Data were collated from various regions to assess global and regional patterns of resistance. Results: The analysis reveals a concerning trend of increasing resistance patterns, particularly to CIP and TET, across multiple regions. While resistance to CHL and GEN remains relatively low, the high prevalence of CIP resistance has significantly compromised treatment options for campylobacteriosis. Discrepancies in resistance patterns were observed between human and animal isolates, with variations across different continents and countries. Notably, resistance to ERY and CHL showed regional variability, reflecting potential differences in antimicrobial usage and management practices. Conclusions: The findings underscore the ongoing challenge of AMR in Campylobacter, highlighting the need for continued surveillance and research. The rising resistance prevalence, coupled with discrepancies in resistance patterns between human and animal isolates, emphasize the importance of a One Health approach to address AMR. Enhanced monitoring, novel treatment strategies, and global cooperation are crucial for mitigating the impact of resistance and ensuring the effective management of Campylobacter-related infections.
Collapse
Affiliation(s)
- Rita Barata
- National Institute of Agricultural and Veterinary Research (INIAV), 4485-655 Vila do Conde, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Center for Veterinary and Animal Research (CECAV), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Maria José Saavedra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Center for Veterinary and Animal Research (CECAV), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Gonçalo Almeida
- National Institute of Agricultural and Veterinary Research (INIAV), 4485-655 Vila do Conde, Portugal;
- Center for Animal Science Studies (CECA-ICETA), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
2
|
Wanja DW, Mbindyo CM, Mbuthia PG, Bebora LC, Aboge GO. Molecular Detection of Virulence-Associated Markers in Campylobacter coli and Campylobacter jejuni Isolates From Water, Cattle, and Chicken Faecal Samples From Kajiado County, Kenya. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4631351. [PMID: 39166218 PMCID: PMC11335418 DOI: 10.1155/2024/4631351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Campylobacter is a zoonotic foodborne pathogen that is often linked with gastroenteritis and other extraintestinal infections in humans. This study is aimed at determining the genetic determinants of virulence-encoding genes responsible for flagellin motility protein A (flaA), Campylobacter adhesion to fibronectin F (cadF), Campylobacter invasion antigen B (ciaB) and cytolethal distending toxin (cdt) A (cdtA) in Campylobacter species. A total of 29 Campylobacter coli isolates (16 from cattle, 9 from chicken, and 4 from water samples) and 74 Campylobacter jejuni isolates (38 from cattle, 30 from chicken, and 6 from water samples) described in an earlier study in Kajiado County, Kenya, were examined for the occurrence of virulence-associated genes using polymerase chain reaction (PCR) and amplicon sequencing. The correlations among virulence genes were analyzed using Pearson's correlation coefficient (R) method. Among the 103 Campylobacter strains screened, 89 were found to harbour a single or multiple virulence gene(s), giving an overall prevalence of 86.4%. C. jejuni strains had the highest prevalence of multivirulence at 64.9% (48/74), compared to C. coli (58.6%, 17/29). The ciaB and flaA genes were the most common virulence genes detected in C. jejuni (81.1% [60/74] and 62.2% [46/74], respectively) and in C. coli (each at 62.1%; 18/29). Campylobacter isolates from chicken harboured the most virulence-encoding genes. C. jejuni strains from chicken and cattle harboured the highest proportions of the cdtA and ciaB genes, respectively. All the C. coli strains from water samples harboured the cadF and flaA genes. The results obtained further revealed a significant positive correlation between cadF and flaA (R = 0.733). C. jejuni and C. coli strains from cattle, chicken, and water harbour virulence markers responsible for motility/colonization, invasion, adherence, and toxin production, evoking their important role in campylobacteriosis development among humans and livestock. The identification of cattle, chicken, and water samples as reservoirs of virulent Campylobacter spp. highlights the possible risk to human health. These data on some virulence genes of Campylobacter will assist food safety and public health officials in formulating policy statements.
Collapse
Affiliation(s)
- Daniel W. Wanja
- Department of Veterinary PathologyMicrobiology and ParasitologyFaculty of Veterinary MedicineUniversity of Nairobi, P.O. Box 29053-00625, Kangemi, Nairobi, Kenya
- Department of Veterinary PathologyMicrobiology and ParasitologyFaculty of Veterinary Medicine and SurgeryEgerton University, P.O. Box 536-20115, Egerton, Kenya
| | - Christine M. Mbindyo
- Department of Veterinary PathologyMicrobiology and ParasitologyFaculty of Veterinary MedicineUniversity of Nairobi, P.O. Box 29053-00625, Kangemi, Nairobi, Kenya
| | - Paul G. Mbuthia
- Department of Veterinary PathologyMicrobiology and ParasitologyFaculty of Veterinary MedicineUniversity of Nairobi, P.O. Box 29053-00625, Kangemi, Nairobi, Kenya
| | - Lilly C. Bebora
- Department of Veterinary PathologyMicrobiology and ParasitologyFaculty of Veterinary MedicineUniversity of Nairobi, P.O. Box 29053-00625, Kangemi, Nairobi, Kenya
| | - Gabriel O. Aboge
- Department of Public HealthPharmacology and ToxicologyFaculty of Veterinary MedicineUniversity of Nairobi, P.O. Box 29053-00625, Kangemi, Nairobi, Kenya
| |
Collapse
|
3
|
Wysok B, Rudowska M, Wiszniewska-Łaszczych A. The Transmission of Campylobacter Strains in Dairy Herds in Different Housing Systems. Pathogens 2024; 13:317. [PMID: 38668272 PMCID: PMC11053475 DOI: 10.3390/pathogens13040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Cattle are frequent carriers of Campylobacter spp.; therefore, these bacteria may be transmitted to humans through meat or milk. Campylobacter spp. in raw milk derives most commonly from secondary fecal contamination during the milking process; however, the udder excretion of Campylobacter may be a cause of milk-borne infection. Studies were carried out on a Campylobacter-positive farm with two different housing systems (with free-stall and tie-stall systems). The sampling process comprised several stages, including samples being taken from animals, such as from raw milk and feces, and from the environment, such as the from floor in the milking parlor and from teat cups. None of the individual raw milk samples or swabs from the floor in the parlor before the milking process were positive for Campylobacter spp. Simultaneously, Campylobacter spp. was isolated from all swabs from the floor after the milking process and in the bulk tank milk samples from the two farms. The incidence of Campylobacter isolated from fecal and teat swab samples ranged from 15.4% to 26.7% and from 8.9% to 25%, respectively. Altogether, 59 recovered Campylobacter isolates were classified, based on sequencing of the flaA short variable region, showing 15 different allele types, and the majority of them were distributed among one farm. Analysis of the virulence and antimicrobial properties showed that genes related to adherence, invasion and cytotoxicity were widely distributed among the Campylobacter recovered strains. In relation to AMR, multidrug resistance was noted in 16.1% of strains.
Collapse
Affiliation(s)
- Beata Wysok
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland
| | - Małgorzata Rudowska
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland
| | - Agnieszka Wiszniewska-Łaszczych
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland
| |
Collapse
|
4
|
Hong S, Kang HJ, Lee HY, Jung HR, Moon JS, Yoon SS, Kim HY, Lee YJ. Prevalence and characteristics of foodborne pathogens from slaughtered pig carcasses in Korea. Front Vet Sci 2023; 10:1158196. [PMID: 37065220 PMCID: PMC10103459 DOI: 10.3389/fvets.2023.1158196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
The introduction of bacteria into slaughterhouses can lead to microbial contamination in carcasses during slaughter, and the initial level of bacteria in carcasses is important because it directly affects spoilage and the shelf life. This study was conducted to investigate the microbiological quality, and the prevalence of foodborne pathogens in 200 carcasses from 20 pig slaughterhouses across Korea. Distribution of microbial counts were significantly higher for aerobic bacteria at 3.01–4.00 log10 CFU/cm2 (42.0%) and 2.01–3.00 log10 CFU/cm2 (28.5%), whereas most of Escherichia coli showed the counts under 1.00 log10 CFU/cm2 (87.0%) (P < 0.05). The most common pathogen isolated from 200 carcasses was Staphylococcus aureus (11.5%), followed by Yersinia enterocolitica (7.0%). In total, 17 S. aureus isolates from four slaughterhouses were divided into six pulsotypes and seven spa types, and showed the same or different types depending on the slaughterhouses. Interestingly, isolates from two slaughterhouses carried only LukED associated with the promotion of bacterial virulence, whereas, isolates from two other slaughterhouses carried one or more toxin genes associated with enterotoxins including sen. In total, 14 Y. enterocolitica isolates from six slaughterhouses were divided into nine pulsotypes, 13 isolates belonging to biotype 1A or 2 carried only ystB, whereas one isolate belonging to bio-serotype 4/O:3 carried both ail and ystA. This is the first study to investigate microbial quality and the prevalence of foodborne pathogens in carcasses from slaughterhouses nationally, and the findings support the need for ongoing slaughterhouse monitoring to improve the microbiological safety of pig carcasses.
Collapse
Affiliation(s)
- Serim Hong
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Hye Jeong Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hye-Young Lee
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hye-Ri Jung
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-San Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Ha-Young Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- *Correspondence: Ha-Young Kim
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Young Ju Lee
| |
Collapse
|
5
|
Jeżak K, Kozajda A. Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine-review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9533-9559. [PMID: 34870776 PMCID: PMC8783842 DOI: 10.1007/s11356-021-17773-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/23/2021] [Indexed: 04/11/2023]
Abstract
Intensive animal farming emits to the environment very high concentrations of bioaerosol, mainly composed of microorganisms, including antibiotics resistant strains, and their derivatives. Poland is a significant producer of poultry and swine in Europe; Ukraine is located in the immediate vicinity of Poland and the EU. Thus, the review focuses on the presence of potentially pathogenic and antimicrobial-resistant zoonotic bacteria and antimicrobial genes in the environment of farms and food of animal origin in Poland and Ukraine. Existing data confirms presence of these bacteria in the food animal origin chain environment in both countries. However, it is difficult to compare the scale of multidrug-resistant bacteria (e.g. MRSA, ESBL) dissemination in Poland and Ukraine with other EU countries due to lack of more extensive studies and large-scale monitoring in these two countries. A series of studies concerning resistance of pathogenic bacteria isolated from livestock environment have been published in Poland but usually on single farms with a very limited number of samples, and without a genotypic drug resistance marking. From Ukraine are available only few reports, but also disturbing. The risk of antibiotic-resistant bacteria transmission does not only concern animal farming, but also other facilities of animal origin food supply chains, especially slaughterhouses.
Collapse
Affiliation(s)
- Karolina Jeżak
- Biological Safety Unit, Nofer Institute of Occupational Medicine, 8 Teresy Str, 91-348, Łódź, Poland.
| | - Anna Kozajda
- Biological Safety Unit, Nofer Institute of Occupational Medicine, 8 Teresy Str, 91-348, Łódź, Poland
| |
Collapse
|
6
|
Suman Kumar M, Ramees TP, Dhanze H, Gupta S, Dubal ZB, Kumar A. Occurrence and antimicrobial resistance of Campylobacter isolates from broiler chicken and slaughter house environment in India. Anim Biotechnol 2021; 34:199-207. [PMID: 34352178 DOI: 10.1080/10495398.2021.1953514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Campylobacteriosis is among the most frequently reported foodborne zoonoses. A total of 848 samples were screened for Campylobacter spp. and occurrence was found to be 8.7%, 2.3% and 1.65% in broiler cecum samples, chicken meat samples and slaughter house environment swabs, respectively. High level of antimicrobial resistance was found against tetracycline (64.1%), doxycycline (54.4%), ampicillin (46.6%), nalidixic acid (42.7%), kanamycin (35.9%), and ciprofloxacin (33.33%). Resistance to co-amoxiclav (19.4%) and erythromycin (21.4%) was less common. The MAR index of the isolates was in the range of 0.11-0.78. Multi-drug resistance was observed in 54.4% of the isolates, with 53.2% C. jejuni and 55.3% C. coli isolates found resistant against three or more classes of antimicrobials. Presence of mutations in gyrA and 23S rRNA genes was investigated, which revealed that all the fluoroquinolone resistant isolates possessed Thr-86-Ile point mutation, whereas only 68% of erythromycin resistant isolates had A2075G mutation. The tetO gene was present in 91.7% tetracycline resistant isolates and blaOXA-61 gene was detected in 97.9% of the ampicillin resistant isolates. The occurrence of antimicrobial resistant Campylobacter spp. in broiler chicken samples and slaughter house settings is a public health risk and calls for judicial use of antimicrobials.
Collapse
Affiliation(s)
- M Suman Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - T P Ramees
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - H Dhanze
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - S Gupta
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Z B Dubal
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - A Kumar
- Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
7
|
Alaboudi AR, Malkawi IM, Osaili TM, Abu-Basha EA, Guitian J. Prevalence, antibiotic resistance and genotypes of Campylobacter jejuni and Campylobacter coli isolated from chickens in Irbid governorate, Jordan. Int J Food Microbiol 2020; 327:108656. [PMID: 32445835 DOI: 10.1016/j.ijfoodmicro.2020.108656] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 11/25/2022]
Abstract
Campylobacter is the world's leading cause of bacterial gastroenteritis, causing nearly 9 million cases of food poisoning in Europe every year. Poultry is considered the main source of Campylobacter infection to humans. The objectives of the study were to determine occurrence of C. jejuni and C. coli in chickens, the antimicrobial resistance, genotypes, and relatedness of the isolates. A total of 177 chicken samples obtained from informal butcher shops (fresh), formal poultry slaughterhouses (refrigerated) and retail market (frozen) were analyzed. Isolation of Campylobacter spp. was conducted according to the ISO 10272-2006 method. Multiplex PCR was used for confirmation and identification of the isolates. The disk diffusion method was used to determine the antimicrobial resistance of the isolates and multilocus sequence typing was used for genotyping. The proportion of samples with Campylobacter spp. was 31.6% among all chicken samples (fresh and refrigerated 47.5%, frozen 0%) C. coli was isolated from 42.4% of chicken samples obtained from butcher shops and from 18.6% of samples obtained in formal slaughterhouses. C. jejuni was isolated from 17.0% of samples obtained in butcher shops and formal slaughterhouses. Campylobacter spp. was not isolated in frozen chicken samples. All tested isolates showed resistance toward ciprofloxacin and susceptibility toward imipenem and all of the isolates were multidrug resistant toward 5 or more antimicrobials. Three sequence types were identified among 10 C. coli isolates and seven sequence types were identified among 10 C. jejuni isolates. Among sequence types, chicken isolates shared similarities of both phenotypic and genetic levels.
Collapse
Affiliation(s)
- Akram R Alaboudi
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Ismail M Malkawi
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Tareq M Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | - Ehab A Abu-Basha
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Javier Guitian
- Veterinary Epidemiology, Economics and Public Health Group, The Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA Hatfield, UK
| |
Collapse
|
8
|
Tryjanowski P, Nowakowski JJ, Indykiewicz P, Andrzejewska M, Śpica D, Sandecki R, Mitrus C, Goławski A, Dulisz B, Dziarska J, Janiszewski T, Minias P, Świtek S, Tobolka M, Włodarczyk R, Szczepańska B, Klawe JJ. Campylobacter in wintering great tits Parus major in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7570-7577. [PMID: 31885068 DOI: 10.1007/s11356-019-07502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Domestic and wild mammals, domestic birds and particularly wild birds are considered to be reservoirs of many species of Enterobacteriaceae, and also important human enteric pathogens, e.g., the bacteria of the genus Campylobacter that occur in their digestive tracts. These species may be vectors of antimicrobial resistance dissemination in the environment, because they may have contact with an environment contaminated with antibiotics. Bird feeders have been suggested as potential dispersal centres between wild wintering birds whose feeding is supported by humans. Therefore, we checked for the presence of Campylobacter bacteria among great tits Parus major, the most common bird species on bird feeders in Poland. Samples (n = 787 cloacal swabs) were collected in urban and rural areas of Poland. Bacterial species were identified using multiplex PCR, and 23 (2.9%) positive tests for Campylobacter spp. were found; in ten samples, C. jejuni was detected. The odds ratio of Campylobacter infection in rural birds was over 2.5 times higher than urban birds. Ten samples with C. jejuni were tested for antibiotic resistance, and all were sensitive to azithromycin, erythromycin and gentamycin, while six isolates were resistant to tetracycline, and five were resistant to ciprofloxacin. Four Campylobacter isolates were resistant to both these antibiotics.
Collapse
Affiliation(s)
- Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland.
| | - Jacek J Nowakowski
- Department of Ecology and Environmental Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Piotr Indykiewicz
- Department of Biology and Animal Environment, University of Technology and Life Sciences, Ks. A. Kordeckiego 20, 85-225, Bydgoszcz, Poland
| | - Małgorzata Andrzejewska
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094, Bydgoszcz, Poland
| | - Dorota Śpica
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094, Bydgoszcz, Poland
| | | | - Cezary Mitrus
- Department of Vertebrate Ecology and Paleontology, Institute of Biology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-631, Wrocław, Poland
| | - Artur Goławski
- Department of Zoology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110, Siedlce, Poland
| | - Beata Dulisz
- Department of Ecology and Environmental Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Joanna Dziarska
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Tomasz Janiszewski
- Department of Teacher Training and Biodiversity Studies, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Piotr Minias
- Department of Teacher Training and Biodiversity Studies, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Stanisław Świtek
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Marcin Tobolka
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Radosław Włodarczyk
- Department of Teacher Training and Biodiversity Studies, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Bernadeta Szczepańska
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094, Bydgoszcz, Poland
| | - Jacek J Klawe
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094, Bydgoszcz, Poland
| |
Collapse
|
9
|
Di Donato G, Marotta F, Nuvoloni R, Zilli K, Neri D, Di Sabatino D, Calistri P, Di Giannatale E. Prevalence, Population Diversity and Antimicrobial Resistance of Campylobacter coli Isolated in Italian Swine at Slaughterhouse. Microorganisms 2020; 8:E222. [PMID: 32046038 PMCID: PMC7074678 DOI: 10.3390/microorganisms8020222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/26/2023] Open
Abstract
Campylobacter spp. are among the microorganisms most commonly associated with foodborne disease. Swine are known to be the main reservoir of Campylobacter coli and a possible source infection of humans as a result of carcass contamination at slaughter. The aim of this study was to evaluate the prevalence of C. coli contamination in swine carcasses, the antimicrobial resistance (AMR) patterns of isolates and the genetic diversity between strains obtained from swine and those isolated from humans. The prevalence of contamination was higher on carcasses (50.4%) than in faeces (32.9%). The 162 C. coli isolated from swine were examined by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The results of PFGE indicated a high genetic diversity among the isolates, with 25 different PFGE types. MLST assigned 51 sequence types (STs) to isolates. The most common genotype was ST-854 (16.04%), ST-9264 (10.49 %) and ST-1016 (6.08 %). Results of AMR showed a high resistance to quinolones and fluoroquinolones together with aminoglycosides and tetracycline. Many strains were multi-resistant with predominant R-type TeSCipNa (57%). Five resistance genes were detected along with mutation in the gyrA gene. A strong correlation between phenotypic and genotypic resistance was found for fluoroquinolone and tetracycline. Genetic profiles obtained in swine isolates were compared to those of 11 human strains. All human strains and 64.19% of animal strains (104/162) were assigned to the ST-828 clonal complex.
Collapse
Affiliation(s)
- Guido Di Donato
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Centre for Veterinary Epidemiology, Programming, Information and Risk Analysis, 64100 Teramo, Italy
| | - Francesca Marotta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo Italy; (K.Z.); (D.N.); (E.D.G.)
| | - Roberta Nuvoloni
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy;
| | - Katiuscia Zilli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo Italy; (K.Z.); (D.N.); (E.D.G.)
| | - Diana Neri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo Italy; (K.Z.); (D.N.); (E.D.G.)
| | - Daria Di Sabatino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Centre for Veterinary Epidemiology, Programming, Information and Risk Analysis, 64100 Teramo, Italy
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Centre for Veterinary Epidemiology, Programming, Information and Risk Analysis, 64100 Teramo, Italy
| | - Elisabetta Di Giannatale
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo Italy; (K.Z.); (D.N.); (E.D.G.)
| |
Collapse
|
10
|
Di Giannatale E, Calistri P, Di Donato G, Decastelli L, Goffredo E, Adriano D, Mancini ME, Galleggiante A, Neri D, Antoci S, Marfoglia C, Marotta F, Nuvoloni R, Migliorati G. Thermotolerant Campylobacter spp. in chicken and bovine meat in Italy: Prevalence, level of contamination and molecular characterization of isolates. PLoS One 2019; 14:e0225957. [PMID: 31809529 PMCID: PMC6897410 DOI: 10.1371/journal.pone.0225957] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/16/2019] [Indexed: 11/19/2022] Open
Abstract
Campylobacter species are common foodborne pathogens associated with cases of human gastroenteritis worldwide. A detailed understanding of the prevalence, contamination levels and molecular characteristics of Campylobacter spp. in cattle and chicken, which are likely the most important sources of human contamination, is imperative. A collection of 1243 poultry meat samples (665 chicken breasts and 578 chicken thighs) and 1203 bovine meat samples (689 hamburgers and 514 knife-cut meat preparations) were collected at retail outlets, in randomly selected supermarkets located in different Italian regions during one year. Of these samples, 17.38% of the poultry meat and 0.58% of the bovine meat samples tested positive for Campylobacter, of which 131 were Campylobacter jejuni (57.96%) and 95 were Campylobacter coli (42.03%). Campylobacter isolates were genotyped with the aim of assessing the genetic diversity, population structure, source distribution and Campylobacter transmission route to humans. All isolates were molecularly characterized by pulse field gel electrophoresis (PFGE), and further genotyped using multilocus sequence typing (MLST) and fla-SVR sequencing to gain better insight into the population structure. Antibiotic resistance was also investigate. The highest levels of resistance among chicken strains were observed for ciprofloxacin (88.25%), nalidixic acid (81.45%) and tetracycline (75.6%). PFGE analysis revealed 73 pulsotypes for C. jejuni and 54 pulsotypes for C. coli, demonstrating the existance of different and specific clones circulating in Italy. MLST of C.jejuni isolates mainly clustered in the CC353, CC354, CC21, CC206 and CC443; while C.coli isolates clustered only in CC828. The most common flaA alleles were 287 for C. jejuni and 66 for C. coli. Our study confirms that poultry meat is the main source of Campylobacteriosis, whereas red meat had a low level of contamination suggesting a minor role in transmission. The high presence of Campylobacter in retail chicken meat, paired with its increased resistance to antimicrobials with several multidrug resistance profiles detected, is alarming and represents a persistent threat to public health.
Collapse
Affiliation(s)
- Elisabetta Di Giannatale
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Paolo Calistri
- National Reference Centre for Veterinary Epidemiology, Programming, Information and Risk Analysis (COVEPI), Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Guido Di Donato
- National Reference Centre for Veterinary Epidemiology, Programming, Information and Risk Analysis (COVEPI), Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
- Dept. of Veterinary Sciences, Univ. of Pisa, Pisa, Italy
| | - Lucia Decastelli
- Department of Food Hygiene, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Elisa Goffredo
- Department of Food Hygiene, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Daniela Adriano
- Department of Food Hygiene, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Maria Emanuela Mancini
- Department of Food Hygiene, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Annamaria Galleggiante
- Department of Food Hygiene, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Diana Neri
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Salvatore Antoci
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Cristina Marfoglia
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Francesca Marotta
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | | | - Giacomo Migliorati
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| |
Collapse
|
11
|
Andrzejewska M, Szczepańska B, Śpica D, Klawe JJ. Prevalence, Virulence, and Antimicrobial Resistance of Campylobacter spp. in Raw Milk, Beef, and Pork Meat in Northern Poland. Foods 2019; 8:E420. [PMID: 31533265 PMCID: PMC6770586 DOI: 10.3390/foods8090420] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to determine whether raw milk, unpasteurized dairy products, pork, and beef available for sale in the Kujawsko-Pomorskie and Wielkopolska regions in Poland are contaminated with Campylobacter spp. bacteria and may be a potential source of infection. For isolated strains, antibiotic susceptibility and the presence of genes responsible for virulence were examined. Material for research included 1058 food samples collected between 2014 and 2018 with 454 samples of raw milk and unpasteurized dairy products (milk from vending machines, milk from owners of dairy cows, cheese, milk cream) and 604 samples of raw meat (pork, beef). The results indicated that 9.3% of the samples were positive for Campylobacter spp., and Campylobacter jejuni was predominant in this study. Campylobacter bacteria was not found in milk collected from vending machines, as well as cheese and milk cream samples. Campylobacter was noted in 12.7% of beef samples, 11.8% of raw milk purchased from individual suppliers, and 10.9% of pork samples. Resistance to erythromycin (2.0%), azithromycin (3.1%), gentamicin (4.1%), tetracycline (65.3%), and ciprofloxacin (71.4%) was determined using the disc diffusion method. Furthermore, the prevalence of racR, sodB, csrA, virB11, cdtB, iam, and wlaN genes were examined using the PCR method. The sodB, csrA, and cdtB genes exhibited the highest detection rate, but none of the genes were identified in 100% of the isolates. Statistically significant differences between the presence of virulence marker genes, including for iam, racR, and csrA markers, were noted among different sources of the isolates. Differences in the distribution of iam, wlaN, and virB11 were also shown between C. jejuni and C. coli strains. As a result of the analysis, it has been concluded that unpasteurized milk, beef, and pork could be a sources of Campylobacter pathogens. Moreover, this study revealed virulent properties of Campylobacter isolated from such food products and high resistance rates to fluoroquinolones, which may represent difficulties in campylobacteriosis treatment.
Collapse
Affiliation(s)
- Małgorzata Andrzejewska
- Department of Hygiene, Epidemiology and Ergonomics Nicolaus Copernicus University in Toruń and Ludwik Rydygier Collegium Medicum in Bydgoszcz, 9 Marii Curie Skłodowskiej St., 85-094 Bydgoszcz, Poland.
| | - Bernadeta Szczepańska
- Department of Hygiene, Epidemiology and Ergonomics Nicolaus Copernicus University in Toruń and Ludwik Rydygier Collegium Medicum in Bydgoszcz, 9 Marii Curie Skłodowskiej St., 85-094 Bydgoszcz, Poland.
| | - Dorota Śpica
- Department of Hygiene, Epidemiology and Ergonomics Nicolaus Copernicus University in Toruń and Ludwik Rydygier Collegium Medicum in Bydgoszcz, 9 Marii Curie Skłodowskiej St., 85-094 Bydgoszcz, Poland.
| | - Jacek J Klawe
- Department of Hygiene, Epidemiology and Ergonomics Nicolaus Copernicus University in Toruń and Ludwik Rydygier Collegium Medicum in Bydgoszcz, 9 Marii Curie Skłodowskiej St., 85-094 Bydgoszcz, Poland.
| |
Collapse
|
12
|
Aerts M, Battisti A, Hendriksen R, Kempf I, Teale C, Tenhagen BA, Veldman K, Wasyl D, Guerra B, Liébana E, Thomas-López D, Belœil PA. Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food. EFSA J 2019; 17:e05709. [PMID: 32626332 PMCID: PMC7009308 DOI: 10.2903/j.efsa.2019.5709] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proposals to update the harmonised monitoring and reporting of antimicrobial resistance (AMR) from a public health perspective in Salmonella, Campylobacter coli, Campylobacter jejuni, Escherichia coli, Enterococcus faecalis, Enterococcus faecium and methicillin-resistant Staphylococcus aureus (MRSA) from food-producing animals and derived meat in the EU are presented in this report, accounting for recent trends in AMR, data collection needs and new scientific developments. Phenotypic monitoring of AMR in bacterial isolates, using microdilution methods for testing susceptibility and interpreting resistance using epidemiological cut-off values is reinforced, including further characterisation of those isolates of E. coli and Salmonella showing resistance to extended-spectrum cephalosporins and carbapenems, as well as the specific monitoring of ESBL/AmpC/carbapenemase-producing E. coli. Combinations of bacterial species, food-producing animals and meat, as well as antimicrobial panels have been reviewed and adapted, where deemed necessary. Considering differing sample sizes, numerical simulations have been performed to evaluate the related statistical power available for assessing occurrence and temporal trends in resistance, with a predetermined accuracy, to support the choice of harmonised sample size. Randomised sampling procedures, based on a generic proportionate stratified sampling process, have been reviewed and reinforced. Proposals to improve the harmonisation of monitoring of prevalence, genetic diversity and AMR in MRSA are presented. It is suggested to complement routine monitoring with specific cross-sectional surveys on MRSA in pigs and on AMR in bacteria from seafood and the environment. Whole genome sequencing (WGS) of isolates obtained from the specific monitoring of ESBL/AmpC/carbapenemase-producing E. coli is strongly advocated to be implemented, on a voluntary basis, over the validity period of the next legislation, with possible mandatory implementation by the end of the period; the gene sequences encoding for ESBL/AmpC/carbapenemases being reported to EFSA. Harmonised protocols for WGS analysis/interpretation and external quality assurance programmes are planned to be provided by the EU-Reference Laboratory on AMR.
Collapse
|
13
|
Sałamaszyńska-Guz A, Stefańska I, Bącal P, Binek M. Evaluation of selected phenotypic features among Campylobacter sp. strains of animal origin. Vet Microbiol 2018. [PMID: 29519521 DOI: 10.1016/j.vetmic.2018.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A total of 43 Campylobacter isolates from poultry, cattle and pigs were investigated for their ability to form biofilm. The studied strains were also screened for motility, adhesion and invasion of Caco-2 cells as well as extracellular DNase activity. The relation between biofilm formation and selected phenotypes was examined. Biofilm formation by the tested strains was found as irrespective from their motility and not associated with colonization abilities of human Caco-2 cells. Results of our study show that Campylobacter isolates from various animal sources are able to form biofilm and invade human Caco-2 cells in vitro.
Collapse
Affiliation(s)
- Agnieszka Sałamaszyńska-Guz
- Division of Microbiology, Department of Pre-Clinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Live Sciences - SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Ilona Stefańska
- Division of Microbiology, Department of Pre-Clinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Live Sciences - SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Paweł Bącal
- Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, Warsaw 02-109, Poland
| | - Marian Binek
- Division of Microbiology, Department of Pre-Clinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Live Sciences - SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
14
|
Wysok B, Wojtacka J. Detection of virulence genes determining the ability to adhere and invade in Campylobacter spp. from cattle and swine in Poland. Microb Pathog 2018; 115:257-263. [DOI: 10.1016/j.micpath.2017.12.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
|
15
|
Wieczorek K, Osek J. Antimicrobial Resistance and Genotypes of Campylobacter jejuni from Pig and Cattle Carcasses Isolated in Poland During 2009-2016. Microb Drug Resist 2017; 24:680-684. [PMID: 29016230 DOI: 10.1089/mdr.2017.0158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Between 2009 and 2016, 317 and 529 swabs from cattle and pig carcasses, respectively, were collected all over Poland and tested for the presence of Campylobacter. Among 37 (11.7%) and 161 (30.4%) positive samples, 44 Campylobacter jejuni isolates were detected. A total of 29 different sequence types (STs) and 12 various clonal complexes were identified. Antimicrobial resistance revealed that 17 (38.6%) C. jejuni (10 from cattle and 7 from pig carcasses, respectively) were susceptible to all antimicrobials used in the study, whereas the remaining 27 (61.4%) isolates (12 from cattle and 15 from pigs, respectively) were resistant to at least one antimicrobial agent, mainly to quinolones (23 out of 44 isolates; 52.3%) and tetracyclines (14 strains; 31.8%). Only one isolate from cattle and two from pigs displayed resistance to streptomycin, and none of C. jejuni tested was resistant to erythromycin and gentamicin. All isolates with STs, ST356, ST443, ST464, ST658, ST2036, and ST6411, as well as some isolates belonging to ST257 and ST1947, were resistant to quinolones and tetracyclines. The results show that cattle and pigs may be a reservoir of quinolone and tetracycline resistant C. jejuni with STs which were previously isolated from humans with campylobacteriosis.
Collapse
Affiliation(s)
- Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute , Pulawy, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute , Pulawy, Poland
| |
Collapse
|
16
|
Denis M, Nagard B, Rose V, Bourgoin K, Cutimbo M, Kerouanton A. No Clear Differences between Organic or Conventional Pig Farms in the Genetic Diversity or Virulence of Campylobacter coli Isolates. Front Microbiol 2017; 8:1016. [PMID: 28694791 PMCID: PMC5483432 DOI: 10.3389/fmicb.2017.01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/22/2017] [Indexed: 12/11/2022] Open
Abstract
To evaluate the impact of pig farm management on the genetic diversity and on the virulence of Campylobacter coli, we characterized isolates from 19 organic pig farms (62 isolates) and from 24 conventional pig farms (58 isolates). The 120 C. coli isolates were typed using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) and the presence of nine virulence genes was screened using real-time PCR. The capacity of adhesion and invasion of 61 isolates (32 from organic and 29 from conventional farms) were then tested on human intestinal Caco-2 cells. A total of 59 PFGE types and of 50 sequence types (STs) were identified. Twelve PFGE types and nine STs, accounting for 34 and 41.6% of the isolates, respectively, were common between the two production systems with ST854 dominating (18.3% of the isolates). Twenty-nine PFGE types and 25 STs were only found in isolates from organic farms, and 18 PFGE types and 16 STs from conventional farms. No significant differences were found in diversity despite the differences in rearing systems, except at the locus level for the glnA, gltA, and uncA genes. All isolates, regardless of their origin, carried the ceuE, iam, ciaB, and flaA genes and more than 95% of the isolates carried the cadF and cdtABC genes. No significant differences were found in pathogenicity between the two farming systems. The pathogenicity of the C. coli isolates was low compared to C. jejuni control strains tested. The plasmid gene virb11 was detected in only 13 isolates from organic farms; these isolates showed greater invasion capacity than those without this gene. Our study indicates that pig farm management does not significantly affect the diversity and the virulence of Campylobacter coli isolated from pigs. The common genotypes between conventional and organic farms may indicate that some genotypes are adapted to pigs.
Collapse
Affiliation(s)
- Martine Denis
- ANSES, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire UniversityPloufragan, France
| | - Bérengère Nagard
- ANSES, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire UniversityPloufragan, France
| | - Valérie Rose
- ANSES, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire UniversityPloufragan, France
| | - Kévin Bourgoin
- ANSES, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire UniversityPloufragan, France
| | - Mélina Cutimbo
- ANSES, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire UniversityPloufragan, France
| | - Annaëlle Kerouanton
- ANSES, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire UniversityPloufragan, France
| |
Collapse
|
17
|
Szczepanska B, Andrzejewska M, Spica D, Klawe JJ. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from children and environmental sources in urban and suburban areas. BMC Microbiol 2017; 17:80. [PMID: 28376713 PMCID: PMC5379741 DOI: 10.1186/s12866-017-0991-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacteriosis is a dominant bacterial cause of foodborne infection and is considered the main public health problem in Europe and many other countries worldwide. In the study lasting from 2011 to 2013 we compared the prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from children, domestic animals, poultry meat and surface water in Northern Poland. RESULTS During a 3-years study 1973 samples were analysed. The results proved the presence of Campylobacter spp. in 306 (15.5%) samples. The percentage of Campylobacter-positive samples differed among the sample types, from 0% (freshwater beaches) to 38.6% (poultry meat in 2011). Prevalence of Campylobacter spp. in children isolates was 9.6%. It decreased from 13.2% in 2011 to 8.0% in 2013. It should be highlighted with a particular concern that Campylobacter jejuni was detected in 20.0% of fountains. All children and poultry meat isolates were susceptible to azithromycin. Two C. coli (3.7%) and four C. jejuni (3.3%) isolated from poultry meat were resistant to erythromycin. The highest percentage of C. jejuni isolates with resistance to ciprofloxacin were found in samples from 80% dogs and 85% ponds. Among isolates resistant to two antimicrobials 74.7% C. jejuni and 59.2% C. coli isolates were resistant to ciprofloxacin as well as to tetracycline. Only one cat C. coli isolate was resistant to both azithromycin and erythromycin. One C. jejuni isolate from a fountain was resistant to four antimicrobial agents (erythromycin, azithromycin, tetracycline and ciprofloxacin). CONCLUSIONS The study proved that surface water, poultry meat and pets constituted potential sources of Campylobacter to children. Fountains can be a direct source of children campylobacteriosis but can also pollute other environments with multidrug-resistant Campylobacter. The high resistance to some antimicrobials among the isolates may lead to increasing numbers of difficult-to-treat campylobacteriosis cases among children.
Collapse
Affiliation(s)
- Bernadeta Szczepanska
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, 9 Sklodowska-Curie Str, 85-094 Bydgoszcz, PL Poland
| | - Małgorzata Andrzejewska
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, 9 Sklodowska-Curie Str, 85-094 Bydgoszcz, PL Poland
| | - Dorota Spica
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, 9 Sklodowska-Curie Str, 85-094 Bydgoszcz, PL Poland
| | - Jacek J. Klawe
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, 9 Sklodowska-Curie Str, 85-094 Bydgoszcz, PL Poland
| |
Collapse
|
18
|
Kashoma IP, Kassem II, Kumar A, Kessy BM, Gebreyes W, Kazwala RR, Rajashekara G. Antimicrobial Resistance and Genotypic Diversity of Campylobacter Isolated from Pigs, Dairy, and Beef Cattle in Tanzania. Front Microbiol 2015; 6:1240. [PMID: 26617582 PMCID: PMC4641918 DOI: 10.3389/fmicb.2015.01240] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Foodborne Campylobacter infections pose a serious threat to public health worldwide. However, the occurrence and characteristics of Campylobacter in food animals and products remain largely unknown in Tanzania. The objective of this study was to determine the prevalence, antibiotic resistance, and genetic profiles (sequence types, STs) of Campylobacter isolated from feces of pigs and dairy and beef cattle in Tanzania. Overall, 259 (~30%) of 864 samples were positive for Campylobacter spp, which were detected in 32.5, 35.4, and 19.6% of the pig, dairy, and beef cattle samples, respectively. Multiplex PCR analysis identified 64.5 and 29.3% of the Campylobacter isolates as C. coli and C. jejuni, respectively. The majority (91.9%) of the isolates from pig samples were identified as C. coli, while C. jejuni accounted for 65.5% of the isolates from cattle. Antimicrobial susceptibility testing using the disk diffusion assay and the broth microdilution method revealed resistance to: ampicillin (Amp) (70.3% and 75.7%, respectively), gentamicin (Gen) (1.8% and 12.6%), streptomycin (Str) (65.8 and 74.8%), erythromycin (Ery) (41.4 and 48.7%), tetracycline (Tet) (18.9 and 23.4%), and ciprofloxacin (Cip) (14.4 and 7.2%). Resistance to nalidixic acid (Nal) (39.6%), azithromycin (Azm) (13.5%), and chloramphenicol (Chl) (4.5%) was determined using the disk diffusion assay only, while resistance to tylosin (Tyl) (38.7%) was quantified using the broth microdilution method. Multilocus sequence typing of 111 Campylobacter isolates resulted in the identification of 48 STs (26 C. jejuni and 22 C. coli) of which seven were novel (six C. jejuni and one C. coli). Taken together, this study revealed the high prevalence, genetic diversity and antimicrobial resistance of Campylobacter in important food animals in Tanzania, which highlights the urgent need for the surveillance and control of Campylobacter in this country.
Collapse
Affiliation(s)
- Isaac P. Kashoma
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State UniversityWooster, OH, USA
- VPH-Biotec Global Consortium
- Faculty of Veterinary Medicine, Sokoine University of AgricultureMorogoro, Tanzania
| | - Issmat I. Kassem
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State UniversityWooster, OH, USA
| | - Anand Kumar
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State UniversityWooster, OH, USA
| | - Beda M. Kessy
- Faculty of Veterinary Medicine, Sokoine University of AgricultureMorogoro, Tanzania
| | - Wondwossen Gebreyes
- VPH-Biotec Global Consortium
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State UniversityColumbus, OH, USA
| | - Rudovick R. Kazwala
- VPH-Biotec Global Consortium
- Faculty of Veterinary Medicine, Sokoine University of AgricultureMorogoro, Tanzania
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State UniversityWooster, OH, USA
- VPH-Biotec Global Consortium
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
19
|
Marotta F, Garofolo G, Di Donato G, Aprea G, Platone I, Cianciavicchia S, Alessiani A, Di Giannatale E. Population Diversity of Campylobacter jejuni in Poultry and Its Dynamic of Contamination in Chicken Meat. BIOMED RESEARCH INTERNATIONAL 2015; 2015:859845. [PMID: 26543870 PMCID: PMC4620384 DOI: 10.1155/2015/859845] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/27/2014] [Accepted: 11/30/2014] [Indexed: 01/10/2023]
Abstract
This study aimed to analyse the diversity of the Campylobacter jejuni population in broilers and to evaluate the major source of contamination in poultry meat. Eight rearing cycles over one year provided samples from three different broiler farms processed at the same slaughterhouse. A total of 707 C. jejuni were isolated from cloacal swabs before slaughter and from the breast skin of carcasses after slaughter and after chilling. All suspected Campylobacter colonies were identified with PCR assays and C. jejuni was genotyped by sequence analysis of the flaA short variable region (SVR) and by pulsed-field gel electrophoresis (PFGE) using SmaI enzyme. Phenotypic antibiotic resistance profiles were also assayed using minimal inhibitory concentration (MIC). The flocks carried many major C. jejuni clones possibly carrying over the rearing cycles, but cross contamination between farms may happen. Many isolates were resistant to fluoroquinolones, raising an issue of high public concern. Specific Campylobacter populations could be harboured within each poultry farm, with the ability to contaminate chickens during each new cycle. Thus, although biosecurity measures are applied, with a persistent source of contamination, they cannot be efficient. The role of the environment needs further investigation to better address strategies to control Campylobacter.
Collapse
Affiliation(s)
- Francesca Marotta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G.Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy
| | - Giuliano Garofolo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G.Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy
| | - Guido Di Donato
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G.Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy
| | - Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G.Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy
| | - Ilenia Platone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G.Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy
| | - Silvia Cianciavicchia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G.Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy
| | - Alessandra Alessiani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G.Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy
| | - Elisabetta Di Giannatale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G.Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy
| |
Collapse
|
20
|
Kashoma IP, Kassem II, John J, Kessy BM, Gebreyes W, Kazwala RR, Rajashekara G. Prevalence and Antimicrobial Resistance of Campylobacter Isolated from Dressed Beef Carcasses and Raw Milk in Tanzania. Microb Drug Resist 2015; 22:40-52. [PMID: 26153978 DOI: 10.1089/mdr.2015.0079] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Campylobacter species are commonly transmitted to humans through consumption of contaminated foods such as milk and meat. The aim of this study was to investigate the prevalence, antimicrobial resistance, and genetic determinants of resistance of Campylobacter isolated from raw milk and beef carcasses in Tanzania. The antimicrobial resistance genes tested included blaOXA-61 (ampicillin), aph-3-1 (aminoglycoside), tet(O) (tetracycline), and cmeB (multi-drug efflux pump). The prevalence of Campylobacter was 9.5% in beef carcasses and 13.4% in raw milk, respectively. Using multiplex-polymerase chain reaction (PCR), we identified 58.1% of the isolates as Campylobacter jejuni, 30.7% as Campylobacter coli, and 9.7% as other Campylobacter spp. One isolate (1.6%) was positive for both C. jejuni and C. coli specific PCR. Antimicrobial susceptibility testing using the disk diffusion assay and the broth microdilution method showed resistance to: ampicillin (63% and 94.1%), ciprofloxacin (9.3% and 11.8%), erythromycin (53.7% and 70.6%), gentamicin (0% and 15.7%), streptomycin (35.2% and 84.3%), and tetracycline (18.5% and 17.7%), respectively. Resistance to azithromycin (42.6%), nalidixic acid (64.8%), and chloramphenicol (13%) was determined using the disk diffusion assay only, while resistance to tylosin (90.2%) was quantified using the broth microdilution method. The blaOXA-61 (52.6% and 28.1%), cmeB (26.3% and 31.3%), tet(O) (26.3% and 31.3%), and aph-3-1 (5.3% and 3.0%) were detected in C. coli and C. jejuni. These findings highlight the extent of antimicrobial resistance in Campylobacter occurring in important foods in Tanzania. The potential risks to consumers emphasize the need for adequate control approaches, including the prudent use of antimicrobials to minimize the spread of antimicrobial-resistant Campylobacter.
Collapse
Affiliation(s)
- Isaac P Kashoma
- 1 Faculty of Veterinary Medicine, Sokoine University of Agriculture , Morogoro, Tanzania .,2 VPH-Biotec Global Consortium , Columbus, Ohio
| | - Issmat I Kassem
- 3 Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University , Wooster, Ohio
| | - Julius John
- 1 Faculty of Veterinary Medicine, Sokoine University of Agriculture , Morogoro, Tanzania .,2 VPH-Biotec Global Consortium , Columbus, Ohio
| | - Beda M Kessy
- 1 Faculty of Veterinary Medicine, Sokoine University of Agriculture , Morogoro, Tanzania
| | - Wondwossen Gebreyes
- 2 VPH-Biotec Global Consortium , Columbus, Ohio.,4 Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University , Columbus, Ohio
| | - Rudovick R Kazwala
- 1 Faculty of Veterinary Medicine, Sokoine University of Agriculture , Morogoro, Tanzania .,2 VPH-Biotec Global Consortium , Columbus, Ohio
| | - Gireesh Rajashekara
- 1 Faculty of Veterinary Medicine, Sokoine University of Agriculture , Morogoro, Tanzania .,2 VPH-Biotec Global Consortium , Columbus, Ohio.,3 Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University , Wooster, Ohio
| |
Collapse
|
21
|
Komba EVG, Mdegela RH, Msoffe PLM, Matowo DE, Maro MJ. Occurrence, species distribution and antimicrobial resistance of thermophilic Campylobacter isolates from farm and laboratory animals in Morogoro, Tanzania. Vet World 2014. [DOI: 10.14202/vetworld.2014.559-565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|