1
|
Wang H, Fu J, Wu X, Wang Y, Li W, Huang Y, Zhong J, Peng Z. Effects of Dietary Protein Level and Rumen-Protected Methionine and Lysine on Growth Performance, Rumen Fermentation and Serum Indexes for Yaks. Animals (Basel) 2024; 14:1751. [PMID: 38929369 PMCID: PMC11201000 DOI: 10.3390/ani14121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the effects of the dietary protein level and rumen-protected methionine and lysine (RPML) on the growth performance, rumen fermentation, and serum indexes of yaks. Thirty-six male yaks were randomly assigned to a two by three factorial experiment with two protein levels, 15.05% and 16.51%, and three RPML levels: 0% RPML; 0.05% RPMet and 0.15% RPLys; and 0.1% RPMet and 0.3% RPLys. The trial lasted for sixty days. The results showed that the low-protein diet increased the DMI and feed conversion ratio of yaks. The diet supplemented with RPML increased the activities of IGF1 and INS and nutrient digestibility. The high-protein diet decreased the rumen butyrate concentration and increased the rumen isovalerate concentration. The low-protein diet supplemented with RPML increased the rumen pH and the concentrations of total volatile fatty acids, butyrate and NH3-N; the high-protein diet supplemented with a high level of RPML decreased the rumen pH and the concentrations of isobutyrate, isovalerate, propionate and NH3-N. The low-protein diet supplemented with RPML increased the total antioxidant capacity and glutathione peroxidase activity, along with the concentrations of malondialdehyde and amino acids such as aspartic acid, lysine, cysteine, etc. In conclusion, a low-protein diet supplemented with RPML is beneficial for rumen and body health, physiological response, and metabolic status in yaks.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Jianhui Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Xia Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Yadong Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Wenjie Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Yanling Huang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Zhongli Peng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| |
Collapse
|
2
|
Foote AP, Salisbury CM, King ME, Rathert-Williams AR, McConnell HL, Beck MR. Association of glucose metabolism and insulin resistance with feed efficiency and production traits of finishing beef steers. J Anim Sci 2024; 102:skae050. [PMID: 38401157 PMCID: PMC10926941 DOI: 10.1093/jas/skae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024] Open
Abstract
Increasing nutrient utilization efficiency is an important component of enhancing the sustainability of beef cattle production. The objective of this experiment was to determine the association of glucose metabolism and insulin resistance with dry matter intake (DMI), average daily gain (ADG), gain:feed ratio (G:F), and residual feed intake (RFI). Steers (n = 54; initial body weight = 518 ± 27.0 kg) were subjected to an intravenous glucose tolerance test (IVGTT) where glucose was dosed through a jugular catheter and serial blood samples were collected. Three days after the last group's IVGTT, steers began a 63-d DMI and ADG test. Body weight was measured on days 0, 1, 21, 42, 62, and 63, and DMI was measured using an Insentec Roughage Intake Control system (Hokofarm Group, Emmeloord, the Netherlands). To examine relationships between DMI, ADG, G:F, and RFI with IVGTT measurements, Pearson correlations were calculated using Proc Corr of SAS 9.4 (SAS Inst. Inc., Cary, NC). Additionally, cattle were classified based on DMI, ADG, RFI, and G:F, where the medium classification was set as mean ± 0.5 SD, the low classification was < 0.5 SD from the mean, and the high classification was > 0.5 SD from the mean. No associations between DMI and IVGTT parameters were observed, and no differences were detected when classifying cattle as having low, medium, or high DMI. Peak insulin concentration in response to the IVGTT tended to be correlated with ADG (r = 0.28; P = 0.07), indicating cattle with greater ADG tend to have a greater insulin release in response to glucose. Glucose nadir concentrations tended to be positively correlated with ADG (r = 0.26; P = 0.10). Additionally, the glucose nadir was greater in high-ADG steers (P = 0.003). The association of greater glucose nadir with high-ADG could indicate that high-ADG steers do not clear glucose as efficiently as low-ADG steers, potentially indicating increased insulin resistance. Further, RFI was not correlated with IVGTT measurements, but low RFI steers had a greater peak glucose concentration (P = 0.040) and tended to have a greater glucose area under the curve (P = 0.09). G:F was correlated with glucose area under the curve (r = 0.33; P = 0.050), glucose nadir (r = 0.35; P = 0.011), and insulin time to peak (r = 0.39; P = 0.010). These results indicate that glucose metabolism and insulin signaling are associated with growth and efficiency, but the molecular mechanisms that drive these effects need to be elucidated.
Collapse
Affiliation(s)
- Andrew P Foote
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Carlee M Salisbury
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mindy E King
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Hunter L McConnell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Matthew R Beck
- Livestock Nutrient Management Research Unit, USDA-ARS, Bushland, TX 79012, USA
| |
Collapse
|
3
|
Guarnido-Lopez P, Ortigues-Marty I, David J, Polakof S, Cantalapiedra-Hijar G. Comparative analysis of signalling pathways in tissue protein metabolism in efficient and non-efficient beef cattle: acute response to an identical single meal size. Animal 2023; 17:101017. [PMID: 37948891 DOI: 10.1016/j.animal.2023.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Protein turnover has been associated to residual feed intake (RFI) in beef cattle. However, this relationship may be confounded by feeding level and affected by the composition of the diet being fed. Our aim was to assess postmortem the protein metabolism signalling pathways in skeletal muscle and liver of 32 Charolais young bulls with extreme RFI phenotypes. Bulls were fed two contrasting diets during the whole fattening period but were subjected to a similar and single nutritional stimulus, induced by their respective concentrate, just prior to slaughter. The key targets were protein degradation (autophagy and ubiquitin) and synthesis signalling pathways through western-blot analysis, as well as hepatic transaminase activity. To ensure a precise assessment of all animals at the same postprandial time, they were provided with a test meal (2.5 kg of either a high-starch and high-protein concentrate or high-fibre and low-protein concentrate) 3 hours prior to slaughter, irrespective of their RFI grouping. Blood and tissues were sampled at the slaughterhouse (3 h and 3 h30 postprandially, respectively). In response to an identical single meal size, efficient RFI animals showed higher (P < 0.05) postprandial plasma β-hydroxybutyrate concentrations and insulinemia (only with the high-starch concentrate) than non-efficient animals. Moreover, efficient RFI bulls had lower muscle (P = 0.04) and liver (P = 0.08) ubiquitin protein abundance (degradation pathway) and tended to have lower alanine transaminase activity in the liver (P = 0.06) compared to non-efficient bulls, regardless of diet. A positive correlation between protein degradation potential and amino acid catabolism was identified in this study (r = 0.52, P = 0.004), which was interpreted as being biologically linked to the RFI phenotype. Efficient RFI bulls also had a faster potential for protein synthesis in the muscle, as indicated by their greater ratio of phosphorylated to total form of ribosomal protein S6 kinase (P = 0.05), regardless of diet. Results on protein synthesis pathway in muscle and plasma metabolite concentrations suggested that efficient RFI cattle may have a faster nutrient absorption and insulin responsiveness after feeding than inefficient cattle. We did not find significant differences in hepatic protein synthesis pathways between the two RFI groups (P > 0.05). Our findings suggest that, in response to an identical single meal size, efficient RFI animals exhibited lower activation of tissue protein degradation pathways and faster muscle protein synthesis activation compared to their inefficient counterparts. This pattern was observed regardless of the composition of the tested meals.
Collapse
Affiliation(s)
- P Guarnido-Lopez
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France
| | - I Ortigues-Marty
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France
| | - J David
- Université Clermont-Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France
| | - S Polakof
- Université Clermont-Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France
| | - G Cantalapiedra-Hijar
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
4
|
Brown WE, Holdorf HT, Johnson SJ, Kendall SJ, Green SE, White HM. In utero choline exposure alters growth, metabolism, feed efficiency, and carcass characteristics of Holstein × Angus cattle from weaning to slaughter. J Anim Sci 2023; 101:skad186. [PMID: 37305985 PMCID: PMC10294555 DOI: 10.1093/jas/skad186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
Feeding rumen-protected choline (RPC) to late gestation dairy cows has potential to affect growth in offspring. The objective of this study was to evaluate the effects of in utero choline exposure on the growth, feed efficiency (FE), metabolism, and carcass quality of Angus × Holstein cattle. Multiparous Holstein cows pregnant with male (N = 17) or female (N = 30) Angus-sired calves were enrolled 21 d prepartum and randomly assigned to one of four dietary treatments varying in quantity and formulation of RPC. The treatments included a control with 0 g/d supplemental RPC (CTL), supplemental RPC fed at the recommended dose (RD) of 15 g/d from either an established RPC product (RPC1RD; ReaShure; Balchem Corp.) or choline ion from a concentrated RPC prototype (RPC2RD; Balchem Corp.), or a high dose (HD) of RPC2 fed at 22 g/d (RPC2HD). From 2 to 6 mo of age, calves were group housed and offered 2.3 kg grain/hd/d (42% CP) with ad libitum grass hay, and stepped up to a complete finishing diet by 7 mo (12.0% CP; 1.34 Mcal/kg NEg). Weight and height were measured monthly. Animal FE was measured in individual pens for 35 d at 8 mo. Feed intake was measured daily, and blood was obtained on day 18 during the FE period. Afterwards, cattle were group housed and offered a free-choice finishing diet until slaughter, where carcass yield and quality characteristics were measured. Mixed models were used in PROC MIXED (SAS, 9.4) with the fixed effects of treatment, sex, time, their interactions, and the random effect of calf. Month was the repeated measure, and preplanned contrasts were used. Blood and FE data were analyzed with the fixed effect of dam choline treatment, calf sex, and the interaction. Increasing dose of RPC tended to increase weight over the entire study period. Feeding any RPC increased hip and wither height compared with CTL, and increasing RPC dose linearly increased hip and wither height. Treatment and sex interacted on DMI whereby increasing RPC intake linearly increased DMI for males but not females. Compared with control, feeding any RPC decreased plasma insulin, glucose, and an insulin sensitivity index (RQUICKI). In utero choline exposure increased kidney-pelvic-heart fat and marbling score. Mechanisms of action for intrauterine choline exposure on offspring growth, metabolism, and carcass characteristics should be explored as they have direct implications for profitability for cattle growers and feeders.
Collapse
Affiliation(s)
- William E Brown
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Henry T Holdorf
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sara J Johnson
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sophia J Kendall
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sophia E Green
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Heather M White
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Tijjani A, Salim B, da Silva MVB, Eltahir HA, Musa TH, Marshall K, Hanotte O, Musa HH. Genomic signatures for drylands adaptation at gene-rich regions in African zebu cattle. Genomics 2022; 114:110423. [PMID: 35803449 PMCID: PMC9388378 DOI: 10.1016/j.ygeno.2022.110423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
Background Indigenous Sudanese cattle are mainly indicine/zebu (humped) type. They thrive in the harshest dryland environments characterised by high temperatures, long seasonal dry periods, nutritional shortages, and vector disease challenges. Here, we sequenced 60 indigenous Sudanese cattle from six indigenous breeds and analysed the data using three genomic scan approaches to unravel cattle adaptation to the African dryland region. Results We identified a set of gene-rich selective sweep regions, detected mostly on chromosomes 5, 7 and 19, shared across African and Gir zebu. These include genes involved in immune response, body size and conformation, and heat stress response. We also identified selective sweep regions unique to Sudanese zebu. Of these, a 250 kb selective sweep on chromosome 16 spans seven genes, including PLCH2, PEX10, PRKCZ, and SKI, which are involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Conclusions Our results suggest that environmental adaptation may involve recent and ancient selection at gene-rich regions, which might be under a common regulatory genetic control, in zebu cattle. Sudanese cattle thrive in the harshest environments of the African drylands. Bos indicus shared selected genes are involved in immune response, conformation, and heat stress response. Sudanese zebu-specific sweep includes genes involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Environmental adaptation in zebu cattle may involve recent and ancient selection at gene-rich regions, which might be under a common regulatory genetic control.
Collapse
Affiliation(s)
- Abdulfatai Tijjani
- International Livestock Research Institute (ILRI), PO 5689, Addis Ababa, Ethiopia; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, PO Box 5689, Addis Ababa, Ethiopia; Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, United Kingdom.
| | - Bashir Salim
- Faculty of Veterinary Medicine, University of Khartoum, Sudan
| | | | | | - Taha H Musa
- Biomedical Research Institute, Darfur College, Sudan
| | - Karen Marshall
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi 00100, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), PO 5689, Addis Ababa, Ethiopia; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, PO Box 5689, Addis Ababa, Ethiopia; Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, United Kingdom.
| | - Hassan H Musa
- Institute of Molecular Biology, University of Nyala, Sudan; Faculty of Medical Laboratory Sciences, University of Khartoum, Sudan.
| |
Collapse
|
6
|
Hare KS, Penner GB, Steele MA, Wood KM. Oversupplying metabolizable protein during late gestation to beef cattle does not influence ante- or postpartum glucose-insulin kinetics but does affect prepartum insulin resistance indices and colostrum insulin content. J Anim Sci 2022; 100:6556069. [PMID: 35353892 PMCID: PMC9113283 DOI: 10.1093/jas/skac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate whether oversupplying metabolizable protein (MP) during late gestation influences glucose and insulin concentrations, and insulin resistance (IR) in late gestation and early lactation. Crossbred Hereford, first-lactation heifers were individually fed diets to supply 133% (HMP, n = 11) or 100% (CON, n = 10) of their predicted MP requirements for 55 ± 4 d (mean ± SD) prior to calving. All heifers received a common lactation ration formulated to meet postpartum requirements (103% MP and 126% ME). After feed was withheld for 12 h, cattle underwent an intravenous glucose tolerance test (IVGTT) on d -6.7 ± 0.9 and 14.3 ± 0.4 by infusing a 50% dextrose solution (1.36 g glucose/kg BW 0.75) through a jugular catheter with plasma collected at -10, 0 (immediately after infusion), 5, 10, 15, 20, 25, 30, 45, 60, 75, 90, and 120 min, respective to the infusion. Glucose and insulin concentrations were assessed. Insulin resistance indices (homeostasis model of insulin resistance [HOMA-IR], quantitative insulin sensitivity check index [QUICKI], revised quantitative insulin sensitivity check index [RQUICK], and RQUICKI incorporating serum beta-hydroxybutyrate concentrations [RQUICKIBHB]) were calculated from measurements of serum non-esterified fatty acids and beta-hydroxybutyrate and plasma glucose and insulin concentrations on d -34 ± 4, -15 ± 4, 7 ± 1, 28 ± 3, 70 ± 3, and 112 ± 3. Colostrum samples were collected within an hour of calving (prior to suckling) and analyzed for insulin concentration. Data were analyzed as a randomized block design using the PROC GLIMMIX of SAS, accounting for repeated measurements when necessary. Baseline (-10 min) plasma glucose and insulin concentrations were elevated (P ≤ 0.038) for HMP heifers during the antepartum IVGTT, but not (P ≥ 0.25) during the postpartum IVGTT. Plasma glucose and insulin concentrations throughout the antepartum or postpartum IVGTT did not differ (P ≥ 0.18) by prepartum treatment, nor did other glucose and insulin IVGTT parameters (i.e., max concentration and time to reach max concentration, nadir values, clearance rates and half-lives, area-under-the-curve, and insulin sensitivity index; P ≥ 0.20). Antepartum IVGTT IR indices indicated that HMP heifers were more (P ≤ 0.011) IR than their counterparts. Similarly, the prepartum HOMA-IR was greater (P = 0.033) for HMP heifers, suggesting increased IR. Postpartum IR indices did not (P ≥ 0.25) indicate that prepartum MP consumption impacted postpartum IR. Colostrum insulin concentration was increased (P = 0.004) by nearly 2-fold for HMP relative to CON heifers. These data demonstrate that prepartum MP overfeeding alters baseline glucose-insulin concentrations in late-pregnant beef heifers and increases colostrum insulin content without having carry-over effects on postpartum glucose-insulin concentrations and IR.
Collapse
Affiliation(s)
- Koryn S Hare
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada
| | - Gregory B Penner
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada
| | - Katharine M Wood
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Genome-wide association study of trypanosome prevalence and morphometric traits in purebred and crossbred Baoulé cattle of Burkina Faso. PLoS One 2021; 16:e0255089. [PMID: 34351956 PMCID: PMC8341487 DOI: 10.1371/journal.pone.0255089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/09/2021] [Indexed: 11/27/2022] Open
Abstract
In this study, single-SNP GWAS analyses were conducted to find regions affecting tolerance against trypanosomosis and morphometrics traits in purebred and crossbred Baoulé cattle of Burkina Faso. The trypanosomosis status (positive and negative) and a wide set of morphological traits were recorded for purebred Baoulé and crossbred Zebu x Baoulé cattle, and genotyped with the Illumina Bovine SNP50 BeadChip. After quality control, 36,203 SNPs and 619 animals including 343 purebred Baoulé and 279 crossbreds were used for the GWAS analyses. Several important genes were found that can influence morphological parameters. Although there were no genes identified with a reported strong connection to size traits, many of them were previously identified in various growth-related studies. A re-occurring theme for the genes residing in the regions identified by the most significant SNPs was pleiotropic effect on growth of the body and the cardiovascular system. Regarding trypanosomosis tolerance, two potentially important regions were identified in purebred Baoulé on chromosomes 16 and 24, containing the CFH, CRBN, TRNT1 and, IL5RA genes, and one additional genomic region in Baoulé, x Zebu crossbreds on chromosome 5, containing MGAT4C and NTS. Almost all of these regions and genes were previously related to the trait of interest, while the CRBN gene was to our knowledge presented in the context of trypanosomiasis tolerance for the first time.
Collapse
|
8
|
McKenna C, Keogh K, Porter RK, Waters SM, Cormican P, Kenny DA. An examination of skeletal muscle and hepatic tissue transcriptomes from beef cattle divergent for residual feed intake. Sci Rep 2021; 11:8942. [PMID: 33903612 PMCID: PMC8076192 DOI: 10.1038/s41598-021-87842-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
The selection of cattle with enhanced feed efficiency is of importance with regard to reducing feed costs in the beef industry. Global transcriptome profiling was undertaken on liver and skeletal muscle biopsies from Simmental heifers and bulls divergent for residual feed intake (RFI), a widely acknowledged feed efficiency phenotype, in order to identify genes that may be associated with this trait. We identified 5 genes (adj. p < 0.1) to be differentially expressed in skeletal muscle between high and low RFI heifers with all transcripts involved in oxidative phosphorylation and mitochondrial homeostasis. A total of 11 genes (adj. p < 0. 1) were differentially expressed in liver tissue between high and low RFI bulls with differentially expressed genes related to amino and nucleotide metabolism as well as endoplasmic reticulum protein processing. No genes were identified as differentially expressed in either heifer liver or bull muscle analyses. Results from this study show that the molecular control of RFI in young cattle is modified according to gender, which may be attributable to differences in physiological maturity between heifers and bulls of the same age. Despite this we have highlighted a number of genes that may hold potential as molecular biomarkers for RFI cattle.
Collapse
Affiliation(s)
- Clare McKenna
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, C15 PW93, Co. Meath, Ireland.,School of Biochemistry & Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, C15 PW93, Co. Meath, Ireland
| | - Richard K Porter
- School of Biochemistry & Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Sinead M Waters
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, C15 PW93, Co. Meath, Ireland
| | - Paul Cormican
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, C15 PW93, Co. Meath, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, C15 PW93, Co. Meath, Ireland.
| |
Collapse
|
9
|
Vanvanhossou SFU, Scheper C, Dossa LH, Yin T, Brügemann K, König S. A multi-breed GWAS for morphometric traits in four Beninese indigenous cattle breeds reveals loci associated with conformation, carcass and adaptive traits. BMC Genomics 2020; 21:783. [PMID: 33176675 PMCID: PMC7656759 DOI: 10.1186/s12864-020-07170-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Specific adaptive features including disease resistance and growth abilities in harsh environments are attributed to indigenous cattle breeds of Benin, but these breeds are endangered due to crossbreeding. So far, there is a lack of systematic trait recording, being the basis for breed characterizations, and for structured breeding program designs aiming on conservation. Bridging this gap, own phenotyping for morphological traits considered measurements for height at withers (HAW), sacrum height (SH), heart girth (HG), hip width (HW), body length (BL) and ear length (EL), including 449 cattle from the four indigenous Benin breeds Lagune, Somba, Borgou and Pabli. In order to utilize recent genomic tools for breed characterizations and genetic evaluations, phenotypes for novel traits were merged with high-density SNP marker data. Multi-breed genetic parameter estimations and genome-wide association studies (GWAS) for the six morphometric traits were carried out. Continuatively, we aimed on inferring genomic regions and functional loci potentially associated with conformation, carcass and adaptive traits. RESULTS SNP-based heritability estimates for the morphometric traits ranged between 0.46 ± 0.14 (HG) and 0.74 ± 0.13 (HW). Phenotypic and genetic correlations ranged from 0.25 ± 0.05 (HW-BL) to 0.89 ± 0.01 (HAW-SH), and from 0.14 ± 0.10 (HW-BL) to 0.85 ± 0.02 (HAW-SH), respectively. Three genome-wide and 25 chromosome-wide significant SNP positioned on different chromosomes were detected, located in very close chromosomal distance (±25 kb) to 15 genes (or located within the genes). The genes PIK3R6 and PIK3R1 showed direct functional associations with height and body size. We inferred the potential candidate genes VEPH1, CNTNAP5, GYPC for conformation, growth and carcass traits including body weight and body fat deposition. According to their functional annotations, detected potential candidate genes were associated with stress or immune response (genes PTAFR, PBRM1, ADAMTS12) and with feed efficiency (genes MEGF11 SLC16A4, CCDC117). CONCLUSIONS Accurate measurements contributed to large SNP heritabilities for some morphological traits, even for a small mixed-breed sample size. Multi-breed GWAS detected different loci associated with conformation or carcass traits. The identified potential candidate genes for immune response or feed efficiency indicators reflect the evolutionary development and adaptability features of the breeds.
Collapse
Affiliation(s)
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Luc Hippolyte Dossa
- School of Science and Technics of Animal Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany.
| |
Collapse
|
10
|
Johnson C, Fitzsimmons C, Kovalchuk I, Kastelic J, Thundathil J. Testis-specific changes in gene expression of post-pubertal beef bulls divergent for residual feed intake and exposure to different pre-natal diets. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Selection for residual feed intake (RFI) and its impact on male reproductive development has had mixed reviews in the past. Our previous studies demonstrated earlier puberty, larger testes and greater percentage of progressively motile sperm in high-RFI bulls. However, the molecular mechanisms within testes of bulls with varying RFI remain unclear.
Aims
To determine the effect of RFI and pre-natal diet on the expression patterns of testicular genes and use this information to explain differences observed across RFI.
Methods
The study included 25 purebred-Angus bulls with a genetic background of either high or low RFI and fed either normal or low pre-natal nutrition from 30 to 150 days post conception. After slaughter (17 months), testicular tissue was recovered, and RNA was extracted and sequenced.
Key results
Of 19218 expressed genes, 17 were differentially expressed for RFI (including PLCD1, INPP4B), with no differences being observed for pre-natal diet or diet × RFI interaction (false discovery rate) < 0.1%). KEGG pathway analysis indicated that differentially expressed genes were associated with inositol phosphate metabolism, and phosphatidylinositol signalling. On the basis of a candidate gene-expression study, IGF1R was upregulated in high-RFI bulls (P < 0.1).
Conclusions
Increased expression of IGF1R and lowered PLCD1 and INPP4B expression could activate PI3K–Akt signalling responsible for cell growth, proliferation and steroid metabolism in high-RFI bulls.
Implications
Selecting bulls for feed efficiency might affect molecular networks associated with reproduction and fertility.
Collapse
|
11
|
Higgins MG, Fitzsimons C, McClure MC, McKenna C, Conroy S, Kenny DA, McGee M, Waters SM, Morris DW. GWAS and eQTL analysis identifies a SNP associated with both residual feed intake and GFRA2 expression in beef cattle. Sci Rep 2018; 8:14301. [PMID: 30250203 PMCID: PMC6155370 DOI: 10.1038/s41598-018-32374-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022] Open
Abstract
Residual feed intake (RFI), a measure of feed efficiency, is an important economic and environmental trait in beef production. Selection of low RFI (feed efficient) cattle could maintain levels of production, while decreasing feed costs and methane emissions. However, RFI is a difficult and expensive trait to measure. Identification of single nucleotide polymorphisms (SNPs) associated with RFI may enable rapid, cost effective genomic selection of feed efficient cattle. Genome-wide association studies (GWAS) were conducted in multiple breeds followed by meta-analysis to identify genetic variants associated with RFI and component traits (average daily gain (ADG) and feed intake (FI)) in Irish beef cattle (n = 1492). Expression quantitative trait loci (eQTL) analysis was conducted to identify functional effects of GWAS-identified variants. Twenty-four SNPs were associated (P < 5 × 10-5) with RFI, ADG or FI. The variant rs43555985 exhibited strongest association for RFI (P = 8.28E-06). An eQTL was identified between this variant and GFRA2 (P = 0.0038) where the allele negatively correlated with RFI was associated with increased GFRA2 expression in liver. GFRA2 influences basal metabolic rates, suggesting a mechanism by which genetic variation may contribute to RFI. This study identified SNPs that may be useful both for genomic selection of RFI and for understanding the biology of feed efficiency.
Collapse
Affiliation(s)
- Marc G Higgins
- Discipline of Biochemistry, National University of Ireland, Galway, Ireland.,Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Claire Fitzsimons
- Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland.,Department of Agriculture, Fisheries and the Marine, Celbridge, Co. Kildare, Ireland
| | - Matthew C McClure
- Irish Cattle Breeding Federation, Highfield House, Bandon, Co. Cork, Ireland.,ABS-Global, DeForest, WI, USA
| | - Clare McKenna
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Stephen Conroy
- Irish Cattle Breeding Federation, Highfield House, Bandon, Co. Cork, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Mark McGee
- Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| | - Derek W Morris
- Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
12
|
Clare M, Richard P, Kate K, Sinead W, Mark M, David K. Residual feed intake phenotype and gender affect the expression of key genes of the lipogenesis pathway in subcutaneous adipose tissue of beef cattle. J Anim Sci Biotechnol 2018; 9:68. [PMID: 30250736 PMCID: PMC6146607 DOI: 10.1186/s40104-018-0282-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background Feed accounts for up to 75% of costs in beef production systems, thus any improvement in feed efficiency (FE) will benefit the profitability of this enterprise. Residual feed intake (RFI) is a measure of FE that is independent of level of production. Adipose tissue (AT) is a major endocrine organ and the primary metabolic energy reservoir. It modulates a variety of processes related to FE such as lipid metabolism and glucose homeostasis and thus measures of inter-animal variation in adiposity are frequently included in the calculation of the RFI index. The aim of this study was to determine the effect of phenotypic RFI status and gender on the expression of key candidate genes related to processes involved in energy metabolism within AT. Dry matter intake (DMI) and average daily gain (ADG) were measured over a period of 70 d for 52 purebred Simmental heifers (n = 24) and bulls (n = 28) with an initial BW±SD of 372±39.6 kg and 387±50.6 kg, respectively. Residual feed intake was calculated and animals were ranked within gender by RFI into high (inefficient; n = 9 heifers and n = 8 bulls) and low (efficient; n = 9 heifers and n = 8 bulls) groups. Results Average daily gain ±SD and daily DMI ±SD for heifers and bulls were 1.2±0.4 kg and 9.1±0.5 kg, and 1.8±0.3 kg and 9.5±1 kg respectively. High RFI heifers and bulls consumed 10% and 15% more (P < 0.05) than their low RFI counterparts, respectively. Heifers had a higher expression of all genes measured than bulls (P < 0.05). A gender × RFI interaction was detected for HMGCS2(P < 0.05) in which high RFI bulls tended to have lower expression of HMGCS2 than low RFI bulls (P < 0.1), whereas high RFI heifers had higher expression than low RFI heifers (P < 0.05) and high RFI bulls (P < 0.05). SLC2A4 expression was consistently higher in subcutaneous AT of low RFI animals across gender. Conclusion The findings of this study indicate that low RFI cattle exhibit upregulation of the molecular mechanisms governing glucose metabolism in adipose tissue, in particular, glucose clearance. The decreased expression of SLC2A4 in the inefficient cattle may result in less efficient glucose metabolism in these animals. We conclude that SLC2A4 may be a potential biomarker for RFI in cattle. Electronic supplementary material The online version of this article (10.1186/s40104-018-0282-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- McKenna Clare
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Meath, C15 PW93 Ireland.,2School of Biochemistry & Immunology, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Porter Richard
- 2School of Biochemistry & Immunology, Trinity College Dublin, Dublin 2, D02 R590 Ireland
| | - Keogh Kate
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Meath, C15 PW93 Ireland
| | - Waters Sinead
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Meath, C15 PW93 Ireland
| | - McGee Mark
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Meath, C15 PW93 Ireland
| | - Kenny David
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Meath, C15 PW93 Ireland
| |
Collapse
|
13
|
Elolimy AA, Moisá SJ, Brennan KM, Smith AC, Graugnard D, Shike DW, Loor JJ. Skeletal muscle and liver gene expression profiles in finishing steers supplemented with Amaize. Anim Sci J 2018; 89:1107-1119. [PMID: 29808540 DOI: 10.1111/asj.13041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
Abstract
Our main objective was to evaluate the effects of feeding α-amylase (Amaize, Alltech Inc., Nicholasville, KY, USA) for 140 days on skeletal muscle and liver gene transcription in beef steers. Steers fed Amaize had lower average daily gain (p = .03) and gain:feed ratio (p = .05). No differences (p > .10) in serum metabolites or carcass traits were detected between the two groups but Amaize steers tended (p < .15) to have increased 12th rib fat depth. Microarray analysis of skeletal muscle revealed 21 differentially expressed genes (DEG), where 14 were up-regulated and seven were down-regulated in Amaize-fed steers. The bioinformatics analysis indicated that metabolic pathways involved in fat formation and deposition, stress response, and muscle function were activated, while myogenesis was inhibited in Amaize-fed steers. The quantitative PCR results for liver revealed a decrease (p < .01) in expression of fatty acid binding protein 1 (FABP1) and 3-hydroxybutyrate dehydrogenase 1 (BDH1) with Amaize. Because these genes are key for intracellular fatty acid transport, oxidation and ketone body production, data suggest a reduction in hepatic lipid catabolism. Future work to investigate potential positive effects of Amaize on cellular stress response, muscle function, and liver function in beef cattle appears warranted.
Collapse
Affiliation(s)
- Ahmed A Elolimy
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, University of Illinois, Urbana, Illinois
| | - Sonia J Moisá
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Kristen M Brennan
- Alltech Center for Nutrigenomics and Applied Animal Nutrition, Nicholasville, Kentucky
| | - Allison C Smith
- Alltech Center for Nutrigenomics and Applied Animal Nutrition, Nicholasville, Kentucky
| | - Daniel Graugnard
- Alltech Center for Nutrigenomics and Applied Animal Nutrition, Nicholasville, Kentucky
| | - Daniel W Shike
- Department of Animal Sciences, University of Illinois, Urbana, Illinois
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Division of Nutritional Sciences, Illinois Informatics Institute, University of Illinois, Urbana, Illinois
| |
Collapse
|
14
|
Joy F, McKinnon JJ, Hendrick S, Górka P, Penner GB. Effect of dietary energy substrate and days on feed on apparent total tract digestibility, ruminal short-chain fatty acid absorption, acetate and glucose clearance, and insulin responsiveness in finishing feedlot cattle. J Anim Sci 2018; 95:5606-5616. [PMID: 29293742 DOI: 10.2527/jas2017.1817] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to determine the effect of dietary energy substrate and days on feed on apparent total tract digestibility, ruminal fermentation, short-chain fatty acid (SCFA) absorption, plasma glucose and acetate clearance rates, and insulin responsiveness. Eight ruminally cannulated, crossbred growing heifers were randomly allocated to 1 of 2 dietary treatments. The control (CON) diet consisted of 75.2% barley grain, 9.8% canola meal, 9% mineral and vitamin supplement, and 6% barley silage (DM basis). To evaluate the effect of energy source, a high-lipid, high-fiber byproduct pellet (HLHFP) was included in the diet by replacing 55% of the barley grain and 100% of canola meal. The study consisted of 4 consecutive 40-d periods (P1 to P4), with data and sample collection occurring in the last 12 d of each period. Dry matter intake tended ( = 0.10) to decrease by period and HLHFP-fed heifers tended to eat less ( = 0.09). The ADG of the CON was greater than that of the HLHFP during P1 and P4 (treatment × period, = 0.02). Heifers fed HLHFP tended to have greater mean ruminal pH (6.10 vs. 5.96; = 0.07) than heifers fed the CON, but pH was not affected by period. The CON heifers had a greater digestibility for DM, OM, CP, and NDF ( ≤ 0.03), and the digestibility for DM and OM linearly increased ( = 0.01) and for CP, NDF, and starch quadratically increased ( ≤ 0.04) with advancing period. Total SCFA concentration in the rumen was greater ( < 0.01) for the CON than for the HLHFP (141.6 vs. 128.1 m). The molar proportion of acetate and isobutyrate linearly increased and butyrate and valerate linearly decreased ( ≤ 0.05) with advancing periods. The rate of valerate absorption tended to increase (linear, = 0.06) and the ruminal liquid passage rate tended to decrease (linear, = 0.08) with advancing period. The arterial clearance rate of acetate tended to quadratically increase ( = 0.06) with period, whereas the clearance rate of glucose was not affected by treatment or period. Both fasting plasma insulin and the area under the insulin curve in response to glucose infusion linearly increased ( = 0.04) with period. These data suggest that partially replacing barley grain with HLHFP negatively affects total tract digestibility and performance. Moreover, with advancing days on feed, digestibility and insulin resistance increases without changes in ruminal pH and plasma metabolite clearance rates.
Collapse
|
15
|
Pitchford WS, Lines DS, Wilkes MJ. Variation in residual feed intake depends on feed on offer. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two small pen trials with cattle and sheep both clearly demonstrated that while there is significant variation in residual feed intake when on high energy supply, there is negligible variation when energy supply is limited. A review of literature demonstrated that this is also the case when energy supply is limited by heat or physiological state, such as peak lactation, and in multiple species. There is little evidence of variation in efficiency of maintenance requirements, growth or lactation. Nor is there strong evidence for large variation in digestibility within breeds, despite some differences between divergent breeds. Thus, the primary source of variation in residual feed intake must be in appetite and, in variable environments, it is possible that those with greater appetite are more resilient during times of feed shortage.
Collapse
|
16
|
Invited review: Improving feed efficiency of beef cattle – the current state of the art and future challenges. Animal 2018; 12:1815-1826. [DOI: 10.1017/s1751731118000976] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Liang YS, Li GZ, Li XY, Lü JY, Li FD, Tang DF, Li F, Deng Y, Zhang H, Wang ZL, Weng XX. Growth performance, rumen fermentation, bacteria composition, and gene expressions involved in intracellular pH regulation of rumen epithelium in finishing Hu lambs differing in residual feed intake phenotype. J Anim Sci 2017; 95:1727-1738. [PMID: 28464089 DOI: 10.2527/jas.2016.1134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to evaluate the effect of residual feed intake (RFI) on rumen function in finishing lambs. A total of 60 male Hu lambs (average initial BW = 25.2 ± 2.5kg) were used and were offered a pelleted high-concentrate diet, of which the forage to concentrate ratio was 25:75. Individual feed intake was recorded over a period of 42 d, then 10 lambs with the lowest RFI and the highest RFI were selected, respectively. The rumen fluid used for fermentation variables and relative abundance of bacteria measurement was obtained on d 10 and 20 after RFI measurement. At the end of this experiment, the selected lambs were slaughtered and rumen epithelium and liver tissues were collected for RNA extraction. Low-RFI lambs had lower ( < 0.01) DMI and greater ( < 0.05) G:F than the high-RFI ones, while the RFI groups did not differ in ADG and BW ( > 0.05). Additionally, RFI was positively ( = 0.57; < 0.01) correlated with DMI and negatively ( = -0.53; < 0.05) correlated with G:F. Total VFA and individual VFA decreased ( < 0.05) over time. The concentrations of total VFA, acetate, valerate, isobutyrate, isovalerate, and rumen pH ( > 0.05) were not affected by RFI classification. Nonetheless, low-RFI group lambs had a greater ( < 0.05) concentration of propionate, a lower ( < 0.05) concentration of butyrate, and a lower ( < 0.05) acetate to propionate ratio compared with the high-RFI group. There was a significant ( < 0.05) effect of RFI on the relative abundance of and . The relative abundance of , , and decreased ( < 0.05) over time in high-RFI group. And the relative abundance of in high-RFI group was greater ( < 0.05) than its low-RFI counterpart. Furthermore, RFI had no effect ( > 0.05) on gene expression associated with intracellular pH regulation (, , , , , , , and ) in rumen epithelium and β-hydroxybutyrate metabolism () in both rumen epithelium and liver tissues. In conclusion, even though low-RFI lambs had lower DMI, however, the number of was lower. Additionally, there was no difference in gene expressions level associated with intracellular pH regulation in rumen epithelium between RFI groups.
Collapse
|
18
|
González-Grajales LA, Pieper L, Kremer J, Staufenbiel R. Influence of food deprivation on intravenous glucose tolerance test traits in Holstein Friesian heifers. J Dairy Sci 2017; 100:7710-7719. [DOI: 10.3168/jds.2016-12133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/11/2017] [Indexed: 12/15/2022]
|