1
|
Bertens CA, Seymour DJ, Penner GB. Validation of an in vivo dual permeability marker technique to characterize regional gastrointestinal tract permeability in mid lactation Holstein cows during short-term feed restriction. J Dairy Sci 2024:S0022-0302(24)01103-2. [PMID: 39218063 DOI: 10.3168/jds.2024-25142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
This study evaluated the impact of short-term feed restriction in lactating dairy cows on regional permeability of the gastrointestinal tract (GIT), and the recovery of DMI, ruminal pH, and milk yield. In addition, sampling methods for a novel dual marker technique to characterize total GIT and post ruminal permeability were validated. Six ruminally cannulated lactating Holstein cows were blocked by parity (3 primiparous, 3 multiparous; 189 DIM ± 25.2) and enrolled in a crossover design. Experimental periods included a 5-d baseline phase (BASE), 5-d challenge phase (CHAL), and 2 weeks of recovery (REC1 and REC2). During CHAL cows received either 100% ad libitum feed intake (AL) or 40% of ad libitum feed intake (FR). To assess, total-tract and post-ruminal permeability, equimolar doses of Cr-EDTA and Co-EDTA were infused on d 3 of CHAL into the rumen and abomasum (0.369 mmol/kg BW). Following infusions, total urine and feces were collected every 8 h over 96 h, and blood samples were collected at h 0, 1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, and 64. The plasma area under the curve (AUC) for Cr and Co were calculated. By design, DMI for FR was reduced by 60% during CHAL and remained 19% lower than AL during REC1 but was not different from AL in REC2. Mean ruminal pH for FR was greatest during CHAL and the least during REC1, with no differences detected between AL and FR in REC2. The duration that pH was < 5.8 was the least for FR during CHAL and greatest during REC1 which were different from AL and were no longer different between treatments in REC2. Milk yield was the least for FR during CHAL and REC1 and no longer different from AL in REC2. Feed restriction reduced milk fat, protein, and lactose yields by 26, 31% and 31%, respectively. Plasma Cr AUC was 34% greater and Co AUC tended to be 35% greater for FR than AL on d 3 of CHAL. Urinary Cr recovery after 48-h was not affected by treatment; however, urinary Co recovery was 36% greater for FR than AL. Positive correlations between plasma AUC and urinary recovery for Cr and Co were detected. It was determined that blood samples collected at h 2, 8, 20, 40, and 48 could predict the total plasma Cr and Co AUC within 1.9% and 6.2%, respectively. In summary, short-term FR in lactating dairy cows increases permeability of the total GIT and may increase permeability of the post-ruminal regions with more than 60% of the permeability occurring post-ruminally. After FR, cows experienced low ruminal pH and a sustained reduction in milk yield. When utilizing Cr- and Co-EDTA to evaluate regional GIT permeability, plasma AUC can be used as an alternate to urinary Cr and Co excretion. In addition, blood samples collected at h 2, 8, 20, 40, and 48 result in adequate prediction accuracy, at least when comparing GIT permeability for lactating dairy cows exposed to AL and FR.
Collapse
Affiliation(s)
- C A Bertens
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - D J Seymour
- Trouw Nutrition R&D, P.O. Box 200, 5830 AE Boxmeer, the Netherlands; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, ON, Canada N1G 2W1
| | - G B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8.
| |
Collapse
|
2
|
McDaniel ZS, Hales KE, Salih H, Deters A, Shi X, Nagaraja TG, Lawrence TE, Tennant TC, Amachawadi RG, Carroll JA, Burdick Sanchez NC, Galyean ML, Smock TM, Ballou MA, Machado VS, Davis E, Broadway PR. Development of an experimental model for liver abscess induction in Holstein steers using an acidotic diet challenge and bacterial inoculation. J Anim Sci 2024; 102:skae046. [PMID: 38447078 PMCID: PMC10941643 DOI: 10.1093/jas/skae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Holstein steers (n = 40; initial BW = 84.9 ± 7.1 kg) were used to study the genesis of liver abscesses (LA) using an acidotic diet challenge with or without intraruminal bacterial inoculation. Steers were housed in individual pens inside a barn and randomly assigned to one of three treatments: (1) low-starch control diet comprised primarily of dry-rolled corn and wet corn gluten feed (CON); (2) high-starch acidotic diet with steam-flaked corn (AD); or (3) acidotic diet plus intraruminal inoculation with Fusobacterium necrophorum subsp. necrophorum (9.8 × 108 colony forming units [CFU]/mL), Trueperella pyogenes (3.91 × 109 CFU/mL), and Salmonella enterica serovar Lubbock (3.07 × 108 CFU/mL), previously isolated from LA (ADB). Steers in AD and ADB were fed the acidotic diet for 3 d followed by 2 d of the CON diet, and this cycle was repeated four times. On day 23, ADB steers were intraruminally inoculated with the bacteria. At necropsy, gross pathology of livers, lungs, rumens, and colons was noted. Continuous data were analyzed via mixed models as repeated measures over time with individual steer as the experimental unit. Mixed models were also used to determine the difference in prevalence of necropsy scores among treatments. Ruminal pH decreased in AD and ADB steers during each acidotic diet cycle (P ≤ 0.05). LA prevalence was 42.9% (6 of 14) in ADB vs. 0% in AD or CON treatments (P < 0.01). Ruminal damage was 51.1% greater in ADB than in AD (P ≤ 0.04). Culture of LA determined that 100% of the abscesses contained F. necrophorum subsp. necrophorum, 0% contained T. pyogenes, 50% contained Salmonella, and 50% contained a combination of F. necrophorum subsp. necrophorum and Salmonella. The F. necrophorum subsp. necrophorum was clonally identical to the strain used for the bacterial inoculation based on phylogenetic analysis of the whole genome. This experimental model successfully induced rumenitis and LA in Holstein steers and confirms the central dogma of LA pathogenesis that acidosis and rumenitis lead to the entry of F. necrophorum into the liver to cause abscesses. Our findings suggest that an acidotic diet, in conjunction with intraruminal bacterial inoculation, is a viable model to induce LA. Further research is needed to determine the repeatability of this model, and a major application of the model will be in evaluations of novel interventions to prevent LA.
Collapse
Affiliation(s)
- Zach S McDaniel
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Kristin E Hales
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Harith Salih
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Alyssa Deters
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Xiaorong Shi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | - Ty E Lawrence
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, USA
| | - Travis C Tennant
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, USA
| | | | - Jeff A Carroll
- United States Department of Agriculture, Agricultural Research Service, Livestock Issues Research Unit, Lubbock, TX, USA
| | - Nicole C Burdick Sanchez
- United States Department of Agriculture, Agricultural Research Service, Livestock Issues Research Unit, Lubbock, TX, USA
| | - Michael L Galyean
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Taylor M Smock
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Michael A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX, USA
| | - Vinicius S Machado
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX, USA
| | - Emily Davis
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX, USA
| | - Paul R Broadway
- United States Department of Agriculture, Agricultural Research Service, Livestock Issues Research Unit, Lubbock, TX, USA
| |
Collapse
|
3
|
Jiang Q, Galvão MC, Thanh LP, Aboragah AA, Mauck J, Gionbelli MP, Alhidary IA, McCann JC, Loor JJ. Short-term feed restriction induces inflammation and an antioxidant response via cystathionine-β-synthase and glutathione peroxidases in ruminal epithelium from Angus steers. J Anim Sci 2024; 102:skae257. [PMID: 39215655 PMCID: PMC11465371 DOI: 10.1093/jas/skae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Decreased intake is induced by stressors such as parturition, transportation, dietary transitions, and disease. An important function of one-carbon metabolism (OCM) is to produce the antioxidant glutathione to help reduce oxidative stress. Although various components of OCM are expressed in the bovine rumen and small intestine, the relationship between reduced feed intake, OCM, and antioxidant mechanisms in gut tissues is unknown. This study aimed to assess alterations in immune and antioxidant pathways in ruminal epithelium due to acute feed restriction (FR). Seven group-housed ruminally cannulated Angus steers (663 ± 73 kg body weight, 2 yr old) had ad libitum access to a finishing diet (dry-rolled corn, corn silage, modified wet distiller's grains) during 15 d of a pre-FR period (PRE). Subsequently, steers were moved to a metabolism barn with tie stalls and individually fed at 25% of estimated intake in PRE for 3 d (FR period, FRP). This was followed by 15 d of recovery (POST) during which steers had ad libitum access to the same diet as in PRE and FRP. Plasma and ruminal tissue biopsies were collected during each period. Plasma free fatty acid and IL1-β concentrations were higher (P ≤ 0.03) in FRP than PRE or POST. The mRNA abundance of the proinflammatory genes tumor necrosis factor, toll-like receptor 2 (TLR2), and TLR4 in the ruminal epithelium peaked (P < 0.05) at FRP and remained higher at POST. These responses agreed with the higher (P < 0.05) abundance of phosphorylated (p)-MAPK (an inflammation activator) and p-EEF2 (translational repressor) in FRP than PRE and POST. Although ruminal glutathione peroxidase (GPX) enzyme activity did not increase at FRP compared with PRE and POST, protein abundance of GPX1 and GPX3 along with the antioxidant response regulator NFE2L2 were highest (P < 0.01), and the activity of cystathionine-beta synthase tended (P = 0.06) to be highest during FR. Although FR had minimal negative effects on tissue integrity-related genes (only filamin A was downregulated), it led to a systemic inflammatory response and triggered inflammation and antioxidant mechanisms within the ruminal epithelium. Thus, deploying anti-inflammatory and antioxidant mechanisms via molecules that feed into OCM (e.g., dietary methyl donors such as methionine, choline, betaine, and folate) could potentially counteract the stressors associated with FR.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Matheus C Galvão
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Lam Phuoc Thanh
- Faculty of Animal Sciences, Can Tho University, Ninh Kieu, Can Tho, Vietnam
| | - Ahmad A Aboragah
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - John Mauck
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Mateus Pies Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Ibrahim A Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
4
|
Ahmadzadeh-Gavahan L, Hosseinkhani A. Feed restriction and supplementing with propylene glycol, monensin sodium and rumen-protected choline chloride in periparturient Ghezel ewes: Implications on production and performance of ewes and their offspring. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Xue Y, Lin L, Hu F, Zhu W, Mao S. Disruption of ruminal homeostasis by malnutrition involved in systemic ruminal microbiota-host interactions in a pregnant sheep model. MICROBIOME 2020; 8:138. [PMID: 32972462 PMCID: PMC7517653 DOI: 10.1186/s40168-020-00916-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/01/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Undernutrition is a prevalent and spontaneous condition in animal production which always affects microbiota-host interaction in gastrointestinal tract. However, how undernutrition affects crosstalk homeostasis is largely unknown. Here, we discover how undernutrition affects microbial profiles and subsequently how microbial metabolism affects the signal transduction and tissue renewal in ruminal epithelium, clarifying the detrimental effect of undernutrition on ruminal homeostasis in a pregnant sheep model. RESULTS Sixteen pregnant ewes (115 days of gestation) were randomly and equally assigned to the control (CON) and severe feed restriction (SFR) groups. Ewes on SFR treatment were restricted to a 30% level of ad libitum feed intake while the controls were fed normally. After 15 days, all ewes were slaughtered to collect ruminal digesta for 16S rRNA gene and metagenomic sequencing and ruminal epithelium for transcriptome sequencing. Results showed that SFR diminished the levels of ruminal volatile fatty acids and microbial proteins and repressed the length, width, and surface area of ruminal papillae. The 16S rRNA gene analysis indicated that SFR altered the relative abundance of ruminal bacterial community, showing decreased bacteria about saccharide degradation (Saccharofermentans and Ruminococcus) and propionate genesis (Succiniclasticum) but increased butyrate producers (Pseudobutyrivibrio and Papillibacter). Metagenome analysis displayed that genes related to amino acid metabolism, acetate genesis, and succinate-pathway propionate production were downregulated upon SFR, while genes involved in butyrate and methane genesis and acrylate-pathway propionate production were upregulated. Transcriptome and real-time PCR analysis of ruminal epithelium showed that downregulated collagen synthesis upon SFR lowered extracellular matrix-receptor interaction, inactivated JAK3-STAT2 signaling pathway, and inhibited DNA replication and cell cycle. CONCLUSIONS Generally, undernutrition altered rumen bacterial community and function profile to decrease ruminal energy retention, promoted epithelial glucose and fatty acid catabolism to elevate energy supply, and inhibited the proliferation of ruminal epithelial cells. These findings provide the first insight into the systemic microbiota-host interactions that are involved in disrupting the ruminal homeostasis under a malnutrition pattern. Video Abstract.
Collapse
Affiliation(s)
- Yanfeng Xue
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Limei Lin
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fan Hu
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weiyun Zhu
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shengyong Mao
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
6
|
Mizuguchi H, Kim YH, Kanazawa T, Ikuta K, Sato S. Effects of short-term fasting on ruminal pH and volatile fatty acids in cattle fed high-roughage versus high-concentrate diets. J Vet Med Sci 2020; 82:1415-1420. [PMID: 32779635 PMCID: PMC7653324 DOI: 10.1292/jvms.20-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We evaluated whether the dietary roughage-to-concentrate ratio affects ruminal pH and
volatile fatty acids (VFAs) in response to a one-time morning fast. Four healthy
rumen-cannulated Holstein steers 4–5 months old were used. Cattle were subjected to 2
weeks of adaptation (high-roughage or high-concentrate diet), and morning feed restriction
was performed on the day after the adaptation period ended (Day 0). Thereafter, each diet
was reintroduced on the evening of Day 0. Our results showed that the 1-hr mean ruminal pH
from 0800 to 1900 on Day 0 was higher, and that from 1700 to 1900 on Day 1 was lower
(P<0.05) than pH on 1 day before fasting (Day −1) in cattle fed both
diets. On Day 0, total VFA levels decreased after morning fasting and were lower
(P<0.05) than those on Day −1 irrespective of evening refeeding.
Furthermore, blood non-esterified fatty acid and beta-hydroxybutyric acid levels on Day 0
increased and decreased, respectively, compared to Day −1 in cattle fed both diets. These
results indicate that even a one-time feed restriction can disrupt ruminal fermentation,
and the changes can persist to the next day after fasting.
Collapse
Affiliation(s)
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Tomomi Kanazawa
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Kentaro Ikuta
- Awaji Agricultural Technology Center, Minami-Awaji, Hyogo 656-0442, Japan
| | - Shigeru Sato
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
7
|
Shi F, Guo N, Degen A, Niu J, Wei H, Jing X, Ding L, Shang Z, Long R. Effects of level of feed intake and season on digestibility of dietary components, efficiency of microbial protein synthesis, rumen fermentation and ruminal microbiota in yaks. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Aschenbach JR, Zebeli Q, Patra AK, Greco G, Amasheh S, Penner GB. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. J Dairy Sci 2019; 102:1866-1882. [DOI: 10.3168/jds.2018-15243] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
|
9
|
McGovern E, Kenny DA, McCabe MS, Fitzsimons C, McGee M, Kelly AK, Waters SM. 16S rRNA Sequencing Reveals Relationship Between Potent Cellulolytic Genera and Feed Efficiency in the Rumen of Bulls. Front Microbiol 2018; 9:1842. [PMID: 30147683 PMCID: PMC6097346 DOI: 10.3389/fmicb.2018.01842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/24/2018] [Indexed: 01/25/2023] Open
Abstract
The rumen microbial population dictates the host’s feed degradation capacity and subsequent nutrient supply. The rising global human population and intensifying demand for animal protein is creating environmental challenges. As a consequence, there is an increasing requirement for livestock with enhanced nutrient utilization capacity in order to more efficiently convert plant material to high quality edible muscle. In the current study, residual feed intake (RFI), a widely used and a highly accepted measure of feed efficiency in cattle, was calculated for a combination of three cohorts of Simmental bulls. All animals were managed similarly from birth and offered concentrate ad libitum in addition to 3 kg of grass silage daily during the finishing period. Solid and liquid rumen digesta samples collected at slaughter and were analyzed using amplicon sequencing targeting the 16S rRNA gene utilizing the Illumina MiSeq platform. Volatile fatty acid analysis was also conducted on the liquid digesta samples. Spearman’s correlation coefficient was utilized to determine the association between RFI and bacterial and archaeal taxa and inter-taxonomic relationships. The data indicate a tendency toward an increase in butyrate (P = 0.06), which corresponds with an increase in plasma β-hydroxybutyrate concentration in low RFI (LRFI) bulls in comparison to their high RFI (HRFI) contemporaries (P < 0.05). A decrease in propionate (P < 0.05) was also recorded in the rumen of LRFI in comparison to HRFI bulls. These results indicate alternate fermentation patterns in the rumen of LRFI bulls. The data also identified that OTUs within the phyla Tenericutes, Fibrobacteres, and Cyanobacteria may potentially influence RFI phenotype. In particular, a negative association between F. succinogenes and RFI was evident. The unique cellulolytic metabolism of F. succinogenes suggests it could contribute to host efficiency by providing substrate to the host ruminant and other microbial populations (e.g., Selenomonas ruminantium, Methanobrevibacter, and Methanomassiliicoccaceae) in the rumen. This study provides evidence that bacterial OTUs within common phyla could influence ruminant feed efficiency phenotype through their role in ruminal degradation of complex plant polysaccharides or increased capability to harvest nutrients from ingested feed.
Collapse
Affiliation(s)
- Emily McGovern
- Teagasc, Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Ireland.,UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Ireland
| | - David A Kenny
- Teagasc, Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Ireland.,UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Ireland
| | - Matthew S McCabe
- Teagasc, Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Ireland
| | - Claire Fitzsimons
- Teagasc, Livestock Research Systems Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Ireland
| | - Mark McGee
- Teagasc, Livestock Research Systems Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Ireland
| | - Alan K Kelly
- UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Ireland
| | - Sinéad M Waters
- Teagasc, Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Ireland
| |
Collapse
|
10
|
Joy F, McKinnon JJ, Hendrick S, Górka P, Penner GB. Effect of dietary energy substrate and days on feed on apparent total tract digestibility, ruminal short-chain fatty acid absorption, acetate and glucose clearance, and insulin responsiveness in finishing feedlot cattle. J Anim Sci 2018; 95:5606-5616. [PMID: 29293742 DOI: 10.2527/jas2017.1817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to determine the effect of dietary energy substrate and days on feed on apparent total tract digestibility, ruminal fermentation, short-chain fatty acid (SCFA) absorption, plasma glucose and acetate clearance rates, and insulin responsiveness. Eight ruminally cannulated, crossbred growing heifers were randomly allocated to 1 of 2 dietary treatments. The control (CON) diet consisted of 75.2% barley grain, 9.8% canola meal, 9% mineral and vitamin supplement, and 6% barley silage (DM basis). To evaluate the effect of energy source, a high-lipid, high-fiber byproduct pellet (HLHFP) was included in the diet by replacing 55% of the barley grain and 100% of canola meal. The study consisted of 4 consecutive 40-d periods (P1 to P4), with data and sample collection occurring in the last 12 d of each period. Dry matter intake tended ( = 0.10) to decrease by period and HLHFP-fed heifers tended to eat less ( = 0.09). The ADG of the CON was greater than that of the HLHFP during P1 and P4 (treatment × period, = 0.02). Heifers fed HLHFP tended to have greater mean ruminal pH (6.10 vs. 5.96; = 0.07) than heifers fed the CON, but pH was not affected by period. The CON heifers had a greater digestibility for DM, OM, CP, and NDF ( ≤ 0.03), and the digestibility for DM and OM linearly increased ( = 0.01) and for CP, NDF, and starch quadratically increased ( ≤ 0.04) with advancing period. Total SCFA concentration in the rumen was greater ( < 0.01) for the CON than for the HLHFP (141.6 vs. 128.1 m). The molar proportion of acetate and isobutyrate linearly increased and butyrate and valerate linearly decreased ( ≤ 0.05) with advancing periods. The rate of valerate absorption tended to increase (linear, = 0.06) and the ruminal liquid passage rate tended to decrease (linear, = 0.08) with advancing period. The arterial clearance rate of acetate tended to quadratically increase ( = 0.06) with period, whereas the clearance rate of glucose was not affected by treatment or period. Both fasting plasma insulin and the area under the insulin curve in response to glucose infusion linearly increased ( = 0.04) with period. These data suggest that partially replacing barley grain with HLHFP negatively affects total tract digestibility and performance. Moreover, with advancing days on feed, digestibility and insulin resistance increases without changes in ruminal pH and plasma metabolite clearance rates.
Collapse
|
11
|
Pederzolli RLA, Van Kessel AG, Campbell J, Hendrick S, Wood KM, Penner GB. Effect of ruminal acidosis and short-term low feed intake on indicators of gastrointestinal barrier function in Holstein steers. J Anim Sci 2018; 96:108-125. [PMID: 29385473 PMCID: PMC6140865 DOI: 10.1093/jas/skx049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to determine effect of ruminal acidosis (RA) and low feed intake [LFI] on the regional barrier function of the gastrointestinal tract. Twenty-one Holstein steers were fed for ad libitum intake for 5 d (control [CON]), fed at 25% of ad libitum intake for 5 d (LFI), or provided 2 d of ad libitum intake followed by 1-d of feed restriction (25% of ad libitum intake), 1 d where 30% of ad libitum dry matter intake (DMI) was provided as pelleted barley followed by the full allocation (RA) and fed for ad libitum intake the following day. Tissues and digesta from the rumen, omasum, duodenum, jejunum, ileum, cecum, proximal, and distal colon were collected. Permeability was assessed using the mucosal-to-serosal flux of inulin (JMS-inulin) and mannitol (JMS-mannitol). Digesta pH was 0.81, 0.63, and 0.42 pH units less for RA than CON in the rumen, cecum, and proximal colon; while, LFI had pH that was 0.47 and 0.36 pH units greater in the rumen and proximal colon compared to CON. Total ruminal short-chain fatty acid (SCFA) concentration were less for LFI (92 mM; P = 0.010) and RA (87 mM; P = 0.007) than CON (172 mM) steers. In the proximal colon, the proportion of butyrate (P = 0.025 and P = 0.022) and isobutyrate (P = 0.019 and P = 0.019) were greater, and acetate (P = 0.028 and P = 0.028) was less for LFI and RA, respectively, when compared to CON steers. Ruminal papillae length, width, perimeter, and surface area were 1.21 mm, 0.78 mm, 3.84 mm, and 11.15 mm2 less for LFI than CON; while, RA decreased papillae width by 0.52 mm relative to CON. The JMS-mannitol was less for LFI steers than CON in the proximal colon (P = 0.041) and in the distal colon (P = 0.015). Increased gene expression for claudin 1, occludin, tight-cell junction protein 1 and 2, and toll-like receptor 4 were detected for LFI relative to CON in the rumen, jejunum, and proximal colon. For RA steers, expression of toll-like receptor 4 in the rumen, and occludin and tight-cell junction protein 1 were greater in the jejunum than CON. An acute RA challenge decreased pH in the rumen and large intestine but did not increase tissue permeability due to increases in the expression of genes related to barrier function within 1 d of the challenge. Steers exposed to LFI for 5 d had reduced ruminal SCFA concentrations, smaller ruminal papillae dimensions, and increased tissue permeability in the proximal and distal colon despite increases for genes related to barrier function and immune function.
Collapse
Affiliation(s)
- Rae-Leigh A Pederzolli
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - John Campbell
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Katie M Wood
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gregory B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Qumar M, Khiaosa-ard R, Pourazad P, Wetzels SU, Klevenhusen F, Kandler W, Aschenbach JR, Zebeli Q. Evidence of In Vivo Absorption of Lactate and Modulation of Short Chain Fatty Acid Absorption from the Reticulorumen of Non-Lactating Cattle Fed High Concentrate Diets. PLoS One 2016; 11:e0164192. [PMID: 27716806 PMCID: PMC5055360 DOI: 10.1371/journal.pone.0164192] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 12/31/2022] Open
Abstract
Short-chain fatty acids (SCFAs) and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline) and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8) or interruptedly (Int; n = 8). Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1) and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4). Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline), while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides evidence of lactate absorption across the reticulorumen of non-lactating cattle after both continuous and interrupted 4-wk concentrate feeding.
Collapse
Affiliation(s)
- Muhammad Qumar
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ratchaneewan Khiaosa-ard
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Poulad Pourazad
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stefanie U. Wetzels
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Fenja Klevenhusen
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wolfgang Kandler
- Center for Analytical Chemistry, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences in Vienna, Tulln, Austria
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Free University of Berlin, Berlin, Germany
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
13
|
O'Shea E, Waters SM, Keogh K, Kelly AK, Kenny DA. Examination of the molecular control of ruminal epithelial function in response to dietary restriction and subsequent compensatory growth in cattle. J Anim Sci Biotechnol 2016; 7:53. [PMID: 27651894 PMCID: PMC5025635 DOI: 10.1186/s40104-016-0114-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/31/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The objective of this study was to investigate the effect of dietary restriction and subsequent compensatory growth on the relative expression of genes involved in volatile fatty acid transport, metabolism and cell proliferation in ruminal epithelial tissue of beef cattle. Sixty Holstein Friesian bulls (mean liveweight 370 ± 35 kg; mean age 479 ± 15 d) were assigned to one of two groups: (i) restricted feed allowance (RES; n = 30) for 125 d (Period 1) followed by ad libitum access to feed for 55 d (Period 2) or (ii) ad libitum access to feed throughout (ADLIB; n = 30). Target growth rate for RES was 0.6 kg/d during Period 1. At the end of each dietary period, 15 animals from each treatment group were slaughtered and ruminal epithelial tissue and liquid digesta harvested from the ventral sac of the rumen. Real-time qPCR was used to quantify mRNA transcripts of 26 genes associated with ruminal epithelial function. Volatile fatty acid analysis of rumen fluid from individual animals was conducted using gas chromatography. RESULTS Diet × period interactions were evident for genes involved in ketogenesis (BDH2, P = 0.017), pyruvate metabolism (LDHa, P = 0.048; PDHA1, P = 0.015) and cellular transport and structure (DSG1, P = 0.019; CACT, P = 0.027). Ruminal concentrations of propionic acid (P = 0.018) and n-valeric acid (P = 0.029) were lower in RES animals, compared with ADLIB, throughout the experiment. There was also a strong tendency (P = 0.064) toward a diet × period interaction for n-butyric with higher concentrations in RES animals, compared with ADLIB, during Period 1. CONCLUSIONS These data suggest that following nutrient restriction, the structural integrity of the rumen wall is compromised and there is upregulation of genes involved in the production of ketone bodies and breakdown of pyruvate for cellular energy. These results provide an insight into the potential molecular mechanisms regulating ruminal epithelial absorptive metabolism and growth following nutrient restriction and subsequent compensatory growth.
Collapse
Affiliation(s)
- Emma O'Shea
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4 Ireland ; Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland ; UCD Earth Institute, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4 Ireland
| | - David A Kenny
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4 Ireland ; Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|
14
|
Laarman AH, Pederzolli RLA, Wood KM, Penner GB, McBride BW. Effects of subacute ruminal acidosis and low feed intake on short-chain fatty acid transporters and flux pathways in Holstein steers1. J Anim Sci 2016; 94:3729-3737. [DOI: 10.2527/jas.2016-0638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
15
|
Albornoz RI, Aschenbach JR, Barreda DR, Penner GB. Moderate decreases in the forage-to-concentrate ratio before feed restriction and increases thereafter independently improve the recovery from a feed restriction insult in beef cattle. J Anim Sci 2013; 91:4739-49. [PMID: 23942712 DOI: 10.2527/jas.2012-6224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The objective of this study was to determine if the forage-to-concentrate ratio (F:C) of diets fed prior to and during (PRE) feed restriction (FR) and diets fed post-FR (POST) affect the recovery for DMI, ruminal fermentation, and short-chain fatty acid (SCFA) absorption following FR. Twenty ovariectomized and ruminally cannulated Angus × Hereford heifers were used in this study and were fed (ad libitum) either a high forage (HF; F:C = 92:8) or a moderate forage (MF; F:C = 60:40) diet for 19 d. Heifers were then exposed to a 5-d FR period where feed was restricted to 25% of ad libitum intake relative to that measured during the previous 5 d. After FR, heifers were provided feed ad libitum with one half of the HF and MF heifers receiving the HF or MF diet during the 3-wk recovery period (REC1, REC2, and REC3). This resulted in 4 treatment combinations separated over time (PRE-POST): HF-HF, HF-MF, MF-HF, and MF-MF. The PRE × POST interaction was not significant for any of the measured variables, and the PRE × POST × period interaction was only significant for the molar proportion of ruminal butyrate. For heifers fed HF PRE, DMI increased from REC1 to REC3 whereas DMI did not differ among periods for heifers fed MF PRE (PRE × period, P = 0.045). The duration that pH < 5.5 (PRE × POST; P = 0.003) was numerically greater during REC1 for heifers fed HF than MF PRE (191 vs. 98 min/d), with duration decreasing from REC1 to REC2 for heifers fed HF PRE. Total ruminal SCFA concentration and absorption rate were not affected by the diet fed PRE (P > 0.05) or period (P > 0.05). For heifers fed MF POST, DMI increased from REC1 to REC3 whereas DMI did not differ among POST periods for heifers fed HF POST (POST × period, P = 0.033). The duration that ruminal pH was <5.5 was greater for heifers fed MF than HF POST (274.9 vs. 14.1 min/d; POST × period, P < 0.001) with MF heifers decreasing duration from REC1 to REC2 whereas duration did not differ among periods for HF. Ruminal SCFA concentration and rate of absorption were not affected (P > 0.05) by diet fed POST. It is concluded that feeding a MF diet prior to and during FR improves the recovery response for DMI. Irrespective of the prefeeding, however, a HF diet is beneficial in the POST-restriction period because it most effectively alleviated ruminal pH reduction and hastened DMI recovery.
Collapse
Affiliation(s)
- R I Albornoz
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | | | | | | |
Collapse
|