1
|
Fang X, Yan P, Owusu AM, Zhu T, Li S. Verification of the Interaction Target Protein of the Effector ApCE22 of Arthrinium phaeospermum in Bambusa pervariabilis × Dendrocalamopsis grandis. Biomolecules 2023; 13:biom13040590. [PMID: 37189340 DOI: 10.3390/biom13040590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The study of interaction proteins of the pathogen A. phaeospermum effector protein is an important means to analyze the disease-resistance mechanism of Bambusa pervariabilis × Dendrocalamopsis grandis shoot blight. To obtain the proteins interacting with the effector ApCE22 of A. phaeospermum, 27 proteins interacting with the effector ApCE22 were initially identified via a yeast two-hybrid assay, of which four interaction proteins were obtained after one-to-one validation. The B2 protein and the chaperone protein DnaJ chloroplast protein were then verified to interact with the ApCE22 effector protein by bimolecular fluorescence complementation and GST pull-down methods. Advanced structure prediction showed that the B2 protein contained the DCD functional domain related to plant development and cell death, and the DnaJ protein contained the DnaJ domain related to stress resistance. The results showed that both the B2 protein and DnaJ protein in B. pervariabilis × D. grandis were the target interaction proteins of the ApCE22 effector of A. phaeospermum and related to the stress resistance of the host B. pervariabilis × D. grandis. The successful identification of the pathogen effector interaction target protein in B. pervariabilis × D. grandis plays an important role in the mechanism of pathogen–host interaction, thus providing a theoretical basis for the control of B. pervariabilis × D. grandis shoot blight.
Collapse
|
2
|
Regulation of germline proteostasis by HSF1 and insulin/IGF-1 signaling. Biochem Soc Trans 2023; 51:501-512. [PMID: 36892215 DOI: 10.1042/bst20220616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Protein homeostasis (proteostasis) is essential for cellular function and organismal health and requires the concerted actions of protein synthesis, folding, transport, and turnover. In sexually reproducing organisms, the immortal germline lineage passes genetic information across generations. Accumulating evidence indicates the importance of proteome integrity for germ cells as genome stability. As gametogenesis involves very active protein synthesis and is highly energy-demanding, it has unique requirements for proteostasis regulation and is sensitive to stress and nutrient availability. The heat shock factor 1 (HSF1), a key transcriptional regulator of cellular response to cytosolic and nuclear protein misfolding has evolutionarily conserved roles in germline development. Similarly, insulin/insulin-like growth factor-1 (IGF-1) signaling, a major nutrient-sensing pathway, impacts many aspects of gametogenesis. Here, we focus on HSF1 and IIS to review insights into their roles in germline proteostasis and discuss the implications on gamete quality control during stress and aging.
Collapse
|
3
|
Tayade R, Rana V, Shafiqul M, Nabi RBS, Raturi G, Dhar H, Thakral V, Kim Y. Genome-Wide Identification of Aquaporin Genes in Adzuki Bean ( Vigna angularis) and Expression Analysis under Drought Stress. Int J Mol Sci 2022; 23:ijms232416189. [PMID: 36555833 PMCID: PMC9782098 DOI: 10.3390/ijms232416189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The adzuki bean Vigna angularis (Wild.) is an important leguminous crop cultivated mainly for food purposes in Asian countries; it represents a source of carbohydrates, digestible proteins, minerals, and vitamins. Aquaporins (AQPs) are crucial membrane proteins involved in the transmembrane diffusion of water and small solutes in all living organisms, including plants. In this study, we used the whole genome sequence of the adzuki bean for in silico analysis to comprehensively identify 40 Vigna angularis aquaporin (VaAQP) genes and reveal how these plants react to drought stress. VaAQPs were compared with AQPs from other closely-related leguminous plants, and the results showed that mustard (Brassica rapa) (59), barrel medic (Medicago truncatula) (46), soybean (Glycine max) (66), and common bean (Phaseolus vulgaris L.) (41) had more AQP genes. Phylogenetic analysis revealed that forty VaAQPs belong to five subfamilies, with the VaPIPs (fifteen) subfamily the largest, followed by the VaNIPs (ten), VaTIPs (ten), VaSIPs (three), and VaXIPs (two) subfamilies. Furthermore, all AQP subcellular locations were found at the plasma membrane, and intron-exon analysis revealed a relationship between the intron number and gene expression, duplication, evolution, and diversity. Among the six motifs identified, motifs one, two, five, and six were prevalent in VaTIP, VaNIP, VaPIP, and VaXIP, while motifs one, three, and four were not observed in VaPIP1-3 and VaPIP1-4. Under drought stress, two of the VaAQPs (VaPIP2-1 and VaPIP2-5) showed significantly higher expression in the root tissue while the other two genes (VaPIP1-1 and VaPIP1-7) displayed variable expression in leaf tissue. This finding revealed that the selected VaAQPs might have unique molecular functions linked with the uptake of water under drought stress or in the exertion of osmoregulation to transport particular substrates rather than water to protect plants from drought. This study presents the first thorough investigation of VaAQPs in adzuki beans, and it reveals the transport mechanisms and related physiological processes that may be utilized for the development of drought-tolerant adzuki bean cultivars.
Collapse
Affiliation(s)
- Rupesh Tayade
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Varnika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Mohammad Shafiqul
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rizwana Begum Syed Nabi
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Hena Dhar
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Vandana Thakral
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Yoonha Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: ; Tel./Fax: +82-53-950-5710
| |
Collapse
|
4
|
Pérez AP, Artés MH, Moreno DF, Clotet J, Aldea M. Mad3 modulates the G 1 Cdk and acts as a timer in the Start network. SCIENCE ADVANCES 2022; 8:eabm4086. [PMID: 35522754 PMCID: PMC9075807 DOI: 10.1126/sciadv.abm4086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Cells maintain their size within limits over successive generations to maximize fitness and survival. Sizer, timer, and adder behaviors have been proposed as possible alternatives to coordinate growth and cell cycle progression. Regarding budding yeast cells, a sizer mechanism is thought to rule cell cycle entry at Start. However, while many proteins controlling the size of these cells have been identified, the mechanistic framework in which they participate to achieve cell size homeostasis is not understood. We show here that intertwined APC and SCF degradation machineries with specific adaptor proteins drive cyclic accumulation of the G1 Cdk in the nucleus, reaching maximal levels at Start. The mechanism incorporates Mad3, a centromeric-signaling protein that subordinates G1 progression to the previous mitosis as a memory factor. This alternating-degradation device displays the properties of a timer and, together with the sizer device, would constitute a key determinant of cell cycle entry.
Collapse
Affiliation(s)
- Alexis P. Pérez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Marta H. Artés
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
| | - David F. Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
| | - Josep Clotet
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| |
Collapse
|
5
|
Santiago E, Moreno DF, Acar M. Modeling aging and its impact on cellular function and organismal behavior. Exp Gerontol 2021; 155:111577. [PMID: 34582969 PMCID: PMC8560568 DOI: 10.1016/j.exger.2021.111577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023]
Abstract
Aging is a complex phenomenon of functional decay in a biological organism. Although the effects of aging are readily recognizable in a wide range of organisms, the cause(s) of aging are ill defined and poorly understood. Experimental methods on model organisms have driven significant insight into aging as a process, but have not provided a complete model of aging. Computational biology offers a unique opportunity to resolve this gap in our knowledge by generating extensive and testable models that can help us understand the fundamental nature of aging, identify the presence and characteristics of unaccounted aging factor(s), demonstrate the mechanics of particular factor(s) in driving aging, and understand the secondary effects of aging on biological function. In this review, we will address each of the above roles for computational biology in aging research. Concurrently, we will explore the different applications of computational biology to aging in single-celled versus multicellular organisms. Given the long history of computational biogerontological research on lower eukaryotes, we emphasize the key future goals of gradually integrating prior models into a holistic map of aging and translating successful models to higher-complexity organisms.
Collapse
Affiliation(s)
- Emerson Santiago
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA
| | - David F Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA.
| |
Collapse
|
6
|
Yahya G, Pérez AP, Mendoza MB, Parisi E, Moreno DF, Artés MH, Gallego C, Aldea M. Stress granules display bistable dynamics modulated by Cdk. J Cell Biol 2021; 220:211705. [PMID: 33480968 PMCID: PMC7836273 DOI: 10.1083/jcb.202005102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Stress granules (SGs) are conserved biomolecular condensates that originate in response to many stress conditions. These membraneless organelles contain nontranslating mRNAs and a diverse subproteome, but our knowledge of their regulation and functional relevance is still incipient. Here, we describe a mutual-inhibition interplay between SGs and Cdc28, the budding yeast Cdk. Among Cdc28 interactors acting as negative modulators of Start, we have identified Whi8, an RNA-binding protein that localizes to SGs and recruits the mRNA of CLN3, the most upstream G1 cyclin, for efficient translation inhibition and Cdk inactivation under stress. However, Whi8 also contributes to recruiting Cdc28 to SGs, where it acts to promote their dissolution. As predicted by a mutual-inhibition framework, the SG constitutes a bistable system that is modulated by Cdk. Since mammalian cells display a homologous mechanism, we propose that the opposing functions of specific mRNA-binding proteins and Cdk’s subjugate SG dynamics to a conserved hysteretic switch.
Collapse
Affiliation(s)
- Galal Yahya
- Molecular Biology Institute of Barcelona, Spanish National Research Council, Catalonia, Spain.,Department of Microbiology and Immunology, Zagazig University, Zagazig, Egypt
| | - Alexis P Pérez
- Molecular Biology Institute of Barcelona, Spanish National Research Council, Catalonia, Spain.,Department of Basic Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mònica B Mendoza
- Molecular Biology Institute of Barcelona, Spanish National Research Council, Catalonia, Spain
| | - Eva Parisi
- Molecular Biology Institute of Barcelona, Spanish National Research Council, Catalonia, Spain
| | - David F Moreno
- Molecular Biology Institute of Barcelona, Spanish National Research Council, Catalonia, Spain
| | - Marta H Artés
- Molecular Biology Institute of Barcelona, Spanish National Research Council, Catalonia, Spain
| | - Carme Gallego
- Molecular Biology Institute of Barcelona, Spanish National Research Council, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona, Spanish National Research Council, Catalonia, Spain.,Department of Basic Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
7
|
Yahya G, Hashem Mohamed N, Pijuan J, Seleem NM, Mosbah R, Hess S, Abdelmoaty AA, Almeer R, Abdel‐Daim MM, Shulaywih Alshaman H, Juraiby I, Metwally K, Storchova Z. Profiling the physiological pitfalls of anti-hepatitis C direct-acting agents in budding yeast. Microb Biotechnol 2021; 14:2199-2213. [PMID: 34378349 PMCID: PMC8449668 DOI: 10.1111/1751-7915.13904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/05/2023] Open
Abstract
Sofosbuvir and Daclatasvir are among the direct-acting antiviral (DAA) medications prescribed for the treatment of chronic hepatitis C (CHC) virus infection as combination therapy with other antiviral medications. DAA-based therapy achieves high cure rates, reaching up to 97% depending on the genotype of the causative hepatitis C virus (HCV). While DAAs have been approved as an efficient and well-tolerated therapy for CHC, emerging concerns about adverse cardiac side effects, higher risk of recurrence and occurrence of hepatocellular carcinoma (HCC) and doubts of genotoxicity have been reported. In our study, we investigated in detail physiological off-targets of DAAs and dissected the effects of these drugs on cellular organelles using budding yeast, a unicellular eukaryotic organism. DAAs were found to disturb the architecture of the endoplasmic reticulum (ER) and the mitochondria, while showing no apparent genotoxicity or DNA damaging effect. Our study provides evidence that DAAs are not associated with genotoxicity and highlights the necessity for adjunctive antioxidant therapy to mitigate the adverse effects of DAAs on ER and mitochondria.
Collapse
Affiliation(s)
- Galal Yahya
- Department of Microbiology and ImmunologyFaculty of PharmacyZagazig UniversityAl Sharqia44519Egypt
- Department of Molecular GeneticsFaculty of BiologyTechnical University of KaiserslauternPaul‐Ehrlich Str. 24Kaiserslautern67663Germany
| | | | - Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine ‐ IPERInstitut de Recerca Sant Joan de DéuBarcelona08950Spain
| | - Noura M. Seleem
- Department of Microbiology and ImmunologyFaculty of PharmacyZagazig UniversityAl Sharqia44519Egypt
| | - Rasha Mosbah
- Infection Control UnitHospitals of Zagazig UniversityAl SharqiaEgypt
| | - Steffen Hess
- Department of Cell BiologyFaculty of BiologyTechnical University of KaiserslauternKaiserslauternGermany
| | - Ahmed A. Abdelmoaty
- Department of Tropical MedicineFaculty of MedicineZagazig UniversityZagazig44519Egypt
| | - Rafa Almeer
- Department of ZoologyCollege of ScienceKing Saud UniversityP.O. Box 2455Riyadh11451Saudi Arabia
| | - Mohamed M. Abdel‐Daim
- Department of ZoologyCollege of ScienceKing Saud UniversityP.O. Box 2455Riyadh11451Saudi Arabia
- Pharmacology DepartmentCollege of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | | | - Ibrahim Juraiby
- General Directorate of Health AffairsMinistry of HealthJazan82723Saudi Arabia
| | - Kamel Metwally
- Department of Pharmaceutical ChemistryFaculty of PharmacyTabuk UniversityTabuk47713Saudi Arabia
- Department of Medicinal ChemistryFaculty of PharmacyZagazig UniversityZagazig44519Egypt
| | - Zuzana Storchova
- Department of Molecular GeneticsFaculty of BiologyTechnical University of KaiserslauternPaul‐Ehrlich Str. 24Kaiserslautern67663Germany
| |
Collapse
|
8
|
Banerjee S, Chakraborty S, Sreepada A, Banerji D, Goyal S, Khurana Y, Haldar S. Cutting-Edge Single-Molecule Technologies Unveil New Mechanics in Cellular Biochemistry. Annu Rev Biophys 2021; 50:419-445. [PMID: 33646813 DOI: 10.1146/annurev-biophys-090420-083836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule technologies have expanded our ability to detect biological events individually, in contrast to ensemble biophysical technologies, where the result provides averaged information. Recent developments in atomic force microscopy have not only enabled us to distinguish the heterogeneous phenomena of individual molecules, but also allowed us to view up to the resolution of a single covalent bond. Similarly, optical tweezers, due to their versatility and precision, have emerged as a potent technique to dissect a diverse range of complex biological processes, from the nanomechanics of ClpXP protease-dependent degradation to force-dependent processivity of motor proteins. Despite the advantages of optical tweezers, the time scales used in this technology were inconsistent with physiological scenarios, which led to the development of magnetic tweezers, where proteins are covalently linked with the glass surface, which in turn increases the observation window of a single biomolecule from minutes to weeks. Unlike optical tweezers, magnetic tweezers use magnetic fields to impose torque, which makes them convenient for studying DNA topology and topoisomerase functioning. Using modified magnetic tweezers, researchers were able to discover the mechanical role of chaperones, which support their substrate proteinsby pulling them during translocation and assist their native folding as a mechanical foldase. In this article, we provide a focused review of many of these new roles of single-molecule technologies, ranging from single bond breaking to complex chaperone machinery, along with the potential to design mechanomedicine, which would be a breakthrough in pharmacological interventions against many diseases.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Abhijit Sreepada
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Devshuvam Banerji
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shashwat Goyal
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Yajushi Khurana
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| |
Collapse
|
9
|
Méndez E, Gomar-Alba M, Bañó MC, Mendoza M, Quilis I, Igual JC. The budding yeast Start repressor Whi7 differs in regulation from Whi5, emerging as a major cell cycle brake in response to stress. J Cell Sci 2020; 133:133/24/jcs251413. [PMID: 33443080 PMCID: PMC7774886 DOI: 10.1242/jcs.251413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
Start is the main decision point in the eukaryotic cell cycle at which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional programme through the inactivation of Start transcriptional repressors: the retinoblastoma family in mammals, or Whi5 and its recently identified paralogue Whi7 (also known as Srl3) in budding yeast. Here, we provide a comprehensive comparison of Whi5 and Whi7 that reveals significant qualitative differences. Indeed, the expression, subcellular localization and functionality of Whi7 and Whi5 are differentially regulated. Importantly, Whi7 shows specific properties in its association with promoters not shared by Whi5, and for the first time, we demonstrate that Whi7, and not Whi5, can be the main contributor to Start inhibition such as it occurs in the response to cell wall stress. Our results help to improve understanding of the interplay between multiple differentially regulated Start repressors in order to face specific cellular conditions. Highlighted Article: Cells can use the interplay between functionally redundant but differentially regulated cell-cycle repressors in order to confer new repression capabilities and to respond to specific cellular conditions.
Collapse
Affiliation(s)
- Ester Méndez
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot (Valencia), Spain
| | - Mercè Gomar-Alba
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot (Valencia), Spain.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - M Carmen Bañó
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot (Valencia), Spain
| | - Manuel Mendoza
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Inma Quilis
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot (Valencia), Spain
| | - J Carlos Igual
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot (Valencia), Spain
| |
Collapse
|
10
|
Moreno DF, Aldea M. Proteostatic stress as a nodal hallmark of replicative aging. Exp Cell Res 2020; 394:112163. [PMID: 32640194 DOI: 10.1016/j.yexcr.2020.112163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
Aging is characterized by the progressive decline of physiology at the cell, tissue and organism level, leading to an increased risk of mortality. Proteotoxic stress, mitochondrial dysfunction and genomic instability are considered major universal drivers of cell aging, and accumulating evidence establishes clear biunivocal relationships among these key hallmarks. In this regard, the finite lifespan of the budding yeast, together with the extensive armamentarium of available analytical tools, has made this single cell eukaryote a key model to study aging at molecular and cellular levels. Here we review the current data that link proteostasis to cell cycle progression in the budding yeast, focusing on senescence as an inherent phenotype displayed by aged cells. Recent advances in high-throughput systems to study yeast mother cells while they replicate are providing crucial information on aging-related processes and their temporal interdependencies at a systems level. In our view, the available data point to the existence of multiple feedback mechanisms among the major causal factors of aging, which would converge into the loss of proteostasis as a nodal driver of cell senescence and death.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
11
|
Moreno DF, Jenkins K, Morlot S, Charvin G, Csikasz-Nagy A, Aldea M. Proteostasis collapse, a hallmark of aging, hinders the chaperone-Start network and arrests cells in G1. eLife 2019; 8:48240. [PMID: 31518229 PMCID: PMC6744273 DOI: 10.7554/elife.48240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022] Open
Abstract
Loss of proteostasis and cellular senescence are key hallmarks of aging, but direct cause-effect relationships are not well understood. We show that most yeast cells arrest in G1 before death with low nuclear levels of Cln3, a key G1 cyclin extremely sensitive to chaperone status. Chaperone availability is seriously compromised in aged cells, and the G1 arrest coincides with massive aggregation of a metastable chaperone-activity reporter. Moreover, G1-cyclin overexpression increases lifespan in a chaperone-dependent manner. As a key prediction of a model integrating autocatalytic protein aggregation and a minimal Start network, enforced protein aggregation causes a severe reduction in lifespan, an effect that is greatly alleviated by increased expression of specific chaperones or cyclin Cln3. Overall, our data show that proteostasis breakdown, by compromising chaperone activity and G1-cyclin function, causes an irreversible arrest in G1, configuring a molecular pathway postulating proteostasis decay as a key contributing effector of cell senescence.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Kirsten Jenkins
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Institute of Mathematical and Molecular Biomedicine, King's College London, London, United Kingdom
| | - Sandrine Morlot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Université de Strasbourg, Illkirch, France
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Université de Strasbourg, Illkirch, France
| | - Attila Csikasz-Nagy
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Institute of Mathematical and Molecular Biomedicine, King's College London, London, United Kingdom.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain.,Department of Basic Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| |
Collapse
|