1
|
Icard P, Prieto M, Coquerel A, Fournel L, Gligorov J, Noel J, Mouren A, Dohan A, Alifano M, Simula L. Why and how citrate may sensitize malignant tumors to immunotherapy. Drug Resist Updat 2025; 78:101177. [PMID: 39612545 DOI: 10.1016/j.drup.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Immunotherapy, either alone or in combination with chemotherapy, has demonstrated limited efficacy in a variety of solid cancers. Several factors contribute to explaining primary or secondary resistance. Among them, cancer cells, whose metabolism frequently relies on aerobic glycolysis, promote exhaustion of cytotoxic immune cells by diverting the glucose in the tumor microenvironment (TME) to their own profit, while secreting lactic acid that sustains the oxidative metabolism of immunosuppressive cells. Here, we propose to combine current treatment based on the use of immune checkpoint inhibitors (ICIs) with high doses of sodium citrate (SCT) because citrate inhibits cancer cell metabolism (by targeting both glycolysis and oxidative metabolism) and may active anti-tumor immune response. Indeed, as showed in preclinical studies, SCT reduces cancer cell growth, promoting cell death and chemotherapy effectiveness. Furthermore, since the plasma membrane citrate carrier pmCIC is mainly expressed in cancer cells and low or not expressed in immune and non-transformed cells, we argue that the inhibition of cancer cell metabolism by SCT may increase glucose availability in the TME, thus promoting functionality of anti-tumor immune cells. Concomitantly, the decrease in the amount of lactic acid in the TME may reduce the functionality of immunosuppressive cells. Preclinical studies have shown that SCT can enhance the anti-tumor immune response through an enhancement of T cell infiltration and activation, and a repolarization of macrophages towards a TAM1-like phenotype. Therefore, this simple and cheap strategy may have a major impact to increase the efficacy of current immunotherapies in human solid tumors and we encourage testing it in clinical trials.
Collapse
Affiliation(s)
- Philippe Icard
- INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA Laboratory, Université de Caen Normandie, Caen, France; Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France.
| | - Mathilde Prieto
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Antoine Coquerel
- INSERM U1075, COMETE « Mobilités: Attention, Orientation, Chronobiologie », Université Caen, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris
| | - Joseph Gligorov
- Oncology Department, Tenon Hospital, Pierre et Marie Curie University, Paris
| | - Johanna Noel
- Oncology Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Adrien Mouren
- Département d'Innovation Thérapeutique et d´Essais Précoces (DITEP), Institut Gustave Roussy, Villejuif 94805, France
| | - Anthony Dohan
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris 75014, France; Radiology Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, Paris-Descartes University, Paris, France
| | - Luca Simula
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris 75014, France.
| |
Collapse
|
2
|
Kim W, Park S, Park T, Kim S, Kim J, Bong JH, Lee M. Anticancer effects of high-dose extracellular citrate treatment in pancreatic cancer cells under different glucose concentrations. Heliyon 2024; 10:e37917. [PMID: 39315179 PMCID: PMC11417537 DOI: 10.1016/j.heliyon.2024.e37917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid tumor. Recently, the uptake of extracellular citrate by the sodium-dependent citrate transporter (NaCT), encoded by SLC13A5, has been demonstrated to exert profound effects on cancer cell metabolism. However, research on the function of extracellular citrate in PDAC pathogenesis and the relationship between NaCT expression and the tumor metabolic microenvironment is limited. Therefore, we aimed to evaluate the expression of citrate transporters across a spectrum of glucose concentrations in pancreatic cancer and systematically explore the effects of sodium citrate treatment on pancreatic cancer cells at different glucose concentrations. We observed a positive correlation between glucose concentration and NaCT expression in PDAC cell lines. Extracellular sodium citrate significantly reduced cell viability partially due to reduction in intracellular Ca2+ levels and decreased the migration of human PDAC cells. Furthermore, we observed a decrease in the levels of the stem cell marker prominin I (CD133) following sodium citrate treatment. Notably, the combination treatment of gemcitabine and extracellular sodium citrate exhibited a synergistic anticancer effect in both two-dimensional (2D) and three-dimensional (3D) culture systems. Additionally, we confirmed that pH slightly increased upon administration of sodium citrate, indicating that this could potentially augment the efficacy of gemcitabine. Altogether, these findings suggest that exogenous sodium citrate treatment, particularly in combination with gemcitabine, may represent a novel therapeutic strategy for treating PDAC. This approach holds promise for disrupting PDAC cell metabolism and inhibiting tumor progression.
Collapse
Affiliation(s)
- Wonjin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sanghee Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Taehyun Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Seunghwan Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jimin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ji-Hong Bong
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, 22012, Republic of Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, 22012, Republic of Korea
| |
Collapse
|
3
|
Cenigaonandia‐Campillo A, Garcia‐Bautista A, Rio‐Vilariño A, Cebrian A, del Puerto L, Pellicer JA, Gabaldón JA, Pérez‐Sánchez H, Carmena‐Bargueño M, Meroño C, Traba J, Fernandez‐Aceñero MJ, Baños‐Herraiz N, Mozas‐Vivar L, Núñez‐Delicado E, Garcia‐Foncillas J, Aguilera Ó. Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest. Mol Oncol 2024; 18:2212-2233. [PMID: 38425123 PMCID: PMC11467799 DOI: 10.1002/1878-0261.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), metabolic rewiring and resistance to standard therapy are closely associated. PDAC cells show enormous requirements for glucose-derived citrate, the first rate-limiting metabolite in the synthesis of new lipids. Both the expression and activity of citrate synthase (CS) are extraordinarily upregulated in PDAC. However, no previous relationship between gemcitabine response and citrate metabolism has been documented in pancreatic cancer. Here, we report for the first time that pharmacological doses of vitamin C are capable of exerting an inhibitory action on the activity of CS, reducing glucose-derived citrate levels. Moreover, ascorbate targets citrate metabolism towards the de novo lipogenesis pathway, impairing fatty acid synthase (FASN) and ATP citrate lyase (ACLY) expression. Lowered citrate availability was found to be directly associated with diminished proliferation and, remarkably, enhanced gemcitabine response. Moreover, the deregulated citrate-derived lipogenic pathway correlated with a remarkable decrease in extracellular pH through inhibition of lactate dehydrogenase (LDH) and overall reduced glycolytic metabolism. Modulation of citric acid metabolism in highly chemoresistant pancreatic adenocarcinoma, through molecules such as vitamin C, could be considered as a future clinical option to improve patient response to standard chemotherapy regimens.
Collapse
Affiliation(s)
| | - Ana Garcia‐Bautista
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Anxo Rio‐Vilariño
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Arancha Cebrian
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Laura del Puerto
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - José Antonio Pellicer
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Horacio Pérez‐Sánchez
- Bioinformatics and High‐Performance Computing Research Group (BIO‐HPC), Computer Engineering DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Miguel Carmena‐Bargueño
- Bioinformatics and High‐Performance Computing Research Group (BIO‐HPC), Computer Engineering DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Carolina Meroño
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones CientíficasUniversidad Autónoma de Madrid (CSIC‐UAM)Spain
- Instituto Universitario de Biología Molecular‐UAM (IUBM‐UAM), Departamento de Biología MolecularUniversidad Autónoma de MadridSpain
| | - Javier Traba
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones CientíficasUniversidad Autónoma de Madrid (CSIC‐UAM)Spain
- Instituto Universitario de Biología Molecular‐UAM (IUBM‐UAM), Departamento de Biología MolecularUniversidad Autónoma de MadridSpain
| | | | | | - Lorena Mozas‐Vivar
- Preclinical programe START Madrid‐FJD Hospital fundación Jiménez DíazSpain
| | - Estrella Núñez‐Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Jesús Garcia‐Foncillas
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Óscar Aguilera
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
- Universidad Católica de Murcia (UCAM)Spain
| |
Collapse
|
4
|
Schwertner B, Dahdal G, Jagla W, Grossmann L, Drexler K, Krahn MP, Evert K, Berneburg M, Haferkamp S, Ziegler C, Parkinson EK, Zahn G, Mycielska ME, Gaumann A. Expression of the plasma membrane citrate carrier (pmCiC) in human cancerous tissues-correlation with tumour aggressiveness. Front Cell Dev Biol 2024; 12:1308135. [PMID: 39022761 PMCID: PMC11251970 DOI: 10.3389/fcell.2024.1308135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
We have recently shown that cancer cells of various origins take up extracellular citrate through the plasma membrane citrate carrier (pmCiC), a specific plasma membrane citrate transporter. Extracellular citrate is required to support cancer cell metabolism, in particular fatty acid synthesis, mitochondrial activity, protein synthesis and histone acetylation. In addition, cancer cells tend to acquire a metastatic phenotype in the presence of extracellular citrate. Our recent study also showed that cancer-associated stromal cells synthesise and release citrate and that this process is controlled by cancer cells. In the present study, we evaluated the expression of pmCiC, fibroblast activation protein-α (FAP) and the angiogenesis marker cluster of differentiation 31 (CD31) in human cancer tissues of different origins. In the cohort studied, we found no correlation between disease stage and the expression of FAP or CD31. However, we have identified a clear correlation between pmCiC expression in cancer cells and cancer-associated stroma with tumour stage. It can be concluded that pmCiC is increased in cancer cells and in cancer-supporting cells in the tumour microenvironment at the later stages of cancer development, particularly at the metastatic sites. Therefore, pmCiC expression has the potential to serve as a prognostic marker, although further studies are needed.
Collapse
Affiliation(s)
- Barbara Schwertner
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - George Dahdal
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Jagla
- Institute of Pathology Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Luis Grossmann
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Konstantin Drexler
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Michael P. Krahn
- Medical Cell Biology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Christine Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Eric K. Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Maria E. Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Andreas Gaumann
- Institute of Pathology Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| |
Collapse
|
5
|
Wu J, Liu N, Chen J, Tao Q, Li Q, Li J, Chen X, Peng C. The Tricarboxylic Acid Cycle Metabolites for Cancer: Friend or Enemy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0351. [PMID: 38867720 PMCID: PMC11168306 DOI: 10.34133/research.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/18/2024] [Indexed: 06/14/2024]
Abstract
The tricarboxylic acid (TCA) cycle is capable of providing sufficient energy for the physiological activities under aerobic conditions. Although tumor metabolic reprogramming places aerobic glycolysis in a dominant position, the TCA cycle remains indispensable for tumor cells as a hub for the metabolic linkage and interconversion of glucose, lipids, and certain amino acids. TCA intermediates such as citrate, α-ketoglutarate, succinate, and fumarate are altered in tumors, and they regulate the tumor metabolism, signal transduction, and immune environment to affect tumorigenesis and tumor progression. This article provides a comprehensive review of the modifications occurring in tumor cells in relation to the intermediates of the TCA cycle, which affects tumor pathogenesis and current therapeutic strategy for therapy through targeting TCA cycle in cancer cells.
Collapse
Affiliation(s)
- Jie Wu
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jing Chen
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Qian Tao
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Qiuqiu Li
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jie Li
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Furong Labratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Teng T, Shi H, Fan Y, Guo P, Zhang J, Qiu X, Feng J, Huang H. Metabolic responses to the occurrence and chemotherapy of pancreatic cancer: biomarker identification and prognosis prediction. Sci Rep 2024; 14:6938. [PMID: 38521793 PMCID: PMC10960848 DOI: 10.1038/s41598-024-56737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
As the most malignant tumor, the prognosis of pancreatic cancer is not ideal even in the small number of patients who can undergo radical surgery. As a highly heterogeneous tumor, chemotherapy resistance is a major factor leading to decreased efficacy and postoperative recurrence of pancreatic cancer. In this study, nuclear magnetic resonance (NMR)-based metabolomics was applied to identify serum metabolic characteristics of pancreatic ductal adenocarcinoma (PDAC) and screen the potential biomarkers for its diagnosis. Metabolic changes of patients with different CA19-9 levels during postoperative chemotherapy were also monitored and compared to identify the differential metabolites that may affect the efficacy of chemotherapy. Finally, 19 potential serum biomarkers were screened to serve the diagnosis of PDAC, and significant metabolic differences between the two CA19-9 stratifications of PDAC were involved in energy metabolism, lipid metabolism, amino acid metabolism, and citric acid metabolism. Enrichment analysis of metabolic pathways revealed six shared pathways by PDAC and chemotherapy such as alanine, aspartate and glutamate metabolism, arginine biosynthesis, glutamine and glutamate metabolism, citrate cycle, pyruvate metabolism, and glycogolysis/gluconeogeneis. The similarity between the metabolic characteristics of PDAC and the metabolic responses to chemotherapy provided a reference for clinical prediction of benefits of postoperative chemotherapy in PDAC patients.
Collapse
Affiliation(s)
- Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Han Shi
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanying Fan
- Fuzhou Children Hospital of Fujian Province, Fuzhou, Fujian, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jin Zhang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xinyu Qiu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Vishwa R, BharathwajChetty B, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Hegde M, Kunnumakkara AB. Lipid metabolism and its implications in tumor cell plasticity and drug resistance: what we learned thus far? Cancer Metastasis Rev 2024; 43:293-319. [PMID: 38438800 DOI: 10.1007/s10555-024-10170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024]
Abstract
Metabolic reprogramming, a hallmark of cancer, allows cancer cells to adapt to their specific energy needs. The Warburg effect benefits cancer cells in both hypoxic and normoxic conditions and is a well-studied reprogramming of metabolism in cancer. Interestingly, the alteration of other metabolic pathways, especially lipid metabolism has also grabbed the attention of scientists worldwide. Lipids, primarily consisting of fatty acids, phospholipids and cholesterol, play essential roles as structural component of cell membrane, signalling molecule and energy reserves. This reprogramming primarily involves aberrations in the uptake, synthesis and breakdown of lipids, thereby contributing to the survival, proliferation, invasion, migration and metastasis of cancer cells. The development of resistance to the existing treatment modalities poses a major challenge in the field of cancer therapy. Also, the plasticity of tumor cells was reported to be a contributing factor for the development of resistance. A number of studies implicated that dysregulated lipid metabolism contributes to tumor cell plasticity and associated drug resistance. Therefore, it is important to understand the intricate reprogramming of lipid metabolism in cancer cells. In this review, we mainly focused on the implication of disturbed lipid metabolic events on inducing tumor cell plasticity-mediated drug resistance. In addition, we also discussed the concept of lipid peroxidation and its crucial role in phenotypic switching and resistance to ferroptosis in cancer cells. Elucidating the relationship between lipid metabolism, tumor cell plasticity and emergence of resistance will open new opportunities to develop innovative strategies and combinatorial approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
8
|
Bantug GR, Hess C. The immunometabolic ecosystem in cancer. Nat Immunol 2023; 24:2008-2020. [PMID: 38012409 DOI: 10.1038/s41590-023-01675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2023]
Abstract
Our increased understanding of how key metabolic pathways are activated and regulated in malignant cells has identified metabolic vulnerabilities of cancers. Translating this insight to the clinics, however, has proved challenging. Roadblocks limiting efficacy of drugs targeting cancer metabolism may lie in the nature of the metabolic ecosystem of tumors. The exchange of metabolites and growth factors between cancer cells and nonmalignant tumor-resident cells is essential for tumor growth and evolution, as well as the development of an immunosuppressive microenvironment. In this Review, we will examine the metabolic interplay between tumor-resident cells and how targeted inhibition of specific metabolic enzymes in malignant cells could elicit pro-tumorigenic effects in non-transformed tumor-resident cells and inhibit the function of tumor-specific T cells. To improve the efficacy of metabolism-targeted anticancer strategies, a holistic approach that considers the effect of metabolic inhibitors on major tumor-resident cell populations is needed.
Collapse
Affiliation(s)
- Glenn R Bantug
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, Basel, Switzerland.
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, Basel, Switzerland.
- Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic Reprogramming of Breast Tumor-Educated Macrophages Revealed by NMR Metabolomics. Cancers (Basel) 2023; 15:cancers15041211. [PMID: 36831553 PMCID: PMC9954003 DOI: 10.3390/cancers15041211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The metabolic crosstalk between tumor cells and tumor-associated macrophages (TAMs) has emerged as a critical contributor to tumor development and progression. In breast cancer (BC), the abundance of immune-suppressive TAMs positively correlates with poor prognosis. However, little is known about how TAMs reprogram their metabolism in the BC microenvironment. In this work, we have assessed the metabolic and phenotypic impact of incubating THP-1-derived macrophages in conditioned media (CM) from two BC cell lines cultured in normoxia/hypoxia: MDA-MB-231 cells (highly metastatic, triple-negative BC), and MCF-7 cells (less aggressive, luminal BC). The resulting tumor-educated macrophages (TEM) displayed prominent differences in their metabolic activity and composition, compared to control cells (M0), as assessed by exo- and endometabolomics. In particular, TEM turned to the utilization of extracellular pyruvate, alanine, and branched chain keto acids (BCKA), while exhibiting alterations in metabolites associated with several intracellular pathways, including polyamines catabolism (MDA-TEM), collagen degradation (mainly MCF-TEM), adenosine accumulation (mainly MDA-TEM) and lipid metabolism. Interestingly, following a second-stage incubation in fresh RPMI medium, TEM still displayed several metabolic differences compared to M0, indicating persistent reprogramming. Overall, this work provided new insights into the metabolic plasticity of TEM, revealing potentially important nutritional exchanges and immunoregulatory metabolites in the BC TME.
Collapse
Affiliation(s)
- Ana S. Dias
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina R. Almeida
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luisa A. Helguero
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iola F. Duarte
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-234-401-418
| |
Collapse
|
11
|
Oliinyk D, Eigenberger A, Felthaus O, Haerteis S, Prantl L. Chorioallantoic Membrane Assay at the Cross-Roads of Adipose-Tissue-Derived Stem Cell Research. Cells 2023; 12:cells12040592. [PMID: 36831259 PMCID: PMC9953848 DOI: 10.3390/cells12040592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
With a history of more than 100 years of different applications in various scientific fields, the chicken chorioallantoic membrane (CAM) assay has proven itself to be an exceptional scientific model that meets the requirements of the replacement, reduction, and refinement principle (3R principle). As one of three extraembryonic avian membranes, the CAM is responsible for fetal respiration, metabolism, and protection. The model provides a unique constellation of immunological, vascular, and extracellular properties while being affordable and reliable at the same time. It can be utilized for research purposes in cancer biology, angiogenesis, virology, and toxicology and has recently been used for biochemistry, pharmaceutical research, and stem cell biology. Stem cells and, in particular, mesenchymal stem cells derived from adipose tissue (ADSCs) are emerging subjects for novel therapeutic strategies in the fields of tissue regeneration and personalized medicine. Because of their easy accessibility, differentiation profile, immunomodulatory properties, and cytokine repertoire, ADSCs have already been established for different preclinical applications in the files mentioned above. In this review, we aim to highlight and identify some of the cross-sections for the potential utilization of the CAM model for ADSC studies with a focus on wound healing and tissue engineering, as well as oncological research, e.g., sarcomas. Hereby, the focus lies on the combination of existing evidence and experience of such intersections with a potential utilization of the CAM model for further research on ADSCs.
Collapse
Affiliation(s)
- Dmytro Oliinyk
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
- Correspondence:
| | - Andreas Eigenberger
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Oliver Felthaus
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, Faculty for Biology and Preclinical Medicine, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Akhtar MJ, Khan SA, Kumar B, Chawla P, Bhatia R, Singh K. Role of sodium dependent SLC13 transporter inhibitors in various metabolic disorders. Mol Cell Biochem 2022:10.1007/s11010-022-04618-7. [DOI: 10.1007/s11010-022-04618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
|
13
|
Pion E, Karnosky J, Boscheck S, Wagner BJ, Schmidt KM, Brunner SM, Schlitt HJ, Aung T, Hackl C, Haerteis S. 3D In Vivo Models for Translational Research on Pancreatic Cancer: The Chorioallantoic Membrane (CAM) Model. Cancers (Basel) 2022; 14:cancers14153733. [PMID: 35954398 PMCID: PMC9367548 DOI: 10.3390/cancers14153733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The 5-year overall survival rate for all stages of pancreatic cancer is relatively low at about only 6%. As a result of this exceedingly poor prognosis, new research models are necessary to investigate this highly malignant cancer. One model that has been used extensively for a vast variety of different cancers is the chorioallantoic membrane (CAM) model. It is based on an exceptionally vascularized membrane that develops within fertilized chicken eggs and can be used for the grafting and analysis of tumor tissue. The aim of the study was to summarize already existing works on pancreatic ductal adenocarcinoma (PDAC) and the CAM model. The results were subdivided into different categories that include drug testing, angiogenesis, personalized medicine, modifications of the model, and further developments to help improve the unfavorable prognosis of this disease. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with adverse outcomes that have barely improved over the last decade. About half of all patients present with metastasis at the time of diagnosis, and the 5-year overall survival rate across all stages is only 6%. Innovative in vivo research models are necessary to combat this cancer and to discover novel treatment strategies. The chorioallantoic membrane (CAM) model represents one 3D in vivo methodology that has been used in a large number of studies on different cancer types for over a century. This model is based on a membrane formed within fertilized chicken eggs that contain a dense network of blood vessels. Because of its high cost-efficiency, simplicity, and versatility, the CAM model appears to be a highly valuable research tool in the pursuit of gaining more in-depth insights into PDAC. A summary of the current literature on the usage of the CAM model for the investigation of PDAC was conducted and subdivided into angiogenesis, drug testing, modifications, personalized medicine, and further developments. On this comprehensive basis, further research should be conducted on PDAC in order to improve the abysmal prognosis of this malignant disease.
Collapse
Affiliation(s)
- Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
| | - Julia Karnosky
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Sofie Boscheck
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
| | - Benedikt J. Wagner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Katharina M. Schmidt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Stefan M. Brunner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Hans J. Schlitt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469 Deggendorf, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
- Correspondence:
| |
Collapse
|
14
|
Deep Learning-Based Image Analysis for the Quantification of Tumor-Induced Angiogenesis in the 3D In Vivo Tumor Model—Establishment and Addition to Laser Speckle Contrast Imaging (LSCI). Cells 2022; 11:cells11152321. [PMID: 35954165 PMCID: PMC9367525 DOI: 10.3390/cells11152321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: angiogenesis plays an important role in the growth and metastasis of tumors. We established the CAM assay application, an image analysis software of the IKOSA platform by KML Vision, for the quantification of blood vessels with the in ovo chorioallantoic membrane (CAM) model. We added this proprietary deep learning algorithm to the already established laser speckle contrast imaging (LSCI). (2) Methods: angiosarcoma cell line tumors were grafted onto the CAM. Angiogenesis was measured at the beginning and at the end of tumor growth with both measurement methods. The CAM assay application was trained to enable the recognition of in ovo CAM vessels. Histological stains of the tissue were performed and gluconate, an anti-angiogenic substance, was applied to the tumors. (3) Results: the angiosarcoma cells formed tumors on the CAM that appeared to stay vital and proliferated. An increase in perfusion was observed using both methods. The CAM assay application was successfully established in the in ovo CAM model and anti-angiogenic effects of gluconate were observed. (4) Conclusions: the CAM assay application appears to be a useful method for the quantification of angiogenesis in the CAM model and gluconate could be a potential treatment of angiosarcomas. Both aspects should be evaluated in further research.
Collapse
|
15
|
Drexler K, Schwertner B, Haerteis S, Aung T, Berneburg M, Geissler EK, Mycielska ME, Haferkamp S. The Role of Citrate Homeostasis in Merkel Cell Carcinoma Pathogenesis. Cancers (Basel) 2022; 14:cancers14143425. [PMID: 35884486 PMCID: PMC9325124 DOI: 10.3390/cancers14143425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Merkel cell carcinoma (MCC) is a rare but highly aggressive skin cancer. Despite important progress, overall understanding of the events that drive MCC carcinogenesis remains incomplete. We discovered that the plasma membrane citrate transporter (pmCiC) is upregulated in Merkel cell carcinoma cell lines. Cancer cells import extracellular citrate via pmCiC to support their metabolism, which is critical to support proliferation and metastatic spread. In this study, we show that inhibition of pmCiC can decrease the growth rate of Merkel cell carcinoma cell lines. Targeting pmCiC and thereby the tumor metabolism should be considered further as a potential anti-cancer therapy. Abstract Merkel cell carcinoma (MCC) is a rare but highly aggressive tumor of the skin with a poor prognosis. The factors driving this cancer must be better understood in order to discover novel targets for more effective therapies. In the search for targets, we followed our interest in citrate as a central and critical metabolite linked to fatty acid synthesis in cancer development. A key to citrate uptake in cancer cells is the high expression of the plasma membrane citrate transporter (pmCiC), which is upregulated in the different adenocarcinoma types tested so far. In this study, we show that the pmCiC is also highly expressed in Merkel cell carcinoma cell lines by western blot and human tissues by immunohistochemistry staining. In the presence of extracellular citrate, MCC cells show an increased proliferation rate in vitro; a specific pmCiC inhibitor (Na+-gluconate) blocks this citrate-induced proliferation. Furthermore, the 3D in vivo Chick Chorioallantoic Membrane (CAM) model showed that the application of Na+-gluconate also decreases Merkel cell carcinoma growth. Based on our results, we conclude that pmCiC and extracellular citrate uptake should be considered further as a potential novel target for the treatment of Merkel cell carcinoma.
Collapse
Affiliation(s)
- Konstantin Drexler
- Department of Dermatology, University Medical Center, 93053 Regensburg, Germany; (B.S.); (M.B.); (S.H.)
- Correspondence: ; Tel.: +49-941-944-9603; Fax: +49-941-944-9525
| | - Barbara Schwertner
- Department of Dermatology, University Medical Center, 93053 Regensburg, Germany; (B.S.); (M.B.); (S.H.)
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (S.H.); (T.A.)
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (S.H.); (T.A.)
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469 Deggendorf, Germany
| | - Mark Berneburg
- Department of Dermatology, University Medical Center, 93053 Regensburg, Germany; (B.S.); (M.B.); (S.H.)
| | - Edward K. Geissler
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Maria E. Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany;
| | - Sebastian Haferkamp
- Department of Dermatology, University Medical Center, 93053 Regensburg, Germany; (B.S.); (M.B.); (S.H.)
| |
Collapse
|
16
|
Cancer Cell Metabolism. Int J Mol Sci 2022; 23:ijms23137210. [PMID: 35806215 PMCID: PMC9266817 DOI: 10.3390/ijms23137210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
|
17
|
Taurino G, Deshmukh R, Villar VH, Chiu M, Shaw R, Hedley A, Shokry E, Sumpton D, Dander E, D'Amico G, Bussolati O, Tardito S. Mesenchymal stromal cells cultured in physiological conditions sustain citrate secretion with glutamate anaplerosis. Mol Metab 2022; 63:101532. [PMID: 35752287 PMCID: PMC9254159 DOI: 10.1016/j.molmet.2022.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (MSCs) have immunomodulatory and regenerative potential. However, culture conditions govern their metabolic processes and therapeutic efficacy. Here we show that culturing donor-derived MSCs in Plasmax™, a physiological medium with the concentrations of nutrients found in human plasma, supports their proliferation and stemness, and prevents the nutritional stress induced by the conventional medium DMEM. The quantification of the exchange rates of metabolites between cells and medium, untargeted metabolomics, stable isotope tracing and transcriptomic analysis, performed at physiologically relevant oxygen concentrations (1%O2), reveal that MSCs rely on high rate of glucose to lactate conversion, coupled with parallel anaplerotic fluxes from glutamine and glutamate to support citrate synthesis and secretion. These distinctive traits of MSCs shape the metabolic microenvironment of bone marrow niche and can influence nutrient cross-talks under physiological and pathological conditions.
Collapse
Affiliation(s)
- Giuseppe Taurino
- Laboratory of General Pathology, Dept. of Medicine and Surgery, University of Parma, 43125, Parma, Italy; MRH - Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy
| | - Ruhi Deshmukh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Victor H Villar
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Martina Chiu
- Laboratory of General Pathology, Dept. of Medicine and Surgery, University of Parma, 43125, Parma, Italy
| | - Robin Shaw
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Engy Shokry
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Erica Dander
- Centro Ricerca Tettamanti, Pediatric Dept., University of Milano-Bicocca, Fondazione MBBM, Monza, 20900, Italy
| | - Giovanna D'Amico
- Centro Ricerca Tettamanti, Pediatric Dept., University of Milano-Bicocca, Fondazione MBBM, Monza, 20900, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Dept. of Medicine and Surgery, University of Parma, 43125, Parma, Italy; MRH - Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy.
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
18
|
Tissue-Specific Downregulation of Fatty Acid Synthase Suppresses Intestinal Adenoma Formation via Coordinated Reprograming of Transcriptome and Metabolism in the Mouse Model of Apc-Driven Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23126510. [PMID: 35742953 PMCID: PMC9245602 DOI: 10.3390/ijms23126510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Altered lipid metabolism is a potential target for therapeutic intervention in cancer. Overexpression of Fatty Acid Synthase (FASN) correlates with poor prognosis in colorectal cancer (CRC). While multiple studies show that upregulation of lipogenesis is critically important for CRC progression, the contribution of FASN to CRC initiation is poorly understood. We utilize a C57BL/6-Apc/Villin-Cre mouse model with knockout of FASN in intestinal epithelial cells to show that the heterozygous deletion of FASN increases mouse survival and decreases the number of intestinal adenomas. Using RNA-Seq and gene set enrichment analysis, we demonstrate that a decrease in FASN expression is associated with inhibition of pathways involved in cellular proliferation, energy production, and CRC progression. Metabolic and reverse phase protein array analyses demonstrate consistent changes in alteration of metabolic pathways involved in both anabolism and energy production. Downregulation of FASN expression reduces the levels of metabolites within glycolysis and tricarboxylic acid cycle with the most significant reduction in the level of citrate, a master metabolite, which enhances ATP production and fuels anabolic pathways. In summary, we demonstrate the critical importance of FASN during CRC initiation. These findings suggest that targeting FASN is a potential therapeutic approach for early stages of CRC or as a preventive strategy for this disease.
Collapse
|
19
|
Ganapathy V, Haferkamp S, Parkinson EK, Mycielska ME. Editorial: Metabolite and Nutrient Transporters in Cancer-Cell Metabolism: Role in Cancer Progression and Metastasis. Front Cell Dev Biol 2022; 10:885717. [PMID: 35547821 PMCID: PMC9081672 DOI: 10.3389/fcell.2022.885717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- *Correspondence: Vadivel Ganapathy, ; Sebastian Haferkamp, ; Eric K. Parkinson, ; Maria E. Mycielska,
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Vadivel Ganapathy, ; Sebastian Haferkamp, ; Eric K. Parkinson, ; Maria E. Mycielska,
| | - Eric K. Parkinson
- Centre for Immunobiology and Regenerative Medicine, Queen Mary University of London, London, United Kingdom
- *Correspondence: Vadivel Ganapathy, ; Sebastian Haferkamp, ; Eric K. Parkinson, ; Maria E. Mycielska,
| | - Maria E. Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
- *Correspondence: Vadivel Ganapathy, ; Sebastian Haferkamp, ; Eric K. Parkinson, ; Maria E. Mycielska,
| |
Collapse
|
20
|
Parkinson EK, Prime SS. Oral Senescence: From Molecular Biology to Clinical Research. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.822397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cellular senescence is an irreversible cell cycle arrest occurring following multiple rounds of cell division (replicative senescence) or in response to cellular stresses such as ionizing radiation, signaling imbalances and oxidative damage (stress-induced premature senescence). Even very small numbers of senescent cells can be deleterious and there is evidence that senescent cells are instrumental in a number of oral pathologies including cancer, oral sub mucous fibrosis and the side effects of cancer therapy. In addition, senescent cells are present and possibly important in periodontal disease and other chronic inflammatory conditions of the oral cavity. However, senescence is a double-edged sword because although it operates as a suppressor of malignancy in pre-malignant epithelia, senescent cells in the neoplastic environment promote tumor growth and progression. Many of the effects of senescent cells are dependent on the secretion of an array of diverse therapeutically targetable proteins known as the senescence-associated secretory phenotype. However, as senescence may have beneficial roles in wound repair, preventing fibrosis and stem cell activation the clinical exploitation of senescent cells is not straightforward. Here, we discuss biological mechanisms of senescence and we review the current approaches to target senescent cells therapeutically, including senostatics and senolytics which are entering clinical trials.
Collapse
|
21
|
Metabolic Alterations in Cellular Senescence: The Role of Citrate in Ageing and Age-Related Disease. Int J Mol Sci 2022; 23:ijms23073652. [PMID: 35409012 PMCID: PMC8998297 DOI: 10.3390/ijms23073652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Recent mouse model experiments support an instrumental role for senescent cells in age-related diseases and senescent cells may be causal to certain age-related pathologies. A strongly supported hypothesis is that extranuclear chromatin is recognized by the cyclic GMP–AMP synthase-stimulator of interferon genes pathway, which in turn leads to the induction of several inflammatory cytokines as part of the senescence-associated secretory phenotype. This sterile inflammation increases with chronological age and age-associated disease. More recently, several intracellular and extracellular metabolic changes have been described in senescent cells but it is not clear whether any of them have functional significance. In this review, we highlight the potential effect of dietary and age-related metabolites in the modulation of the senescent phenotype in addition to discussing how experimental conditions may influence senescent cell metabolism, especially that of energy regulation. Finally, as extracellular citrate accumulates following certain types of senescence, we focus on the recently reported role of extracellular citrate in aging and age-related pathologies. We propose that citrate may be an active component of the senescence-associated secretory phenotype and via its intake through the diet may even contribute to the cause of age-related disease.
Collapse
|
22
|
Branco JR, Esteves AM, Imbroisi Filho R, Demaria TM, Lisboa PC, Lopes BP, Moura EG, Zancan P, Sola-Penna M. Citrate enrichment in a Western diet reduces weight gain via browning of adipose tissues without resolving diet-induced insulin resistance in mice. Food Funct 2022; 13:10947-10955. [DOI: 10.1039/d2fo02011d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Citrate, a major component of processed foods, reduces weight gain without resolving insulin resistance.
Collapse
Affiliation(s)
- Jessica Ristow Branco
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Amanda Moreira Esteves
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ricardo Imbroisi Filho
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Thainá M. Demaria
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Patricia C. Lisboa
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Bruna Pereira Lopes
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Egberto G. Moura
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Patricia Zancan
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mauro Sola-Penna
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
23
|
Delinassios JG, Hoffman RM. The cancer-inhibitory effects of proliferating tumor-residing fibroblasts. Biochim Biophys Acta Rev Cancer 2021; 1877:188673. [PMID: 34953931 DOI: 10.1016/j.bbcan.2021.188673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Initiation, local progression, and metastasis of cancer are associated with specific morphological, molecular, and functional changes in the extracellular matrix and the fibroblasts within the tumor microenvironment (TME). In the early stages of tumor development, fibroblasts are an obstacle that cancer cells must surpass or nullify to progress. Thus, in early tumor progression, specific signaling from cancer cells activates bio-pathways, which abolish the innate anticancer properties of fibroblasts and convert a high proportion of them to tumor-promoting cancer-associated fibroblasts (CAFs). Following this initial event, a wide spectrum of gene expression changes gradually leads to the development of a stromal fibroblast population with complex heterogeneity, creating fibroblast subtypes with characteristic profiles, which may alternate between being tumor-promotive and tumor-suppressive, topologically and chronologically in the TME. These fibroblast subtypes form the tumor's histological landscape including areas of cancer growth, inflammation, angiogenesis, invasion fronts, proliferating and non-proliferating fibroblasts, cancer-cell apoptosis, fibroblast apoptosis, and necrosis. These features reflect general deregulation of tissue homeostasis within the TME. This review discusses fundamental and current knowledge that has established the existence of anticancer fibroblasts within the various interacting elements of the TME. It is proposed that the maintenance of fibroblast proliferation is an essential parameter for the activation of their anticancer capacity, similar to that by which normal fibroblasts would be activated in wound repair, thus maintaining tissue homeostasis. Encouragement of research in this direction may render new means of cancer therapy and a greater understanding of tumor progression.
Collapse
Affiliation(s)
- John G Delinassios
- International Institute of Anticancer Research, 1(st) km Kapandritiou-Kalamou Rd., Kapandriti, 19014 Attica, Greece.
| | - Robert M Hoffman
- Department of Surgery, University of California, 9300 Campus Point Drive, La Jolla, CA 92037, USA; AntiCancer Inc., 7917 Ostrow St, San Diego, CA 92111, USA.
| |
Collapse
|
24
|
Parkinson EK, Adamski J, Zahn G, Gaumann A, Flores-Borja F, Ziegler C, Mycielska ME. Extracellular citrate and metabolic adaptations of cancer cells. Cancer Metastasis Rev 2021; 40:1073-1091. [PMID: 34932167 PMCID: PMC8825388 DOI: 10.1007/s10555-021-10007-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022]
Abstract
It is well established that cancer cells acquire energy via the Warburg effect and oxidative phosphorylation. Citrate is considered to play a crucial role in cancer metabolism by virtue of its production in the reverse Krebs cycle from glutamine. Here, we review the evidence that extracellular citrate is one of the key metabolites of the metabolic pathways present in cancer cells. We review the different mechanisms by which pathways involved in keeping redox balance respond to the need of intracellular citrate synthesis under different extracellular metabolic conditions. In this context, we further discuss the hypothesis that extracellular citrate plays a role in switching between oxidative phosphorylation and the Warburg effect while citrate uptake enhances metastatic activities and therapy resistance. We also present the possibility that organs rich in citrate such as the liver, brain and bones might form a perfect niche for the secondary tumour growth and improve survival of colonising cancer cells. Consistently, metabolic support provided by cancer-associated and senescent cells is also discussed. Finally, we highlight evidence on the role of citrate on immune cells and its potential to modulate the biological functions of pro- and anti-tumour immune cells in the tumour microenvironment. Collectively, we review intriguing evidence supporting the potential role of extracellular citrate in the regulation of the overall cancer metabolism and metastatic activity.
Collapse
Affiliation(s)
- E Kenneth Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK.
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Experimental Genetics, Technical University of Munich, Munich, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Andreas Gaumann
- Institute of Pathology Kaufbeuren-Ravensburg, 87600, Kaufbeuren, Germany
| | - Fabian Flores-Borja
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| | - Christine Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
25
|
Karen-Ng LP, James EL, Stephen A, Bennett MH, Mycielska ME, Parkinson EK. The Extracellular Metabolome Stratifies Low and High Risk Potentially Premalignant Oral Keratinocytes and Identifies Citrate as a Potential Non-Invasive Marker of Tumour Progression. Cancers (Basel) 2021; 13:cancers13164212. [PMID: 34439366 PMCID: PMC8394991 DOI: 10.3390/cancers13164212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The early detection of oral cancer is a high priority, as improvements in this area could lead to greater cure rates and reduced disability due to extensive surgery. Oral cancer is very difficult to detect in over 70% of cases as it develops unseen until quite advanced, sometimes rapidly. Therefore, the development of markers in body fluids (liquid biopsies) indicative of cancerous changes have a high priority. We show here that small molecules called metabolites can distinguish between non-diseased oral cells and two types of cells found in oral cells on the road to cancer. Although our investigation is preliminary, some of the metabolites have already been detected in the saliva (split) of oral cancer patients, and could eventually help detect oral cancer development at an earlier stage. Abstract Premalignant oral lesions (PPOLs) which bypass senescence (IPPOL) have a much greater probability of progressing to malignancy, but pre-cancerous fields also contain mortal PPOL keratinocytes (MPPOL) that possess tumour-promoting properties. To identify metabolites that could potentially separate IPPOL, MPPOL and normal oral keratinocytes non-invasively in vivo, we conducted an unbiased screen of their conditioned medium. MPPOL keratinocytes showed elevated levels of branch-chain amino acid, lipid, prostaglandin, and glutathione metabolites, some of which could potentially be converted into volatile compounds by oral bacteria and detected in breath analysis. Extracellular metabolites were generally depleted in IPPOL, and only six were elevated, but some metabolites distinguishing IPPOL from MPPOL have been associated with progression to oral squamous cell carcinoma (OSCC) in vivo. One of the metabolites elevated in IPPOL relative to the other groups, citrate, was confirmed by targeted metabolomics and, interestingly, has been implicated in cancer growth and metastasis. Although our investigation is preliminary, some of the metabolites described here are detectable in the saliva of oral cancer patients, albeit at a more advanced stage, and could eventually help detect oral cancer development earlier.
Collapse
Affiliation(s)
- Lee Peng Karen-Ng
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (E.L.J.); (A.S.)
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Emma Louise James
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (E.L.J.); (A.S.)
| | - Abish Stephen
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (E.L.J.); (A.S.)
| | - Mark Henry Bennett
- Department of Life Science, South Kensington Campus, Imperial College London, London SW7 2AZ, UK;
| | - Maria Elzbieta Mycielska
- Department of Surgery, University Medical Center, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany;
| | - Eric Kenneth Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK; (L.P.K.-N.); (E.L.J.); (A.S.)
- Correspondence: ; Tel.: +44-(0)207-882-7185 or +44-(0)78546536
| |
Collapse
|