1
|
Bumunang EW, Castro VS, Alexander T, Zaheer R, McAllister TA, Guan LL, Stanford K. In Silico Analysis of Shiga Toxin-Producing Escherichia coli O157:H7 Strains from Presumptive Super- and Low-Shedder Cattle. Toxins (Basel) 2024; 16:86. [PMID: 38393164 PMCID: PMC10893428 DOI: 10.3390/toxins16020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Cattle are the primary reservoir for STEC O157, with some shedding >104 CFU/g in feces, a phenomenon known as super-shedding (SS). The mechanism(s) responsible for SS are not understood but have been attributed to the environment, host, and pathogen. This study aimed to compare genetic characteristics of STEC O157 strains from cattle in the same commercial feedlot pens with SS or low-shedding (LS) status. Strains from SS (n = 35) and LS (n = 28) collected from 11 pens in three feedlots were analyzed for virulence genes, Shiga toxin-carrying bacteriophage insertion sites, and phylogenetic relationships. In silico analysis showed limited variation regarding virulence gene profiles. Stx-encoding prophage insertion sites mrlA and wrbA for stx1a and stx2a, respectively, were all occupied, but two isolates had fragments of the stx-carrying phage in mrlA and wrbA loci without stx1a and stx2a. All strains screened for lineage-specific polymorphism assay (LSPA-6) were 111111, lineage I. Of the isolates, 61 and 2 were clades 1 and 8, respectively. Phylogenetic analysis revealed that pens with more than one SS had multiple distantly related clusters of SS and LS isolates. Although virulence genes and lineage were largely similar within and across feedlots, multiple genetic origins of strains within a single feedlot pen illustrate challenges for on-farm control of STEC.
Collapse
Affiliation(s)
- Emmanuel W. Bumunang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada; (E.W.B.); (T.A.); (R.Z.); (T.A.M.)
| | - Vinicius S. Castro
- Faculty of Agronomy and Zootechnics, Federal University of Mato Grosso (UFMT), Cuiabá 78010-715, Brazil;
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 1M4, Canada
| | - Trevor Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada; (E.W.B.); (T.A.); (R.Z.); (T.A.M.)
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada; (E.W.B.); (T.A.); (R.Z.); (T.A.M.)
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada; (E.W.B.); (T.A.); (R.Z.); (T.A.M.)
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P9, Canada;
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 1M4, Canada
| |
Collapse
|
2
|
Yang X, Narvaez-Bravo C, Zhang P. Driving forces shaping the microbial ecology in meat packing plants. Front Microbiol 2024; 14:1333696. [PMID: 38322759 PMCID: PMC10844536 DOI: 10.3389/fmicb.2023.1333696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024] Open
Abstract
Meat production is a complex system, continually receiving animals, water, air, and workers, all of which serve as carriers of bacteria. Selective pressures involved in different meat processing stages such as antimicrobial interventions and low temperatures, may promote the accumulation of certain residential microbiota in meat cutting facilities. Bacteria including human pathogens from all these sources can contaminate meat surfaces. While significant advancements have been made in enhancing hygienic standards and pathogen control measures in meat plants, resulting in a notable reduction in STEC recalls and clinical cases, STEC still stands as a predominant contributor to foodborne illnesses associated with beef and occasionally with pork. The second-and third-generation sequencing technology has become popular in microbiota related studies and provided a better image of the microbial community in the meat processing environments. In this article, we reviewed the potential factors influencing the microbial ecology in commercial meat processing facilities and conducted a meta-analysis on the microbiota data published in the last 10 years. In addition, the mechanisms by which bacteria persist in meat production environments have been discussed with a focus on the significant human pathogen E. coli O157:H7 and generic E. coli, an indicator often used for the hygienic condition in food production.
Collapse
Affiliation(s)
- Xianqin Yang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | | | - Peipei Zhang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
- Department of Animal Sciences, Center for Meat Safety and Quality, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
3
|
Fitzgerald SF, Mitchell MC, Holmes A, Allison L, Chase-Topping M, Lupolova N, Wells B, Gally DL, McNeilly TN. Prevalence of Shiga Toxin-Producing Escherichia coli O157 in Wild Scottish Deer with High Human Pathogenic Potential. Animals (Basel) 2023; 13:2795. [PMID: 37685059 PMCID: PMC10486872 DOI: 10.3390/ani13172795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Shiga toxin-producing E. coli (STEC) infections associated with wildlife are increasing globally, highlighting many 'spillover' species as important reservoirs for these zoonotic pathogens. A human outbreak of STEC serogroup O157 in 2015 in Scotland, associated with the consumption of venison meat products, highlighted several knowledge gaps, including the prevalence of STEC O157 in Scottish wild deer and the potential risk to humans from wild deer isolates. In this study, we undertook a nationwide survey of wild deer in Scotland and determined that the prevalence of STEC O157 in wild deer is low 0.28% (95% confidence interval = 0.06-0.80). Despite the low prevalence of STEC O157 in Scottish wild deer, identified isolates were present in deer faeces at high levels (>104 colony forming units/g faeces) and had high human pathogenic potential based on whole genome sequencing and virulence gene profiling. A retrospective epidemiological investigation also identified one wild deer isolate from this study as a possible source of a Scottish human outbreak in 2017. These results emphasise the importance of food hygiene practices during the processing of wild deer carcasses for human consumption.
Collapse
Affiliation(s)
- Stephen F. Fitzgerald
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 OPZ, UK
| | - Mairi C. Mitchell
- Scottish E. coli O157/STEC Reference Laboratory, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK (L.A.)
| | - Anne Holmes
- Scottish E. coli O157/STEC Reference Laboratory, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK (L.A.)
| | - Lesley Allison
- Scottish E. coli O157/STEC Reference Laboratory, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK (L.A.)
| | - Margo Chase-Topping
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Nadejda Lupolova
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Beth Wells
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 OPZ, UK
| | - David L. Gally
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Tom N. McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 OPZ, UK
| |
Collapse
|
4
|
Fang Y, Tran F, Stanford K, Yang X. Stress Resistance and Virulence Gene Profiles Associated with Phylogeny and Phenotypes of Escherichia coli from Cattle. J Food Prot 2023; 86:100122. [PMID: 37355007 DOI: 10.1016/j.jfp.2023.100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Seven serogroups of E. coli (Top seven E. coli) are frequently implicated in foodborne outbreaks in North America, largely due to their carriage of Shiga toxin genes (stx). This study aimed to profile resistance genes and virulence factors (VF), and their potential association with phylogeny and phenotypes of Top seven E. coli originating from cattle in Canada. 155 Top seven E. coli isolates previously characterized for heat and acid resistance and biofilm-forming ability were whole-genome sequenced and analyzed for phylogeny, VF, and stress resistance genes. The 155 E. coli strains belonged to six phylogroups: A (n = 32), B1 (n = 93), C (n = 3), D (n = 11), E (n = 15), and G (n = 1). Different phylogroups were clearly separated on the core genome tree, with strains of the same serotype closely clustered. The carriage of stx and the transmissible locus of stress tolerance (tLST), the extreme heat resistance marker, was mutually exclusive, in 33 and 15 genomes, respectively. A novel O84:H2 strain carrying stx1a was also identified. In total, 70, 41, and 32 VF, stress resistance genes and antibiotic resistance genes were identified. The stress resistance genes included those for metal (n = 29), biocides/acid (n = 4), and heat (n = 8) resistance. All heat resistance genes and most metal-resistance genes that were differentially distributed among the phylogroups were exclusively in phylogroup A. VF were least and most present in phylogroups A and D, respectively. No specific genes associated with acid resistance or biofilm formation phenotypes were identified. VF were more abundant (P < 0.05) in the non-biofilm-forming population and acid-resistant population.
Collapse
Affiliation(s)
- Yuan Fang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada
| | - Frances Tran
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada
| | - Kim Stanford
- University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada.
| |
Collapse
|
5
|
Jaudou S, Deneke C, Tran ML, Salzinger C, Vorimore F, Goehler A, Schuh E, Malorny B, Fach P, Grützke J, Delannoy S. Exploring Long-Read Metagenomics for Full Characterization of Shiga Toxin-Producing Escherichia coli in Presence of Commensal E. coli. Microorganisms 2023; 11:2043. [PMID: 37630603 PMCID: PMC10458860 DOI: 10.3390/microorganisms11082043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The characterization of Shiga toxin-producing Escherichia coli (STEC) is necessary to assess their pathogenic potential, but isolation of the strain from complex matrices such as milk remains challenging. In previous work, we have shown the potential of long-read metagenomics to characterize eae-positive STEC from artificially contaminated raw milk without isolating the strain. The presence of multiple E. coli strains in the sample was shown to potentially hinder the correct characterization of the STEC strain. Here, we aimed at determining the STEC:commensal ratio that would prevent the characterization of the STEC. We artificially contaminated pasteurized milk with different ratios of an eae-positive STEC and a commensal E. coli and applied the method previously developed. Results showed that the STEC strain growth was better than the commensal E. coli after enrichment in acriflavine-supplemented BPW. The STEC was successfully characterized in all samples with at least 10 times more STEC post-enrichment compared to the commensal E. coli. However, the presence of equivalent proportions of STEC and commensal E. coli prevented the full characterization of the STEC strain. This study confirms the potential of long-read metagenomics for STEC characterization in an isolation-free manner while refining its limit regarding the presence of background E. coli strains.
Collapse
Affiliation(s)
- Sandra Jaudou
- COLiPATH Unit, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (S.J.)
- National Study Center for Sequencing in Risk Assessment, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Carlus Deneke
- National Study Center for Sequencing in Risk Assessment, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Mai-Lan Tran
- COLiPATH Unit, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (S.J.)
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France
| | - Carina Salzinger
- National Reference Laboratory for Escherichia coli Including VTEC, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Fabien Vorimore
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France
| | - André Goehler
- National Reference Laboratory for Escherichia coli Including VTEC, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Elisabeth Schuh
- National Reference Laboratory for Escherichia coli Including VTEC, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Burkhard Malorny
- National Study Center for Sequencing in Risk Assessment, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Patrick Fach
- COLiPATH Unit, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (S.J.)
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France
| | - Josephine Grützke
- National Study Center for Sequencing in Risk Assessment, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Sabine Delannoy
- COLiPATH Unit, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (S.J.)
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France
| |
Collapse
|
6
|
A systematic review and meta-analysis of published literature on prevalence of non-O157 Shiga toxin-producing Escherichia coli serogroups (O26, O45, O103, O111, O121, and O145) and virulence genes in feces, hides, and carcasses of pre- and peri-harvest cattle worldwide. Anim Health Res Rev 2022; 23:1-24. [PMID: 35678500 DOI: 10.1017/s1466252321000153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The objective of this study was to summarize peer-reviewed literature on the prevalence and concentration of non-O157 STEC (O26, O45, O103, O111, O121, and O145) serogroups and virulence genes (stx and eae) in fecal, hide, and carcass samples in pre- and peri-harvest cattle worldwide, using a systematic review of the literature and meta-analyses. DATA SYNTHESIS Seventy articles were eligible for meta-analysis inclusion; data from 65 articles were subjected to random-effects meta-analysis models to yield fecal prevalence estimates. Meta-regression models were built to explore variables contributing to the between-study heterogeneity. RESULTS Worldwide pooled non-O157 serogroup, STEC, and EHEC fecal prevalence estimates (95% confidence interval) were 4.7% (3.4-6.3%), 0.7% (0.5-0.8%), and 1.0% (0.8-1.1%), respectively. Fecal prevalence estimates significantly differed by geographic region (P < 0.01) for each outcome classification. Meta-regression analyses identified region, cattle type, and specimen type as factors that contribute to heterogeneity for worldwide fecal prevalence estimates. CONCLUSIONS The prevalence of these global foodborne pathogens in the cattle reservoir is widespread and highly variable by region. The scarcity of prevalence and concentration data for hide and carcass matrices identifies a large data gap in the literature as these are the closest proxies for potential beef contamination at harvest.
Collapse
|
7
|
Zhang P, Essendoubi S, Keenliside J, Reuter T, Stanford K, King R, Lu P, Yang X. Genomic analysis of Shiga toxin-producing Escherichia coli O157:H7 from cattle and pork-production related environments. NPJ Sci Food 2021; 5:15. [PMID: 34210979 PMCID: PMC8249597 DOI: 10.1038/s41538-021-00097-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
Three E. coli O157:H7 outbreaks have been attributed to contaminated pork in Alberta, Canada, recently. This study investigates the phylogenetic relatedness of E. coli O157:H7 from pigs, cattle, and pork-production environments for source attribution. Limited strain diversity was observed using five conventional subtyping methods, with most or all strains being in one subgroup. Whole-genome single nucleotide polymorphism analysis confirmed the recent ancestry of the isolates from all three sources. Most environmental isolates clustered closer with pig isolates than cattle isolates. Also, a direct link was observed between 2018-outbreak environmental isolates and isolates collected from a pig farm in 2018. The majority of pig isolates harbor only one Shiga toxin gene, stx2a, while 70% (35/50) of the cattle isolates have both stx1a and stx2a. The results show some E. coli O157:H7 strains could establish persistence on pig farms and as such, pigs can be a significant source of the organism.
Collapse
Affiliation(s)
- Peipei Zhang
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lacombe, Alberta Canada
| | | | | | - Tim Reuter
- Alberta Agriculture and Forestry, Lethbridge, Alberta Canada ,grid.47609.3c0000 0000 9471 0214University of Lethbridge, Lethbridge, Alberta Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, Alberta Canada ,grid.47609.3c0000 0000 9471 0214University of Lethbridge, Lethbridge, Alberta Canada
| | - Robin King
- Alberta Agriculture and Forestry, Edmonton, Alberta Canada
| | - Patricia Lu
- Alberta Agriculture and Forestry, Edmonton, Alberta Canada
| | - Xianqin Yang
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lacombe, Alberta Canada
| |
Collapse
|
8
|
Onyeka LO, Adesiyun AA, Keddy KH, Manqele A, Madoroba E, Thompson PN. Prevalence, risk factors and molecular characteristics of Shiga toxin-producing Escherichia coli in beef abattoirs in Gauteng, South Africa. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Genome Sequences of 104 Escherichia coli O157:H7 Isolates from Pigs, Cattle, and Pork Production Environments in Alberta, Canada. Microbiol Resour Announc 2021; 10:10/4/e01320-20. [PMID: 33509991 PMCID: PMC7844076 DOI: 10.1128/mra.01320-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genome sequences of Escherichia coli O157:H7 originating from pigs are limited in the public databases. We sequenced 104 E. coli O157:H7 isolates from pig and cattle feces and pork production environments in Alberta, Canada. The information will aid studies investigating sources of E. coli O157:H7 contaminating pork and the associated environments. Genome sequences of Escherichia coli O157:H7 originating from pigs are limited in the public databases. We sequenced 104 E. coli O157:H7 isolates from pig and cattle feces and pork production environments in Alberta, Canada. The information will aid studies investigating sources of E. coli O157:H7 contaminating pork and the associated environments.
Collapse
|
10
|
Are Antimicrobial Interventions Associated with Heat-Resistant Escherichia coli on Meat? Appl Environ Microbiol 2020; 86:AEM.00512-20. [PMID: 32303544 DOI: 10.1128/aem.00512-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
Decontamination practices, which often involve thermal treatments, are routinely performed in beef packing plants and have generally improved the safety of meat in North America. We investigated whether Escherichia coli in the beef production chain is becoming more heat resistant due to those treatments. Cattle isolates (n = 750) included seven serogroups (O157, O103, O111, O121, O145, O26, and O45) which were collected between 2002 and 2017. Beef plant isolates (n = 700) from carcasses, fabrication equipment, and beef products were included. Heat resistance was determined in Luria-Bertani broth at 60°C and by PCR screening for the locus of heat resistance (LHR). The decimal reduction for E. coli at 60°C (D 60ºC values) ranged from 0 to 7.54 min, with 97.2% of the values being <2 min. The prevalence of E. coli with D 60ºC values of >2 min was not significantly different (P > 0.05) among cattle and meat plant isolates. E. coli from equipment before sanitation (median, 1.03 min) was more heat resistant than that after sanitation (median, 0.9 min). No significant difference in D 60ºC values was observed among E. coli isolates from different years, from carcasses before and after antimicrobial interventions, or from before and during carcass chilling. Of all isolates, 1.97% harbored LHR, and the LHR-positive isolates had greater median D 60ºC values than the LHR-negative isolates (3.25 versus 0.96 min). No increase in heat resistance in E. coli was observed along the beef production chain or with time.IMPORTANCE The implementation of multiple hurdles in the beef production chain has resulted in substantial improvement in the microbial safety of beef in Canada. In this study, we characterized a large number of Escherichia coli isolates (n = 1,450) from various sources/stages of beef processing to determine whether the commonly used antimicrobial interventions would give rise to heat-resistant E. coli on meat, which in turn may require alternatives to the current control of pathogens and/or modifications to the current cooking recommendations for meat. The findings show that the degree and rate of heat resistance in E. coli did not increase along the production chain or with time. This furthers our understanding of man-made ecological niches that are required for the development of heat resistance in E. coli.
Collapse
|
11
|
Fitzgerald SF, Beckett AE, Palarea-Albaladejo J, McAteer S, Shaaban S, Morgan J, Ahmad NI, Young R, Mabbott NA, Morrison L, Bono JL, Gally DL, McNeilly TN. Shiga toxin sub-type 2a increases the efficiency of Escherichia coli O157 transmission between animals and restricts epithelial regeneration in bovine enteroids. PLoS Pathog 2019; 15:e1008003. [PMID: 31581229 PMCID: PMC6776261 DOI: 10.1371/journal.ppat.1008003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin (Stx) can be a threat to human health, with cattle being an important natural reservoir. In many countries the most severe pathology is associated with enterohaemorrhagic E. coli (EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT) 21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC infections and this phage type commonly encodes both Stx2a and Stx2c toxin types. PT21/28 is also epidemiologically linked to super-shedding (>103 cfu/g of faeces) which is significant for inter-animal transmission and human infection as demonstrated using modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+ PT21/28 strains induced with mitomycin C and this is associated with more rapid induction of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction when toxin production was not induced or prevented by mutation. Isogenic strains that differed in their capacity to produce Stx2a were selected for experimental oral colonisation of calves to assess the significance of Stx2a for both super-shedding and transmission between animals. Restoration of Stx2a expression in a PT21/28 background significantly increased animal-to-animal transmission and the number of sentinel animals that became super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157 colonisation of in-contact animals by restricting regeneration and turnover of the colonised gastrointestinal epithelium. Enterohaemorrhagic E. coli (EHEC) O157 strains are found in cattle where they are asymptomatic, while human exposure can lead to severe symptoms including bloody diarrhoea and kidney damage due to the activity of Shiga toxin (Stx). The most serious symptoms in humans are associated with isolates that encode Stx subtype 2a. The advantage of these toxins in the animal reservoir is still not clear, however there is experimental evidence implicating Stx with increased bacterial adherence, immune modulation and suppression of predatory protozoa. In this study, the hypothesis that Stx2a is important for super-shedding and calf-to-calf transmission was tested by comparing excretion and transmission dynamics of E. coli O157 strains with and without Stx2a. While Stx2a did not alter excretion levels when calfs were orally challenge, it enabled colonisation of more in contact ‘sentinel’ animals in our transmission model. We show that Stx2a is generally induced more rapidly than Stx2c, resulting in increased levels of Stx2a expression. Both Stx2a and Stx2c were able to restrict cellular proliferation of epithelial cells in cultured bovine enteroids. Taken together, we propose that rapid production of Stx2a and its role in establishing E. coli O157 colonisation in the bovine gastrointestinal tract facilitate effective transmission and have led to its expansion in the cattle E. coli O157 population.
Collapse
Affiliation(s)
- Stephen F. Fitzgerald
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | - Amy E. Beckett
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Sean McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Sharif Shaaban
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Jason Morgan
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Rachel Young
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Neil A. Mabbott
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Liam Morrison
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - James L. Bono
- United States Department of Agriculture, Agricultural Research Service, Nebraska, United States of America
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (DLG); (TNM)
| | - Tom N. McNeilly
- Moredun Research Institute, Penicuik, United Kingdom
- * E-mail: (DLG); (TNM)
| |
Collapse
|
12
|
Tamminen LM, Fransson H, Tråvén M, Aspán A, Alenius S, Emanuelson U, Dreimanis I, Törnquist M, Eriksson E. Effect of on-farm interventions in the aftermath of an outbreak of hypervirulent verocytotoxin-producing Escherichia coli
O157:H7 in Sweden. Vet Rec 2018; 182:516. [DOI: 10.1136/vr.104223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 11/13/2017] [Accepted: 01/21/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Lena-Mari Tamminen
- Section of Ruminant Medicine and Epidemiology, Department of Clinical Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Helena Fransson
- Section of Ruminant Medicine and Epidemiology, Department of Clinical Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Madeleine Tråvén
- Section of Ruminant Medicine and Epidemiology, Department of Clinical Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Anna Aspán
- Department of Microbiology; National Veterinary Institute; Uppsala Sweden
| | - Stefan Alenius
- Section of Ruminant Medicine and Epidemiology, Department of Clinical Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Ulf Emanuelson
- Section of Ruminant Medicine and Epidemiology, Department of Clinical Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| | | | | | - Erik Eriksson
- Department of Microbiology; National Veterinary Institute; Uppsala Sweden
| |
Collapse
|
13
|
Litt PK, Saha J, Jaroni D. Characterization of Bacteriophages Targeting Non-O157 Shiga Toxigenic Escherichia coli. J Food Prot 2018; 81:785-794. [PMID: 29624104 DOI: 10.4315/0362-028x.jfp-17-460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Non-O157 Shiga toxigenic Escherichia coli (STEC) are an important group of foodborne pathogens, implicated in several outbreaks and recalls in the past 2 decades. It is therefore crucial to devise effective control strategies against these pathogens. Bacteriophages present an attractive alternative to conventional pathogen control methods in the food industry. Bacteriophages, targeting non-O157 STEC (O26, O45, O103, O111, O121, O145), were isolated from beef cattle operations in Oklahoma. Their host range and lytic ability were determined against several ( n = 21) non-O157 STEC isolates, by using the spot-on-lawn assay. Isolated phages were purified, and their morphology was determined under a transmission electron microscope. Infection kinetics of selected phages ( n = 19), particularly adsorption rate, rise period, latent period, and burst size, were determined. Phages were also evaluated for stability at a wide pH range (1 to 11) and temperature range (-80 to 90°C). In total, 45 phages were isolated and classified into Myoviridae, Siphoviridae, or Tectiviridae. The phages had a latent period between 8 and 37 min, a rise period between 19 and 40 min, and a large burst size (12 to 794 virions per infected cell), indicating high lytic activity. Tested phages were stable at pH 5 to 9 for 24 h, whereas a decrease in phage titer was observed at pHs 1, 2, and 11. Phages were stable at 40 and 60°C, except for O103-specific phages. At 70°C, all the phages lost viability after 20 min, except three phages targeting O26 and O121 and one phage targeting O45 and O111 STEC, which remained viable for 60 min. All the phages lost activity after 10 min at 90°C, except one each of O26 and O121 STEC-infecting phages that remained viable for 60 min. Phages remained stable for 90 days under refrigerated (4°C) and frozen (-20 and -80°C) storage. Characterization of phages, targeting diverse non-O157 STEC serotypes, could help in the development of effective biocontrol strategies for this group of pathogens in the food industry.
Collapse
Affiliation(s)
- Pushpinder Kaur Litt
- Food and Agricultural Products Center and Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74075, USA (ORCID: http://orcid.org/0000-0002-2673-0728 [P.K.L.]; http://orcid.org/0000-0002-7994-0550 [D.J.])
| | - Joyjit Saha
- Food and Agricultural Products Center and Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74075, USA (ORCID: http://orcid.org/0000-0002-2673-0728 [P.K.L.]; http://orcid.org/0000-0002-7994-0550 [D.J.])
| | - Divya Jaroni
- Food and Agricultural Products Center and Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74075, USA (ORCID: http://orcid.org/0000-0002-2673-0728 [P.K.L.]; http://orcid.org/0000-0002-7994-0550 [D.J.])
| |
Collapse
|
14
|
Castro VS, Carvalho RCT, Conte-Junior CA, Figuiredo EES. Shiga-toxin ProducingEscherichia coli: Pathogenicity, Supershedding, Diagnostic Methods, Occurrence, and Foodborne Outbreaks. Compr Rev Food Sci Food Saf 2017; 16:1269-1280. [DOI: 10.1111/1541-4337.12302] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Vinicius Silva Castro
- Animal Science Program, Faculdade de Agronomia e Zootecnia; Univ. Federal de Mato Grosso; 78060-900 Mato Grosso Brazil
- Natl. Inst. of Health Quality Control; Fundação Oswaldo Cruz; Rio de Janeiro 21040-900 Rio de Janeiro Brazil
| | - Ricardo César Tavares Carvalho
- Nutrition, Food and Metabolism Program, Faculdade de Nutrição; Univ. Federal de Mato Grosso; 78060-900 Mato Grosso Brazil
| | - Carlos Adam Conte-Junior
- Dept. of Food Technology, Faculdade de Veterinária; Univ. Federal Fluminense; 24230-340 Rio de Janeiro Brazil
- Food Science Program, Inst. de Química; Univ. Federal do Rio de Janeiro; 21941-909 Rio de Janeiro Brazil
- Natl. Inst. of Health Quality Control; Fundação Oswaldo Cruz; Rio de Janeiro 21040-900 Rio de Janeiro Brazil
| | - Eduardo Eustáquio Souza Figuiredo
- Animal Science Program, Faculdade de Agronomia e Zootecnia; Univ. Federal de Mato Grosso; 78060-900 Mato Grosso Brazil
- Nutrition, Food and Metabolism Program, Faculdade de Nutrição; Univ. Federal de Mato Grosso; 78060-900 Mato Grosso Brazil
| |
Collapse
|
15
|
Berry ED, Wells JE, Varel VH, Hales KE, Kalchayanand N. Persistence of Escherichia coli O157:H7 and Total Escherichia coli in Feces and Feedlot Surface Manure from Cattle Fed Diets with and without Corn or Sorghum Wet Distillers Grains with Solubles. J Food Prot 2017; 80:1317-1327. [PMID: 28708031 DOI: 10.4315/0362-028x.jfp-17-018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Feeding corn wet distillers grains with solubles (WDGS) to cattle can increase the load of Escherichia coli O157:H7 in feces and on hides, but the mechanisms are not fully understood. The objective of these experiments was to examine a role for the persistence of E. coli O157:H7 in the feces and feedlot pen surfaces of cattle fed WDGS. In the first study, feces from steers fed 0, 20, 40, or 60% corn WDGS were inoculated with E. coli O157:H7. The E. coli O157:H7 numbers in feces from cattle fed 0% corn WDGS rapidly decreased (P < 0.05), from 6.28 to 2.48 log CFU/g of feces by day 14. In contrast, the E. coli O157:H7 numbers in feces from cattle fed 20, 40, and 60% corn WDGS were 4.21, 5.59, and 6.13 log CFU/g of feces, respectively, on day 14. A second study evaluated the survival of E. coli O157:H7 in feces from cattle fed 0 and 40% corn WDGS. Feces were collected before and 28 days after the dietary corn was switched from high-moisture corn to dry-rolled corn. Within dietary corn source, the pathogen persisted at higher concentrations (P < 0.05) in 40% corn WDGS feces at day 7 than in 0% WDGS. For 40% corn WDGS feces, E. coli O157:H7 persisted at higher concentrations (P < 0.05) at day 7 in feces from cattle fed high-moisture corn (5.36 log CFU/g) than from those fed dry-rolled corn (4.27 log CFU/g). The percentage of WDGS had no effect on the E. coli O157:H7 counts in feces from cattle fed steam-flaked corn-based diets containing 0, 15, and 30% sorghum WDGS. Greater persistence of E. coli O157:H7 on the pen surfaces of animals fed corn WDGS was not demonstrated, although these pens had a higher prevalence of the pathogen in the feedlot surface manure after the cattle were removed. Both or either the greater persistence and higher numbers of E. coli O157:H7 in the environment of cattle fed WDGS may play a part in the increased prevalence of E. coli O157:H7 in cattle by increasing the transmission risk.
Collapse
Affiliation(s)
- Elaine D Berry
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - James E Wells
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Vincent H Varel
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Kristin E Hales
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Norasak Kalchayanand
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| |
Collapse
|
16
|
Reducing Foodborne Pathogen Persistence and Transmission in Animal Production Environments: Challenges and Opportunities. Microbiol Spectr 2017; 4. [PMID: 27726803 DOI: 10.1128/microbiolspec.pfs-0006-2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Preharvest strategies to reduce zoonotic pathogens in food animals are important components of the farm-to-table food safety continuum. The problem is complex; there are multiple pathogens of concern, multiple animal species under different production and management systems, and a variety of sources of pathogens, including other livestock and domestic animals, wild animals and birds, insects, water, and feed. Preharvest food safety research has identified a number of intervention strategies, including probiotics, direct-fed microbials, competitive exclusion cultures, vaccines, and bacteriophages, in addition to factors that can impact pathogens on-farm, such as seasonality, production systems, diet, and dietary additives. Moreover, this work has revealed both challenges and opportunities for reducing pathogens in food animals. Animals that shed high levels of pathogens and predominant pathogen strains that exhibit long-term persistence appear to play significant roles in maintaining the prevalence of pathogens in animals and their production environment. Continued investigation and advancements in sequencing and other technologies are expected to reveal the mechanisms that result in super-shedding and persistence, in addition to increasing the prospects for selection of pathogen-resistant food animals and understanding of the microbial ecology of the gastrointestinal tract with regard to zoonotic pathogen colonization. It is likely that this continued research will reveal other challenges, which may further indicate potential targets or critical control points for pathogen reduction in livestock. Additional benefits of the preharvest reduction of pathogens in food animals are the reduction of produce, water, and environmental contamination, and thereby lower risk for human illnesses linked to these sources.
Collapse
|
17
|
Hartmann R, Fricke A, Stützel H, Mansourian S, Dekker T, Wohanka W, Alsanius B. Internalization of Escherichia coli O157:H7 gfp+ in rocket and Swiss chard baby leaves as affected by abiotic and biotic damage. Lett Appl Microbiol 2017; 65:35-41. [PMID: 28397273 DOI: 10.1111/lam.12742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 11/29/2022]
Abstract
Internalization of human pathogens in edible parts of vegetables eaten raw is a major concern, since once internalized they are protected from sanitizing treatments. In this study, we examined the invasion of gfp-labelled Escherichia coli O157:H7 into intact and biotically (infection with Xanthomonas campestris/Pseudomonas syringae) and abiotically (grating with silicon carbide) damaged leaves of wild rocket (Diplotaxis tenuifolia) and Swiss chard (Beta vulgaris subsp. cicla) using laser scanning confocal microscopy. Bacterial cells were found in internal locations of the tissue, irrespective of tissue health status. Contaminated leaf sections of biotically and abiotically damaged wild rocket leaves showed higher susceptibility to microbial invasion, while the pathogen was internalized in greater numbers into intact Swiss chard leaf sections when abiotically, but not biotically, damaged. The greatest differences were observed between the plant species; after surface sanitization, E. coli O157:H7 was still detected in wild rocket leaves, but not in Swiss chard leaves. SIGNIFICANCE AND IMPACT OF THE STUDY Contamination of leafy vegetables with Escherichia coli O157:H7 is a growing problem, as reported outbreaks are increasing. However, establishment of this human pathogen in the phyllosphere is not completely understood. Using laser scanning confocal microscopy, we demonstrated that E. coli O157:H7gfp+ can invade plant tissue of Swiss chard and wild rocket leaves and that the bacterium is more sensitive to surface sanitization of Swiss chard leaves. Damage to leaf tissue promoted leaf invasion, but the nature of the damage (abiotic or biotic) and plant species had an impact.
Collapse
Affiliation(s)
- R Hartmann
- Department of Biosystems and Technology, Microbial Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz Universität, Hannover, Germany
| | - A Fricke
- Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz Universität, Hannover, Germany
| | - H Stützel
- Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz Universität, Hannover, Germany
| | - S Mansourian
- Chemical Ecology Group, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - T Dekker
- Chemical Ecology Group, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - W Wohanka
- Department of Pomology, Geisenheim University, Geisenheim, Germany
| | - B Alsanius
- Department of Biosystems and Technology, Microbial Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
18
|
Shridhar PB, Noll LW, Cull CA, Shi X, Cernicchiaro N, Renter DG, Bai J, Nagaraja TG. Spiral Plating Method To Quantify the Six Major Non-O157 Escherichia coli Serogroups in Cattle Feces. J Food Prot 2017; 80:848-856. [PMID: 28414257 DOI: 10.4315/0362-028x.jfp-16-360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
Cattle are a major reservoir of the six major Shiga toxin-producing non-O157 Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) responsible for foodborne illnesses in humans. Besides prevalence in feces, the concentrations of STEC in cattle feces play a major role in their transmission dynamics. A subset of cattle, referred to as super shedders, shed E. coli O157 at high concentrations (≥4 log CFU/g of feces). It is not known whether a similar pattern of fecal shedding exists for non-O157. Our objectives were to initially validate the spiral plating method to quantify the six non-O157 E. coli serogroups with pure cultures and culture-spiked fecal samples and then determine the applicability of the method and compare it with multiplex quantitative PCR (mqPCR) assays for the quantification of the six non-O157 E. coli serogroups in cattle fecal samples collected from commercial feedlots. Quantification limits of the spiral plating method were 3 log, 3 to 4 log, and 3 to 5 log CFU/mL or CFU/g for individual cultures, pooled pure cultures, and cattle fecal samples spiked with pooled pure cultures, respectively. Of the 1,152 cattle fecal samples tested from eight commercial feedlots, 122 (10.6%) and 320 (27.8%) harbored concentrations ≥4 log CFU/g of one or more of the six serogroups of non-O157 by spiral plating and mqPCR methods, respectively. A majority of quantifiable samples, detected by either spiral plating (135 of 137, 98.5%) or mqPCR (239 of 320, 74.7%), were shedding only one serogroup. Only one of the quantifiable samples was positive for a serogroup carrying Shiga toxin (stx1) and intimin (eae) genes; 38 samples were positive for serogroups carrying the intimin gene. In conclusion, the spiral plating method can be used to quantify non-O157 serogroups in cattle feces, and our study identified a subset of cattle that was super shedders of non-O157 E. coli. The method has the advantage of quantifying non-O157 STEC, unlike mqPCR that quantifies serogroups only.
Collapse
Affiliation(s)
| | - Lance W Noll
- Department of Diagnostic Medicine and Pathobiology and
| | | | - Xiaorong Shi
- Department of Diagnostic Medicine and Pathobiology and
| | | | | | - Jianfa Bai
- Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas 66506, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine and Pathobiology and
| |
Collapse
|
19
|
Stanford K, Johnson RP, Alexander TW, McAllister TA, Reuter T. Influence of Season and Feedlot Location on Prevalence and Virulence Factors of Seven Serogroups of Escherichia coli in Feces of Western-Canadian Slaughter Cattle. PLoS One 2016; 11:e0159866. [PMID: 27482711 PMCID: PMC4970752 DOI: 10.1371/journal.pone.0159866] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
Pooled feces collected over two years from 1749 transport trailers hauling western-Canadian slaughter cattle were analysed by PCR for detection of Escherichia coli serogroups O26, O45, O103, O111, O121, O145, and O157. Sequential immunomagnetic separation was then used to collect bacterial isolates (n = 1035) from feces positive for target serogroups. Isolated bacteria were tested by PCR to confirm serogroup and the presence of eae, ehxA, stx1, and stx2 virulence genes. Based on PCR screening, serogroup prevalence in feces ranged from 7.0% (O145) to 94.4% (O103) with at least 3 serogroups present in 79.5% of samples. Origin of cattle affected serogroup PCR prevalence and O157 was most prevalent in feces from south-west Alberta (P < 0.001). All serogroups demonstrated seasonal variations in PCR prevalence, with O26, O45, O103, O121, and O157 least prevalent (P < 0.001) in cooler winter months, while uncommon serogroups O111 and O145 increased in prevalence during winter (P < 0.001). However, isolates collected during winter were predominantly from serogroups O103 and O45. No seasonal variation was noted in proportion of isolates which were Shiga toxin containing E. coli (STEC; P = 0.18) or positive for Shiga toxin and eae (enterohemorrhagic E. coli; EHEC; P = 0.29). Isolates of serogroups O111, O145, and O157 were more frequently EHEC than were others, although 37.6–54.3% of isolates from other serogroups were also EHEC. Shiga-toxin genes present also varied by geographic origin of cattle (P < 0.05) in all serogroups except O157. As cattle within feedlots are sourced from multiple regions, locational differences in serogroup prevalence and virulence genes imply existence of selection pressures for E. coli and their virulence in western-Canadian cattle. Factors which reduce carriage or expression of virulence genes, particularly in non-O157 serogroups, should be investigated.
Collapse
Affiliation(s)
- Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
- * E-mail:
| | | | | | | | - Tim Reuter
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| |
Collapse
|
20
|
Munns KD, Zaheer R, Xu Y, Stanford K, Laing CR, Gannon VPJ, Selinger LB, McAllister TA. Comparative Genomic Analysis of Escherichia coli O157:H7 Isolated from Super-Shedder and Low-Shedder Cattle. PLoS One 2016; 11:e0151673. [PMID: 27018858 PMCID: PMC4809568 DOI: 10.1371/journal.pone.0151673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/02/2016] [Indexed: 11/25/2022] Open
Abstract
Cattle are the primary reservoir of the foodborne pathogen Escherichia coli O157:H7, with the concentration and frequency of E. coli O157:H7 shedding varying substantially among individual hosts. The term ''super-shedder" has been applied to cattle that shed ≥10(4) cfu E. coli O157:H7/g of feces. Super-shedders have been reported to be responsible for the majority of E. coli O157:H7 shed into the environment. The objective of this study was to determine if there are phenotypic and/or genotypic differences between E. coli O157:H7 isolates obtained from super-shedder compared to low-shedder cattle. From a total of 784 isolates, four were selected from low-shedder steers and six isolates from super-shedder steers (4.01-8.45 log cfu/g feces) for whole genome sequencing. Isolates were phage and clade typed, screened for substrate utilization, pH sensitivity, virulence gene profiles and Stx bacteriophage insertion (SBI) sites. A range of 89-2473 total single nucleotide polymorphisms (SNPs) were identified when sequenced strains were compared to E. coli O157:H7 strain Sakai. More non-synonymous SNP mutations were observed in low-shedder isolates. Pan-genomic and SNPs comparisons did not identify genetic segregation between super-shedder or low-shedder isolates. All super-shedder isolates and 3 of 4 of low-shedder isolates were typed as phage type 14a, SBI cluster 3 and SNP clade 2. Super-shedder isolates displayed increased utilization of galactitol, thymidine and 3-O-β-D-galactopyranosyl-D-arabinose when compared to low-shedder isolates, but no differences in SNPs were observed in genes encoding for proteins involved in the metabolism of these substrates. While genetic traits specific to super-shedder isolates were not identified in this study, differences in the level of gene expression or genes of unknown function may still contribute to some strains of E. coli O157:H7 reaching high densities within bovine feces.
Collapse
Affiliation(s)
- Krysty D. Munns
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | - Yong Xu
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB, Canada
| | - Kim Stanford
- Agriculture and Forestry, Lethbridge, AB, Canada
| | - Chad R. Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, AB, Canada
| | - Victor P. J. Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, AB, Canada
| | - L. Brent Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| |
Collapse
|
21
|
Estimating finite-population reproductive numbers in heterogeneous populations. J Theor Biol 2016; 397:1-12. [PMID: 26891919 PMCID: PMC7094132 DOI: 10.1016/j.jtbi.2016.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 11/22/2022]
Abstract
The basic reproductive number, R0, is one of the most important epidemiological quantities. R0 provides a threshold for elimination and determines when a disease can spread or when a disease will die out. Classically, R0 is calculated assuming an infinite population of identical hosts. Previous work has shown that heterogeneity in the host mixing rate increases R0 in an infinite population. However, it has been suggested that in a finite population, heterogeneity in the mixing rate may actually decrease the finite-population reproductive numbers. Here, we outline a framework for discussing different types of heterogeneity in disease parameters, and how these affect disease spread and control. We calculate “finite-population reproductive numbers” with different types of heterogeneity, and show that in a finite population, heterogeneity has complicated effects on the reproductive number. We find that simple heterogeneity decreases the finite-population reproductive number, whereas heterogeneity in the intrinsic mixing rate (which affects both infectiousness and susceptibility) increases the finite-population reproductive number when R0 is small relative to the size of the population and decreases the finite-population reproductive number when R0 is large relative to the size of the population. Although heterogeneity has complicated effects on the finite-population reproductive numbers, its implications for control are straightforward: when R0 is large relative to the size of the population, heterogeneity decreases the finite-population reproductive numbers, making disease control or elimination easier than predicted by R0. Outline a framework for discussing the different types of heterogeneity. Found simple expressions for each of the four different types of heterogeneity and heterogeneity in intrinsic mixing. Showed heterogeneity in finite populations is more complicated than previously thought. Showed that heterogeneity in a finite population makes control easier than predicted by R0 and the homogeneous finite-population reproductive number.
Collapse
|
22
|
Ekong PS, Sanderson MW, Cernicchiaro N. Prevalence and concentration of Escherichia coli O157 in different seasons and cattle types processed in North America: A systematic review and meta-analysis of published research. Prev Vet Med 2015; 121:74-85. [PMID: 26153554 DOI: 10.1016/j.prevetmed.2015.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 11/25/2022]
Abstract
Systematic review (SR) and meta-analyses (MA) methodologies were used to identify, critically evaluate and synthesize prevalence and concentration estimates for Escherichia coli O157 contamination along the beef production chain, and to illustrate differences based on cattle types and seasonality in North America from the scientific peer-reviewed literature. Four electronic databases were searched to identify relevant articles. Two independent reviewers performed all SR steps. Random effects MA models were used to estimate the pooled prevalence and concentration of E. coli O157 in feces, hides and carcasses of cattle processed in North America, including their seasonal estimates. The potential sources of between studies heterogeneity were identified using meta-regression and sub-group analysis. Results indicated differences in the fecal prevalence of E. coli O157 among cattle types: 10.68% (95% CI: 9.17-12.28%) in fed beef, 4.65% (95% CI: 3.37-6.10%) in adult beef, and 1.79% (95% CI: 1.20-2.48%) in adult dairy. Fed beef fecal prevalence was 10.65% (95% CI: 8.93-12.49%) during summer and 9.17% (95% CI: 5.24-13.98%) during the winter months. For adult beef, the fecal prevalence was 7.86% (95% CI: 5.43-10.66%) during summer, and 4.21% (95% CI: 1.95-7.13%) during winter. Among adult dairy, the fecal prevalence was 2.27% (95% CI: 1.5-3.18%) during summer, and 0.36% (95% CI: 0.09-0.74%) during winter. There was a significantly higher percentage of hides with E. coli O157 concentration ≥ 40 CFU/100 cm(2) on hides of fed beef sampled at the processing plant (23.81%; 95% CI: 14.79-34.15%) compared to those sampled at the feedlot (1.74%; 95% CI: 0.53-3.44%). Prevalence of E. coli O157 on carcass surfaces differed by season only at the post-evisceration stage, but decreased considerably through the subsequent processing stages. Country, study setting, detection method, hide swab area, and study design were identified as significant sources of heterogeneity among studies reporting prevalence of E. coli O157 along the beef production chain. The pooled prevalence and concentration estimates from this study provide a sound and reliable microbiological basis for risk assessment modeling of E. coli O157 and other pathogens in the food chain.
Collapse
Affiliation(s)
- Pius S Ekong
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Michael W Sanderson
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natalia Cernicchiaro
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
23
|
Munns KD, Selinger LB, Stanford K, Guan L, Callaway TR, McAllister TA. Perspectives on super-shedding of Escherichia coli O157:H7 by cattle. Foodborne Pathog Dis 2014; 12:89-103. [PMID: 25514549 DOI: 10.1089/fpd.2014.1829] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli O157:H7 is a foodborne pathogen that causes illness in humans worldwide. Cattle are the primary reservoir of this bacterium, with the concentration and frequency of E. coli O157:H7 shedding varying greatly among individuals. The term "super-shedder" has been applied to cattle that shed concentrations of E. coli O157:H7 ≥ 10⁴ colony-forming units/g feces. Super-shedders have been reported to have a substantial impact on the prevalence and transmission of E. coli O157:H7 in the environment. The specific factors responsible for super-shedding are unknown, but are presumably mediated by characteristics of the bacterium, animal host, and environment. Super-shedding is sporadic and inconsistent, suggesting that biofilms of E. coli O157:H7 colonizing the intestinal epithelium in cattle are intermittently released into feces. Phenotypic and genotypic differences have been noted in E. coli O157:H7 recovered from super-shedders as compared to low-shedding cattle, including differences in phage type (PT21/28), carbon utilization, degree of clonal relatedness, tir polymorphisms, and differences in the presence of stx2a and stx2c, as well as antiterminator Q gene alleles. There is also some evidence to support that the native fecal microbiome is distinct between super-shedders and low-shedders and that low-shedders have higher levels of lytic phage within feces. Consequently, conditions within the host may determine whether E. coli O157:H7 can proliferate sufficiently for the host to obtain super-shedding status. Targeting super-shedders for mitigation of E. coli O157:H7 has been proposed as a means of reducing the incidence and spread of this pathogen to the environment. If super-shedders could be easily identified, strategies such as bacteriophage therapy, probiotics, vaccination, or dietary inclusion of plant secondary compounds could be specifically targeted at this subpopulation. Evidence that super-shedder isolates share a commonality with isolates linked to human illness makes it imperative that the etiology of this phenomenon be characterized.
Collapse
Affiliation(s)
- Krysty D Munns
- 1 Agriculture and Agri-Food Canada, Lethbridge Research Centre , Lethbridge, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Xu Y, Dugat-Bony E, Zaheer R, Selinger L, Barbieri R, Munns K, McAllister TA, Selinger LB. Escherichia coli O157:H7 super-shedder and non-shedder feedlot steers harbour distinct fecal bacterial communities. PLoS One 2014; 9:e98115. [PMID: 24858731 PMCID: PMC4032279 DOI: 10.1371/journal.pone.0098115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/28/2014] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli O157:H7 is a major foodborne human pathogen causing disease worldwide. Cattle are a major reservoir for this pathogen and those that shed E. coli O157:H7 at >104 CFU/g feces have been termed "super-shedders". A rich microbial community inhabits the mammalian intestinal tract, but it is not known if the structure of this community differs between super-shedder cattle and their non-shedding pen mates. We hypothesized that the super-shedder state is a result of an intestinal dysbiosis of the microbial community and that a "normal" microbiota prevents E. coli O157:H7 from reaching super-shedding levels. To address this question, we applied 454 pyrosequencing of bacterial 16S rRNA genes to characterize fecal bacterial communities from 11 super-shedders and 11 contemporary pen mates negative for E. coli O157:H7. The dataset was analyzed by using five independent clustering methods to minimize potential biases and to increase confidence in the results. Our analyses collectively indicated significant variations in microbiome composition between super-shedding and non-shedding cattle. Super-shedders exhibited higher bacterial richness and diversity than non-shedders. Furthermore, seventy-two operational taxonomic units, mostly belonging to Firmicutes and Bacteroidetes phyla, were identified showing differential abundance between these two groups of cattle. The operational taxonomic unit affiliation provides new insight into bacterial populations that are present in feces arising from super-shedders of E. coli O157:H7.
Collapse
Affiliation(s)
- Yong Xu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Eric Dugat-Bony
- AgroParisTech National Institute for Agricultural Research, Thiverval, Grignon France
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Lorna Selinger
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Ruth Barbieri
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Krysty Munns
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - L. Brent Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
25
|
Differing populations of endemic bacteriophages in cattle shedding high and low numbers of Escherichia coli O157:H7 bacteria in feces. Appl Environ Microbiol 2014; 80:3819-25. [PMID: 24747892 DOI: 10.1128/aem.00708-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objectives of this study were to identify endemic bacteriophages (phages) in the feedlot environment and determine relationships of these phages to Escherichia coli O157:H7 from cattle shedding high and low numbers of naturally occurring E. coli O157:H7. Angus crossbred steers were purchased from a southern Alberta (Canada) feedlot where cattle excreting ≥ 10(4) CFU · g(-1) of E. coli O157:H7 in feces at a single time point were identified as supershedders (SS; n = 6), and cattle excreting <10(4) CFU · g(-1) of feces were identified as low shedders (LS; n = 5). Fecal pats or fecal grabs were collected daily from individual cattle for 5 weeks. E. coli O157:H7 in feces was detected by immunomagnetic separation and enumerated by direct plating, and phages were isolated using short- and overnight-enrichment methods. The total prevalence of E. coli O157:H7 isolated from feces was 14.4% and did not differ between LS and SS (P = 0.972). The total prevalence of phages was higher in the LS group (20.9%) than in the SS group (8.3%; P = 0.01). Based on genome size estimated by pulsed-field gel electrophoresis and morphology determined by transmission electron microscopy, T4- and O1-like phages of Myoviridae and T1-like phage of Siphoviridae were isolated. Compared to T1- and O1-like phages, T4-like phages exhibited a broad host range and strong lytic capability when targeting E. coli O157:H7. Moreover, the T4-like phages were more frequently isolated from feces of LS than SS, suggesting that endemic phages may impact the shedding dynamics of E. coli O157:H7 in cattle.
Collapse
|
26
|
Stanford K, Hannon S, Booker CW, Jim GK. Variable efficacy of a vaccine and direct-fed microbial for controlling Escherichia coli O157:H7 in feces and on hides of feedlot cattle. Foodborne Pathog Dis 2014; 11:379-87. [PMID: 24673729 DOI: 10.1089/fpd.2013.1693] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To evaluate the efficacy of a type-III secreted proteins vaccine and a Lactobacillus-acidophilus-based direct-fed microbial (DFM) for controlling Escherichia coli O157:H7, cattle (n=864) were allocated to the following groups: DFM, finishing diets containing 10(9) colony-forming units (CFU)/animal/day L. acidophilus and Propionibacterium freudenreichii; VAC, finishing diets and 2 mL intramuscular injection of vaccine at allocation and 28 days later; or CON, finishing diets only. Cattle within replicates were stratified by initial levels of E. coli O157:H7 and randomized to experimental groups, with 30 pens allocated on June 15, 2011 (AS1), 18 pens allocated on June 28, 2011 (AS2), and 18 cattle per pen. Rectal fecal samples and perineal swabs were collected at 28-day intervals until shipment to slaughter (103-145 days on trial). Numbers of cattle with enumerable E. coli O157:H7 (≥1.6 CFU/g feces) were reduced in AS1 and AS2 by VAC (p=0.008), although interventions had no impact on numbers of E. coli O157:H7 shed. For AS1, VAC reduced prevalence of E. coli O157:H7 in feces (p=0.03) and perineal swabs (p=0.04) in the feeding period but not at shipment to slaughter. For AS2, prevalence of E. coli O157:H7 was not reduced in either feces or perineal swabs by VAC at any time. For AS1, DFM reduced prevalence of E. coli O157:H7 in perineal swabs (p=0.01) during the feeding period. For AS2, DFM increased E. coli O157:H7 detection in feces (p=0.03) and perineal swabs (p=0.01) at shipment to slaughter. Seventy-five percent of AS1 E. coli O157:H7 isolates had only stx1, while 87% of AS2 isolates had stx1 and stx2 genes. Of the two interventions, VAC shows the most potential for pre-harvest control of E. coli O157:H7, but due to variable efficacy of both DFM and VAC, additional product development is necessary to ensure more consistent pre-harvest control of E. coli O157:H7.
Collapse
Affiliation(s)
- Kim Stanford
- 1 Alberta Agriculture and Rural Development, Agriculture Centre , Lethbridge, Alberta, Canada
| | | | | | | |
Collapse
|
27
|
Smith DR. Cattle Production Systems: Ecology of Existing and Emerging Escherichia coli Types Related to Foodborne Illness. Annu Rev Anim Biosci 2014; 2:445-68. [DOI: 10.1146/annurev-animal-022513-114122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shiga toxin–producing Escherichia coli (STEC), particularly STEC O157, cause rare but potentially serious human infections. Infection with STEC occurs by fecal-oral transmission, most commonly through food. Cattle are the most important reservoir for human STEC exposure, and efforts to control the flow of STEC through beef processing have reduced rates of human illness. However, further reduction in human incidence of STEC may require control of the pathogen in cattle populations. The ecology of STEC in cattle production systems is complex and explained by factors that favor (a) colonization in the gut, (b) survival in the environment, and (c) ingestion by another cattle host. Although nature creates seasonal environmental conditions that do not favor STEC transmission in cattle, human efforts to control STEC by environmental manipulation have not succeeded. Vaccines and direct-fed microbial products have reduced the carriage of STEC by cattle, and other interventions are under investigation.
Collapse
Affiliation(s)
- David R. Smith
- Mississippi State University College of Veterinary Medicine, Mississippi State, Mississippi 39762-6100
| |
Collapse
|
28
|
Aperce CC, Alvarado CA, Miller KA, Van Bibber-Krueger CL, Drouillard JS. Transit effects on fecal Escherichia coli O157 prevalence and coliform concentrations in feedlot cattle. J Anim Sci 2013; 92:676-82. [PMID: 24352970 DOI: 10.2527/jas.2013-6712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our objectives were to evaluate the effects of transportation and lairage on fecal shedding of Escherichia coli O157 (E. coli O157), total Escherichia coli, and total coliforms in feedlot cattle, and the relationships between E. coli O157 prevalence and total E. coli population. The study was a randomized complete block design with a split-plot including 2 treatments: a nontransported group, which remained in its pen at all times, and a transported group, which was transported for 1 h in a trailer and subsequently unloaded in a different pen. The experiment was repeated on 3 different days (blocking factor) with 20 steers/d (10 steers/treatment, 60 total). Fecal samples were taken pretransport (h 0) and after 4 and 28 h, lairage from freshly voided fecal pats were taken from each animal. One gram of feces was transferred to a PBS tube, serially diluted, and plated onto Petrifilm for enumeration of total coliforms. Another sample (1 g) was added to gram-negative broth containing cefixime, cefsulodin, and vancomycin, and subjected to immunomagnetic separation. Resulting beads were plated onto MacConkey agar with sorbitol, cefixime, and tellurite. Nonsorbitol fermenting colonies were selected and tested for indole production and O157 antigen agglutination. Results were confirmed using an API 20E kit. Prevalence of E. coli O157 was transient across blocks. E. coli O157 prevalence revealed no treatment × sampling time interaction (P = 0.179) or sampling time effect (P = 0.937), but a tendency for a treatment effect (P = 0.092). Numbers of E. coli and other coliforms did not change across blocks. No effect of treatment (P > 0.7) was observed on total E. coli concentrations or total coliforms. However, tendencies for treatment × sampling time interactions were observed on both populations (P < 0.08), as well as a tendency for a sampling time effect on total E. coli (P = 0.087) and an effect on total coliforms (P = 0.004). Prevalence of E. coli O157 was not correlated with the concentration of total E. coli (P = 0.954). Results suggest that shedding of E. coli O157 and coliforms can vary within a period of 29 h. Greater statistical power and pathogen quantification, as well as hide sampling and stress-related measurements, are needed to be able to conclude on the effects of transport stress on E. coli O157 prevalence and the changes undergone in pathogen shedding patterns after transportation.
Collapse
Affiliation(s)
- C C Aperce
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506-1600
| | | | | | | | | |
Collapse
|
29
|
Stanford K, Gibb D, McAllister TA. Evaluation of a shelf-stable direct-fed microbial for control of Escherichia coli O157 in commercial feedlot cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2013. [DOI: 10.4141/cjas2013-100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stanford, K, Gibb, D. and McAllister, T. A. 2013. Evaluation of a shelf-stable direct-fed microbial for control of Escherichia coli O157 in commercial feedlot cattle. Can. J. Anim. Sci. 93: 535–542. A direct-fed microbial (DFM) registered for use in cattle in Canada containing Lactobacillus acidophilus strain BT-1386 and a Saccharomyces cerevisiae yeast autolysate was evaluated for control of E. coli O157. Weaned calves entered the feedlot in October and November and in January were sorted into Control (12 pens with a total of 2170 calves) and DFM treatment groups (10 pens with a total of 2040 calves). Although targeted dosage of L. acidophilus was 9 log10 colony forming units (CFU) head−1 d−1, analyses after storage at ambient temperature showed an average dose of 8.6 Log10 CFU head−1 d−1 and demonstrated stability of DFM over the range of temperatures encountered (−32.6 to 32.9°C) during storage. Calves entering the feedlot had low prevalence (0.8%) of E. coli O157 in feces, which increased to 11.2% in January. A 47°C range in ambient temperature for that month may have stressed cattle and led to increased shedding of E. coli O157 compared with seasonal norms. Comparing hide swabs collected at initiation of DFM feeding with those at shipping for slaughter, prevalence of E. coli O157 declined (P<0.05) in cattle fed DFM, although prevalence of E. coli O157 in hide swabs from Control and DFM-treated cattle did not differ at any time. As well, numbers of E. coli O157 and prevalence of the organism in fecal pats did not differ among treatments. Colonization of calves with E. coli O157 prior to DFM feeding likely reduced efficacy of DFM in the present study. Additional information regarding timing of feeding DFM relative to interactions among organisms within the gastrointestinal tract of cattle are required to ensure consistent efficacy of DFM for pre-harvest control of E. coli O157.
Collapse
Affiliation(s)
- K. Stanford
- Alberta Agriculture and Rural Development, Agriculture Centre, 5401-1st Ave. S., Lethbridge, Alberta, Canada T1J 4V6
| | - D. Gibb
- Hi-Pro Feeds, 1810-39 St. N., Lethbridge, Alberta, Canada
| | - T. A. McAllister
- Agriculture and Agri-Food Canada, 5403-1st Ave. S., Lethbridge, Alberta, Canada T1J 4B1
| |
Collapse
|
30
|
Barnard S, Routray P, Majorin F, Peletz R, Boisson S, Sinha A, Clasen T. Impact of Indian Total Sanitation Campaign on latrine coverage and use: a cross-sectional study in Orissa three years following programme implementation. PLoS One 2013; 8:e71438. [PMID: 23990955 PMCID: PMC3749227 DOI: 10.1371/journal.pone.0071438] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Faced with a massive shortfall in meeting sanitation targets, some governments have implemented campaigns that use subsidies focused on latrine construction to overcome income constraints and rapidly expand coverage. In settings like rural India where open defecation is common, this may result in sub-optimal compliance (use), thereby continuing to leave the population exposed to human excreta. METHODS We conducted a cross-sectional study to investigate latrine coverage and use among 20 villages (447 households, 1933 individuals) in Orissa, India where the Government of India's Total Sanitation Campaign had been implemented at least three years previously. We defined coverage as the proportion of households that had a latrine; for use we identified the proportion of households with at least one reported user and among those, the extent of reported use by each member of the household. RESULTS Mean latrine coverage among the villages was 72% (compared to <10% in comparable villages in the same district where the Total Sanitation Campaign had not yet been implemented), though three of the villages had less than 50% coverage. Among these households with latrines, more than a third (39%) were not being used by any member of the household. Well over a third (37%) of the members of households with latrines reported never defecating in their latrines. Less than half (47%) of the members of such households reported using their latrines at all times for defecation. Combined with the 28% of households that did not have latrines, it appears that most defecation events in these communities are still practiced in the open. CONCLUSION A large-scale campaign to implement sanitation has achieved substantial gains in latrine coverage in this population. Nevertheless, gaps in coverage and widespread continuation of open defecation will result in continued exposure to human excreta, reducing the potential for health gains.
Collapse
Affiliation(s)
- Sharmani Barnard
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Parimita Routray
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fiona Majorin
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rachel Peletz
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sophie Boisson
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Antara Sinha
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas Clasen
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Berry ED, Millner PD, Wells JE, Kalchayanand N, Guerini MN. Fate of naturally occurring Escherichia coli O157:H7 and other zoonotic pathogens during minimally managed bovine feedlot manure composting processes. J Food Prot 2013; 76:1308-21. [PMID: 23905785 DOI: 10.4315/0362-028x.jfp-12-364] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reducing Escherichia coli O157:H7 in livestock manures before application to cropland is critical for reducing the risk of foodborne illness associated with produce. Our objective was to determine the fate of naturally occurring E. coli O157:H7 and other pathogens during minimally managed on-farm bovine manure composting processes. Feedlot pen samples were screened to identify E. coli O157:H7-positive manure. Using this manure, four piles of each of three different composting formats were constructed in each of two replicate trials. Composting formats were (i) turned piles of manure plus hay and straw, (ii) static stockpiles of manure, and (iii) static piles of covered manure plus hay and straw. Temperatures in the tops, toes, and centers of the conical piles (ca. 6.0 m(3) each) were monitored. Compost piles that were turned every 2 weeks achieved higher temperatures for longer periods in the tops and centers than did piles that were left static. E. coli O157:H7 was not recovered from top samples of turned piles of manure plus hay and straw at day 28 and beyond, but top samples from static piles were positive for the pathogen up to day 42 (static manure stockpiles) and day 56 (static covered piles of manure plus hay and straw). Salmonella, Campylobacter spp., and Listeria monocytogenes were not found in top or toe samples at the end of the composting period, but E. coli O157:H7 and Listeria spp. were recovered from toe samples at day 84. Our findings indicate that some minimally managed composting processes can reduce E. coli O157:H7 and other pathogens in bovine manure but may be affected by season and/or initial levels of indigenous thermophilic bacteria. Our results also highlight the importance of adequate C:N formulation of initial mixtures for the production of high temperatures and rapid composting, and the need for periodic turning of the piles to increase the likelihood that all parts of the mass are subjected to high temperatures.
Collapse
Affiliation(s)
- Elaine D Berry
- U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The emergence of the middle class in countries such as Brazil, Russia, India, and China is resulting in increasing global demand for animal-based food products. This increase represents a unique opportunity for Canadian livestock producers to export their products to new markets and expand Canada's reputation as a global provider of safe and highest quality food items. This article has two major themes. First, current Canadian contributions to livestock genomics in the cattle and swine industries are outlined. Second, important future opportunities are discussed, including the high throughput collection of phenotypic data, development of environmentally friendly livestock, emergence of decision support software, and the use of Web 2.0. Through the use of genomic technologies, livestock producers can not only ensure that the nutritional demands of Canada are secured, but also play a pivotal role in ensuring the rest of the world is fed as well. Furthermore, investment through initiatives led by Genome Canada has ensured that Canada is favorably positioned to contribute cutting-edge solutions to meet this global challenge. Ultimately, genomic-based innovations will enable producers to increase efficiency, lower production costs, decrease the use of prophylactics, and limit the expenditure of resources.
Collapse
Affiliation(s)
- Jagjit S Ludu
- Livestock Gentec, Department of Agriculture, Food, and Nutritional Science, University of Alberta, 1400 College Plaza, 8215 112 Street, Edmonton, AB T6G 2C8, Canada
| | | |
Collapse
|
33
|
Smith BA, Fazil A, Lammerding AM. A risk assessment model for Escherichia coli O157:H7 in ground beef and beef cuts in Canada: Evaluating the effects of interventions. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Stanford K, Agopsowicz CA, McAllister TA. Genetic diversity and antimicrobial resistance among isolates of Escherichia coli O157: H7 from feces and hides of super-shedders and low-shedding pen-mates in two commercial beef feedlots. BMC Vet Res 2012; 8:178. [PMID: 23014060 PMCID: PMC3582550 DOI: 10.1186/1746-6148-8-178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 09/24/2012] [Indexed: 11/24/2022] Open
Abstract
Background Cattle shedding at least 104 CFU Escherichia coli O157:H7/g feces are described as super-shedders and have been shown to increase transmission of E. coli O157:H7 to other cattle in feedlots. This study investigated relationships among fecal isolates from super-shedders (n = 162), perineal hide swab isolates (PS) from super-shedders (n = 137) and fecal isolates from low-shedder (< 104 CFU/g feces) pen-mates (n = 496) using pulsed-field gel electrophoresis (PFGE). A subsample of these fecal isolates (n = 474) was tested for antimicrobial resistance. Isolates of E. coli O157:H7 were obtained from cattle in pens (avg. 181 head) at 2 commercial feedlots in southern Alberta with each steer sampled at entry to the feedlot and prior to slaughter. Results Only 1 steer maintained super-shedder status at both samplings, although approximately 30% of super-shedders in sampling 1 had low-shedder status at sampling 2. A total of 85 restriction endonuclease digestion clusters (REPC; 90% or greater similarity) and 86 unique isolates (< 90% similarity) were detected, with the predominant REPC (30% of isolates) being isolated from cattle in all feedlot pens, although it was not associated with shedding status (super- or low-shedder; P = 0.94). Only 2/21 super-shedders had fecal isolates in the same REPC at both samplings. Fecal and PS isolates from individual super-shedders generally belonged to different REPCs, although fecal isolates of E. coli O157:H7 from super- and low-shedders showed greater similarity (P < 0.001) than those from PS. For 77% of super-shedders, PFGE profiles of super-shedder fecal and PS isolates were distinct from all low-shedder fecal isolates collected in the same pen. A low level of antimicrobial resistance (3.7%) was detected and prevalence of antimicrobial resistance did not differ among super- and low-shedder isolates (P = 0.69), although all super-shedder isolates with antimicrobial resistance (n = 3) were resistant to multiple antimicrobials. Conclusions Super-shedders did not have increased antimicrobial resistance compared to low-shedder pen mates. Our data demonstrated that PFGE profiles of individual super-shedders varied over time and that only 1/162 steers remained a super-shedder at 2 samplings. In these two commercial feedlots, PFGE subtypes of E. coli O157:H7 from fecal isolates of super- and low-shedders were frequently different as were subtypes of fecal and perineal hide isolates from super-shedders.
Collapse
Affiliation(s)
- Kim Stanford
- Alberta Agriculture and Rural Development, Agriculture Centre, 100-5401 1st Ave, S, Lethbridge, AB, T1J 4 V6, Canada.
| | | | | |
Collapse
|
35
|
Genomic, proteomic and physiological characterization of a T5-like bacteriophage for control of Shiga toxin-producing Escherichia coli O157:H7. PLoS One 2012; 7:e34585. [PMID: 22514640 PMCID: PMC3326045 DOI: 10.1371/journal.pone.0034585] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/07/2012] [Indexed: 11/19/2022] Open
Abstract
Despite multiple control measures, Escherichia coli O157:H7 (STEC O157:H7) continues to be responsible for many food borne outbreaks in North America and elsewhere. Bacteriophage therapy may prove useful for controlling this pathogen in the host, their environment and food. Bacteriophage vB_EcoS_AKFV33 (AKFV33), a T5-like phage of Siphoviridae lysed common phage types of STEC O157:H7 and not non-O157 E. coli. Moreover, STEC O157:H7 isolated from the same feedlot pen from which the phage was obtained, were highly susceptible to AKFV33. Adsorption rate constant and burst size were estimated to be 9.31 × 10(-9) ml/min and 350 PFU/infected cell, respectively. The genome of AKVF33 was 108,853 bp (38.95% G+C), containing 160 open reading frames (ORFs), 22 tRNA genes and 32 strong promoters recognized by host RNA polymerase. Of 12 ORFs without homologues to T5-like phages, 7 predicted novel proteins while others exhibited low identity (<60%) to proteins in the National Centre for Biotechnology Information database. AKVF33 also lacked the L-shaped tail fiber protein typical of T5, but was predicted to have tail fibers comprised of 2 novel proteins with low identity (37-41%) to tail fibers of E. coli phage phiEco32 of Podoviridae, a putative side tail fiber protein of a prophage from E. coli IAI39 and a conserved domain protein of E. coli MS196-1. The receptor-binding tail protein (pb5) shared an overall identify of 29-72% to that of other T5-like phages, with no region coding for more than 6 amino acids in common. Proteomic analysis identified 4 structural proteins corresponding to the capsid, major tail, tail fiber and pore-forming tail tip (pb2). The genome of AKFV33 lacked regions coding for known virulence factors, integration-related proteins or antibiotic resistance determinants. Phage AKFV33 is a unique, highly lytic STEC O157:H7-specific T5-like phage that may have considerable potential as a pre- and post-harvest biocontrol agent.
Collapse
|
36
|
Escherichia coli O157:H7 in beef cattle: on farm contamination and pre-slaughter control methods. Anim Health Res Rev 2012; 12:197-211. [PMID: 22152293 DOI: 10.1017/s1466252311000132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper addresses food safety in beef cattle production, with particular emphasis on factors that affect the prevalence of Escherichia coli O157:H7 in beef cattle and on control methods that have been investigated. Product recalls and foodborne diseases due to this organism continue to occur even though control measures have been under investigation for over 20 years. Most meatborne outbreaks are due to improper food handling practices and consumption of undercooked meat. However, the majority of pathogenic bacteria that can spread at slaughter by cross-contamination can be traced back to the farm rather than originating from the slaughter plant. This would ideally require the adoption of rigorous on-farm intervention strategies to mitigate risks at the farm level. On-farm strategies to control and reduce E. coli O157:H7 at the farm level will reduce the risk of carcass contamination at slaughter and processing facilities although they will not eliminate E. coli O157:H7. The most successful strategy for reducing the risk of contamination of beef and beef products will involve the implementation of both pre- and post-harvest measures.
Collapse
|
37
|
Stanford K, Bryan M, Peters J, González LA, Stephens TP, Schwartzkopf-Genswein KS. Effects of long- or short-haul transportation of slaughter heifers and cattle liner microclimate on hide contamination with Escherichia coli O157. J Food Prot 2011; 74:1605-10. [PMID: 22004805 DOI: 10.4315/0362-028x.jfp-11-154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Effects of cattle transportation on hide contamination with Escherichia coli O157 have been variable, and the present study was designed to clarify relationships among duration of transport, microclimate, and environment within the trailer and contamination of hides with E. coli O157. Crossbred Angus heifers from a feedlot in southern Alberta were sorted into 10 replicate loads containing 45 animals (short haul, 621.5 ± 2.1 kg of body weight) or 46 animals (long haul, 576.0 ± 1.7 kg of body weight). Long-haul trips (n = 5) were made in July and August to slaughter plant A, whereas short-haul trips (n = 5) were made in October to slaughter plant B. The same trailer unit and driver were used for all loads. Data loggers were located in the ceiling of each compartment of the trailers to record ambient temperature and relative humidity. Each heifer was swabbed on the perineum on-farm prior to loading and immediately after stunning at the slaughter plant (an average 12-h transport for long haul and 1-h transport for short haul). Swabs were transported on ice before immunomagnetic separation for detection of E. coli O157. Transportation did not affect prevalence of hide contamination with E. coli O157, although 80% of long-haul swabs were positive on-farm compared with 26% of short-haul swabs, due to seasonality of shedding E. coli O157. Cattle transported in the nose compartment had fewer positive hide swabs (P < 0.05) than cattle in the deck or belly compartments during long-haul trips, even though the nose had a higher (P < 0.05) temperature-humidity index than the other compartments. Prevalence of hide contamination varied widely among loads even when the organism was at seasonally low levels. This suggests that the feedlot pen has a greater effect on hide contamination at the slaughter plant than transportation factors including temperature-humidity index, loading density, and duration of transport.
Collapse
Affiliation(s)
- K Stanford
- Alberta Agriculture and Rural Development, Agriculture Centre, 5401 First Avenue South, Lethbridge, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
38
|
Dodd CC, Sanderson MW, Jacob ME, Renter DG. Modeling preharvest and harvest interventions for Escherichia coli O157 contamination of beef cattle carcasses. J Food Prot 2011; 74:1422-33. [PMID: 21902910 DOI: 10.4315/0362-028x.jfp-10-516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Field studies evaluating the effects of multiple concurrent preharvest interventions for Escherichia coli O157 are logistically and economically challenging; however, modeling techniques may provide useful information on these effects while also identifying crucial information gaps that can guide future research. We constructed a risk assessment model with data obtained from a systematic search of scientific literature. Parameter distributions were incorporated into a stochastic Monte Carlo modeling framework to examine the impacts of different combinations of preharvest and harvest interventions for E. coli O157 on the risk of beef carcass contamination. We estimated the risk of E. coli O157 carcass contamination conditional on preharvest fecal prevalence estimates, inclusion of feed additive(s) in the diet, vaccination for E. coli O157, transport and lairage effects, hide intervention(s), and carcass intervention(s). Prevalence parameters for E. coli O157 were assumed to encompass potential effects of concentration; therefore, concentration effects were not specifically evaluated in this study. Sensitivity analyses revealed that fecal prevalence, fecal-to-hide transfer, hide-to-carcass transfer, and carcass intervention efficacy significantly affected the risk of carcass contamination (correlation coefficients of 0.37, 0.56, 0.58, and -0.29, respectively). The results indicated that combinations of preharvest interventions may be particularly important for supplementing harvest interventions during periods of higher variability in fecal shedding prevalence (i.e., summer). Further assessments of the relationships among fecal prevalence and concentration, hide contamination, and subsequent carcass contamination are needed to further define risks and intervention impacts for E. coli O157 contamination of beef.
Collapse
Affiliation(s)
- Charles C Dodd
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5006, USA
| | | | | | | |
Collapse
|
39
|
Swyers KL, Carlson BA, Nightingale KK, Belk KE, Archibeque SL. Naturally colonized beef cattle populations fed combinations of yeast culture and an ionophore in finishing diets containing dried distiller's grains with solubles had similar fecal shedding of Escherichia coli O157:H7. J Food Prot 2011; 74:912-8. [PMID: 21669067 DOI: 10.4315/0362-028x.jfp-10-484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Beef steers (n = 252) were used to evaluate the effects of dietary supplement on fecal shedding of Escherichia coli O157:H7. Seven pens of 9 steers (63 steers per treatment) were fed diets supplemented with or without yeast culture (YC) or monensin (MON) and their combination (YC × MON). YC and MON were offered at 2.8 g/kg and 33 mg/kg of dry matter intake, respectively. Environmental sponge samples (from each pen floor, feed bunk, and water trough) were collected on day 0. Rectal fecal grab samples were collected on days 0, 28, 56, 84, 110, and 125. Samples were collected and pooled by pen and analyzed for presumptive E. coli O157:H7 colonies, which were confirmed by a multiplex PCR assay and characterized by pulsed-field gel electrophoresis (PFGE) typing. On day 0, E. coli O157:H7 was detected in 7.0% of feed bunk samples and 14.3% of pen floor samples but in none of the water trough samples. The 71.4% prevalence of E. coli O157:H7 in fecal samples on day 0 decreased significantly (P < 0.05) over time. E. coli O157:H7 fecal shedding was not associated with dietary treatment (P > 0.05); however, in cattle fed YC and YC × MON fecal shedding was 0% by day 28. Eight Xba I PFGE subtypes were identified, and a predominant subtype and three closely related subtypes (differing by three or fewer bands) accounted for 78.7% of environmental and fecal isolates characterized. Results from this study indicate that feeding YC to cattle may numerically decrease but not eliminate fecal shedding of E. coli O157:H7 at the onset of treatment and that certain E. coli O157 subtypes found in the feedlot environment may persist in feedlot cattle.
Collapse
Affiliation(s)
- K L Swyers
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523-1171, USA
| | | | | | | | | |
Collapse
|
40
|
Yekta MA, Cox E, Goddeeris BM, Vanrompay D. Reduction of Escherichia coli O157:H7 excretion in sheep by oral lactoferrin administration. Vet Microbiol 2011; 150:373-8. [PMID: 21511407 DOI: 10.1016/j.vetmic.2011.02.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/14/2022]
Abstract
Ruminants are an important reservoir of Escherichia coli O157:H7, therefore reducing E. coli O157:H7 excretion by these animals could play a key role in reducing human infections. The present study investigates the potential of bovine lactoferrin, a natural antimicrobial-immunomodulatory protein of milk, to prevent colonization and excretion of E. coli O157:H7 in sheep. The effect of two different doses of lactoferrin (1.5 g or 0.15 g per 12h) was evaluated on colonization of sheep intestine and faecal excretion of the NCTC12900 strain. Hereto, lactoferrin was orally administered to sheep during 30 consecutive days and sheep were experimentally infected with E. coli O157:H7 on the second day of the lactoferrin administration. Interestingly, both lactoferrin dosages significantly reduced the number of E. coli O157:H7 in faeces as well as the duration of faecal excretion. The high dose group showed a significantly higher antibody response against EspA and EspB, two structural proteins of the bacterial type III secretion system (TTSS), than the colonization control group. The results suggest that oral lactoferrin administration could be used to prevent persistent colonization of sheep with E. coli O157:H7.
Collapse
Affiliation(s)
- M Atef Yekta
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
41
|
Ferens WA, Hovde CJ. Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis 2010; 8:465-87. [PMID: 21117940 DOI: 10.1089/fpd.2010.0673] [Citation(s) in RCA: 361] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
This review surveys the literature on carriage and transmission of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the context of virulence factors and sampling/culture technique. EHEC of the O157:H7 serotype are worldwide zoonotic pathogens responsible for the majority of severe cases of human EHEC disease. EHEC O157:H7 strains are carried primarily by healthy cattle and other ruminants, but most of the bovine strains are not transmitted to people, and do not exhibit virulence factors associated with human disease. Prevalence of EHEC O157:H7 is probably underestimated. Carriage of EHEC O157:H7 by individual animals is typically short-lived, but pen and farm prevalence of specific isolates may extend for months or years and some carriers, designated as supershedders, may harbor high intestinal numbers of the pathogen for extended periods. The prevalence of EHEC O157:H7 in cattle peaks in the summer and is higher in postweaned calves and heifers than in younger and older animals. Virulent strains of EHEC O157:H7 are rarely harbored by pigs or chickens, but are found in turkeys. The bacteria rarely occur in wildlife with the exception of deer and are only sporadically carried by domestic animals and synanthropic rodents and birds. EHEC O157:H7 occur in amphibian, fish, and invertebrate carriers, and can colonize plant surfaces and tissues via attachment mechanisms different from those mediating intestinal attachment. Strains of EHEC O157:H7 exhibit high genetic variability but typically a small number of genetic types predominate in groups of cattle and a farm environment. Transmission to people occurs primarily via ingestion of inadequately processed contaminated food or water and less frequently through contact with manure, animals, or infected people.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA.
| | | |
Collapse
|
42
|
Stanford K, Stephens TP, McAllister TA. Use of model super-shedders to define the role of pen floor and hide contamination in the transmission of Escherichia coli O157:H7. J Anim Sci 2010; 89:237-44. [PMID: 20852081 DOI: 10.2527/jas.2010-3088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Super-shedders, cattle shedding at least 10(4) cfu of Escherichia coli O157:H7 per gram of feces, increase the risks of contaminating the food chain and disseminating the organism through cattle populations. Because detecting super-shedders in cattle populations is laborious and time-consuming, a study was conducted to evaluate the role of hide and pen-floor contamination by model super shedders (MSS) in transmission of E. coli O157:H7. Steers (n = 48) negative for E. coli O157:H7 were allocated to 6 pens, with 2 replicate pens per treatment. Treatment A consisted of 3,000 g of feces inoculated with 10(6) cfu/g of a 5-strain mixture of nalidixic acid-resistant E. coli O157:H7 and spread in simulated fecal pats on the pen floor for d 0 through 4 and d 14 through 18. For treatment B, 100 g of the feces per day was spread on the perineum of 1 MSS per pen, and the remaining feces was placed on the pen floor as fecal pats similar to treatment A. Treatment C differed from B in that 50 g of feces was spread on the perineum and 50 g on the brisket of the MSS steer. Fecal samples, perineal swabs (500-cm(2) area around the anus), freshly voided fecal pats and manila rope samples were collected during a 56-d experimental period. More positive rope samples were found in treatments B and C compared with A (P = 0.05), and steers within treatments B and C were 1.3 times more likely (P = 0.05) to shed E. coli O157:H7 in their feces than steers in treatment A. Even though the number of E. coli O157:H7 introduced into pens was similar, results indicate an increased importance of hide compared with pen-floor contamination for transmission of this organism to cattle. Because cattle within treatment B were persistently colonized with E. coli O157:H7, this design should prove suitable for future studies investigating the role of super-shedders in the transmission of E. coli O157:H7.
Collapse
Affiliation(s)
- K Stanford
- Alberta Agriculture and Rural Development, Agriculture Centre, 100, 5401-1st Avenue South, Lethbridge, Alberta, Canada T1J 4V6.
| | | | | |
Collapse
|
43
|
Berry ED, Wells JE, Arthur TM, Woodbury BL, Nienaber JA, Brown-Brandl TM, Eigenberg RA. Soil versus Pond Ash Surfacing of Feedlot Pens: Occurrence of Escherichia coli O157:H7 in Cattle and Persistence in Manure. J Food Prot 2010; 73:1269-77. [PMID: 20615339 DOI: 10.4315/0362-028x-73.7.1269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reducing Escherichia coli O157:H7 in cattle and their manure is critical for reducing the risk for human foodborne and waterborne illness. The objective of this study was to evaluate the effects of soil and pond ash surfaces for feedlot pens on the prevalence, levels, and/or persistence of naturally occurring E. coli O157:H7 and total E. coli in cattle (feces and hides) and manure. Cattle (128 beef heifers) were sorted among 16 pens: 8 surfaced with soil and 8 surfaced with pond ash. The prevalence of E. coli O157:H7 in feces decreased (P < 0.0001) during the study from 57.0% on day 0 to 3.9% on day 84 but did not differ (P > or = 0.05) between cattle on soil and on pond ash pens at any sampling period. The prevalence of the pathogen on hides and in feedlot surface material (FSM) also decreased (P < 0.0001), with no effect of soil or pond ash surface (P > or = 0.05). Similarly, levels of E. coli in FSM did not differ (P > or = 0.05) at any sampling period, and there were no clear trends for survival differences of E. coli O157:H7 or E. coli in FSM between pond ash and soil surfaces, although E. coli populations survived at 5.0 log CFU/g of FSM on the pen surfaces 6 weeks after the cattle were removed. These results indicate that housing cattle on pens surfaced with pond ash versus pens surfaced with soil does not affect E. coli O157:H7 in cattle or their manure.
Collapse
Affiliation(s)
- Elaine D Berry
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Berry ED, Wells JE. Escherichia coli O157:H7: recent advances in research on occurrence, transmission, and control in cattle and the production environment. ADVANCES IN FOOD AND NUTRITION RESEARCH 2010; 60:67-117. [PMID: 20691954 DOI: 10.1016/s1043-4526(10)60004-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Escherichia coli O157:H7 is a zoonotic pathogen that is an important cause of human foodborne and waterborne disease, with a spectrum of illnesses ranging from asymptomatic carriage and diarrhea to the sometimes fatal hemolytic uremic syndrome. Outbreaks of E. coli O157:H7 disease are often associated with undercooked beef, but there are other sources of transmission, including water, produce, and animal contact, which can often be linked directly or indirectly to cattle. Thus, preharvest control of this pathogen in cattle production should have a large impact on reducing the risk of human foodborne illness. In this review, we will summarize preharvest research on E. coli O157:H7 in cattle and the production environment, focusing on factors that may influence the transmission, prevalence, and levels of this pathogen, such as season, diet, high-level shedders, and animal stress. In addition, we will discuss recent research on the reduction of this pathogen in cattle production, including vaccination, probiotics, bacteriophage, and manure treatments.
Collapse
Affiliation(s)
- Elaine D Berry
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA.
| | | |
Collapse
|