1
|
Hamilton TL, Havig JR. Addition of dissolved inorganic carbon stimulates snow algae primary productivity on glacially eroded carbonate bedrock in the Medicine Bow Mountains, WY, USA. FEMS Microbiol Ecol 2023; 99:fiad056. [PMID: 37222475 PMCID: PMC10289208 DOI: 10.1093/femsec/fiad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/25/2023] Open
Abstract
Snow is a critical component of the Earth system. High-elevation snow can persist into the spring, summer, and early fall and hosts a diverse array of life, including snow algae. Due in part to the presence of pigments, snow algae lower albedo and accelerate snow melt, which has led to increasing interest in identifying and quantifying the environmental factors that constrain their distribution. Dissolved inorganic carbon (DIC) concentration is low in supraglacial snow on Cascade stratovolcanoes, and snow algae primary productivity can be stimulated through DIC addition. Here we asked if inorganic carbon would be a limiting nutrient for snow hosted on glacially eroded carbonate bedrock, which could provide an additional source of DIC. We assayed snow algae communities for nutrient and DIC limitation on two seasonal snowfields on glacially eroded carbonate bedrock in the Snowy Range of the Medicine Bow Mountains, Wyoming, United States. DIC stimulated snow algae primary productivity in snow with lower DIC concentration despite the presence of carbonate bedrock. Our results support the hypothesis that increased atmospheric CO2 concentrations may lead to larger and more robust snow algae blooms globally, even for sites with carbonate bedrock.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- The Biotechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Jeff R Havig
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Procházková L, Matsuzaki R, Řezanka T, Nedbalová L, Remias D. The snow alga Chloromonas kaweckae sp. nov. (Volvocales, Chlorophyta) causes green surface blooms in the high tatras (Slovakia) and tolerates high irradiance. JOURNAL OF PHYCOLOGY 2023; 59:236-248. [PMID: 36461636 PMCID: PMC10946730 DOI: 10.1111/jpy.13307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Seasonally slowly melting mountain snowfields are populated by extremophilic microalgae. In alpine habitats, high-light sensitive, green phytoflagellates are usually observed in subsurface layers deeper in the snowpack under dim conditions, while robust orange to reddish cyst stages can be seen exposed on the surface. In this study, uncommon surface green snow was investigated in the High Tatra Mountains (Slovakia). The monospecific community found in the green surface bloom consisted of vegetative Chloromonas cells (Volvocales, Chlorophyta). Molecular data demonstrated that the field sample and the strain isolated and established from the bloom were conspecific, and they represent a new species, Chloromonas kaweckae sp. nov., which is described based on the morphology of the vegetative cells and asexual reproduction and on molecular analyses of the strain. Cells of C. kaweckae accumulated approximately 50% polyunsaturated fatty acids, which is advantageous at low temperatures. In addition, this new species performed active photosynthesis at temperatures close to the freezing point showed a light compensation point of 126 ± 22 μmol photons · m-2 · s-1 and some signs of photoinhibition at irradiances greater than 600 μmol photons · m-2 · s-1 . These data indicate that the photosynthetic apparatus of C. kaweckae could be regarded as adapted to relatively high light intensities, otherwise unusual for most flagellate stages of snow algae.
Collapse
Affiliation(s)
- Lenka Procházková
- Department of EcologyCharles University, Faculty of SciencePrague128 44Czech Republic
- The Czech Academy of Sciences, Institute of Botany, Centre for PhycologyDukelská 135379 82TřeboňCzech Republic
| | - Ryo Matsuzaki
- University of Tsukuba, Faculty of Life and Environmental Sciences1–1–1 TennodaiTsukubaIbaraki305–8572Japan
- National Institute for Environmental Studies, Biodiversity Division16‐2 OnogawaTsukubaIbaraki305‐8506Japan
| | - Tomáš Řezanka
- The Czech Academy of SciencesInstitute of MicrobiologyVídeňská 1083Prague142 20Czech Republic
| | - Linda Nedbalová
- Department of EcologyCharles University, Faculty of SciencePrague128 44Czech Republic
- The Czech Academy of Sciences, Institute of Botany, Centre for PhycologyDukelská 135379 82TřeboňCzech Republic
| | - Daniel Remias
- University of Applied Sciences Upper Austria, School of EngineeringStelzhamerstr. 23Wels4600Austria
| |
Collapse
|
3
|
Ono M, Takeuchi N, Zawierucha K. Description of a new species of Tardigrada Hypsibius nivalis sp. nov. and new phylogenetic line in Hypsibiidae from snow ecosystem in Japan. Sci Rep 2022; 12:14995. [PMID: 36056052 PMCID: PMC9440035 DOI: 10.1038/s41598-022-19183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Snow ecosystems are an important component of polar and mountainous regions, influencing water regime, biogeochemical cycles and supporting snow specific taxa. Although snow is considered to be one of the most unique, and at the same time a disappearing habitat, knowledge of its taxonomic diversity is still limited. It is true especially for micrometazoans appearing in snow algae blooming areas. In this study, we used morphological and molecular approaches to identify two tardigrade species found in green snow patches of Mt. Gassan in Japan. By morphology, light (PCM) and scanning electron microscopy (SEM), and morphometry we described Hypsibius nivalis sp. nov. which differs from other similar species by granular, polygonal sculpture on the dorsal cuticle and by the presence of cuticular bars next to the internal claws. Additionally, phylogenetic multilocus (COI, 18S rRNA, 28S rRNA) analysis of the second taxon, Hypsibius sp. identified by morphology as convergens-pallidus group, showed its affinity to the Hypsibiidae family and it is placed as a sister clade to all species in the Hypsibiinae subfamily. Our study shows that microinvertebrates associated with snow are poorly known and the assumption that snow might be inhabited by snow-requiring tardigrade taxa cannot be ruled out. Furthermore, our study contributes to the understanding subfamily Hypsibiinae showing that on its own the morphology of specimens belonging to convergens-pallidus group is insufficient in establishing a true systematic position of specimens.
Collapse
Affiliation(s)
- Masato Ono
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland.
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Changes in the Microbiological Properties of Soils along the Gradient of the Altitude Zone of Mount Kivaka in Eastern Fennoscandia, Russia. FORESTS 2022. [DOI: 10.3390/f13060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was conducted on the territory of the national park Paanayarvi, located in the taiga zone of the European north. The altitude zone common in the territory of the national park is up to 350 m above sea level. The purpose of this work is to study the microbiological and biochemical properties of soils formed under conditions of a gradient of altitude zonation. This work was performed for the first time in this territory. Based on the fatty acid composition of the cell walls of microorganisms, the composition and structure of the microbial community were determined by chemato-mass spectrometry. The dominant microbocenosis of soils of undisturbed territories was revealed. Changes in prokaryotes and microscopic fungi in the gradient of the altitude zone occur in different directions, which is consistent with the work of other researchers. The results suggest that the formation of microbocenosis of soils located in different conditions of the phytocenotic environment depends on the location of the site relative to the height. The latter determines the flow of solar energy into the ecosystem and the hydrothermal regime of soils. The data obtained can be used in monitoring global climate changes, will become the basis for the formation of a general conceptual basis for the functioning of microbial communities of soils of low-mountain landscapes.
Collapse
|
5
|
Irwin NAT, Twynstra CS, Mathur V, Keeling PJ. The molecular phylogeny of Chionaster nivalis reveals a novel order of psychrophilic and globally distributed Tremellomycetes (Fungi, Basidiomycota). PLoS One 2021; 16:e0247594. [PMID: 33760841 PMCID: PMC7990227 DOI: 10.1371/journal.pone.0247594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/09/2021] [Indexed: 12/04/2022] Open
Abstract
Snow and ice present challenging substrates for cellular growth, yet microbial snow communities not only exist, but are diverse and ecologically impactful. These communities are dominated by green algae, but additional organisms, such as fungi, are also abundant and may be important for nutrient cycling, syntrophic interactions, and community structure in general. However, little is known about these non-algal community members, including their taxonomic affiliations. An example of this is Chionaster nivalis, a unicellular fungus that is morphologically enigmatic and frequently observed in snow communities globally. Despite being described over one hundred years ago, the phylogeny and higher-level taxonomic classifications of C. nivalis remain unknown. Here, we isolated and sequenced the internal transcribed spacer (ITS) and the D1-D2 region of the large subunit ribosomal RNA gene of C. nivalis, providing a molecular barcode for future studies. Phylogenetic analyses using the ITS and D1-D2 region revealed that C. nivalis is part of a novel lineage in the class Tremellomycetes (Basidiomycota, Agaricomycotina) for which a new order Chionasterales ord. nov. (MB838717) and family Chionasteraceae fam. nov. (MB838718) are proposed. Comparisons between C. nivalis and sequences generated from environmental surveys revealed that the Chionasterales are globally distributed and probably psychrophilic, as they appear to be limited to the high alpine and arctic regions. These results highlight the unexplored diversity that exists within these extreme habitats and emphasize the utility of single-cell approaches in characterizing these complex algal-dominated communities.
Collapse
Affiliation(s)
- Nicholas A. T. Irwin
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Merton College, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Chantelle S. Twynstra
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Varsha Mathur
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Snow algae blooms are beneficial for microinvertebrates assemblages (Tardigrada and Rotifera) on seasonal snow patches in Japan. Sci Rep 2021; 11:5973. [PMID: 33727649 PMCID: PMC7971028 DOI: 10.1038/s41598-021-85462-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/01/2021] [Indexed: 11/08/2022] Open
Abstract
Although studies on snow algae and macroinvertebrates have been frequently conducted on snow patches, only few surveys have been focused on microinvertebrates which reach high biomass and play various trophic roles in other cold habitats. The aims of this study were (1) to search for microinvertebrates in seasonal surface snow patches located on the slope of Mt. Gassan, in northern Japan, and (2) to identify factors determining their distribution associated with snow algal blooms of various colorations (orange, green, and golden-brown) collected from the same sampling site over two seasons (2018, 2019). Microscopic observation revealed presence of two major groups of microinvertebrates: Tardigrada and Rotifera. They were concentrated in green snow colored by blooms of Chloromonas sp. in comparison to orange or golden-brown snow and only a few were found in white snow. Mean body length of tardigrades increased throughout the melt season, their intestine content was green and they laid eggs on colored snow. These results suggest that tardigrades preferentially grew and reproduced on green snow patches. Population densities of tardigrades, rotifers and concentration of chlorophyll a were significantly correlated. Our study indicates that green snow patches in temperate mountainous forests constitute important and unique low-temperature ecosystems for microinvertebrates. Snow covered by algae is an unrecognized novel habitats for tardigrades and rotifers.
Collapse
|
7
|
Hoham RW, Remias D. Snow and Glacial Algae: A Review 1. JOURNAL OF PHYCOLOGY 2020; 56:264-282. [PMID: 31825096 PMCID: PMC7232433 DOI: 10.1111/jpy.12952] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 05/03/2023]
Abstract
Snow or glacial algae are found on all continents, and most species are in the Chlamydomonadales (Chlorophyta) and Zygnematales (Streptophyta). Other algal groups include euglenoids, cryptomonads, chrysophytes, dinoflagellates, and cyanobacteria. They may live under extreme conditions of temperatures near 0°C, high irradiance levels in open exposures, low irradiance levels under tree canopies or deep in snow, acidic pH, low conductivity, and desiccation after snow melt. These primary producers may color snow green, golden-brown, red, pink, orange, or purple-grey, and they are part of communities that include other eukaryotes, bacteria, archaea, viruses, and fungi. They are an important component of the global biosphere and carbon and water cycles. Life cycles in the Chlamydomonas-Chloromonas-Chlainomonas complex include migration of flagellates in liquid water and formation of resistant cysts, many of which were identified previously as other algae. Species differentiation has been updated through the use of metagenomics, lipidomics, high-throughput sequencing (HTS), multi-gene analysis, and ITS. Secondary metabolites (astaxanthin in snow algae and purpurogallin in glacial algae) protect chloroplasts and nuclei from damaging PAR and UV, and ice binding proteins (IBPs) and polyunsaturated fatty acids (PUFAs) reduce cell damage in subfreezing temperatures. Molecular phylogenies reveal that snow algae in the Chlamydomonas-Chloromonas complex have invaded the snow habitat at least twice, and some species are polyphyletic. Snow and glacial algae reduce albedo, accelerate the melt of snowpacks and glaciers, and are used to monitor climate change. Selected strains of these algae have potential for producing food or fuel products.
Collapse
Affiliation(s)
- Ronald W. Hoham
- Department of BiologyColgate UniversityHamiltonNew York13346USA
| | - Daniel Remias
- School of EngineeringUniversity of Applied Sciences Upper AustriaWels4600Austria
| |
Collapse
|
8
|
Procházková L, Remias D, Řezanka T, Nedbalová L. Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), Causing Orange Snow Blooms at Different Light Conditions. Microorganisms 2019; 7:microorganisms7100434. [PMID: 31658718 PMCID: PMC6843554 DOI: 10.3390/microorganisms7100434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
Slowly melting snowfields in mountain and polar regions are habitats of snow algae. Orange blooms were sampled in three European mountain ranges. The cysts within the blooms morphologically resembled those of Chloromonas nivalis (Chlorophyceae). Molecular and morphological traits of field and cultured material showed that they represent a new species, Chloromonas hindakii sp. nov. The performance of photosystem II was evaluated by fluorometry. For the first time for a snow alga, cyst stages collected in a wide altitudinal gradient and the laboratory strain were compared. The results showed that cysts were well adapted to medium and high irradiance. Cysts from high light conditions became photoinhibited at three times higher irradiances (600 µmol photons m−2 s−1) than those from low light conditions, or likewise compared to cultured flagellates. Therefore, the physiologic light preferences reflected the conditions in the original habitat. A high content of polyunsaturated fatty acids (about 60% of total lipids) and the accumulation of the carotenoid astaxanthin was observed. They are regarded as adaptations to cope with extreme environmental conditions of snow that include low temperatures, freeze-thaw cycles, and variable light intensity. The intraspecific ability of adaptation of the photosynthetic apparatus to different irradiance regimes seems to be advantageous for thriving in different snow habitats.
Collapse
Affiliation(s)
- Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic.
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria.
| | - Tomáš Řezanka
- The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic.
| |
Collapse
|