1
|
Thacharodi A, Hassan S, Ahmed ZHT, Singh P, Maqbool M, Meenatchi R, Pugazhendhi A, Sharma A. The ruminant gut microbiome vs enteric methane emission: The essential microbes may help to mitigate the global methane crisis. ENVIRONMENTAL RESEARCH 2024; 261:119661. [PMID: 39043353 DOI: 10.1016/j.envres.2024.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Ruminants release enteric methane into the atmosphere, significantly increasing greenhouse gas emissions and degrading the environment. A common focus of traditional mitigation efforts is on dietary management and manipulation, which may have limits in sustainability and efficacy, exploring the potential of essential microorganisms as a novel way to reduce intestinal methane emissions in ruminants; a topic that has garnered increased attention in recent years. Fermentation and feed digestion are significantly aided by essential microbes found in the rumen, such as bacteria, fungi, and archaea. The practical implications of the findings reported in various studies conducted on rumen gut concerning methane emissions may pave the way to understanding the mechanisms of CH4 production in the rumen to enhance cattle feed efficiency and mitigate CH4 emissions from livestock. This review discussed using essential bacteria to reduce intestinal methane emissions in ruminants. It investigates how particular microbial strains or consortia can alter rumen fermentation pathways to lower methane output while preserving the health and productivity of animals. We also describe the role of probiotics and prebiotics in managing methane emissions using microbial feed additives. Further, recent studies involving microbial interventions have been discussed. The use of new methods involving functional metagenomics and meta-transcriptomics for exploring the rumen microbiome structure has been highlighted. This review also emphasizes the challenges faced in altering the gut microbiome and future directions in this area.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Z H Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Mohsin Maqbool
- Sidney Kimmel Cancer Center, Jefferson Health, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, 603203, India
| | - Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico.
| |
Collapse
|
2
|
Salah N, Legendre H, Paiva E, Duclos J, Briche M, Maaoui M, Scholten J, Garat Boute C. Quantification of the Environmental Impact of Feeding Yeast Probiotic Saccharomyces cerevisiae Actisaf Sc 47 in Dairy Cow: A Life Cycle Assessment Approach. Animals (Basel) 2024; 14:2202. [PMID: 39123728 PMCID: PMC11310962 DOI: 10.3390/ani14152202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/12/2024] Open
Abstract
Today, one of the major challenges of dairy farmers is to reduce their environmental footprint to establish more effective, efficient, and sustainable production systems. Feed additives such as yeast probiotics could potentially allow them to achieve these objectives through the improvement of milk production, feed efficiency, and ration valorization, hence mitigating the environmental impacts of milk production. In this study, the life cycle assessment (LCA) principle was performed to estimate the environmental impact of the production and supplementation of a commercial yeast probiotic (Actisaf Sc 47) in three trials performed in three different countries that are representative for around 50% of the milk production in Europe: France (French trial), United Kingdom (UK trial), and Germany (German trial). For each trial, two groups of animals were compared: control, without Actisaf Sc 47 supplementation, used as baseline; and experimental, with Actisaf Sc 47 supplementation at 5 or 10 g/cow/day. Different impact categories were analyzed for each group to calculate the impact of producing 1 kg of fat- and protein-corrected milk. An initial analysis was done only during the period of Actisaf Sc 47 supplementation and showed than the supplementation with Actisaf Sc 47 reduced, on average by 5%, the carbon footprint during the three trials. A second analysis was done via the extrapolation of all the data of each trial to an annual farm level, including the lactation period (305 days), dry period (60 days), and the period with and without Actisaf Sc 47 supplementation. Reported at a farm annual scale, the average reduction allowed by Actisaf Sc 47 supplementation was 2.9, 2.05, 2.47, 1.67, 2.28, 2.18, 2.14, and 2.28% of the carbon footprint, land use, water use, resource use, acidification, freshwater eutrophication, marine eutrophication, and terrestrial eutrophication, respectively. On average, the production of 1 kg of fat- and protein-corrected milk by using Actisaf Sc 47 was shown to improve environmental impacts compared to control. Regarding Actisaf Sc 47 production, the LCA showed that the production of 1 kg of Actisaf Sc 47 emitted 2.1 kg CO2 eq with a negligible contribution to total the carbon footprint of milk ranging from 0.005 to 0.016%. The use of Actisaf Sc 47 in dairy cows could then result in different positive outcomes: improving performance and efficiency while reducing the global carbon footprint.
Collapse
Affiliation(s)
- Nizar Salah
- Phileo by Lesaffre, 59520 Marquette-lez-Lille, France; (H.L.); (E.P.); (J.D.); (M.B.); (C.G.B.)
| | - Héloïse Legendre
- Phileo by Lesaffre, 59520 Marquette-lez-Lille, France; (H.L.); (E.P.); (J.D.); (M.B.); (C.G.B.)
| | - Erika Paiva
- Phileo by Lesaffre, 59520 Marquette-lez-Lille, France; (H.L.); (E.P.); (J.D.); (M.B.); (C.G.B.)
| | - Julie Duclos
- Phileo by Lesaffre, 59520 Marquette-lez-Lille, France; (H.L.); (E.P.); (J.D.); (M.B.); (C.G.B.)
| | - Maxime Briche
- Phileo by Lesaffre, 59520 Marquette-lez-Lille, France; (H.L.); (E.P.); (J.D.); (M.B.); (C.G.B.)
| | - Mariem Maaoui
- Blonk Sustainability Tools, Groen van Prinsterersingel 45, 2805 TD Gouda, The Netherlands; (M.M.); (J.S.)
| | - Jasper Scholten
- Blonk Sustainability Tools, Groen van Prinsterersingel 45, 2805 TD Gouda, The Netherlands; (M.M.); (J.S.)
| | - Céline Garat Boute
- Phileo by Lesaffre, 59520 Marquette-lez-Lille, France; (H.L.); (E.P.); (J.D.); (M.B.); (C.G.B.)
| |
Collapse
|
3
|
Zhang Q, Ma L, Zhang X, Jia H, Tana, Guo Y, Zhang J, Wang J. Feeding live yeast (Saccharomyces cerevisiae) improved performance of mid-lactation dairy cows by altering ruminal bacterial communities and functions of serum antioxidation and immune responses. BMC Vet Res 2024; 20:245. [PMID: 38849835 PMCID: PMC11157803 DOI: 10.1186/s12917-024-04073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The utilization of live yeast (Saccharomyces cerevisiae, YE) in dairy cows is gaining traction in dairy production as a potential strategy to improve feed efficiency and milk yield. However, the effects of YE on dairy cow performance remain inconsistent across studies, leaving the underlying mechanisms unclear. Hence, the primary aim of this study was to investigate the impact of YE supplementation on lactation performance, ruminal microbiota composition and fermentation patterns, as well as serum antioxidant capacity and immune functions in dairy cows. RESULTS Supplementation with YE (20 g/d/head) resulted in enhancements in dairy cow's dry matter intake (DMI) (P = 0.016), as well as increased yields of milk (P = 0.002) and its components, including solids (P = 0.003), fat (P = 0.014), protein (P = 0.002), and lactose (P = 0.001) yields. The addition of YE led to significant increases in the concentrations of ammonia nitrogen (NH3-N) (P = 0.023), acetate (P = 0.005), propionate (P = 0.025), valerate (P = 0.003), and total volatile fatty acids (VFAs) (P < 0.001) in rumen fermentation parameters. The analysis of 16s rRNA gene sequencing data revealed that the administration of YE resulted in a rise in the relative abundances of three primary genera including Ruminococcus_2 (P = 0.010), Rikenellaceae_RC9_gut_group (P = 0.009), and Ruminococcaceae_NK4A214_group (P = 0.054) at the genus level. Furthermore, this increase was accompanied with an enriched pathway related to amino acid metabolism. Additionally, enhanced serum antioxidative (P < 0.05) and immune functionalities (P < 0.05) were also observed in the YE group. CONCLUSIONS In addition to improving milk performance, YE supplementation also induced changes in ruminal bacterial community composition and fermentation, while enhancing serum antioxidative and immunological responses during the mid-lactation stage. These findings suggest that YE may exert beneficial effects on both rumen and blood metabolism in mid-lactation dairy cows.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory for Mode Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, Inner Mongolia, China
| | - Lifeng Ma
- Inner Mongolia of Animal Disease Prevention and Control Institution, Hohhot, 010020, Inner Mongolia, China
- National Center of Technology Innovation for Dairy, Hohhot, 010000, Inner Mongolia, China
| | - Xiaoqing Zhang
- Key Laboratory for Mode Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, Inner Mongolia, China
| | - Hao Jia
- Inner Mongolia of Animal Disease Prevention and Control Institution, Hohhot, 010020, Inner Mongolia, China
| | - Tana
- Key Laboratory for Mode Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, Inner Mongolia, China
| | - Yu Guo
- Inner Mongolia of Animal Disease Prevention and Control Institution, Hohhot, 010020, Inner Mongolia, China
| | - Jize Zhang
- Key Laboratory for Mode Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, Inner Mongolia, China.
| | - Jianlong Wang
- Inner Mongolia of Animal Disease Prevention and Control Institution, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
4
|
Zicarelli F, Iommelli P, Musco N, Wanapat M, Lotito D, Lombardi P, Infascelli F, Tudisco R. Growth Performance of Buffalo Calves in Response to Different Diets with and without Saccharomyces cerevisiae Supplementation. Animals (Basel) 2024; 14:1245. [PMID: 38672393 PMCID: PMC11047708 DOI: 10.3390/ani14081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of the present trial was to evaluate the growth performance of buffalo calves fed on diets characterized by different forage/concentrate ratios, with or without Saccharomyces cerevisiae supplementation (CBS 493.94, Yea-Sacc®). Twenty-four male buffalo calves (mean age of 145.1 ± 16.1 days; mean weight of 108.0 ± 18.7 kg) were assigned randomly to 4 groups, homogeneous in age, that were fed four different diets: diet 1, F:C ratio 50:50; diet 2, F:C ratio 30:70; diet 3, F:C ratio 50:50 + Yea-Sacc®; and diet 4, F:C ratio 30:70 + Yea-Sacc®. Buffalo calves were individually weighted before the start of the experiment and the data were used as a covariate, being taken monthly until the end of the trial. Dry matter intake (DMI), daily weight gain (DWG) and feed conversion ratio (FCR) were calculated. The differences in diets composition significantly (p < 0.01) affected all these parameters. In particular, the animals fed diet 1 and diet 3 showed higher values of DWG (0.91 and 0.88 g/d vs. 0.68 and 0.66 for group 2 and 4) and DMI (5.8 and 5.3 kg/d, respectively) compared to the other groups (4.3 and 4.4 kg/d for group 2 and 4), as well as a higher final body weight (370.5 and 334.1 kg for group 1 and 3 vs. 272.8 and 273.1 kg of group 2 and 4, respectively). Indeed, the supplementation with Yea-Sacc® at the dosage of 1 × 10E8 did not affect buffaloes' growth performance.
Collapse
Affiliation(s)
- Fabio Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Piera Iommelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Daria Lotito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Federico Infascelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Raffaella Tudisco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| |
Collapse
|
5
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
6
|
Benedetti L, Cattaneo L, Vercesi A, Trevisi E, Piccioli-Cappelli F. Effects of Live Saccharomyces cerevisiae Yeast Administration in Periparturient Dairy Cows. Animals (Basel) 2024; 14:472. [PMID: 38338114 PMCID: PMC10854559 DOI: 10.3390/ani14030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Dairy cows face several challenges during the transition period, and the administration of live yeast might be useful to mitigate this stressful condition. In the current study, the effects of live yeast administration on milk production, feed intake, and metabolic and inflammatory conditions were evaluated. Multiparous Holstein cows were enrolled in this randomized controlled trial and received either a control diet (CTR, n = 14) or the control diet plus 4 g/d of live Saccharomyces cerevisiae yeast (LSC, n = 14) from -21 to 56 days relative to calving. Dry matter intake, milk yield and composition, and rumination time were monitored daily. Blood samples were collected at -21, -7, 3, 14, 28, 42, and 56 days relative to calving to evaluate the metabolic profile. Fecal samples were collected at 56 days relative to calving to measure volatile fatty acids and feed digestibility. No differences between groups were observed in dry matter intake. Compared with CTR, rumination time was lower in LSC in after calving. Although there were no differences in milk components between groups, LSC had greater milk yield in the last three weeks of the study than CTR. No differences were observed in inflammatory markers or other plasma metabolites, except for β-hydroxybutyrate, which was higher in LSC, and reactive oxygen metabolites (ROMs), which were lower in LSC. Overall, these outcomes suggest that live yeast supplementation had some positive effects on milk yield and oxidative status.
Collapse
Affiliation(s)
| | | | | | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (L.B.); (L.C.); (F.P.-C.)
| | | |
Collapse
|
7
|
Fu Y, Li E, Casey TM, Johnson TA, Adeola O, Ajuwon KM. Impact of maternal live yeast supplementation to sows on intestinal inflammatory cytokine expression and tight junction proteins in suckling and weanling piglets. J Anim Sci 2024; 102:skae008. [PMID: 38206189 PMCID: PMC10836509 DOI: 10.1093/jas/skae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Recent studies have highlighted the importance of maternal nutrition during gestation and lactation in modulating the gastrointestinal development and health of offspring. Therefore, the objective of this study was to determine the effects of live yeast (LY) supplementation to sows during late gestation and throughout lactation on markers of gut health of piglets prior to weaning and immediately postweaning. On day 77 of gestation, forty sows were allotted based on parity and expected farrowing dates to two dietary treatments: without (CON) or with (LY) supplementation at 0.05% and 0.1% of diet during gestation and lactation, respectively. On postnatal days (PND) 0, 10, 18, and postweaning days (PWD) 7 and 14, one piglet from each of 10 sows per treatment were selected for intestinal tissue collection (n = 10). Real-time PCR and western blotting analyses were used to determine the mucosal expression of immune and antioxidant-regulatory genes and tight junction markers of gut health in the duodenum, jejunum, and ileum. Inflammatory and tight junction markers on PND 0 were not affected by maternal dietary treatment. On PND 18, maternal LY supplementation increased (P < 0.05) mRNA expression of interleukin (IL)-6 and tended (P = 0.08) to increase expression of IL-10 in the ileal muocsa. Maternal LY supplementation also increased (P < 0.05) expression of IL-1β in the ileal mucosa on PWD 14. Likewise, expression of superoxide dismutase (SOD) 1 was increased (P < 0.05) by LY on PND 10, 18, and PWD 14, with a tendency (P = 0.09) for a greater mRNA abundance of catalase on PND 14 in the ileal mucosa. Compared to CON piglets, LY piglets had a higher (P < 0.05) protein abundance of E-cadherin in the jejunal mucosa on PND 0, PWD 7, and PWD 14. Levels of occludin and claudin-4 were also higher (P < 0.05) in the jejunum of LY piglets on PWD 14. No differences were found in jejunal histomorphological measurements between treatments. In conclusion, this study shows that maternal LY supplementation affects key markers of gut health and development in the offspring that may impact the future growth potential and health of newborn piglets.
Collapse
Affiliation(s)
- Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Enkai Li
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Theresa M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Christodoulou C, Skourtis A, Kyriakaki P, Satolias FF, Karabinas D, Briche M, Salah N, Zervas G, Mavrommatis A, Tsiplakou E. The Effect of Dietary Supplementation with Probiotic and Postbiotic Yeast Products on Ewes Milk Performance and Immune Oxidative Status. J Fungi (Basel) 2023; 9:1139. [PMID: 38132740 PMCID: PMC10744422 DOI: 10.3390/jof9121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The administration of yeast products as feed additives has been proven to beneficially affect animal productivity through energy, oxidative, and immune status improvement. This study evaluated a combination of Saccharomyces cerevisiae live yeast (LY) with yeast postbiotics (rich in mannan-oligosaccharides (MOS) and beta-glucans) and selenium (Se)-enriched yeast on ewes' milk performance and milk quality, energy and oxidative status, and gene expression related to their immune system during the peripartum period. Ewes were fed a basal diet (BD; F:C = 58:42 prepartum and 41:59 postpartum) including inorganic Se (CON; n = 27), the BD supplemented with a LY product, and inorganic Se (AC; n = 29), as well as the combination of the LY, a product of yeast fraction rich in MOS and beta-glucans, and organic-Se-enriched yeast (ACMAN; n = 26) from 6 weeks prepartum to 6 weeks postpartum. The β-hydroxybutyric acid concentration in the blood of AC and ACMAN ewes was lower (compared to the CON) in both pre- and postpartum periods (p < 0.010). Postpartum, milk yield was increased in the AC and ACMAN Lacaune ewes (p = 0.001). In addition, the activity of superoxide dismutase (p = 0.037) and total antioxidant capacity (p = 0.034) measured via the 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) method was increased in the blood plasma of the ACMAN postpartum. Higher ABTS values were also found (p = 0.021), while protein carbonyls were reduced (p = 0.023) in the milk of the treated groups. The relative transcript levels of CCL5 and IL6 were downregulated in the monocytes (p = 0.007 and p = 0.026 respectively), and those of NFKB were downregulated in the neutrophils of the ACMAN-fed ewes postpartum (p = 0.020). The dietary supplementation of ewes with yeast postbiotics rich in MOS and beta-glucans, and organic Se, improved energy status, milk yield and some milk constituents, and oxidative status, with simultaneous suppression of mRNA levels of proinflammatory genes during the peripartum period.
Collapse
Affiliation(s)
- Christos Christodoulou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Alexis Skourtis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Panagiota Kyriakaki
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Fotis Fokion Satolias
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Dimitris Karabinas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Maxime Briche
- Phileo by Lesaffre, 59700 Marcq en Baroeul, Nord, France; (M.B.); (N.S.)
| | - Nizar Salah
- Phileo by Lesaffre, 59700 Marcq en Baroeul, Nord, France; (M.B.); (N.S.)
| | - George Zervas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| |
Collapse
|
9
|
Abid K, Jabri J, Yaich H, Malek A, Rekhis J, Kamoun M. Bioconversion of alperujo into an alternative feed for ruminants by pretreatment with live yeasts and/or exogenous fibrolytic enzymes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64747-64754. [PMID: 37071367 PMCID: PMC10112312 DOI: 10.1007/s11356-023-27056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Extraction of olive oil through a two-stage centrifugation process produces a large amount of phytotoxic waste known as alperujo. This research was performed to bioconvert alperujo into enriched ruminant feed by pretreatment with exogenous fibrolytic enzymes (EFE) or/and live yeasts (LY). These additives were used in a completely randomized design with 3 EFE doses (0, 4, and 8 µl/g dry matter) and 3 LY doses (0, 4, and 8 mg/g dry matter) in a 3 × 3 factorial arrangement. Fermented alperujo with both EFE doses converted some of their hemicellulose and cellulose to simple sugars and increased bacterial abundance in the rumen. As a result, it shortens the lag time of rumen fermentation, increases the rate and amount of rumen fermentation, and improves digestibility. This improvement provides additional energy that can be used by ruminants to produce milk and by rumen microbiota to produce short-chain fatty acids. Fermented alperujo with a high dose of LY decreased their antinutritional compounds and reduced their high content of lipid. In the rumen, this waste became rapidly fermentable, and rumen bacteria became more abundance. Fermented alperujo with a high dose of LY + EFE accelerated rumen fermentation and improved rumen digestibility, energy available for milk production, and short-chain fatty acids compared to the use of LY or EFE alone. This synergistic interaction between these two additives increased protozoa abundance in rumen and the ability of rumen microbiota to bioconvert ammonia-nitrogen to microbial protein. Ultimately, fermentation alperujo with EFE + LY is a good strategy with minimum investment for a social sustainable economy and environment.
Collapse
Affiliation(s)
- Khalil Abid
- Animal Nutrition Laboratory, National School of Veterinary Medicine Sidi Thabet, University of Manouba, 2020, Manouba, Tunisia.
| | - Jihene Jabri
- Animal Nutrition Laboratory, National School of Veterinary Medicine Sidi Thabet, University of Manouba, 2020, Manouba, Tunisia
| | - Hela Yaich
- Animal Nutrition Laboratory, National School of Veterinary Medicine Sidi Thabet, University of Manouba, 2020, Manouba, Tunisia
| | - Atef Malek
- Animal Nutrition Laboratory, National School of Veterinary Medicine Sidi Thabet, University of Manouba, 2020, Manouba, Tunisia
| | - Jamel Rekhis
- Animal Nutrition Laboratory, National School of Veterinary Medicine Sidi Thabet, University of Manouba, 2020, Manouba, Tunisia
| | - Mohamed Kamoun
- Animal Nutrition Laboratory, National School of Veterinary Medicine Sidi Thabet, University of Manouba, 2020, Manouba, Tunisia
| |
Collapse
|
10
|
Yeast-fermented cassava as a protein source in cattle feed: systematic review and meta-analysis. Trop Anim Health Prod 2023; 55:67. [PMID: 36745229 DOI: 10.1007/s11250-023-03494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
The present study evaluated the effect of the inclusion of cassava fermented with Saccharomyces cerevisiae yeasts on performance, feed intake, nutrient digestibility, rumen microorganisms and ruminal fermentation of cattle through a systematic review and meta-analysis. The effects of yeast-fermented cassava (YFC) in the diet of cattle were evaluated using the mean difference as a measure of the effect size, considering a confidence interval of 95%. Subgroup and meta-regression analysis were performed to investigate the origin of heterogeneity. The database included eight experiments. Three studies were related to dairy heifers, three related to dairy cow and the remaining two studies were associated to beef heifers. The inclusion of YFC in the bovine diet increased the dry matter intake %BW (P < 0.01) and nutrient digestibility (P < 0.05). We observed an increase in mean ruminal pH (P < 0.01), volatile fatty acid (P < 0.01) and propionic acid concentration (P < 0.01). There was a significant increase in the population of bacteria (P < 0.01) and fungi (P < 0.01), and a reduction in the protozoan count in the rumen fluid (P < 0.01) in the animals fed with YFC. Lactating cows fed YFC produced 1.02 kg/day more (P < 0.01) milk than non-supplemented cows. In addition, there was an increase of 7.4% in the fat (P = 0.03), 6.3% in the protein (P < 0.01) and 2.8% in lactose (P = 0.02) of milk of cows supplemented with YFC. The results of the present meta-analysis showed that the total or partial inclusion of YFC in cattle concentrate improves fermentation and rumen efficiency, dry matter intake, nutrient digestibility, milk yield, and milk composition.
Collapse
|
11
|
Wang Y, Li Z, Jin W, Mao S. Isolation and Characterization of Ruminal Yeast Strain with Probiotic Potential and Its Effects on Growth Performance, Nutrients Digestibility, Rumen Fermentation and Microbiota of Hu Sheep. J Fungi (Basel) 2022; 8:jof8121260. [PMID: 36547593 PMCID: PMC9781649 DOI: 10.3390/jof8121260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Yeast strains are widely used in ruminant production. However, knowledge about the effects of rumen native yeasts on ruminants is limited. Therefore, this study aimed to obtain a rumen native yeast isolate and investigate its effects on growth performance, nutrient digestibility, rumen fermentation and microbiota in Hu sheep. Yeasts were isolated by picking up colonies from agar plates, and identified by sequencing the ITS sequences. One isolate belonging to Pichia kudriavzevii had the highest optical density among these isolates obtained. This isolate was prepared to perform an animal feeding trial. A randomized block design was used for the animal trial. Sixteen Hu sheep were randomly assigned to the control (CON, fed basal diet, n = 8) and treatment group (LPK, fed basal diet plus P. kudriavzevii, CFU = 8 × 109 head/d, n = 8). Sheep were housed individually and treated for 4 weeks. Compared to CON, LPK increased final body weight, nutrient digestibility and rumen acetate concentration and acetate-to-propionate ratio in sheep. The results of Illumina MiSeq PE 300 sequencing showed that LPK increased the relative abundance of lipolytic bacteria (Anaerovibrio spp. and Pseudomonas spp.) and probiotic bacteria (Faecalibacterium spp. and Bifidobacterium spp.). For rumen eukaryotes, LPK increased the genera associated with fiber degradation, including protozoan Polyplastron and fungus Pichia. Our results discovered that rumen native yeast isolate P. kudriavzevii might promote the digestion of fibers and lipids by modulating specific microbial populations with enhancing acetate-type fermentation.
Collapse
Affiliation(s)
- Yao Wang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihao Li
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Jin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Agglomerated live yeast (Saccharomyces cerevisiae) supplemented to pelleted total mixed rations improves the growth performance of fattening lambs. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Zhang X, Dong X, Wanapat M, Shah AM, Luo X, Peng Q, Kang K, Hu R, Guan J, Wang Z. Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle. Anim Biosci 2021; 35:184-195. [PMID: 34474533 PMCID: PMC8738953 DOI: 10.5713/ab.21.0200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Objective In this study we aimed to evaluate the effect of dietary live yeast supplementation on ruminal pH pattern, fermentation characteristics and associated bacteria in beef cattle. Methods This work comprised of in vitro and in vivo experiments. In vitro fermentation was conducted by incubating 0%, 0.05%, 0.075%, 0.1%, 0.125%, and 0.15% active dried yeast (Saccharomyces cerevisiae, ADY) with total mixed ration substrate to determine its dose effect. According to in vitro results, 0.1% ADY inclusion level was assigned in in vivo study for continuously monitoring ruminal fermentation characteristics and microbes. Six ruminally cannulated steers were randomly assigned to 2 treatments (Control and ADY supplementation) as two-period crossover design (30-day). Blood samples were harvested before-feeding and rumen fluid was sampled at 0, 3, 6, 9, and 12 h post-feeding on 30 d. Results After 24 h in vitro fermentation, pH and gas production were increased at 0.1% ADY where ammonia nitrogen and microbial crude protein also displayed lowest and peak values, respectively. Acetate, butyrate and total volatile fatty acids concentrations heightened with increasing ADY doses and plateaued at high levels, while acetate to propionate ratio was decreased accordingly. In in vivo study, ruminal pH was increased with ADY supplementation that also elevated acetate and propionate. Conversely, ADY reduced lactate level by dampening Streptococcus bovis and inducing greater Selenomonas ruminantium and Megasphaera elsdenii populations involved in lactate utilization. The serum urea nitrogen decreased, whereas glucose, albumin and total protein concentrations were increased with ADY supplementation. Conclusion The results demonstrated dietary ADY improved ruminal fermentation dose-dependently. The ruminal lactate reduction through modification of lactate metabolic bacteria could be an important reason for rumen pH stabilization induced by ADY. ADY supplementation offered a complementary probiotics strategy in improving gluconeogenesis and nitrogen metabolism of beef cattle, potentially resulted from optimized rumen pH and fermentation.
Collapse
Affiliation(s)
- Xiangfei Zhang
- Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P. R. China.,Institute of Plateau Animals, Sichuan Academy of Grassland Science, Chengdu 610097, P. R. China
| | - Xianwen Dong
- Chongqing Academy of Animal Science, Chongqing 402460, P. R. China
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ali Mujtaba Shah
- Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xiaolin Luo
- Institute of Plateau Animals, Sichuan Academy of Grassland Science, Chengdu 610097, P. R. China
| | - Quanhui Peng
- Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Kun Kang
- Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Rui Hu
- Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Jiuqiang Guan
- Institute of Plateau Animals, Sichuan Academy of Grassland Science, Chengdu 610097, P. R. China
| | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P. R. China
| |
Collapse
|
14
|
Suntara C, Cherdthong A, Wanapat M, Uriyapongson S, Leelavatcharamas V, Sawaengkaew J, Chanjula P, Foiklang S. Isolation and Characterization of Yeasts from Rumen Fluids for Potential Use as Additives in Ruminant Feeding. Vet Sci 2021; 8:vetsci8030052. [PMID: 33808746 PMCID: PMC8003577 DOI: 10.3390/vetsci8030052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Saccharomyces cerevisiae is a yeast strain often used to improve the feed quality of ruminants. However, S. cerevisiae has limited capacity to provide biomass when inoculated with carbon sources and a low ability to produce cellulase enzymes. Here, we hypothesized that yeast in the rumen produces a large amount of biomass and could release cellulase enzymes to break down fiber content. Therefore, the aim of this study was to screen, isolate and identify yeast from the rumen fluids of Holstein Friesian steers and measure the efficiency of biomass production and cellulase activity. A fermentation medium containing sugarcane molasses as a carbon source and urea as a nitrogen source was optimized. Two fistulated–crossbred Holstein Friesian steers averaging 350 ± 20 kg body weight were used to screen and isolate the ruminal yeast. Two experiments were designed: First, a 12 × 3 × 3 factorial was used in a completely randomized design to determine biomass and carboxymethyl cellulase activity. Factor A was the isolated yeast and S. cerevisiae. Factor B was sugarcane molasses (M) concentration. Factor C was urea (U) concentration. In the second experiment, potential yeasts were selected, identified, and analyzed for 7 × 4 factorial use in a completely randomized design. Factor A was the incubation times. Factor B was the isolated yeast strains, including codes H-Khon Kaen University (KKU) 20 (as P. kudriavzevii-KKU20), I-KKU20 (C. tropicalis-KKU20), and C-KKU20 (as Galactomyces sp.-KKU20). Isolation was imposed under aerobic conditions, resulting in a total of 11 different colonies. Two appearances of colonies including asymmetric colonies of isolated yeast (indicated as A, B, C, E, and J) and ovoid colonies (coded as D, F, G, H, I, and K) were noted. Isolated yeast from the rumen capable of providing a high amount of biomass when inoculant consisted of the molasses 15% + urea 3% (M15 + U3), molasses 25% + urea 1% (M25 + U1), molasses 25% + urea 3% (M25 + U3), and molasses 25% + urea 5% (M25 + U5) when compared to the other media solution (p < 0.01). In addition, 11 isolated biomass-producing yeasts were found in the media solution of M25 + U1. There were 4 isolates cellulase producing yeasts discovered in the media solution of M25 + U1 and M25 + U5 whereas molasses 5% + urea 1% (M5 + U1), molasses 5% + urea 3% (M5 + U3), molasses 5% + urea 5% (M5 + U5), molasses 15% + urea 1% (M15 + U1), molasses 15% + urea 3% (M5 + U3), and M25 + U3 were found with 2, 3, 1, 2, 1, and 2 isolates, respectively. Ruminal yeast strains H-KKU20, I-KKU20, and C-KKU20 were selected for their ability to produce biomass. Identification of isolates H-KKU20 and I-KKU20 revealed that those isolates belonged to Pichia kudriavzevii-KKU20 and Candida tropicalis-KKU20 while C-KKU20 was identified as Galactomyces sp.-KKU20. Two strains provided maximum cell growth: P. kudriavzevii-KKU20 (9.78 and 10.02 Log cell/mL) and C. tropicalis-KKU20 (9.53 and 9.6 Log cells/mL) at 60 and 72 h of incubation time, respectively. The highest ethanol production was observed in S. cerevisiae at 76.4, 77.8, 78.5, and 78.6 g/L at 36, 48, 60, and 72 h of incubation time, respectively (p < 0.01). The P. kudriavzevii-KKU20 yielded the least reducing sugar at about 30.6 and 29.8 g/L at 60 and 72 h of incubation time, respectively. The screening and isolation of yeasts from rumen fluids resulted in 11 different yeasts being obtained. The potential yeasts discovered in the rumen fluid of cattle were Pichia kudriavzevii-KKU20, Candida tropicalis-KKU20, and Galactomyces sp.-KKU20. P. kudriavzevii-KKU20 had higher results than the other yeasts in terms of biomass production, cellulase enzyme activity, and cell number.
Collapse
Affiliation(s)
- Chanon Suntara
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (M.W.); (S.U.)
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (M.W.); (S.U.)
- Correspondence: ; Tel.: +66-43-202362
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (M.W.); (S.U.)
| | - Suthipong Uriyapongson
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (C.S.); (M.W.); (S.U.)
| | - Vichai Leelavatcharamas
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jutaporn Sawaengkaew
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Pin Chanjula
- Animal Production Innovation and Management Division, Faculty of Natural Resources, Hat Yai Campus, Prince of Songkla University, Songkhla 90112, Thailand;
| | - Suban Foiklang
- Faculty of Animal Science and Technology, Maejo University, Chiangmai 50290, Thailand;
| |
Collapse
|
15
|
Núñez-Benítez V, Barreras A, Estrada-Angulo A, Castro-Pérez B, Urías-Estrada J, Zinn R, Leyva-Morales J, Plascencia A. Evaluation of a standardized mixture of synbiotic-glyconutrients as a feed additive in steers fed a finishing diet: Site and extent of digestion, ruminal fermentation, and microbial protein synthesis. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Amin AB, Mao S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. ACTA ACUST UNITED AC 2020; 7:31-41. [PMID: 33997329 PMCID: PMC8110857 DOI: 10.1016/j.aninu.2020.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
This review aims to give an overview of the efficacy of yeast supplementation on growth performance, rumen pH, rumen microbiota, and their relationship to meat and milk quality in ruminants. The practice of feeding high grain diets to ruminants in an effort to increase growth rate and weight gain usually results in excess deposition of saturated fatty acids in animal products and increased incidence of rumen acidosis. The supplementation of yeast at the right dose and viability level could counteract the acidotic effects of these high grain diets in the rumen and positively modify the fatty acid composition of animal products. Yeast exerts its actions by competing with lactate-producing (Streptococcus bovis and Lactobacillus) bacteria for available sugar and encouraging the growth of lactate-utilising bacteria (Megasphaera elsdenii). M. elsdenii is known to convert lactate into butyrate and propionate leading to a decrease in the accumulation of lactate thereby resulting in higher rumen pH. Interestingly, this creates a conducive environment for the proliferation of vaccenic acid-producing bacteria (Butyrivibrio fibrisolvens) and ciliate protozoa, both of which have been reported to increase the ruminal concentration of trans-11 and cis-9, trans-11-conjugated linoleic acid (CLA) at a pH range between 5.6 and 6.3. The addition of yeast into the diet of ruminants has also been reported to positively modify rumen biohydrogenation pathway to synthesise more of the beneficial biohydrogenation intermediates (trans -11 and cis -9, trans -11). This implies that more dietary sources of linoleic acid, linolenic acid, and oleic acid along with beneficial biohydrogenation intermediates (cis-9, trans-11-CLA, and trans-11) would escape complete biohydrogenation in the rumen to be absorbed into milk and meat. However, further studies are required to substantiate our claim. Therefore, techniques like transcriptomics should be employed to identify the mRNA transcript expression levels of genes like stearoyl-CoA desaturase, fatty acid synthase, and elongase of very long chain fatty acids 6 in the muscle. Different strains of yeast need to be tested at different doses and viability levels on the fatty acid profile of animal products as well as its vaccenic acid and rumenic acid composition.
Collapse
Affiliation(s)
- Abdulmumini B. Amin
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Animal Science, Federal University Dutse, P.M.B 7156, Dutse, Jigawa State, Nigeria
| | - Shengyong Mao
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, 132109, Jilin, China
- Corresponding author.
| |
Collapse
|
17
|
Dietary Supplementation of a Live Yeast Product on Dairy Sheep Milk Performance, Oxidative and Immune Status in Peripartum Period. J Fungi (Basel) 2020; 6:jof6040334. [PMID: 33287326 PMCID: PMC7761757 DOI: 10.3390/jof6040334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
This study evaluated the dietary administration of Saccharomyces cerevisiae live yeast on milk performance and composition, oxidative status of both blood plasma and milk, and gene expression related to the immune system of lactating ewes during the peripartum period. Chios ewes were fed either a basal diet (BD) (Control, n = 51) or the BD supplemented with 2 g of a live yeast product/animal (ActiSaf, n = 53) from 6 weeks prepartum to 6 weeks postpartum. Fatty acid profile, oxidative, and immune status were assessed in eight ewes per treatment at 3 and 6 weeks postpartum. The β-hydroxybutyric acid concentration in blood of ActiSaf fed ewes was significantly lower in both pre- and postpartum periods. A numerical increase was found for the milk yield, fat 6% corrected milk (Fat corrected milk (FCM6%)), and energy corrected milk yield (ECM) in ActiSaf fed ewes, while daily milk fat production tended to increase. The proportions of C15:0, C16:1, C18:2n6t, and C18:3n3 fatty acids were increased in milk of ActiSaf fed ewes, while C18:0 was decreased. Glutathione reductase in blood plasma was increased (p = 0.004) in ActiSaf fed ewes, while total antioxidant capacity measured by 2,2'-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) method was decreased (p < 0.001). Higher ABTS values were found in the milk of the treated group. The relative transcript levels of CCL5, CXCL16, and IL8 were suppressed, while that of IL1B tended to decrease (p = 0.087) in monocytes of ActiSaf fed ewes. In conclusion, the dietary supplementation of ewes with S. cerevisiae, improved the energy utilization and tended to enhance milk performance with simultaneous suppression on mRNA levels of pro-inflammatory genes during the peripartum period.
Collapse
|
18
|
Li Y, Shen Y, Niu J, Guo Y, Pauline M, Zhao X, Li Q, Cao Y, Bi C, Zhang X, Wang Z, Gao Y, Li J. Effect of active dry yeast on lactation performance, methane production, and ruminal fermentation patterns in early-lactating Holstein cows. J Dairy Sci 2020; 104:381-390. [PMID: 33272580 DOI: 10.3168/jds.2020-18594] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/07/2020] [Indexed: 11/19/2022]
Abstract
This study was conducted to examine the effect of active dry yeast (ADY) supplementation on lactation performance, ruminal fermentation patterns, and CH4 emissions and to determine an optimal ADY dose. Sixty Holstein dairy cows in early lactation (52 ± 1.2 DIM) were used in a randomized complete design. Cows were blocked by parity (2.1 ± 0.2), milk production (35 ± 4.6 kg/d), and body weight (642 ± 53 kg) and assigned to 1 of 4 treatments. Cows were fed ADY at doses of 0, 10, 20, or 30 g/d per head for 91 d, with 84 d for adaptation and 7 d for sampling. Although dry matter intake was not affected by ADY supplementation, the yield of actual milk, 4% fat-corrected milk, milk fat yield, and feed efficiency increased quadratically with increasing ADY supplementation. Yields of milk protein and lactose increased linearly with increasing ADY doses, whereas milk urea nitrogen concentration and somatic cell count decreased quadratically. Ruminal pH and ammonia concentration were not affected by ADY supplementation, whereas ruminal concentration of total volatile fatty acid increased quadratically. Digestibility of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, nonfiber carbohydrate, and crude protein increased quadratically with increasing ADY supplementation. Supplementation of ADY did not affect blood concentration of total protein, triglyceride, aspartate aminotransferase, and alanine aminotransferase, whereas blood urea nitrogen, cholesterol, and nonesterified fatty acid concentrations decreased quadratically with increasing ADY supplementation. Methane production was not affected by ADY supplementation when expressed as grams per day or per kilogram of actual milk yield, dry matter intake, digested organic matter, and digested nonfiber carbohydrate, whereas a trend of linear and quadratic decrease of CH4 production was observed when expressed as grams per kilogram of fat-corrected milk and digested neutral detergent fiber. In conclusion, feeding ADY to early-lactating cows improved lactation performance by increasing nutrient digestibility. The optimal ADY dose should be 20 g/d per head.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.
| | - Jiankang Niu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Yanfei Guo
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Mirielle Pauline
- Department of Pediatrics, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Xiaojing Zhao
- Baoding Vocational and Technical College, Baoding 071000, Hebei, P.R. China
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Hebei Cattle and Sheep Embryo Engineering Technology Research Center, Baoding 071001, Hebei, P.R. China
| | - Yufeng Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Hebei Cattle and Sheep Embryo Engineering Technology Research Center, Baoding 071001, Hebei, P.R. China
| | - Chongliang Bi
- College of Agriculture and Forestry Science, Linyi University, Linyi 276005, Shandong, P.R. China
| | - Xiujiang Zhang
- Baoding Husbandry Work Station, Baoding 071001, Hebei, P.R. China
| | - Zhonghua Wang
- Shandong Agricultural University, Taian 271000, Shandong, P.R. China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Hebei Cattle and Sheep Embryo Engineering Technology Research Center, Baoding 071001, Hebei, P.R. China.
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Hebei Cattle and Sheep Embryo Engineering Technology Research Center, Baoding 071001, Hebei, P.R. China
| |
Collapse
|
19
|
Ran T, Jiao P, AlZahal O, Xie X, Beauchemin KA, Niu D, Yang W. Fecal bacterial community of finishing beef steers fed ruminally protected and non-protected active dried yeast. J Anim Sci 2020; 98:skaa058. [PMID: 32068850 PMCID: PMC7105065 DOI: 10.1093/jas/skaa058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Our previous study suggested that supplementation of high-grain diets with ruminally protected and non-protected active dried yeast (ADY) may potentially reduce manure pathogen excretion by feedlot cattle. We hypothesized that feeding ruminally protected ADY might change the fecal bacterial community of finishing cattle. The objective of this study was to investigate the effects of feeding ruminally protected and non-protected ADY to finishing beef steers on their fecal bacterial community. Fresh fecal samples were collected on day 56 from 50 steers fed one of five treatments: 1) control (no monensin, tylosin, or ADY), 2) antibiotics (ANT, 330 mg monensin + 110 mg tylosin·steer-1d-1), 3) ADY (1.5 g·steer-1d-1), 4) encapsulated ADY (EDY; 3 g·steer-1d-1), and 5) a mixture of ADY and EDY (MDY; 1.5 g ADY + 3 g EDY·steer-1d-1). Bacterial DNA was extracted from fecal samples and sequenced using a MiSeq high-throughput sequencing platform. A total number of 2,128,772 high-quality V4 16S rRNA sequences from 50 fecal samples were analyzed, and 1,424 operational taxonomic units (OTU) were detected based on 97% nucleotide sequence identity among reads, with 769 OTU shared across the five treatments. Alpha diversity indices, including species observed, Chao estimate, abundance-based coverage estimator, Shannon, Simpson, and coverage, did not differ among treatments, and principal coordinate analysis revealed a high similarity among treatments without independent distribution. Bacteroidetes and Firmicutes were dominant phyla in the fecal bacterial community for all treatments, with a tendency (P < 0.10) for greater relative abundance of Bacteroidetes but lesser Firmicutes with ANT, EDY, and MDY compared with control steers. Prevotella was the dominant genus in all treatments and steers supplemented with ANT, EDY, and MDY had greater (P < 0.05) relative abundance of Prevotella than control steers, but lesser (P < 0.03) relative abundance of Oscillospira. No differences between ADY and control were observed for the aforementioned variables. Fecal starch contents were not different among treatments, but the relative abundance of Bacteroidetes, as well as Prevotella at genera level, tended (P < 0.06) to be positively correlated to fecal starch content. We conclude that supplementing ruminally protected or non-protected ADY or ANT had no effect on diversity and richness of fecal bacteria of finishing beef cattle, whereas feeding protected ADY or ANT to finishing beef steers altered the dominant fecal bacteria at phylum and genus levels. Therefore, supplementation of ruminally protected ADY may potentially improve intestinal health by stimulating the relative abundance of Prevotella.
Collapse
Affiliation(s)
- Tao Ran
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
- Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- College of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | | | - Xiaolai Xie
- College of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Dongyan Niu
- College of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Wenzhu Yang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| |
Collapse
|
20
|
Chaucheyras-Durand F, Ameilbonne A, Auffret P, Bernard M, Mialon MM, Dunière L, Forano E. Supplementation of live yeast based feed additive in early life promotes rumen microbial colonization and fibrolytic potential in lambs. Sci Rep 2019; 9:19216. [PMID: 31844130 PMCID: PMC6914811 DOI: 10.1038/s41598-019-55825-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Rumen microbiota is of paramount importance for ruminant digestion efficiency as the microbial fermentations supply the host animal with essential sources of energy and nitrogen. Early separation of newborns from the dam and distribution of artificial milk (Artificial Milking System or AMS) could impair rumen microbial colonization, which would not only affect rumen function but also have possible negative effects on hindgut homeostasis, and impact animal health and performance. In this study, we monitored microbial communities in the rumen and the feces of 16 lambs separated from their dams from 12 h of age and artificially fed with milk replacer and starter feed from d8, in absence or presence of a combination of the live yeast Saccharomyces cerevisiae CNCM I-1077 and selected yeast metabolites. Microbial groups and targeted bacterial species were quantified by qPCR and microbial diversity and composition were assessed by 16S rDNA amplicon sequencing in samples collected from birth to 2 months of age. The fibrolytic potential of the rumen microbiota was analyzed with a DNA microarray targeting genes coding for 8 glycoside hydrolase (GH) families. In Control lambs, poor establishment of fibrolytic communities was observed. Microbial composition shifted as the lambs aged. The live yeast supplement induced significant changes in relative abundances of a few bacterial OTUs across time in the rumen samples, among which some involved in crucial rumen function, and favored establishment of Trichostomatia and Neocallimastigaceae eukaryotic families. The supplemented lambs also harbored greater abundances in Fibrobacter succinogenes after weaning. Microarray data indicated that key cellulase and hemicellulase encoding-genes were present from early age in the rumen and that in the Supplemented lambs, a greater proportion of hemicellulase genes was present. Moreover, a higher proportion of GH genes from ciliate protozoa and fungi was found in the rumen of those animals. This yeast combination improved microbial colonization in the maturing rumen, with a potentially more specialized ecosystem towards efficient fiber degradation, which suggests a possible positive impact on lamb gut development and digestive efficiency.
Collapse
Affiliation(s)
- Frédérique Chaucheyras-Durand
- Lallemand SAS, 31702, Blagnac, France. .,Université Clermont Auvergne, INRA, UMR 454 MEDIS, F-63000, Clermont-Ferrand, France.
| | - Aurélie Ameilbonne
- Lallemand SAS, 31702, Blagnac, France.,Université Clermont Auvergne, INRA, UMR 454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Pauline Auffret
- Université Clermont Auvergne, INRA, UMR 454 MEDIS, F-63000, Clermont-Ferrand, France.,Ifremer, UMR, 241 EIO, Tahiti, French Polynesia
| | - Mickaël Bernard
- UE 1414 Herbipôle, INRA Auvergne Rhône Alpes, F-63122, Saint-Genès Champanelle, France
| | - Marie-Madeleine Mialon
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR 1213 Herbivores, F-63000, Clermont-Ferrand, France
| | - Lysiane Dunière
- Lallemand SAS, 31702, Blagnac, France.,Université Clermont Auvergne, INRA, UMR 454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, UMR 454 MEDIS, F-63000, Clermont-Ferrand, France
| |
Collapse
|
21
|
Review: Are there indigenous Saccharomyces in the digestive tract of livestock animal species? Implications for health, nutrition and productivity traits. Animal 2019; 14:22-30. [PMID: 31303186 DOI: 10.1017/s1751731119001599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
All livestock animal species harbour complex microbial communities throughout their digestive tract that support vital biochemical processes, thus sustaining health and productivity. In part as a consequence of the strong and ancient alliance between the host and its associated microbes, the gut microbiota is also closely related to productivity traits such as feed efficiency. This phenomenon can help researchers and producers develop new and more effective microbiome-based interventions using probiotics, also known as direct-fed microbials (DFMs), in Animal Science. Here, we focus on one type of such beneficial microorganisms, the yeast Saccharomyces. Saccharomyces is one of the most widely used microorganisms as a DFM in livestock operations. Numerous studies have investigated the effects of dietary supplementation with different species, strains and doses of Saccharomyces (mostly Saccharomyces cerevisiae) on gut microbial ecology, health, nutrition and productivity traits of several livestock species. However, the possible existence of Saccharomyces which are indigenous to the animals' digestive tract has received little attention and has never been the subject of a review. We for the first time provide a comprehensive review, with the objective of shedding light into the possible existence of indigenous Saccharomyces of the digestive tract of livestock. Saccharomyces cerevisiae is a nomadic yeast able to survive in a broad range of environments including soil, grass and silages. Therefore, it is very likely that cattle and other animals have been in direct contact with this and other types of Saccharomyces throughout their entire existence. However, to date, the majority of animal scientists seem to agree that the presence of Saccharomyces in any section of the gut only reflects dietary contamination; in other words, these are foreign organisms that are only transiently present in the gut. Importantly, this belief (i.e. that Saccharomyces come solely from the diet) is often not well grounded and does not necessarily hold for all the many other groups of microbes in the gut. In addition to summarizing the current body of literature involving Saccharomyces in the digestive tract, we discuss whether the beneficial effects associated with the consumption of Saccharomyces may be related to its foreign origin, though this concept may not necessarily satisfy the theories that have been proposed to explain probiotic efficacy in vivo. This novel review may prove useful for biomedical scientists and others wishing to improve health and productivity using Saccharomyces and other beneficial microorganisms.
Collapse
|
22
|
Sheikh GG, Ganai AM, Ahmad Sheikh A, Mir DM. Rumen microflora, fermentation pattern and microbial enzyme activity in sheep fed paddy straw based complete feed fortified with probiotics. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1644019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Gowher Gull Sheikh
- Division of Animal Nutrition, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Abdul Majid Ganai
- Division of Animal Nutrition, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Aasif Ahmad Sheikh
- Division of Veterinary Physiology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Danish Masood Mir
- Division of Animal Nutrition, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
23
|
Kiros TG, Agyekum AK, Wang J, D’Inca R, Beaulieu DA, Auclair E, Van Kessel AG. Supplementation with live yeast increases rate and extent of in vitro fermentation of nondigested feed ingredients by fecal microbiota. J Anim Sci 2019; 97:1806-1818. [PMID: 30796802 PMCID: PMC6447280 DOI: 10.1093/jas/skz073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/20/2019] [Indexed: 11/14/2022] Open
Abstract
Two studies were conducted to investigate the effect of live yeast (LY) on the in vitro fermentation characteristics of wheat, barley, corn, soybean meal (SBM), canola meal, and distillers dried grains with solubles (DDGS). In Study 1, LY yeast was added directly to in vitro fermentations inoculated with feces from lactating sows, whereas as in study 2, feces collected from lactating sows fed LY as a daily supplement was used. Selected feedstuffs were digested and the residue added to separate replicated (n = 3) fermentation reactions. Study 1 was conducted in two blocks, whereas study 2 was conducted using feces collected after a period of 3 (Exp. 1) or 4 wk (Exp. 2) of LY supplementation. Accumulated gas produced over 72 h was modeled for each substrate and the kinetics parameters compared between LY and control groups. The molar ratio of the volatile fatty acids (VFAs) produced in vitro were also compared at 12 and 72 h of incubation. In study 1, in vitro addition of yeast increased (P < 0.001) the rate of gas production (Rmax). However, a yeast × substrate effect (P < 0.05) observed for total gas accumulated (A), time to half asymptote (B), and time required to reach maximum rate of fermentation (Tmax) suggested that yeast-mediated increases in extent and rate of fermentation varied by substrate. Greater total gas production was observed only for corn and SBM, associated with greater B and Tmax. Supplementation with LY appeared to increase A and Rmax although with variation between experiments and substrates. In Exp. 1, LY decreased (P < 0.05) B and Tmax. However, a yeast × substrate effect (P < 0.05) was observed for only A (for wheat, barley, corn, and corn DDGS) and Rmax (wheat, barley, corn, and wheat DDGS). In Exp. 2, LY increased (P < 0.0001) A and decreased B. However, an interaction (P < 0.05) with substrates was observed for Rmax (except SBM) and Tmax. With exception of the DDGS samples, LY supplementation increased (P < 0.05) VFA production at 12 and 72 h of incubation. Yeast increased (P < 0.05) the molar ratios of acetic acid and branch-chain fatty acids at 12 h of incubation; however, this response was more variable by substrate at 72 h. In conclusion, LY supplementation increased the rate and extent of in vitro fermentation of a variety of substrates prepared from common feedstuffs. Greater effects were observed when LY was fed to sows than added directly in vitro, suggesting effects on fermentation were not mediated directly.
Collapse
Affiliation(s)
- Tadele G Kiros
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
- Phileo-Lesaffre Animal Care, rue Gabriel Péri, Marcq-en-Baroeul, France
| | - Atta Kofi Agyekum
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jing Wang
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Romain D’Inca
- Phileo-Lesaffre Animal Care, rue Gabriel Péri, Marcq-en-Baroeul, France
| | - Denise A Beaulieu
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Eric Auclair
- Phileo-Lesaffre Animal Care, rue Gabriel Péri, Marcq-en-Baroeul, France
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
24
|
Adesogan AT, Arriola KG, Jiang Y, Oyebade A, Paula EM, Pech-Cervantes AA, Romero JJ, Ferraretto LF, Vyas D. Symposium review: Technologies for improving fiber utilization. J Dairy Sci 2019; 102:5726-5755. [PMID: 30928262 DOI: 10.3168/jds.2018-15334] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The forage lignocellulosic complex is one of the greatest limitations to utilization of the nutrients and energy in fiber. Consequently, several technologies have been developed to increase forage fiber utilization by dairy cows. Physical or mechanical processing techniques reduce forage particle size and gut fill and thereby increase intake. Such techniques increase the surface area for microbial colonization and may increase fiber utilization. Genetic technologies such as brown midrib mutants (BMR) with less lignin have been among the most repeatable and practical strategies to increase fiber utilization. Newer BMR corn hybrids are better yielding than the early hybrids and recent brachytic dwarf BMR sorghum hybrids avoid lodging problems of early hybrids. Several alkalis have been effective at increasing fiber digestibility. Among these, ammoniation has the added benefit of increasing the nitrogen concentration of the forage. However, few of these have been widely adopted due to the cost and the caustic nature of the chemicals. Urea treatment is more benign but requires sufficient urease and moisture for efficacy. Ammonia-fiber expansion technology uses high temperature, moisture, and pressure to degrade lignocellulose to a greater extent than ammoniation alone, but it occurs in reactors and is therefore not currently usable on farms. Biological technologies for increasing fiber utilization such as application of exogenous fibrolytic enzymes, live yeasts, and yeast culture have had equivocal effects on forage fiber digestion in individual studies, but recent meta-analyses indicate that their overall effects are positive. Nonhydrolytic expansin-like proteins act in synergy with fibrolytic enzymes to increase fiber digestion beyond that achieved by the enzyme alone due to their ability to expand cellulose microfibrils allowing greater enzyme penetration of the cell wall matrix. White-rot fungi are perhaps the biological agents with the greatest potential for lignocellulose deconstruction, but they require aerobic conditions and several strains degrade easily digestible carbohydrates. Less ruminant nutrition research has been conducted on brown rot fungi that deconstruct lignocellulose by generating highly destructive hydroxyl radicals via the Fenton reaction. More research is needed to increase the repeatability, efficacy, cost effectiveness, and on-farm applicability of technologies for increasing fiber utilization.
Collapse
Affiliation(s)
- A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611.
| | - K G Arriola
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Y Jiang
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - A Oyebade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - E M Paula
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - A A Pech-Cervantes
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - J J Romero
- Animal and Veterinary Sciences Program, School of Food and Agriculture, University of Maine, Orono 04469
| | - L F Ferraretto
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| |
Collapse
|
25
|
Garcia-Mazcorro JF, Rodriguez-Herrera MV, Marroquin-Cardona AG, Kawas JR. The health enhancer yeast Saccharomyces cerevisiae in two types of commercial products for animal nutrition. Lett Appl Microbiol 2019; 68:472-478. [PMID: 30801772 DOI: 10.1111/lam.13141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 11/28/2022]
Abstract
The health enhancer yeast Saccharomyces cerevisiae (SC) is widely used in diets for different animals. Two main types of SC-based products are commercially available, one containing live yeasts and one containing SC fermentation by-products, which are supposedly not dependent on live yeasts for their physiological effects in vivo. Culture-based techniques were applied to study yeasts in two types of commercial products: a product containing live SC (LSC) and a SC fermentation product (SCFP). Three temperatures (25, 30 and 39°C) and two pH levels (4 and 7) were tested. The product with LSC contained an average of 1·21 × 109 colony-forming units (CFUs) of yeasts per g contents (min: 1 × 108 , max: 3 × 109 ). In contrast, the SCFP contained an average of 4·67 × 103 (min: 3 × 102 , max: 1·9 × 104 ) CFUs per g contents (c. 1 million times less than the concentration of yeasts in the product with LSC). Both temperature and pH level affected the number of CFUs but this effect differed between the two products. Biochemical tests identified the two yeasts as SC, which differed in their ability to ferment maltose (negative in the SCFP). This report encourages more research on commercial microbial strains for animal nutrition that can lead to a better understanding of their mode of action in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY: Probiotics (or direct fed microbials) are increasingly popular in Animal Nutrition. Different products containing live micro-organisms or microbial-derived products are commercially available to enhance health and boost commercial traits. The characteristics of these products dictate their physiological effects and determine their potential to increase profitability from livestock. For the first time, this report presents data about the numbers and phenotype of the health enhancer Saccharomyces cerevisiae in two widely available commercial products in Animal Nutrition. These findings may be useful for scientists and producers around the globe and have the potential to open up novel venues for research.
Collapse
Affiliation(s)
- J F Garcia-Mazcorro
- Research and Development, MNA de México, San Nicolás de los Garza, México.,Faculty of Veterinary Medicine, Universidad Autónoma de Nuevo León, General Escobedo, México
| | | | - A G Marroquin-Cardona
- Department of Physiology, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Autónoma de Nuevo León, General Escobedo, México
| | - J R Kawas
- Faculty of Agronomy, Universidad Autónoma de Nuevo León, General Escobedo, México
| |
Collapse
|
26
|
Bhatt R, Sahoo A. Effect of adding formaldehyde treated protein alone and with Saccharomyces cerevisiae in diet on plane of nutrition, growth performance, rumen fermentation and microbial protein synthesis of finisher lambs. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Bhatt RS, Sahoo A, Karim SA, Gadekar YP. Effects of Saccharomyces cerevisiae and rumen bypass-fat supplementation on growth, nutrient utilisation, rumen fermentation and carcass traits of lambs. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an14950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Forty-eight weaned (3 months of age) lambs were randomly distributed in a 2 × 2 factorial design to assess the effect of rumen bypass-fat (RBF) feeding (with and without) and probiotic (Saccharomyces cerevisiae) supplementation (with and without) on growth, nutrient utilisation, rumen metabolic profile and carcass traits during the post-weaning phase (3–6 months of age) of life. The four experimental groups, each having 12 lambs (six male and six female), were thus designated as control (C, basic diet without RBF and probiotic), basic diet without RBF but with probiotic (C + P), basic diet with RBF but without probiotic (C + RBF) and basic diet with RBF and probiotic (C + P + RBF). The basic diet consisted of ad libitum concentrates and dry pala (Zizyphus nummularia) leaves. Additionally, each lamb received 500 g of green ardu (Ailanthus excelsa) leaves. The RBF was calcium salt of fatty acids (source: rice bran oil) and fed at 40 g per kg of concentrate and the probiotic was fed at 9.0 × 107 colony-forming units (CFU) per kg bodyweight. Weekly bodyweights were recorded to assess the growth performance of lambs and revealed significantly (P = 0.026) higher gain in weight and average daily gain in RBF-supplemented groups independent of probiotic supplementation. The intake of concentrate was higher (P = 0.025) in RBF-fed groups and lead to increased (P = 0.028) total daily dry-matter intake and higher (P < 0.05) plane of nutrition (more metabolisable energy and a higher digestible crude protein intake) irrespective of probiotic supplementation. The feed conversion ratio (FCR) was narrower (P < 0.05) in RBF- and probiotic-supplemented animals. Digestibility of organic matter, ether extract and acid detergent fibre increased and higher nitrogen balance was observed in lambs fed with RBF. Probiotic supplementation showed a positive effect (P < 0.05) on digestibility of acid detergent fibre. Ruminal metabolic profile was assessed at the end of the experimental feeding and it showed higher pH and ciliate protozoa population with RBF, independent of probiotic supplementation. Urinary purine derivatives were measured during the metabolic trial at the end of the experiment, which showed higher allantoin excretion leading to increased microbial nitrogen flow with RBF supplementation. Pre-slaughter weight, loin eye area and lean percentage were higher with a lower bone percentage and cooking loss, showing positive carcass attributes in RBF-fed groups, and the effect of probiotic was non-significant. It is concluded that RBF supplementation enhanced higher intake and utilisation of nutrients that supported improved weight gain, FCR and carcass traits, while Saccharomyces cerevisiae feeding had a positive effect on fibre digestibility and FCR, possibly by modifying the gut environment.
Collapse
|
28
|
Zhao XH, Zhou S, Bao LB, Song XZ, Ouyang KH, Xu LJ, Pan K, Liu CJ, Qu MR. Response of rumen bacterial diversity and fermentation parameters in beef cattle to diets containing supplemental daidzein. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1404943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiang H. Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shan Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lin B. Bao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiao Z. Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ke H. Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lan J. Xu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chan J. Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ming R. Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
29
|
Jiang Y, Ogunade I, Arriola K, Qi M, Vyas D, Staples C, Adesogan A. Effects of the dose and viability of Saccharomyces cerevisiae. 2. Ruminal fermentation, performance of lactating dairy cows, and correlations between ruminal bacteria abundance and performance measures. J Dairy Sci 2017; 100:8102-8118. [DOI: 10.3168/jds.2016-12371] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/07/2017] [Indexed: 02/02/2023]
|
30
|
Ambriz-Vilchis V, Jessop N, Fawcett R, Webster M, Shaw D, Walker N, Macrae A. Effect of yeast supplementation on performance, rumination time, and rumen pH of dairy cows in commercial farm environments. J Dairy Sci 2017; 100:5449-5461. [DOI: 10.3168/jds.2016-12346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/28/2017] [Indexed: 11/19/2022]
|
31
|
COSTA FAA, FERNANDES LB, GARCIA VP, SOARES WVB, FRANZOLIN R. Degradabilidade de gramíneas, fermentação e protozoários no rúmen de bovinos em dietas com diferentes aditivos. REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2017. [DOI: 10.1590/s1519-99402017000200006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Quatro bovinos, com fistulas ruminais, foram alimentados em Quadrado Latino com os tratamentos compreendendo a adição diária no rúmen de: levedura (5g), monensina(200mg), Fator P (3g) e controle. Foram determinadas a Degradabilidade in situ de três capins tropicais (Tifton-85, Brachiaria e Mombaça e silagem de Mombaça), o pH ruminal, produção de ácidos graxos voláteis, N-amoniacal e população de protozoários. Não foi observada interação significativa entre tratamentos e capins e diferenças significativas entre os tratamentos, exceto na fração b da Brachiaria e silagem de Mombaça. O Mombaça apresentou alta solubilidade da MS e da FDN em relação aos demais capins e a Brachiaria maior solubilidade da PB. O processamento do Mombaça na forma de silagem promoveu redução fração solúvel e degradabilidades potencial (DE) e efetiva (DE) da MS e FDN e aumento da fração solúvel e DE da PB. A monensina promoveu menor produção de ácido acético, maior de propiônico e menor acético:propiônico em relação a controle. A levedura e Fator P apresentaram maior concentração total de AGCC que a monensina e controle. A monensina promoveu aumento de protozoários Diplodiniinae em relação à dieta controle, mas não houve diferença na contagem de Entodinium e de total de ciliados entre os tratamentos. Capins tropicais na forma de feno e de silagem apresentam diferentes degradabilidade ruminal não sendo influenciados por aditivos na dieta, com exceção da monensina no capim Brachiaria e silagem de Mombaça, mas estes afetam a fermentação e a população de protozoários no rúmen.
Collapse
|
32
|
Mohammed R, Vyas D, Yang W, Beauchemin K. Changes in the relative population size of selected ruminal bacteria following an induced episode of acidosis in beef heifers receiving viable and non-viable active dried yeast. J Appl Microbiol 2017; 122:1483-1496. [DOI: 10.1111/jam.13451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/06/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Affiliation(s)
- R. Mohammed
- Lethbridge Research and Development Center; Agriculture and Agri-Food Canada; Lethbridge AB Canada
| | - D. Vyas
- Lethbridge Research and Development Center; Agriculture and Agri-Food Canada; Lethbridge AB Canada
| | - W.Z. Yang
- Lethbridge Research and Development Center; Agriculture and Agri-Food Canada; Lethbridge AB Canada
| | - K.A. Beauchemin
- Lethbridge Research and Development Center; Agriculture and Agri-Food Canada; Lethbridge AB Canada
| |
Collapse
|
33
|
Abd El-Tawab M, Youssef I, Bakr H, Fthenakis G, Giadinis N. Role of probiotics in nutrition and health of small ruminants. Pol J Vet Sci 2016; 19:893-906. [DOI: 10.1515/pjvs-2016-0114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractSmall ruminants represent an important economic source in small farm systems and agriculture. Feed is the main component of livestock farming, which has gained special attention to improve animal performance. Many studies have been done to improve feed utilisation through addition of feed additives. For a long period, antibiotics have been widely used as growth promoters in livestock diets. Due to their ban in many countries, search for alternative feed additives has been intensified. Probiotics are one of these alternatives recognised to be safe to the animals. Use of probiotics in small ruminant nutrition has been confirmed to improve animal health, productivity and immunity. Probiotics improved growth performance through enhancing of rumen microbial ecosystem, nutrient digestibility and feed conversion rate. Moreover, probiotics have been reported to stabilise rumen pH, increase volatile fatty acids production and to stimulate lactic acid utilising protozoa, resulting in a highly efficient rumen function. Furthermore, use of probiotics has been found to increase milk production and can reduce incidence of neonatal diarrhea and mortality. However, actual mechanisms through which probiotics exert these functions are not known. Since research on application of probiotics in small ruminants is scarce, the present review attempts to discuss the potential roles of this class of feed additives on productive performance and health status of these animals.
Collapse
|
34
|
Technical note: use of internal transcribed spacer for ruminal yeast identification in dairy cows. Animal 2016; 10:1949-1954. [PMID: 27133003 DOI: 10.1017/s1751731116000768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular techniques are important tools for microbiological studies in different habitats, and the internal transcribed spacer (ITS) has been proved to be useful for analyzing fungal diversity. The aim of this study was to use the ITS region to generate ruminal yeast profile and to identify ruminal yeast. DNA from ruminal digesta was extracted to amplify the ribosomal ITS region. The profile from the PCR products was visualized and the excised bands from the profile were identified as the genera Millerozyma, Pichia, Rhizomucor and Hyphopichia. Overall, the ITS resulted to be a simple, fast and sensitive approach that allowed profiling and identification of ruminal yeast that have not been previously described (Millerozyma and Hyphopichia) in the rumen microbial community.
Collapse
|
35
|
Malekkhahi M, Tahmasbi A, Naserian A, Danesh-Mesgaran M, Kleen J, AlZahal O, Ghaffari M. Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2015.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Roto SM, Rubinelli PM, Ricke SC. An Introduction to the Avian Gut Microbiota and the Effects of Yeast-Based Prebiotic-Type Compounds as Potential Feed Additives. Front Vet Sci 2015; 2:28. [PMID: 26664957 PMCID: PMC4672232 DOI: 10.3389/fvets.2015.00028] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/20/2015] [Indexed: 01/30/2023] Open
Abstract
The poultry industry has been searching for a replacement for antibiotic growth promoters in poultry feed as public concerns over the use of antibiotics and the appearance of antibiotic resistance has become more intense. An ideal replacement would be feed amendments that could eliminate pathogens and disease while retaining economic value via improvements on body weight and feed conversion ratios. Establishing a healthy gut microbiota can have a positive impact on growth and development of both body weight and the immune system of poultry while reducing pathogen invasion and disease. The addition of prebiotics to poultry feed represents one such recognized way to establish a healthy gut microbiota. Prebiotics are feed additives, mainly in the form of specific types of carbohydrates that are indigestible to the host while serving as substrates to select beneficial bacteria and altering the gut microbiota. Beneficial bacteria in the ceca easily ferment commonly studied prebiotics, producing short-chain fatty acids, while pathogenic bacteria and the host are unable to digest their molecular bonds. Prebiotic-like substances are less commonly studied, but show promise in their effects on the prevention of pathogen colonization, improvements on the immune system, and host growth. Inclusion of yeast and yeast derivatives as probiotic and prebiotic-like substances, respectively, in animal feed has demonstrated positive associations with growth performance and modification of gut morphology. This review will aim to link together how such prebiotics and prebiotic-like substances function to influence the native and beneficial microorganisms that result in a diverse and well-developed gut microbiota.
Collapse
Affiliation(s)
- Stephanie M. Roto
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Peter M. Rubinelli
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Steven C. Ricke
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
37
|
Bayat AR, Kairenius P, Stefański T, Leskinen H, Comtet-Marre S, Forano E, Chaucheyras-Durand F, Shingfield KJ. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J Dairy Sci 2015; 98:3166-81. [PMID: 25726099 DOI: 10.3168/jds.2014-7976] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
Abstract
The potential of dietary supplements of 2 live yeast strains (Saccharomyces cerevisiae) or camelina oil to lower ruminal methane (CH4) and carbon dioxide (CO2) production and the associated effects on animal performance, rumen fermentation, rumen microbial populations, nutrient metabolism, and milk fatty acid (FA) composition of cows fed grass silage-based diets were examined. Four Finnish Ayrshire cows (53±7 d in milk) fitted with rumen cannula were used in a 4×4 Latin square with four 42-d periods. Cows received a basal total mixed ration (control treatment) with a 50:50 forage-to-concentrate ratio [on a dry matter (DM) basis] containing grass silage, the same basal total mixed ration supplemented with 1 of 2 live yeasts, A or B, administered directly in the rumen at 10(10) cfu/d (treatments A and B), or supplements of 60g of camelina oil/kg of diet DM that replaced concentrate ingredients in the basal total mixed ration (treatment CO). Relative to the control, treatments A and B had no effects on DM intake, rumen fermentation, ruminal gas production, or apparent total-tract nutrient digestibility. In contrast, treatment CO lowered DM intake and ruminal CH4 and CO2 production, responses associated with numerical nonsignificant decreases in total-tract organic matter digestibility, but no alterations in rumen fermentation characteristics or changes in the total numbers of rumen bacteria, methanogens, protozoa, and fungi. Compared with the control, treatment CO decreased the yields of milk, milk fat, lactose, and protein. Relative to treatment B, treatment CO improved nitrogen utilization due to a lower crude protein intake. Treatment A had no influence on milk FA composition, whereas treatment B increased cis-9 10:1 and decreased 11-cyclohexyl 11:0 and 24:0 concentrations. Treatment CO decreased milk fat 8:0 to 16:0 and total saturated FA, and increased 18:0, 18:1, 18:2, conjugated linoleic acid, 18:3n-3, and trans FA concentrations. Decreases in ruminal CH4 production to treatment CO were related, at least in part to lowered DM intake, whereas treatments had no effect on ruminal CH4 emission intensity (g/kg of digestible organic matter intake or milk yield). Results indicated that live yeasts A and B had no influence on animal performance, ruminal gas production, rumen fermentation, or nutrient utilization in cows fed grass silage-based diets. Dietary supplements of camelina oil decreased ruminal CH4 and CO2 production, but also lowered the yields of milk and milk constituents due to an adverse effect on intake.
Collapse
Affiliation(s)
- A R Bayat
- Nutritional Physiology, Green Technology, Natural Resources Institute Finland (Luke), FI 31600, Jokioinen, Finland.
| | - P Kairenius
- Nutritional Physiology, Green Technology, Natural Resources Institute Finland (Luke), FI 31600, Jokioinen, Finland
| | - T Stefański
- Nutritional Physiology, Green Technology, Natural Resources Institute Finland (Luke), FI 31600, Jokioinen, Finland
| | - H Leskinen
- Nutritional Physiology, Green Technology, Natural Resources Institute Finland (Luke), FI 31600, Jokioinen, Finland
| | - S Comtet-Marre
- INRA, Microbiology unit UR454, CR Clermont Ferrand/Theix, 63122 St-Genes-Champanelle, France
| | - E Forano
- INRA, Microbiology unit UR454, CR Clermont Ferrand/Theix, 63122 St-Genes-Champanelle, France
| | - F Chaucheyras-Durand
- INRA, Microbiology unit UR454, CR Clermont Ferrand/Theix, 63122 St-Genes-Champanelle, France; Lallemand Animal Nutrition, 19 rue des Briquetiers, BP59, 31702 Blagnac Cedex, France
| | - K J Shingfield
- Nutritional Physiology, Green Technology, Natural Resources Institute Finland (Luke), FI 31600, Jokioinen, Finland
| |
Collapse
|
38
|
AlZahal O, Dionissopoulos L, Laarman A, Walker N, McBride B. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. J Dairy Sci 2014; 97:7751-63. [DOI: 10.3168/jds.2014-8212] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022]
|
39
|
Ghoneem WM, Mahmoud A. Effect of In-activated and Dried Yeast on Productive Performance of Barki
Lambs. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajava.2014.664.673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Repeated acidosis challenges and live yeast supplementation shape rumen microbiota and fermentations and modulate inflammatory status in sheep. Animal 2013; 7:1910-20. [DOI: 10.1017/s1751731113001705] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
41
|
Al Ibrahim R, Gath V, Campion D, McCarney C, Duffy P, Mulligan F. The effect of abrupt or gradual introduction to pasture after calving and supplementation with Saccharomyces cerevisiae (Strain 1026) on ruminal pH and fermentation in early lactation dairy cows. Anim Feed Sci Technol 2012. [DOI: 10.1016/j.anifeedsci.2012.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Soren NM, Tripathi MK, Bhatt RS, Karim SA. Effect of yeast supplementation on the growth performance of Malpura lambs. Trop Anim Health Prod 2012; 45:547-54. [DOI: 10.1007/s11250-012-0257-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2012] [Indexed: 11/28/2022]
|
43
|
Suharja AA, Henriksson A, Liu SQ. Impact ofSaccharomyces Cerevisiaeon Viability of ProbioticLactobacillus Rhamnosusin Fermented Milk under Ambient Conditions. J FOOD PROCESS PRES 2012. [DOI: 10.1111/j.1745-4549.2012.00780.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anggita A.S. Suharja
- Food Science and Technology Programme; Department of Chemistry; 4 Science Drive 4; National University of Singapore; Singapore 117543
| | | | - Shao-Quan Liu
- Food Science and Technology Programme; Department of Chemistry; 4 Science Drive 4; National University of Singapore; Singapore 117543
| |
Collapse
|
44
|
Sales J. Effects of Saccharomyces cerevisiae supplementation on ruminal parameters, nutrient digestibility and growth in sheep: A meta-analysis. Small Rumin Res 2011. [DOI: 10.1016/j.smallrumres.2011.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Urubschurov V, Janczyk P, Souffrant WB, Freyer G, Zeyner A. Establishment of intestinal microbiota with focus on yeasts of unweaned and weaned piglets kept under different farm conditions. FEMS Microbiol Ecol 2011; 77:493-502. [DOI: 10.1111/j.1574-6941.2011.01129.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
46
|
Boonnop K, Wanapat M, Navanukraw C. Replacement of Soybean Meal by Yeast Fermented-Cassava Chip Protein (YEFECAP) in Concentrate Diets Fed on Rumen Fermentation, Microbial Population and Nutrient Digestibilities in Ruminants. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/javaa.2010.1727.1734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Al Ibrahim R, Kelly A, O’Grady L, Gath V, McCarney C, Mulligan F. The effect of body condition score at calving and supplementation with Saccharomyces cerevisiae on milk production, metabolic status, and rumen fermentation of dairy cows in early lactation. J Dairy Sci 2010; 93:5318-28. [DOI: 10.3168/jds.2010-3201] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 08/03/2010] [Indexed: 11/19/2022]
|
48
|
Hristov AN, Varga G, Cassidy T, Long M, Heyler K, Karnati SKR, Corl B, Hovde CJ, Yoon I. Effect of Saccharomyces cerevisiae fermentation product on ruminal fermentation and nutrient utilization in dairy cows. J Dairy Sci 2010; 93:682-92. [PMID: 20105539 DOI: 10.3168/jds.2009-2379] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 10/23/2009] [Indexed: 11/19/2022]
Abstract
The goal of this experiment was to investigate the effect of yeast culture (Saccharomyces cerevisiae) on rumen fermentation, nutrient utilization, and ammonia and methane emission from manure in dairy cows. Eight ruminally cannulated Holstein cows were allocated to 2 dietary treatments in a crossover design. Treatments were control (no yeast culture) and XP (yeast culture, fed at 56 g/head per day; XP, Diamond V Mills Inc., Cedar Rapids, IA). Dry matter intake, milk yield, milk composition, and body weight were similar between treatments. Milk urea nitrogen concentration was also not affected by treatment. Rumen pH was similar between the control and XP treatments, but rumen ammonia concentration tended to be lower with XP than with the control. Treatment had no effect on concentrations of total or individual volatile fatty acids, protozoal counts, polysaccharide-degrading activities (except amylase activity that tended to be increased by XP), or methane production in the rumen. Urinary N losses did not differ significantly between treatments, but allantoin and total purine derivative excretions and the estimated microbial N outflow from the rumen tended to be increased by XP compared with the control treatment. Total-tract apparent digestibility of dietary nutrients was not affected by XP. Milk fatty acid composition was also not altered by XP supplementation. Cumulative (253 h) ammonia and methane emissions from manure, measured in a steady-state gas emission system, were slightly decreased by XP. Overall, the yeast culture tested had little effect on ruminal fermentation, digestibility, or N losses, but tended to reduce rumen ammonia concentration and increase microbial protein synthesis in the rumen, and decreased ammonia and methane emissions from manure.
Collapse
Affiliation(s)
- A N Hristov
- Department of Dairy and Animal Science, Pennsylvania State University, University Park 16802, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tripathi M, Karim S. Effect of individual and mixed live yeast culture feeding on growth performance, nutrient utilization and microbial crude protein synthesis in lambs. Anim Feed Sci Technol 2010. [DOI: 10.1016/j.anifeedsci.2009.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Hill S, Hopkins B, Davidson S, Bolt S, Diaz D, Brownie C, Brown T, Huntington G, Whitlow L. The addition of cottonseed hulls to the starter and supplementation of live yeast or mannanoligosaccharide in the milk for young calves. J Dairy Sci 2009; 92:790-8. [DOI: 10.3168/jds.2008-1320] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|