1
|
Zhang Y, Yang J, Gong Y, He S, Wen P, Jiang Y, He J, Zhu B, Li L. In Vitro and In Vivo Supplementation with Curcumin Promotes Hippocampal Neuronal Synapses Development in Rats by Inhibiting GSK-3β and Activating β-catenin. Mol Neurobiol 2024; 61:2390-2410. [PMID: 37875709 DOI: 10.1007/s12035-023-03665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
The human fetal thyroid gland is not capable of producing thyroid hormones independently until 20 weeks of gestation, and if maternal thyroid hormone synthesis is inadequate in early pregnancy, fetal brain and nerve development may be affected by maternal hypothyroidism. Curcumin, which is isolated from turmeric (Curcuma longa), has been shown to be effective in repairing neurological disorders and is effective in relieving nerve damage when consumed over a long period of time. In this experiment, we investigated the effect of curcumin supplementation on synaptic development of rat hippocampal neurons. A cell model of oxidative damage and a young rat model of hypothyroidism were constructed, and model cells and rats were treated with triiodothyronine (T3), tetraiodothyronine (T4), and curcumin, respectively. Damage of nerve cells and animal brain tissues was examined, and the effect of curcumin in alleviating the blocked neurodevelopment was investigated. Further modulation of GSK-3β/β-catenin was performed to investigate the mechanism of action of curcumin. Ultimately, we found that T3-, T4-, and curcumin-treated model cells and young rats had increased numbers of synapses and good neurodevelopment. At the same time, we found that curcumin inhibited the production of GSK-3β and Axin to activate β-catenin. The inhibition of β-catenin weakened the therapeutic effect of curcumin, and the differences between the indicators and the model group disappeared. Both cellular and animal experiments supported that curcumin effectively alleviated the oxidative cell damage caused by thyroxine deficiency and activated the synaptogenic ability of nerve synapses by inhibiting GSK-3β and protecting β-catenin activity.
Collapse
Affiliation(s)
- Yinhong Zhang
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, 650500, China
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jinghui Yang
- Department of Pediatrics, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Yanling Gong
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shan He
- Department of Pediatrics, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Ping Wen
- Department of Pediatrics, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Yan Jiang
- Department of Prevention and Healthcare, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Jing He
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Baosheng Zhu
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China.
| | - Li Li
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, 650500, China.
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
- Department of Pediatrics, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, China.
| |
Collapse
|
2
|
Dong X, Deng L, Yao S, Wu W, Cao J, Sun L, Bai Y, Li H, Weng X, Ren H, Ren W. Protective effects of curcumin against thyroid hormone imbalance after gas explosion-induced traumatic brain injury via activation of the hypothalamic-pituitary-thyroid axis in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74619-74631. [PMID: 35641736 DOI: 10.1007/s11356-022-20943-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Gas explosion (GE)-induced traumatic brain injury (TBI) can affect thyroid hormone (TH) homeostasis in miners. This study evaluated the effects of hepatic transthyretin and hypothalamic-pituitary-thyroid (HPT) axis on thyroids and explored the protective effect and mechanism of curcumin on GE-induced TBI. Thirty rats were randomly divided into three groups (10 per group): first group (control group)-rats received GE treatment once; second group (GE group)-rats received GE treatment (200 m from the source of the explosion once); third group (GE + Cur group)-rats received curcumin (Cur) by lavage at a dose of 100 mg/kg/day once every other day for 7 days after receiving GE. After GE, the pathological changes were analyzed by hemotoxylin and eosin staining, and the levels of serum reactive oxygen species (ROS), urine iodine (UI), THs, nuclear factor-kappa B (NF-κB), superoxide dismutase (SOD), glutathione peroxidase (Gpx), and malondialdehyde (MDA) were analyzed using ELISA. Expression of proteins in the HPT axis of rats was examined by immunohistochemistry and Western blotting. We found that GE could induce pathologic changes in rat thyroid and liver. Serum levels of THs, NF-κB and serum redox state became unbalanced in rats after GE. GE could inhibit the biosynthesis and biotransformation of THs by affecting key HPT axis proteins. Additionally, GE reduced the level of hepatic transthyretin. Serum THs levels and thyroid sections were almost recovered to normal after curcumin treatment. The aforementioned key HPT axis proteins in the curcumin group showed opposite expression trends. In summary, GE affected THs balance while curcumin can protect against these injury effects by affecting TH biosynthesis, biotransformation, and transport, and inducing oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lvfei Deng
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Sanqiao Yao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Lei Sun
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yichun Bai
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Haibin Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiaogang Weng
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Houcheng Ren
- Department of Human Resources, Sanquan College, Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Medical University, 601 Jinsui Street , Xinxiang, 453003, Henan, China.
| |
Collapse
|
3
|
Shakeri F, Bibak B, Safdari MR, Keshavarzi Z, Jamialahmadi T, Sathyapalan T, Sahebkar A. Cellular and molecular mechanisms of curcumin on thyroid gland disorders. Curr Med Chem 2022; 29:2878-2890. [PMID: 35142266 DOI: 10.2174/0929867329666220210145033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022]
Abstract
There is growing literature on the positive therapeutic potentials of curcumin. Curcumin or diferuloylmethane is a polyphenol obtained from the plant Curcuma longa. Curcumin has been used widely in Ayurvedic and Chinese medicine for various conditions. The role of curcumin on thyroid glands has been shown by its effects on various biological pathways, including anti-inflammatory, antioxidant, anti-proliferative, apoptosis, angiogenesis, cell cycle and metastasis. We reviewed the recent literature on curcumin applications for thyroid dysfunction, including hyperthyroidism and hypothyroidism, and discussed the molecular mechanisms of these effects. This review aims to summarize the wealth of research related to the thyroid gland therapeutic effect of curcumin.
Collapse
Affiliation(s)
- Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Reza Safdari
- Department of Orthopedic Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Di Dalmazi G, Giuliani C. Plant constituents and thyroid: A revision of the main phytochemicals that interfere with thyroid function. Food Chem Toxicol 2021; 152:112158. [PMID: 33789121 DOI: 10.1016/j.fct.2021.112158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023]
Abstract
In the past few decades, there has been a lot of interest in plant constituents for their antioxidant, anti-inflammatory, anti-microbial and anti-proliferative properties. However, concerns have been raised on their potential toxic effects particularly when consumed at high dose. The anti-thyroid effects of some plant constituents have been known for some time. Indeed, epidemiological observations have shown the causal association between staple food based on brassicaceae or soybeans and the development of goiter and/or hypothyroidism. Herein, we review the main plant constituents that interfere with normal thyroid function such as cyanogenic glucosides, polyphenols, phenolic acids, and alkaloids. In detail, we summarize the in vitro and in vivo studies present in the literature, focusing on the compounds that are more abundant in foods or that are available as dietary supplements. We highlight the mechanism of action of these compounds on thyroid cells by giving a particular emphasis to the experimental studies that can be significant for human health. Furthermore, we reveal that the anti-thyroid effects of these plant constituents are clinically evident only when they are consumed in very large amounts or when their ingestion is associated with other conditions that impair thyroid function.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy; Department of Medicine and Aging Science, Translational Medicine PhD Program, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
5
|
Yang YCS, Li ZL, Shih YJ, Bennett JA, Whang-Peng J, Lin HY, Davis PJ, Wang K. Herbal Medicines Attenuate PD-L1 Expression to Induce Anti-Proliferation in Obesity-Related Cancers. Nutrients 2019; 11:nu11122979. [PMID: 31817534 PMCID: PMC6949899 DOI: 10.3390/nu11122979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Pro-inflammatory hormones and cytokines (leptin, tumor necrosis factor (TNF)-α, and interleukin (IL)-6) rise in obesity. Elevated levels of hormones and cytokines are linked with several comorbidities such as diabetes, heart disease, and cancer. The checkpoint programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) plays an important role in obesity and cancer proliferation. L-thyroxine (T4) and steroid hormones up-regulate PD-L1 accumulation and promote inflammation in cancer cells and diabetics. On the other hand, resveratrol and other herbal medicines suppress PD-L1 accumulation and reduce diabetic effects. In addition, they induce anti-cancer proliferation in various types of cancer cells via different mechanisms. In the current review, we discuss new findings and visions into the antagonizing effects of hormones on herbal medicine-induced anti-cancer properties.
Collapse
Affiliation(s)
- Yu-Chen S.H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan;
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - James A. Bennett
- Center for Immunology and Microbial Diseases, Albany Medical College, Albany, NY 12208, USA;
| | - Jaqueline Whang-Peng
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wang-Fan Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wang-Fan Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12208, USA;
- Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Oke OE. Evaluation of physiological response and performance by supplementation of Curcuma longa in broiler feed under hot humid tropical climate. Trop Anim Health Prod 2018; 50:1071-1077. [PMID: 29404849 DOI: 10.1007/s11250-018-1532-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/29/2018] [Indexed: 11/24/2022]
Abstract
Dietary manipulation has been seen as one of the practical ways to ameliorate the adverse effects of thermal stress in the hot humid tropical climate. In order to investigate the influence of Curcuma longa (turmeric) rhizome powder on physiological responses and performance under hot humid tropical climate, 240 broiler chicks were randomly assigned to four dietary treatments having four replicates of 15 birds each in a complete randomized design. Broiler birds were fed basal diets and supplemented with 0 (CT), 4 (TG), 8 (FT), and 12 g (SG) of turmeric powder/kg of diet for 8 weeks. Data were collected weekly on feed intake and body weights. Blood samples were collected from eight birds per treatment at week 4 (starter phase) and week 8 (finisher phase) of the experiment for the determination of plasma 3,5,3'-triiodothyronine (T3), superoxide dismutase (SOD), malondialdehyde (MDA). Rectal temperature of the birds was also taken. At 56 days of age, eight birds from each treatment were slaughtered for the determination of relative organ weights. Results showed that the final weights of the birds in FT were significantly higher than those of the birds in TG, SG, and CT. The weight gain of the birds in FT was higher than those of the birds in SG while those of SG were higher than those of TG whose values were higher than that of CT. The feed conversion ratio of the broiler chickens in CT was higher (P < 0.05) than those of other treatment groups while the birds in FT and SG had similar feed conversion ratios. SOD of birds fed turmeric rhizome powder was higher than the birds in the control group at both starter and finisher phases. Furthermore, MDA of the birds in FT was lower than those of the birds in the other treatment groups at the finisher phase. Plasma T3 was higher in the birds fed turmeric at the finisher phase than chickens in the control group. There was no difference in the rectal temperatures of the birds. To conclude, turmeric rhizome powder improved the physiological response and performance of broiler chicken under hot humid tropical climate in a dose-dependent characteristic and the optimum supplementation rate of 8 g/kg of diet was recorded.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria.
| |
Collapse
|
7
|
Papież MA, Krzyściak W, Szade K, Bukowska-Straková K, Kozakowska M, Hajduk K, Bystrowska B, Dulak J, Jozkowicz A. Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:557-70. [PMID: 26893544 PMCID: PMC4745860 DOI: 10.2147/dddt.s92687] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Curcumin may exert a more selective cytotoxic effect in tumor cells with elevated levels of free radicals. Here, we investigated whether curcumin can modulate etoposide action in myeloid leukemia cells and in normal cells of hematopoietic origin. HL-60 cell line, normal myeloid progenitor cluster of differentiation (CD)-34+ cells, and granulocytes were incubated for 4 or 24 hours at different concentrations of curcumin and/or etoposide. Brown Norway rats with acute myeloid leukemia (BNML) were used to prove the influence of curcumin on etoposide action in vivo. Rats were treated with curcumin for 23 days and etoposide was administered for the final 3 days of the experiment. Curcumin synergistically potentiated the cytotoxic effect of etoposide, and it intensified apoptosis and phosphorylation of the histone H2AX induced by this cytostatic drug in leukemic HL-60 cells. In contrast, curcumin did not significantly modify etoposide-induced cytotoxicity and H2AX phosphorylation in normal CD34+ cells and granulocytes. Curcumin modified the cytotoxic action of etoposide in HL-60 cells through intensification of free radical production because preincubation with N-acetyl-l-cysteine (NAC) significantly reduced the cytotoxic effect of curcumin itself and a combination of two compounds. In contrast, NAC did not decrease the cytotoxic effect of etoposide. Thus, oxidative stress plays a greater role in the cytotoxic effect of curcumin than that of etoposide in HL-60 cells. In vitro results were confirmed in a BNML model. Pretreatment with curcumin enhanced the antileukemic activity of etoposide in BNML rats (1.57-fold tumor reduction versus etoposide alone; P<0.05) and induced apoptosis of BNML cells more efficiently than etoposide alone (1.54-fold change versus etoposide alone; P<0.05), but this treatment protected nonleukemic B-cells from apoptosis. Thus, curcumin can increase the antileukemic effect of etoposide through reactive oxygen species in sensitive myeloid leukemia cells, and it is harmless to normal human cells.
Collapse
Affiliation(s)
- Monika A Papież
- Department of Cytobiology, Jagiellonian University Medical College, Krakow, Poland
| | - Wirginia Krzyściak
- Department of Medical Diagnostic, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Bukowska-Straková
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Clinical Immunology, Institute of Pediatrics, Krakow, Poland
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Hajduk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Jung JH, Jung J, Kim SK, Woo SH, Kang KM, Jeong BK, Jung MH, Kim JH, Hahm JR. Alpha lipoic acid attenuates radiation-induced thyroid injury in rats. PLoS One 2014; 9:e112253. [PMID: 25401725 PMCID: PMC4234464 DOI: 10.1371/journal.pone.0112253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/08/2014] [Indexed: 12/31/2022] Open
Abstract
Exposure of the thyroid to radiation during radiotherapy of the head and neck is often unavoidable. The present study aimed to investigate the protective effect of α-lipoic acid (ALA) on radiation-induced thyroid injury in rats. Rats were randomly assigned to four groups: healthy controls (CTL), irradiated (RT), received ALA before irradiation (ALA + RT), and received ALA only (ALA, 100 mg/kg, i.p.). ALA was treated at 24 h and 30 minutes prior to irradiation. The neck area including the thyroid gland was evenly irradiated with 2 Gy per minute (total dose of 18 Gy) using a photon 6-MV linear accelerator. Greater numbers of abnormal and unusually small follicles in the irradiated thyroid tissues were observed compared to the controls and the ALA group on days 4 and 7 after irradiation. However, all pathologies were decreased by ALA pretreatment. The quantity of small follicles in the irradiated rats was greater on day 7 than day 4 after irradiation. However, in the ALA-treated irradiated rats, the numbers of small and medium follicles were significantly decreased to a similar degree as in the control and ALA-only groups. The PAS-positive density of the colloid in RT group was decreased significantly compared with all other groups and reversed by ALA pretreatment. The high activity index in the irradiated rats was lowered by ALA treatment. TGF-ß1 immunoreactivity was enhanced in irradiated rats and was more severe on the day 7 after radiation exposure than on day 4. Expression of TGF-ß1 was reduced in the thyroid that had undergone ALA pretreatment. Levels of serum pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) did not differ significantly between the all groups. This study provides that pretreatment with ALA decreased the severity of radiation-induced thyroid injury by reducing inflammation and fibrotic infiltration and lowering the activity index. Thus, ALA could be used to ameliorate radiation-induced thyroid injury.
Collapse
Affiliation(s)
- Jung Hwa Jung
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Jaehoon Jung
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Soo Kyoung Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Seung Hoon Woo
- Department of Otolaryngology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Bae-Kwon Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Myeong Hee Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
| | - Jin Hyun Kim
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
- * E-mail: (JHK); (JRH)
| | - Jong Ryeal Hahm
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
- * E-mail: (JHK); (JRH)
| |
Collapse
|
9
|
Histological and immunohistochemical study on the adverse effects of sodium chlorate on the pituitary–thyroid axis of albino rats and the possible protective effect of curcumin. ACTA ACUST UNITED AC 2013. [DOI: 10.1097/01.ehx.0000432848.44823.9f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Effect of Dietary Supplementation of Curcumin on Growth Performance, Intestinal Morphology and Nutrients Utilization of Broiler Chicks. J Poult Sci 2013. [DOI: 10.2141/jpsa.0120065] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 2012; 39:283-99. [PMID: 22118895 DOI: 10.1111/j.1440-1681.2011.05648.x] [Citation(s) in RCA: 508] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. Curcumin is the active ingredient of the dietary spice turmeric and has been consumed for medicinal purposes for thousands of years. Modern science has shown that curcumin modulates various signalling molecules, including inflammatory molecules, transcription factors, enzymes, protein kinases, protein reductases, carrier proteins, cell survival proteins, drug resistance proteins, adhesion molecules, growth factors, receptors, cell cycle regulatory proteins, chemokines, DNA, RNA and metal ions. 2. Because of this polyphenol's potential to modulate multiple signalling molecules, it has been reported to possess pleiotropic activities. First demonstrated to have antibacterial activity in 1949, curcumin has since been shown to have anti-inflammatory, anti-oxidant, pro-apoptotic, chemopreventive, chemotherapeutic, antiproliferative, wound healing, antinociceptive, antiparasitic and antimalarial properties as well. Animal studies have suggested that curcumin may be active against a wide range of human diseases, including diabetes, obesity, neurological and psychiatric disorders and cancer, as well as chronic illnesses affecting the eyes, lungs, liver, kidneys and gastrointestinal and cardiovascular systems. 3. Although many clinical trials evaluating the safety and efficacy of curcumin against human ailments have already been completed, others are still ongoing. Moreover, curcumin is used as a supplement in several countries, including India, Japan, the US, Thailand, China, Korea, Turkey, South Africa, Nepal and Pakistan. Although inexpensive, apparently well tolerated and potentially active, curcumin has not been approved for the treatment of any human disease. 4. In the present article, we discuss the discovery and key biological activities of curcumin, with a particular emphasis on its activities at the molecular and cellular levels, as well as in animals and humans.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Age-associated changes within an individual are inherently complex and occur at multiple levels of organismal function. The overall decline in function of various tissues is known to play a key role in both aging and the complex etiology of certain age-associated diseases such as Alzheimer's disease (AD) and cancer. Continuing research highlights the dynamic capacity of polyphenols to protect against age-associated disorders through a variety of important mechanisms. Numerous lines of evidence suggest that dietary polyphenols such as resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin have the capacity to mitigate age-associated cellular damage induced via metabolic production of reactive oxygen species (ROS). However, recently acquired evidence also demonstrates a likely role for these polyphenols as anticancer agents capable of preventing formation of new vasculature in neoplastic tissues. Polyphenols have also been shown to possess other anticancer properties such as specific cell-signaling actions that may stimulate the activity of the regulatory protein SIRT1. Additionally, polyphenolic compounds have demonstrated their inhibitory effects against chronic vascular inflammation associated with atherosclerosis. These increasingly well-documented results have begun to provide a basis for considering the use of polyphenols in the development of novel therapies for certain human diseases. And while the mechanisms by which these effects occur are yet to be fully understood, it is evident that further investigation may yield a potential use for polyphenols as pharmacological interventions against specific age-associated diseases.
Collapse
Affiliation(s)
- Brannon L Queen
- Department of Biology, University of Alabama at Birmingham, AL 35294, USA
| | | |
Collapse
|