1
|
Ashkin EL, Tang YJ, Xu H, Hung KL, Belk JA, Cai H, Lopez SS, Dolcen DN, Hebert JD, Li R, Ruiz PA, Keal T, Andrejka L, Chang HY, Petrov DA, Dixon JR, Xu Z, Winslow MM. A STAG2-PAXIP1/PAGR1 axis suppresses lung tumorigenesis. J Exp Med 2025; 222:e20240765. [PMID: 39652422 PMCID: PMC11627241 DOI: 10.1084/jem.20240765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
The cohesin complex is a critical regulator of gene expression. STAG2 is the most frequently mutated cohesin subunit across several cancer types and is a key tumor suppressor in lung cancer. Here, we coupled somatic CRISPR-Cas9 genome editing and tumor barcoding with an autochthonous oncogenic KRAS-driven lung cancer model and showed that STAG2 is uniquely tumor-suppressive among all core and auxiliary cohesin components. The heterodimeric complex components PAXIP1 and PAGR1 have highly correlated effects with STAG2 in human lung cancer cell lines, are tumor suppressors in vivo, and are epistatic to STAG2 in oncogenic KRAS-driven lung tumorigenesis in vivo. STAG2 inactivation elicits changes in gene expression, chromatin accessibility, and 3D genome conformation that impact the cancer cell state. Gene expression and chromatin accessibility similarities between STAG2- and PAXIP1-deficient neoplastic cells further relate STAG2-cohesin to PAXIP1/PAGR1. These findings reveal a STAG2-PAXIP1/PAGR1 tumor-suppressive axis and uncover novel PAXIP1-dependent and PAXIP1-independent STAG2-cohesin-mediated mechanisms of lung tumor suppression.
Collapse
Affiliation(s)
- Emily L. Ashkin
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuning J. Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Haiqing Xu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - King L. Hung
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A. Belk
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven S. Lopez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Deniz Nesli Dolcen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jess D. Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Paloma A. Ruiz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tula Keal
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A. Petrov
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jesse R. Dixon
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zhichao Xu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Monte M. Winslow
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Sudunagunta VS, Viny AD. Untangling the loops of STAG2 mutations in myelodysplastic syndrome. Leuk Lymphoma 2025; 66:6-15. [PMID: 39264305 DOI: 10.1080/10428194.2024.2400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous myeloid neoplasm that is hallmarked by the acquisition of genetic events that disrupt normal trilineage hematopoiesis and results in bone marrow dysfunction. Somatic genes involving transcriptional regulation, signal transduction, DNA methylation, and chromatin modification are often implicated in disease pathogenesis. The cohesin complex, composed of SMC1, SMC3, RAD21, and either STAG1 or STAG2, has been identified as a recurrent mutational target with STAG2 mutations accounting for more than half of all cohesin mutations in myeloid malignancies. In the last decade, STAG2 cohesin biology has been of great interest given its role in transcriptional activation, association with poorer prognosis, and lack of mutation-specific therapies. This review discusses the clinical landscape of cohesin mutant myeloid malignancies, particularly STAG2 mutant MDS, including molecular features of STAG2 mutations, clinical implications of cohesin mutant neoplasms, and the current understanding of the pathophysiological function of STAG2 mutations in MDS.
Collapse
Affiliation(s)
- Varun S Sudunagunta
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, New York, NY, USA
| | - Aaron D Viny
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, New York, NY, USA
| |
Collapse
|
3
|
Sasaki M, Kato D, Yoshida H, Shimizu T, Ogiwara H. Efficacy of CBP/p300 Dual Inhibitors against Derepression of KREMEN2 in cBAF-Deficient Cancers. CANCER RESEARCH COMMUNICATIONS 2025; 5:24-38. [PMID: 39625239 PMCID: PMC11701801 DOI: 10.1158/2767-9764.crc-24-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
SIGNIFICANCE In this study, we clarified that the cBAF subcomplex is deficient in the SWI/SNF complex, resulting in dependency on the CBP/p300 paralog pair. Simultaneous inhibitors of the CBP/p300 paralog pair show promise for cBAF-deficient lung cancer, as well as rare cancers such as malignant rhabdoid tumors, epithelioid sarcomas, and synovial sarcomas.
Collapse
Affiliation(s)
- Mariko Sasaki
- Division of Cancer Therapeutics, National Cancer Center Research Institute, Tokyo, Japan
| | - Daiki Kato
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, Osaka, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
4
|
Ngoi NYL, Gallo D, Torrado C, Nardo M, Durocher D, Yap TA. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 2025; 22:46-64. [PMID: 39627502 DOI: 10.1038/s41571-024-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR-Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Gallo
- Repare Therapeutics, Inc., Montreal, Quebec, Canada
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Thatikonda V, Supper V, Wachter J, Kaya O, Kombara A, Bilgilier C, Ravichandran MC, Lipp JJ, Sharma R, Badertscher L, Boghossian AS, Rees MG, Ronan MM, Roth JA, Grosche S, Neumüller RA, Mair B, Mauri F, Popa A. Genetic dependencies associated with transcription factor activities in human cancer cell lines. Cell Rep 2024; 43:114175. [PMID: 38691456 DOI: 10.1016/j.celrep.2024.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Transcription factors (TFs) are important mediators of aberrant transcriptional programs in cancer cells. In this study, we focus on TF activity (TFa) as a biomarker for cell-line-selective anti-proliferative effects, in that high TFa predicts sensitivity to loss of function of a given gene (i.e., genetic dependencies [GDs]). Our linear-regression-based framework identifies 3,047 pan-cancer and 3,952 cancer-type-specific candidate TFa-GD associations from cell line data, which are then cross-examined for impact on survival in patient cohorts. One of the most prominent biomarkers is TEAD1 activity, whose associations with its predicted GDs are validated through experimental evidence as proof of concept. Overall, these TFa-GD associations represent an attractive resource for identifying innovative, biomarker-driven hypotheses for drug discovery programs in oncology.
Collapse
Affiliation(s)
- Venu Thatikonda
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria.
| | - Verena Supper
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Johannes Wachter
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Onur Kaya
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Anju Kombara
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Ceren Bilgilier
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | | | - Jesse J Lipp
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Rahul Sharma
- Myllia Biotechnology GmbH, Am Kanal 27, Vienna 1110, Austria
| | | | | | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Grosche
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Ralph A Neumüller
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Barbara Mair
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Federico Mauri
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Alexandra Popa
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria.
| |
Collapse
|
6
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
7
|
Meyer A, Stelloh C, Zhu N, Rao S. Cohesin loss and MLL-AF9 are not synthetic lethal in murine hematopoietic stem and progenitor cells. RESEARCH SQUARE 2024:rs.3.rs-3894962. [PMID: 38352423 PMCID: PMC10862952 DOI: 10.21203/rs.3.rs-3894962/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Objective As cohesin mutations are rarely found in MLL-rearranged acute myeloid leukemias, we investigated the potential synthetic lethality between cohesin mutations and MLL-AF9 using murine hematopoietic stem and progenitor cells. Results Contrary to our hypothesis, a complete loss of Stag2 or haploinsufficiency of Smc3 were well tolerated in MLL-AF9-expressing hematopoietic stem and progenitor cells. Minimal effect of cohesin subunit loss on the in vitro self-renewal of MLL-AF9-expressing cells was observed. Despite the differing mutational landscapes of cohesin-mutated and MLL fusion AMLs, previous studies showed that cohesin and MLL fusion mutations similarly drive abnormal self-renewal through HOXA gene upregulation. The utilization of a similar mechanism suggests that little selective pressure exists for the acquisition of cohesin mutations in AMLs expressing MLL fusions, explaining their lack of co-occurrence. Our results emphasize the importance of using genetic models to test suspected synthetic lethality and suggest that a lack of co-occurrence may instead point to a common mechanism of action between two mutations.
Collapse
|
8
|
Bhattacharya SA, Dias E, Nieto-Aliseda A, Buschbeck M. The consequences of cohesin mutations in myeloid malignancies. Front Mol Biosci 2023; 10:1319804. [PMID: 38033389 PMCID: PMC10684907 DOI: 10.3389/fmolb.2023.1319804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Recurrent somatic mutations in the genes encoding the chromatin-regulatory cohesin complex and its modulators occur in a wide range of human malignancies including a high frequency in myeloid neoplasms. The cohesin complex has a ring-like structure which can enclose two strands of DNA. A first function for the complex was described in sister chromatid cohesion during metaphase avoiding defects in chromosome segregation. Later studies identified additional functions of the cohesin complex functions in DNA replication, DNA damage response, 3D genome organisation, and transcriptional regulation through chromatin looping. In this review, we will focus on STAG2 which is the most frequently mutated cohesin subunit in myeloid malignancies. STAG2 loss of function mutations are not associated with chromosomal aneuploidies or genomic instability. We hypothesize that this points to changes in gene expression as disease-promoting mechanism and summarize the current state of knowledge on affected genes and pathways. Finally, we discuss potential strategies for targeting cohesion-deficient disease cells.
Collapse
Affiliation(s)
- Shubhra Ashish Bhattacharya
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- PhD Program of Cell Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Eve Dias
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- PhD Program of Cell Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Andrea Nieto-Aliseda
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
9
|
van Schie JJM, de Lint K, Molenaar TM, Moronta Gines M, Balk J, Rooimans M, Roohollahi K, Pai G, Borghuis L, Ramadhin A, Corazza F, Dorsman J, Wendt K, Wolthuis RF, de Lange J. CRISPR screens in sister chromatid cohesion defective cells reveal PAXIP1-PAGR1 as regulator of chromatin association of cohesin. Nucleic Acids Res 2023; 51:9594-9609. [PMID: 37702151 PMCID: PMC10570055 DOI: 10.1093/nar/gkad756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
The cohesin complex regulates higher order chromosome architecture through maintaining sister chromatid cohesion and folding chromatin by DNA loop extrusion. Impaired cohesin function underlies a heterogeneous group of genetic syndromes and is associated with cancer. Here, we mapped the genetic dependencies of human cell lines defective of cohesion regulators DDX11 and ESCO2. The obtained synthetic lethality networks are strongly enriched for genes involved in DNA replication and mitosis and support the existence of parallel sister chromatid cohesion establishment pathways. Among the hits, we identify the chromatin binding, BRCT-domain containing protein PAXIP1 as a novel cohesin regulator. Depletion of PAXIP1 severely aggravates cohesion defects in ESCO2 mutant cells, leading to mitotic cell death. PAXIP1 promotes global chromatin association of cohesin, independent of DNA replication, a function that cannot be explained by indirect effects of PAXIP1 on transcription or DNA repair. Cohesin regulation by PAXIP1 requires its binding partner PAGR1 and a conserved FDF motif in PAGR1. PAXIP1 co-localizes with cohesin on multiple genomic loci, including active gene promoters and enhancers. Possibly, this newly identified role of PAXIP1-PAGR1 in regulating cohesin occupancy on chromatin is also relevant for previously described functions of PAXIP1 in transcription, immune cell maturation and DNA repair.
Collapse
Affiliation(s)
- Janne J M van Schie
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Klaas de Lint
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Thom M Molenaar
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Jesper A Balk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Martin A Rooimans
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Khashayar Roohollahi
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Govind M Pai
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Lauri Borghuis
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Anisha R Ramadhin
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Francesco Corazza
- Erasmus Medical Centre, Department of Cell Biology, Rotterdam, The Netherlands
| | - Josephine C Dorsman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Kerstin S Wendt
- Erasmus Medical Centre, Department of Cell Biology, Rotterdam, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Job de Lange
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Hoffmann T, Hörmann A, Corcokovic M, Zmajkovic J, Hinterndorfer M, Salkanovic J, Spreitzer F, Köferle A, Gitschtaler K, Popa A, Oberndorfer S, Andersch F, Schaefer M, Fellner M, Budano N, Ruppert JG, Chetta P, Wurm M, Zuber J, Neumüller RA. Precision RNAi using synthetic shRNAmir target sites. eLife 2023; 12:RP84792. [PMID: 37552050 PMCID: PMC10409502 DOI: 10.7554/elife.84792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Loss-of-function genetic tools are widely applied for validating therapeutic targets, but their utility remains limited by incomplete on- and uncontrolled off-target effects. We describe artificial RNA interference (ARTi) based on synthetic, ultra-potent, off-target-free shRNAs that enable efficient and inducible suppression of any gene upon introduction of a synthetic target sequence into non-coding transcript regions. ARTi establishes a scalable loss-of-function tool with full control over on- and off-target effects.
Collapse
Affiliation(s)
- Thomas Hoffmann
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Alexandra Hörmann
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Maja Corcokovic
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Jakub Zmajkovic
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | | | - Jasko Salkanovic
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Fiona Spreitzer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Anna Köferle
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Katrin Gitschtaler
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Alexandra Popa
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Sarah Oberndorfer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Florian Andersch
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | - Markus Schaefer
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | - Michaela Fellner
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | - Nicole Budano
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Jan G Ruppert
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Paolo Chetta
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Melanie Wurm
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
- Medical University of Vienna, Vienna BioCenterViennaAustria
| | - Ralph A Neumüller
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| |
Collapse
|
11
|
Xin Y, Zhang Y. Paralog-based synthetic lethality: rationales and applications. Front Oncol 2023; 13:1168143. [PMID: 37350942 PMCID: PMC10282757 DOI: 10.3389/fonc.2023.1168143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Tumor cells can result from gene mutations and over-expression. Synthetic lethality (SL) offers a desirable setting where cancer cells bearing one mutated gene of an SL gene pair can be specifically targeted by disrupting the function of the other genes, while leaving wide-type normal cells unharmed. Paralogs, a set of homologous genes that have diverged from each other as a consequence of gene duplication, make the concept of SL feasible as the loss of one gene does not affect the cell's survival. Furthermore, homozygous loss of paralogs in tumor cells is more frequent than singletons, making them ideal SL targets. Although high-throughput CRISPR-Cas9 screenings have uncovered numerous paralog-based SL pairs, the unclear mechanisms of targeting these gene pairs and the difficulty in finding specific inhibitors that exclusively target a single but not both paralogs hinder further clinical development. Here, we review the potential mechanisms of paralog-based SL given their function and genetic combination, and discuss the challenge and application prospects of paralog-based SL in cancer therapeutic discovery.
Collapse
|
12
|
Ryan CJ, Mehta I, Kebabci N, Adams DJ. Targeting synthetic lethal paralogs in cancer. Trends Cancer 2023; 9:397-409. [PMID: 36890003 DOI: 10.1016/j.trecan.2023.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023]
Abstract
Synthetic lethal interactions, where mutation of one gene renders cells sensitive to inhibition of another gene, can be exploited for the development of targeted therapeutics in cancer. Pairs of duplicate genes (paralogs) often share common functionality and hence are a potentially rich source of synthetic lethal interactions. Because the majority of human genes have paralogs, exploiting such interactions could be a widely applicable approach for targeting gene loss in cancer. Moreover, existing small-molecule drugs may exploit synthetic lethal interactions by inhibiting multiple paralogs simultaneously. Consequently, the identification of synthetic lethal interactions between paralogs could be extremely informative for drug development. Here we review approaches to identify such interactions and discuss some of the challenges of exploiting them.
Collapse
Affiliation(s)
- Colm J Ryan
- Conway Institute and School of Computer Science, University College Dublin, Dublin, Ireland; Systems Biology Ireland, University College Dublin, Dublin, Ireland.
| | - Ishan Mehta
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Narod Kebabci
- Conway Institute and School of Computer Science, University College Dublin, Dublin, Ireland; Science Foundation Ireland (SFI) Centre for Research Training in Genomics Data Science, University College Dublin, Dublin, Ireland
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
13
|
Kabirova E, Nurislamov A, Shadskiy A, Smirnov A, Popov A, Salnikov P, Battulin N, Fishman V. Function and Evolution of the Loop Extrusion Machinery in Animals. Int J Mol Sci 2023; 24:5017. [PMID: 36902449 PMCID: PMC10003631 DOI: 10.3390/ijms24055017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes are essential proteins found in genomes of all cellular organisms. Essential functions of these proteins, such as mitotic chromosome formation and sister chromatid cohesion, were discovered a long time ago. Recent advances in chromatin biology showed that SMC proteins are involved in many other genomic processes, acting as active motors extruding DNA, which leads to the formation of chromatin loops. Some loops formed by SMC proteins are highly cell type and developmental stage specific, such as SMC-mediated DNA loops required for VDJ recombination in B-cell progenitors, or dosage compensation in Caenorhabditis elegans and X-chromosome inactivation in mice. In this review, we focus on the extrusion-based mechanisms that are common for multiple cell types and species. We will first describe an anatomy of SMC complexes and their accessory proteins. Next, we provide biochemical details of the extrusion process. We follow this by the sections describing the role of SMC complexes in gene regulation, DNA repair, and chromatin topology.
Collapse
Affiliation(s)
- Evelyn Kabirova
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem Nurislamov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem Shadskiy
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander Smirnov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Andrey Popov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Pavel Salnikov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Artificial Intelligence Research Institute (AIRI), 121108 Moscow, Russia
| |
Collapse
|
14
|
Gilbertson SR, Zhang N, Lin KF, Yang C, Peruski S, Pati D, Gilbertson SR. Synthesis and Evaluation of a Class of Compounds Inhibiting the Growth of Stromal Antigen 2 (STAG2)-Mutant Ewing Sarcoma Cells. ChemMedChem 2022; 17:e202100653. [PMID: 35018729 DOI: 10.1002/cmdc.202100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/15/2021] [Indexed: 11/06/2022]
Abstract
STAG2 (SA2) is a critical component of the cohesin complex that regulates gene expression and the separation of sister chromatids in cells. Mutations in STAG2 have been identified in over thirty different types of cancers including non-small cell lung, bladder and Ewing sarcoma. Selectively inhibiting cancer cells lacking of STAG2 is an attractive approach for the cancer therapy. Here we report that a small molecule, StagX1, identified through a high-throughput screening, inhibits the growth of Ewing sarcoma cells possessing mutant STAG2 . A new synthetic route to the StagX1 scaffold and new versions of the molecule along with their activity in a cell viability assay are reported.
Collapse
Affiliation(s)
- Scott Richard Gilbertson
- University of Houston, Department of Chemistry, 136 Fleming Building, 77204-5003, Houston, UNITED STATES
| | - Nenggang Zhang
- Baylor College of Medicine, Pediatrics, 77030, Houston, UNITED STATES
| | - Keng-Fu Lin
- University of Houston, Chemistry, UNITED STATES
| | | | | | | | - Scott R Gilbertson
- University of Houston, Chemistry, 112 Fleming Building, Houston, 77204, Houston, UNITED STATES
| |
Collapse
|
15
|
Foster B, Attwood M, Gibbs-Seymour I. Tools for Decoding Ubiquitin Signaling in DNA Repair. Front Cell Dev Biol 2021; 9:760226. [PMID: 34950659 PMCID: PMC8690248 DOI: 10.3389/fcell.2021.760226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The maintenance of genome stability requires dedicated DNA repair processes and pathways that are essential for the faithful duplication and propagation of chromosomes. These DNA repair mechanisms counteract the potentially deleterious impact of the frequent genotoxic challenges faced by cells from both exogenous and endogenous agents. Intrinsic to these mechanisms, cells have an arsenal of protein factors that can be utilised to promote repair processes in response to DNA lesions. Orchestration of the protein factors within the various cellular DNA repair pathways is performed, in part, by post-translational modifications, such as phosphorylation, ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs). In this review, we firstly explore recent advances in the tools for identifying factors involved in both DNA repair and ubiquitin signaling pathways. We then expand on this by evaluating the growing repertoire of proteomic, biochemical and structural techniques available to further understand the mechanistic basis by which these complex modifications regulate DNA repair. Together, we provide a snapshot of the range of methods now available to investigate and decode how ubiquitin signaling can promote DNA repair and maintain genome stability in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Bailey ML, Tieu D, Habsid A, Tong AHY, Chan K, Moffat J, Hieter P. Paralogous synthetic lethality underlies genetic dependencies of the cancer-mutated gene STAG2. Life Sci Alliance 2021; 4:e202101083. [PMID: 34462321 PMCID: PMC8408347 DOI: 10.26508/lsa.202101083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
STAG2, a component of the mitotically essential cohesin complex, is highly mutated in several different tumour types, including glioblastoma and bladder cancer. Whereas cohesin has roles in many cancer-related pathways, such as chromosome instability, DNA repair and gene expression, the complex nature of cohesin function has made it difficult to determine how STAG2 loss might either promote tumorigenesis or be leveraged therapeutically across divergent cancer types. Here, we have performed whole-genome CRISPR-Cas9 screens for STAG2-dependent genetic interactions in three distinct cellular backgrounds. Surprisingly, STAG1, the paralog of STAG2, was the only negative genetic interaction that was shared across all three backgrounds. We also uncovered a paralogous synthetic lethal mechanism behind a genetic interaction between STAG2 and the iron regulatory gene IREB2 Finally, investigation of an unusually strong context-dependent genetic interaction in HAP1 cells revealed factors that could be important for alleviating cohesin loading stress. Together, our results reveal new facets of STAG2 and cohesin function across a variety of genetic contexts.
Collapse
Affiliation(s)
- Melanie L Bailey
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - David Tieu
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Andrea Habsid
- Donnelly Centre, University of Toronto, Toronto, Canada
| | | | | | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Comprehensive prediction of robust synthetic lethality between paralog pairs in cancer cell lines. Cell Syst 2021; 12:1144-1159.e6. [PMID: 34529928 DOI: 10.1016/j.cels.2021.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/08/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
Pairs of paralogs may share common functionality and, hence, display synthetic lethal interactions. As the majority of human genes have an identifiable paralog, exploiting synthetic lethality between paralogs may be a broadly applicable approach for targeting gene loss in cancer. However, only a biased subset of human paralog pairs has been tested for synthetic lethality to date. Here, by analyzing genome-wide CRISPR screens and molecular profiles of over 700 cancer cell lines, we identify features predictive of synthetic lethality between paralogs, including shared protein-protein interactions and evolutionary conservation. We develop a machine-learning classifier based on these features to predict which paralog pairs are most likely to be synthetic lethal and to explain why. We show that our classifier accurately predicts the results of combinatorial CRISPR screens in cancer cell lines and furthermore can distinguish pairs that are synthetic lethal in multiple cell lines from those that are cell-line specific. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
|
18
|
Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021; 138:649-661. [PMID: 34157074 PMCID: PMC8394903 DOI: 10.1182/blood.2019004259] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, University of Heidelberg, Mannheim, Germany; and
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
19
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
20
|
Zhang N, Coutinho LE, Pati D. PDS5A and PDS5B in Cohesin Function and Human Disease. Int J Mol Sci 2021; 22:ijms22115868. [PMID: 34070827 PMCID: PMC8198109 DOI: 10.3390/ijms22115868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Precocious dissociation of sisters 5 (PDS5) is an associate protein of cohesin that is conserved from yeast to humans. It acts as a regulator of the cohesin complex and plays important roles in various cellular processes, such as sister chromatid cohesion, DNA damage repair, gene transcription, and DNA replication. Vertebrates have two paralogs of PDS5, PDS5A and PDS5B, which have redundant and unique roles in regulating cohesin functions. Herein, we discuss the molecular characteristics and functions of PDS5, as well as the effects of its mutations in the development of diseases and their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Debananda Pati
- Correspondence: ; Tel.: +1-832-824-4575; Fax: +1-832-825-4651
| |
Collapse
|
21
|
Castells-Roca L, Tejero E, Rodríguez-Santiago B, Surrallés J. CRISPR Screens in Synthetic Lethality and Combinatorial Therapies for Cancer. Cancers (Basel) 2021; 13:1591. [PMID: 33808217 PMCID: PMC8037779 DOI: 10.3390/cancers13071591] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer is a complex disease resulting from the accumulation of genetic dysfunctions. Tumor heterogeneity causes the molecular variety that divergently controls responses to chemotherapy, leading to the recurrent problem of cancer reappearance. For many decades, efforts have focused on identifying essential tumoral genes and cancer driver mutations. More recently, prompted by the clinical success of the synthetic lethality (SL)-based therapy of the PARP inhibitors in homologous recombinant deficient tumors, scientists have centered their novel research on SL interactions (SLI). The state of the art to find new genetic interactions are currently large-scale forward genetic CRISPR screens. CRISPR technology has rapidly evolved to be a common tool in the vast majority of laboratories, as tools to implement CRISPR screen protocols are available to all researchers. Taking advantage of SLI, combinatorial therapies have become the ultimate model to treat cancer with lower toxicity, and therefore better efficiency. This review explores the CRISPR screen methodology, integrates the up-to-date published findings on CRISPR screens in the cancer field and proposes future directions to uncover cancer regulation and individual responses to chemotherapy.
Collapse
Affiliation(s)
- Laia Castells-Roca
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eudald Tejero
- Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain;
| | - Benjamín Rodríguez-Santiago
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| |
Collapse
|